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Abstract

Atmospheric vapor pressure deficit (VPD) controls local plant physiology and global vegetation productivity.
However, at ecologically crucial intermediate spatial scales, the-processescentrolling VPDvariabilityand-the role

of this-VPD variability in forest bryophyte community assembly and the processes controlling this variability are

little known.

To explore VPD effects on bryophyte community composition and richness and to disentangle processes

controlling landscape-scale VPD variability-z
richness, we recorded bryophyte communities and simultaneously measured forest microclimate air temperature
and relative humidity across a topographically diverse landscape representing a bryophyte diversity hotspot
in temperate Europe. Based on VPD importance for plant physiology, we hypothesize that VPD can be an
important also for bryophyte community assembly and that VPD variability will be jointly driven by saturated
and actual vapor pressure across the topographically diverse landscape with contrasting forest types and steep
microclimatic gradients.

Contrary to our expectation, VPD variability in—theforest—understery—was dictated by temperature-driven
differences in saturated vapor pressure, while actual vapor pressure was surprisingly constant across the landscape.

Gradients in bryephyte—eommunity—species composition,—and species richness and community structure of

bryophyte assemblages followed closely the VPD variability. The average daily mean VPD was much better

predictor of species composition than average daily maximum VPD and the mean VPD also explained significantly

more variation in species composition and richness than maximum temperature, indicating that time-averaged

evaporative stress is more relevant for bryophyte communities than microclimatic extremes. While mesic forest

bryophytes occurred along the whole VPD gradient, azenalby-species occurring near their distributional limits and

locally rare species preferred sites with low VPD. In result, low VPD sites represent species-rich microclimatic
refugia within the landscape, whereand-host regionally abundant mesic forest bryophytes simultaneeusty-coexist
with rare species occurring near their distributional range limits.

Our results showed that VPD wvariability at ecologically crucial landscape scales is controlled

by temperature-driven saturated vapor pressure-and-consequenthyby-the-maximum-air-temperatare. Future climate

warming will thus increase evaporative stress and reshuffle VPD-sensitive forest bryophyte communities even

in topographically diverse landscapes, which are traditionally considered as microclimatic refugia buffered against
climate change. Azenally-Bryophyte species occurring near their distributional range limits rare-bryophyte-speeies
and-therefoere-concentrated in low VPD sites will be especially vulnerable to the future changes in atmospheric
VPD.
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1. Introduction

Vapor pressure deficit (VPD) expresses atmospheric water demand as the difference between the amount of water

vapor the air can hold at a given temperature and the actual amount of water vapor present in the air. Unlike relative

air humidity, VPD accurately expresses plant evaporative stress (Campbell & Norman 1997). Since air capacity

to hold water vapor increases exponentially with temperature, the same relative humidity at different temperatures

indicates very different atmospheric moisture conditions (Anderson, 1936). An atmosphere with the same relative

air humidity may be very "dry" (when the temperature is high) or it may be very "wet" (when the temperature is

low). Relative air humidity therefore does not indicate the atmospheric moisture condition in physiologically

meaningful way, despite its popularity in ecological studies (Campbell & Norman 1997). In contrast, VPD directly

expresses the atmospheric moisture conditions in terms of plant evaporative stress (Anderson, 1936).
Atmospheric vaper—pressure—defieit(VPD) is a key driver of plant functioning in terrestrial ecosystems
(Ruehr et al., 2014; Grossiord et al., 2020)—, because hHigher VPD means-higher-evapeorative stressforplants;

whiehleads to reduced photosynthesis in the short term and drought-induced mortality in the long term (McDowell

et al., 2008; Fu et al., 2022). Ongoing climate changes further-exacerbate this-VPD-driven evaporative stress
because higher temperatures lead to an exponential increase in VPD (Lawrence, 2005; Grossiord et al., 2020).
Increasing atmespherie-VPD already limits global vegetation productivity (Yuan et al., 2019; Lopez et al., 2021;
Lu et al., 2022) and triggers large-scale forest diebacks (Breshears et al., 2013; Eamus et al., 2013; Williams et al.,
2013). Yet, iln contrast to the widely recognized role of VPD effeets—enin local plant physiology and global

vegetation functioning, VPD effects on plant community assembly are largely unknowthe-understanding—of

] 1 | iability nand.the off cthi bl | .
assembhyristimited (Novick et al., 2024).

The knowledge about VPD effects on plant communities and the processes that control VPD variability over

the landscape are ¥etthisknowledge—iscrucial for more realistic predictions of climate change impacts on

vegetation and the identification of microclimatic refugia (Ashcroft and Gollan, 2013; Davis et al., 2019;

Finocchiaro et al., 2024; Ogée et al., 2024). Because VPD is a difference between saturated vapor pressure (Pga)

and actual vapor pressure (P.i), VPD variability aeress—spaece-reflects the eemplex—interplay between spatial

patterns in saturated and actual vapor pressures. While saturated vapor pressure (P.)—is eentreled—solely

an exponential function ofby air temperature, actual vapor pressure (P.)—is influenced by many processes

operating at different spatial scales — ranging from regional atmospheric circulation and precipitation to local
evaporation fremseiand-watersurfaces—and plant transpiration (Campbell and Norman, 1998). Yet, despite
increasingly recognized VPD importance, it is still unknown how these contrasting processes integrate into the

resulting-VPD variability over the landscape-isstitbunknewn.

A deeper understanding of the mechanisms behind landscape-scale VPD variability is particularly important for
climate change biology. Scientists predict a temperature increase of up to 4.4 °C by 2100 (IPCC, 2023), which
would lead to a more than 40 % increase in VPD for the same atmospheric water vapor content (Will et al., 2013).
These changes can also modify VPD variability over the landscape, and—therefore—potentially ehanse—shift
the distribution of individual species and therefore alter the composition of plant communities. However, VPD
effects on plant distribution and community assembly over the landscape are not sufficiently known.

Among plants, bryophytes are exceptionally sensitive to evaporative stress because they lack roots, lignified

water-conducting system, water storage tissues, and active stomata and have a large surface area in proportion to
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biomass (Rice et al., 2001, Goffinet and Shaw, 2009). When exposed to the air with non-zero VPD. bryophytes

therefore inevitably lose water (Hinshiri and Proctor, 1971; Busby and Whitfield, 1978). Because bryophytes

transport water only passively, mainly through external capillary spaces between tiny parts of their body
(Schofield, 1981), and-their internal water content is thus-a function of the water availability in the surrounding

environment (Vanderpoorten and Goffinet, 2009). Once the external water evaporates, bryophyte cells rapidly lose

turgor, metabolic activity slows down, and carbon fixation decreases.

To cope with this evaporative stressWhen—this—water—evaperates, bryophytes developed evolutionary and

ecologically unique desiccation strategy, allowing them toean survive drought episodes in a desiccated state

(Proctor, 2000, 2001). Despite this unique-bryophyte-ability to survive microclimatic extremestelerate-desiceation,

bryophyte assemblages are potentially highly-sensitive to evaporative stress, because desiccation tolerance widely
differs among bryophyte species (Hinshiri and Proctor, 1971; Wagner and Titus, 1984, Oliver et al., 2000; Proctor,
Ligrone, et al., 2007; Proctor, Oliver, et al., 2007). Therefore, it can be assumed that the atmospheric VPD — an

ecologically meaningful variable expressing evaporative stress — will strongly affect composition, richness and

structure of bryophyte assemblages. Yet surprisingly little is known about the VPD effect on bryophyte

assemblages in temperate forests (Fenton and Frego, 2005).

To provide this missing knowledge.Here we combined detailed in-situ forest microclimate measurements with

simultaneous bryophyte inventories_conducted across topographically diverse landscape representing bryophyte

diversity hotspot in central Europe-te-provide-this-missingknowledge. SpeeifieallyUsing these data, we explored

how landscape-scale VPD variability affects bryophyte community composition and species richness in temperate

forests, quantified VPD variability over the topographically diverse landscape. and identified which processes

drive this variability:

iy | svecies icl . . .

2. Material and methods
2.1 Study area

We recorded bryophytes and measured microclimate in the Bohemian Switzerland National Park in the Czech
Republic (Fig. 1). The rugged terrain of this sandstone landscape creates a fine-scale mosaic of contrasting habitats
with steep microclimatic gradients over short distances (Wild et al., 2013). The elevation within the national park
ranges from 125 to 619 m, and the mean elevation is 340 m. According to the data from the Tokan weather station
(Fig. 1), the mean annual air temperature during the 2011-2019 period was 8.3 °C, and the mean annual

precipitation was 765 mm.
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Figure 1: We measured microclimate and simultaneously recorded bryophyte species composition at 38 permanent
research plots within the Bohemian Switzerland National Park in Central Europe—éa) This forested area has rugged
terrain creating steep environmental gradients over short distances—(b).

Lhellelaifpentbessintion piibin (he vpeen ol the potionel sapl (o)
Most of the Bohemian Switzerland is covered with coniferous forests. Histerieallyplanted-Norway spruce (Picea

abies) planted mostly during the 19" and 20" century predominates in the valleys and on the plateaus,

while patches of semi-natural forests are dominated either by Scots pine (Pinus sylvestris) on the upper slopes
and -rocky ridges or by European beech (Fagus sylvatica) on more mesic sites.

The nutrient-poor and strongly acidic soils result in a relatively low diversity of vascular plants, which contrasts
with the exceptionally rich bryophyte flora (Hértel et al., 2007). The Bohemian Switzerland currently hosts With
more than 300 bryophyte species, the Bohemian-Switzerland-is-and therefore represents a hotspot of bryophyte
diversity in Central Europe (Markova, 2008).

The bryophyte flora of the Bohemian Switzerland is dominated by forest species like Tetraphis pellucida,
Bazzania trilobata, and Dicranum scoparium. These dominant floristic elements are enriched by azeral-disjunct
occurrences of (sub)alpine or (sub)montane (e.g., Hygrobiella laxifolia, Geocalyx graveolens, Anastrophyllum
michauxii), boreal (e.g., Dicranum majus, Rhytidiadelphus subpinnatus), and (sub)oceanic (e.g., Tetrodontium

brownianum, Plagiothecium undulatum) species (Hértel et al., 2007; Markova, 2008).

2.2 Field data collection

We recorded bryophyte species composition and measured microclimate on 38 permanent plots within
the Bohemian Switzerland National Park (Fig. 1). These plots were selected through stratified-random sampling

to capture the main microclimatic gradients within the core zone of the national park. Specifically, using GIS

and LiDAR-based digital terrain model, we first divided the study area into geographical strata defined by

the terrain (valley bottoms, lower slopes, upper slopes, and ridges) and further separated the slopes with

predominantly northern and southern orientation. Within each stratum, we randomly selected an equal number of

locations separated by at least 50 m. In the field, we navigated to the selected location with GPS device and placed

the center of plot 1.5 m to the north from the nearest tree.
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Within each permanent plot, we installed HOBO U23 ProV2 (Onset, USA) microclimatic datalogger protected-by
a-white-radiation-shield-with-goedventilation-and-placed-at 1.5 m height on the north side of a tree nearest to

the plot center. Each HOBO datalogger was protected by a white radiation shield with good ventilation

and -measured air temperature (resolution 0.02 °C, accuracy + 0.21 °C) and relative humidity (resolution 0.05 %,
accuracy + 2.5 %) every 30 minutes from 1 June to 31 August 2022.

Simultaneously with microclimate measurements, we recorded the presence of all bryophyte species in each
research plot following the nomenclature of the Czech national checklist (Kucera et al., 2012). We deliberately

sampled bryophytes in a relatively small circular plot with 1 m radius area<(3.14 m?) without any exposed rocks

or big stones to reduce the possible effects of within-plot environmental heterogeneity (Rambo and Muir, 1998;
Vanderpoorten and Engels, 2002; Schmalholz and Hylander, 2011).
2.3 Microclimate data processing

First, we checked the microclimatic time series using—visually inspeetion—and then with standard automated

procedures implemented in the myClim R package (Man et al, 2023). Air humidity measurement with

microclimatic loggers is sensitive to water condensation, resulting in unrealistically high measurements for prolong

periods of time (Ashcroft and Gollan, 2013; Feld et al., 2013). We therefore carefully checked microclimatic time

series and found no signs of the condensation effect.

Using checked air temperature and relative humidity data, we first calculated the saturated vapor pressure (Psat)
following the updated Buck formula (Buck, 1981, 1996):
Poge = (1.003 +4.18 X 107° X 101 kPa) X 0.61115 x e((23:036= /333.7)«(t/(27982 + 1)))

where ¢ is air temperature [°C].

Then, we calculated the actual vapor pressure (Pair) using the Tetens’s formula (Tetens, 1930):

rh
P, = X (—)
air sat 100/ °

where 7/ is relative humidity [%].
Finally, we calculated atmospheric VPD as the difference between Py and Pair (Jones, 2014).

Using the resulting microclimatic time series, we calculated three variables representing evaporative stress

(Tab. 1). First, we calculated the average daily maximum temperature (Tmax). While Tmax is ecologically less

meaningful proxy for evaporative stress than atmospheric VPD (Campbell and Norman, 1998; Eamus et al., 2013),

several previous studies identified Tmax as highly relevant microclimatic variable linked to evaporative stress

and -affecting species composition and richness of forest vascular plants and bryophytes within the central Europe

(Macek et al., 2019, Man et al., 2022). Then, we calculated two variables capturing different aspects of VPD driven

evaporative stress. First, we calculated the average daily maximum VPD (VPDmax), which represents site-specific

microclimatic extremes (Ashcroft and Gollan, 2013). Second, we calculated the average daily mean VPD, which

represents time-aggregated evaporative demand experienced by bryophytes on each site.
To disentangle the drivers of spatio-temporal VPD variability over the landscapeFromtheresulting-time-series,
we extraeted-calculated also plot-specific daily average values of maximumVPD-and Py and Pyir values-at-the

el s S (Tab. 1),

Table 1: Overview of microclimatic variables representing evaporative stress (Tmax, VPDmax, VPDmean) and its
components (Psa¢, Pair). For each variable, we provide the overall mean and range of plot-specific averaged daily values
measured continually during summer 2022 on 38 forest research plots in the Bohemian Switzerland National Park,
Czech Republic. Summa isties-of-microclimatic-variables measured-in38fore esearch-plots—duri
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lefici VPD > 091 0.62-3.17 kPa
Microclimatic variable Abbreviation Overall mean Range of plot means
Maximum air temperature Tmax 24.26 °C 18.80-27.64°C
Maximum vapor pressure deficit VPDnax 2.09 kPa 0.62-3.17 kPa
Mean vapor pressure deficit VPDmean 0.85 kPa 0.23-1.16 kPa
Mean saturated vapor pressure Psat 2.63 kPa 2.09-2.93 kPa
Mean actual vapor pressure Pair 1.78 kPa 1.66-1.90 kPa

2.4 Data analysis

2.4.2-1 Bryophyte community composition, richness and structureies

In our analysis, we focused on explored-the relationship between microclimatic variables representing evaporative

stress atmospherie- VPD-and bryophyte community composition, structure, and richnesseeommunities-through-three
steps. First, we_identified explored-the VPD P, —and P —uselationship—to-the main gradients in community

composition_and explored their relationship with variables representing evaporative stress;-we-guantified-the- VRD

link-to-speetesrichness. Then, to explore which variable representing evaporative stress is more closely associated
with bryophyte community composition and richness, we calculated the variability in direetly-tested-VPD)-effeets

en-species composition_and richness explained by the mean and maximum atmospheric VPD and maximum air

temperature. Further, to disentangle the effects of atmospheric VPD from the effects of the maximum temperature

we partition the explained variability into independent and shared fractions. Finally, we direetly tested the link
between VPD effeets-on-speciescompeosition and bryophyte community structure through nestedness analysis.

To explore the main gradients in the bryophyte community composition, we used non-metric multidimensional

scaling (NMDS) to extract the main patterns in bryophyte community composition expressed with based-en-the

Serensen dissimilarity index. We calculated two-dimensional NMDS with the weak treatment of ties, a maximum
of 500 random starts, and 999 iterations in each NMDS run using metaMDS function from the vegan R package
version 2.6-4 (Oksanen et al., 2022). To maximize variance along the first ordination axis, we centered and rotated
the resulting two-dimensional configuration with principal component analysis.

To explore whether—how main compositional gradients correlate with microclimate variables_representing

evaporative stress, we passively projected gradients—invectors of maximum and mean VPD, P,andP.—and

maximum temperature into the NMDS ordination space and tested the significance of the fit with 999 random

permutations using the envfit function from vegan R package (Oksanen et al., 2022). Finally, we projected
bryophyte species richness gradients into the NMDS ordination space using a generalized additive model fitted

through ordisurf function from vegan R package (Oksanen et al., 2022).
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To quantify the relationship between the microclimatic variables representing evaporative stress-VPB and species

richness expressed as a number of bryophyte species recorded in the plot, we used a generalized additive model
(GAM) fitted with the R package mgcv 1.9.1 (Wood, 2011). We used GAM with Poisson distribution, log link
function, and smooth terms fitted by thin plate regression splines without null space penalization and smoothing
parameter estimation using restricted maximum likelihood. To assess the statistical significance, we used a y* test

comparing the fitted model to the only intercept null model.

To calculate the proportion of variability in bryophyte community composition explained by microclimatic

variables representing evaporative stress, we used distance-based RDA (McArdle and Anderson, 2001) calculated

on the same Serensen dissimilarity matrix as used for NMDS. We calculated the distance-based RDA (db-RDA)
with dbrda function from vegan R package (Oksanen et al., 2022) and assess the statistical significance using 999

random permutations of the raw data (Legendre et al., 2011).

As all three microclimatic variables representing evaporative stress were correlated (Appendix A), we explored

their shared and independent effects on bryophyte community composition and richness through variation

partitioning (Legendre, 2008). Because VPDuax and Thax were almost identical (Pearson R = 0.98), we

disentangled shared and independent effects of substantially less correlated VPDean and Tiax (Pearson R = 0.78).

To quantify their independent and shared effects, we partitioned the variation in bryophyte community

composition explained by atmospheric VPDyyean and Tmax using adjusted R? (Peres-Neto et al., 2006) calculated

with the varpart function from the vegan R package (Oksanen et al., 2022).

To quantify the shared and independent effects of atmospheric VPDuean and Tmax _on species richness, we

partitioned the deviance explained in GAM models. First, we related species richness to atmospheric VPD ean and

Tmex_in the full GAM, when both variables were used simultaneously as predictors. Then, we fitted two partial

GAMSs (first with VPDean, second with Trax as explanatory variables). To prevent different smoothing parameters

in the partial models, we extracted smoothing parameters from the full GAM and used them in both partial GAMs
(Hjort et al., 2012). To assess the statistical significance, we compared each model against the null model with

only intercept using a ¥ test. To assesses the significance of the independent effects of atmospheric VPD and Ty
we compared partial GAMs with the full GAM using y? test.

Finally, we used nestedness analyses (Ulrich et al., 2009) to test the VPD effects on bryophyte community

structure. To directly test the two hypotheses about the bryophyte community structure along the VPD gradient,

we first order the community matrix along the gradient of increasing plot-specific VPDean. To test the first

hypothesis that the bryophyte communities from sites with high VPD are nested subsets of bryophyte communities

from sites with low VPD, we used NODF.js metric (Almeida-Neto et al., 2008). To test the second hypothesis

that more frequent bryophyte species occur along the whole VPD gradient, but less frequent species are

concentrated on sites with low VPD, we used NODFj,ccies metric (Almeida-Neto et al., 2008). To calculate both

NODF metrics, we used nestednodf function from the vegan R package (Oksanen et al., 2022).

We used a null model approach to assess the statistical significance of nestedness patterns (Ulrich et al., 2009).
Specifically, we compared the observed NODF values to the distribution of 999 NODF values calculated through

the conservative R1 null model, which maintains species richness of the site and uses species frequencies as

probabilities of selecting species (Wright et al., 1997). To quantify the difference between the observed NODF

values and the NODF values generated by the R1 null model, we calculated the standardized effect size (SES)

expressing the number of standard deviations that the observed NODF value differs from the mean NODF value
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of the simulated assemblages (Ulrich et al., 2009). To construct the null models and to calculate SES, we used the

oecosimu function from the vegan R package (Oksanen et al., 2022).

We used R version 4.4.0 (R Core Team, 2024) for complete data analysis and figure preparation. For the
color-blind safe gradients seheme-efFig—2-and-Fig—45, we used the R package scico 1.5.0 (Pedersen and Crameri,
2023).

2.4.1-2 Spatial VPD variability across the landscape

Using the time-series of both VPD components (Psa and Pair), we explored their spatio-temporal variability

and quantify their influence on the VPD variability over the landscape. First, we explored how variable was VPD

and both its components over the landscape in a daily timesteps. Then, we averaged this daily variability into

the overall measure of spatial variability in VPD, P, and P during the whole study period. Finally, we used

variation partitioning to quantify how much was VPD variability controlled by Ps and Pyjr.

To quantify spatial variability in daily VPD_and both its components; (Ps: and Pair) over the landscape, we

calculated the standard deviation (SD) of the plot-specific daily meximum-mean VPD, and-eorresponding Pg and

P.i: values among all study plots. In this first step, we calculated SD of these microclimatic variables for every day

within the study period separately. -and-Then we averaged these daily inter-plot SD values separately for VPD
Py and Py into ever-thestudy-period-as-an overall measure of spatial variability for each microclimatic variable

during the whole study period.

Finally, tFo disentangle the contribution of Ps,: and Pair to the VPD variability over the landscape, we performed

variation partitioning (Legendre;2008)-based on a multiple linear regression model and adjusted R? (Legendre

2008) with the plot-specific average-datly-maximum-mean VPD as the response variable and the average-daily
values-mean of Py and Py at-the time-of daily-maximum-VPD-as the predictors.

3. Results

3.2-1 Bryophyte community composition, richness and structureies

In total, we recorded 39 bryophyte species: 14 liverworts and 25 mosses (Appendix C, Tab. C1). The_species

richness was highly variable among the plots — while the average number of species per plot was 8, the minimum

was 1 and the maximum 21. The most frequent species were Dicranum scoparium_(n = 32), Leucobryum

Jjuniperoideum (n = 26) and Hypnum cupressiforme_(n = 24).

Main patterns in community composition and species richness reflected the gradient of evaporative stress (Fig. 2).
Cmelspnaeaesesshepe S IRD sl T osmeepe phe meeer sleselee peloead e che g caftoncs o eopsoingies
composition—(regan:enyfit— VPDpeanR3 =052, p=0.001; VPD,,..- R* =037 p=0.001; P, R*=0.52;

p—0-00H-Gradient in Tmax was highly correlated to the gradients in VPD (Fig. 2), but main patterns in community

composition were less related t0 Ty than to VPD (vegan::envfit — Tma: R2=0.32, p = 0.003: vegan::envfit —

VPDpean: R2 = 0.52. p =0.001; VPDypoy: R2=0.37. p = 0. 0014%42;95;,9—94;@&&&%%

The number of bryophyte species was higher in plots with low VPD and declined with an increasing VPD (Fig. 2).

Both atmospheric VPD and maximum temperature were significantly associated with species richness, but
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maximum temperature explained substantially less deviance (Table 2). The mean VPD explained slightly more

deviance than the maximum VPD (Table 2).

-1.0- Species Richness
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Figure 42: Nonmetric multidimensional scaling (NMDS) of the bryophyte community composition showing main
gradients in bryophyte assemblages sampled at 38 temperate forest plots. Points show the positions of the individual
plots within the NMDS ordination space, and the vectors show the gradients in the average maximum air temperature
(Tmax), maximum VPD (VPDmax) and mean VPD (VPDmeans). The smooth surface and associated contours fitted into the
NMDS ordination space with a generalized additive model show the pattern 0f decreasmg spec1es rlchness with
increasing atmespherie-evaporative stressdemand-(number-ofspeeiesperple d on-spaee
sebteeegepaliedadd it medal,

The mean VPD explained substantially more variation in species composition than the maximum VPD and the

maximum temperature (Table 2). When used independently, both VPDnean and Tiax were significant predictors of

bryophyte community composition (Table 2). However, the effect of Tunax almost completely overlaps with

VPDpean (Fig. 3). When we controlled for the effect of mean VPD, maximum temperature did not explain

significant part of variation in community composition (vegan::dbrda — adj. R> = 0 %, p = 0.764) or in species

richness (mgcv::gam —D?>=3.72 %. p = 0.174). In contrast, the mean VPD explained a significant part of variation

in__species composition and richness even after the controlling for maximum temperature




296
297
298
299
300
301
302

303
304
305

306

307
308
309
310
311

312
313
314
315
316

(vegan::dbrda — adj. R2=6 %. p = 0.003), see Fig. 3. Therefore, the mean VPD explained substantially more

variation in bryophyte community composition and richness than maximum temperature and maximum

temperature did not have any significant effects independent from the mean atmospheric VPD (Fig. 3).

Table 2: Variation in _community composition and species richness explained by three microclimatic variables
representing_evaporative stress. To_quantify variation explained by each variable, we used distance-based RDA
db-RDA) for community composition and generalized additive models (GAM) for species richness.

Community composition (db-RDA) Species richness (GAM)
Variation (R?) pseudo-F  p-value Deviance (D?) 2 p-value
Microclimatic variable
mean VPD 16.09 % 6.90 0.001 32.8% 27.04 <0.001
maximum VPD 10.95 % 443 0.001 31.2% 23.37 <0.001
maximum Ty 9.21% 3.65 0.003 14.0 % 11.13  0.007
species composition species richness

Figure 3: Variation partitioning showing independent and shared effect of mean VPD (VPDmean) and maximum air
temperature (Tmax) on bryophytes species composition and richness in 38 forest plots. Values represent adjusted R?
from db-RDA for species composition and explained deviance from GAM for species richness. While VPDmean_has
significant effects even after the controlling for Tmax both for species composition (p = 0.003) and richness (p =< 0.001),
the unique effects Tmax Was non-significant both for species composition (p = 0.764) and richness (p = 0.174).

Bryophyte community structure was closely related to the gradient of mean atmospheric VPD (Fig. 4). Bryophyte

communities from plots with higher VPD were generally impoverished and compositionally nested subset of the

communities from sites with lower VPD (vegan::oecosimu — NODFiies =39.17, SES =4.26, p = 0.001). Moreover,

while frequent species occurred along the whole VPD gradient, rare species occurred preferably on sites with low

VPD (vegan::.oecosimu — NODFgpecies =29.97, SES = 3.34, p =0.003).
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At the species level, small liverworts (e.g. Riccardia multifida, Lophozia ventricosa) and hygrophilous bryophytes

(e.g. Polytrichum commune, Bazzania trilobata), as well as species with boreal (e.g. Dicranum majus) and

(sub)oceanic (e.g. Mylia taylorii, Plagiothecium undulatum) distributionspeeies preferred plots with low

atmospheric VPD (Fig. 4). In contrast, regionally frequent species like Hypnum cupressiforme, Polytrichum

formosum or Dicranum scoparium occurred also in plots with higher atmospheric VPD (Fig. 4).
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Plagiomnium undulatum
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Riccardia multifida

[} ] Mnium hornum

|| = ] Sphagnum girgensohnii/capillifolium

Polytrichum commune

== H H N =i} Plagiothecium undulatum
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Cephalozia bicuspidata

(= 1 [} - = Bazzania trilobata
Chiloscyphus cuspidatus
[ Calypogeia muelleriana
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= Dicranodontium denudatum
.. Odontoschisma denudatum
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= Atrichum undulatum

Mylia taylorii

Herzogiella seligeri
Polytrichum formosum
Chiloscyphus profundus
Leucobryum juniperoideum
Pohlia nutans

= Tetraphis pellucida
Calypogeia integristipula
Hypnum cupressiforme
Dicranum scoparium
Pleurozium schreberi
Orthodontium lineare
Dicranum montanum
Dicranoweisia cirrata

-I Ll
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7 1] Ptilidium ciliare
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33 RRRR 030800000000 8000880332
-

Figure 54: Occurrences of all recorded bryophyte species along the gradient of the average-daily maximum-mean VPD
measured at 38 forest plots. Plots are sorted from the lowest to highest mean VPD and each filled square shows
the presence of the focal species within the plot. While rare and azenally-eceurring species near their distributional range
limits prefer sites with low VPD, mesic forest species occur along the whole VPD gradient.

3.1-2 VPD variability across the landscape

VPD in the forest understory was highly variable across the landscape; (Fig. 25). While the variability in saturated

vapor pressure was comparable to the variability in VPD, actual vapor pressure was much less variable among

the sites (Fig. 25). In average, t¥he landscape-scale spatial variability of P, (average daily SD = 6-550.20 kPa)

was almost feurthree times higher than the spatial variability of P, (SD = 6-440.07 kPa).
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Figure 25: Spatio-temporalal variability of VPD and its components — saturated and actual atmospheric vapor
pressures. Each data point shows the standard deviation of the plot-specific daily mean values simultaneously measured
at 38 forest plots, and density plots summarize this spatio-temporalal variability over the summer season. The
individual data points were slightly jittered for better visibility.

Saturated—vaper—pressure—was—alse—Tthe dominant driver of VPD wvariability across the landscape_was

temperature-driven saturated vapor pressure (Fig. 36). beeauseln a univariate linear regression model, Psa

explained 97-93 % of VPD variability, while P explained ealy3-30 %. However, Py, and P, were negatively

correlated (Pearson R = -0.31) and variation partitioning based on multiple regression model showed that the Py

uniquely explained only 7 % of variability in VPD (Fig. 6). Therefore, temperature-driven Py, was the dominant

driver of VPD variability, while spatial variation in P, contributed surprisingly little to the overall VPD variability

across the landscape.
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Figure 36: Atmospheric vapor pressure deficit (VPD) at38forestple pledse ap diverse landsecape
was driven by temperature-dependent saturated vapor pressure{(b), whlle actual Vapor pressure was weakly net—related
to local VPD (a). Each dot represents the average-daily maximum-mean VPD and the corresponding-average-mean
saturated and actual vapor pressure measured during the summer—seasen at 38 forest plots established over
topographically diverse landscape. Venn diagram shows variation (adjusted R?) in mean VPD explained solely by mean
saturated (Psat) and mean actual (Pair) vapor pressure and the variation explained jointly by both predictors.

4. Discussion

We found that community composition and richness of forest bryophytes was significantly affected by atmospheric

VPD. Our findings have important implications both for theoretical and applied ecology. First, the variation in
VPD over the landscape was largely controlled by maximum-air temperature. Therefore, these-two-mierochmatie
variablesair temperature and VPD are tightly coupled at biologically relevant scales, and their effects are hard to

disentangle with observational data._Interestingly, this coupling was strongest between maximum VPD and

maximum temperature and -Mmaximum temperatures were-was previously identified as a key driver of bryophyte
and vascular plant species distribution in temperate forests (Macek et al., 2019; Man et al., 2022). Unfortunately,
these studies did not measure VPD. Considering our results, the importance of maximum temperature does not
necessarily stem from its direct effects on plant ecophysiology, but more likely from strong temperature control of
VPD variability over the landscape. Nevertheless, this new hypothesis needs further testing.

Interestingly, we also found that mean VPD was a much better predictor of bryophyte community composition

and richness than maximum VPD or maximum temperature. At the same time, maximum temperature did not

explain any additional variation in species composition and richness not explained by mean VPD. Our results thus

provide strong evidence that the mean VPD is more relevant predictor of bryophyte community composition and

richness than maximum temperature or maximum VPD. The unique effects of mean VPD, not reflected by

the maximum temperature or maximum VPD. suggest that bryophyte communities are more sensitive to the

long-term characteristics of site microclimatic conditions, rather than to short-term microclimatic extremes

captured by maxima.

Second, our results showing that actual vapor pressure is relatively constant across the landscape imply that it is

possible to estimate VPD from local microclimate air temperature measurements combined with non-local
measurements of air relative humidity, for example from a nearby weather station. While the general applicability

of this approach should be further tested across spatial scales (Dahlberg et al., 2020), in various environmental

settings and aeress-different vegetation types, our findings suggest that local VPD can be reasonably estimated
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(Appendix B, Fig. B1). This finding thus opens exciting possibilities for further research as local temperature

measurements are increasingly available all over the world (Lembrechts et al., 2020). However, it should be

stressed that this approach generates VPD estimates which provide reasonable ranking of the sites along the VPD

gradient, but generally overestimate the VPD (Appendix B, Fig. B1). likely because it does not account for locally

higher actual vapor pressure, for example near springs, water bodies or on permanently waterlogged soils.

4.1 VPD variability across the landscape

Large spatial variability in atmospheric VPD structured forest bryophyte communities across the landscape.
Interestingly, VPD variation was driven by temperature-controlled Psa, while P.-Pair was relatively constant across
the landscape. This finding is important, as the actual vapor pressure should also be variable across the landscape
(Ogeé et al. 2024; Johnston et al., 2025). However, our findings suggest that the local and spatially highly
heterogeneous processes like evaporation from soil and water surfaces and plant transpiration de-ret-contribute

mueh-little to the landscape-scale variation in VPD, even in the topographically diverse landscape with steep

microclimatic gradients.

While maximum VPD was solely driven by saturated vapor pressure and therefore maximum temperature,

the mean VPD was more affected by actual vapor pressure. However, saturated and actual vapor pressures were

negatively correlated and therefore the unique effect of actual vapor pressure on spatial pattern in atmospheric

VPD was surprisingly small. The landscape-scale variation in atmospheric VPD was therefore controlled by

microclimate temperature variation.

Microclimate temperature variation over the landscape, crucial for community ecology, is largely dictated by
land-surface topography (Dobrowski, 2011). Land-surface topography controls also maximum air temperatures in

the forest understory (Vanwalleghem and Meentemeyer, 2009; Macek et al., 2019) and therefore spatial variability

in saturation vapor pressure. However, we were surprised that the highly localized processes like
evapotranspiration did not contribute much to the spatial variability in absolute air humidity despite our study area
with extremely rugged topography and contrasting forest vegetation types. Therefore, spatial variability in absolute
air humidity seems to be determined mostly by processes operating at much larger scales like atmospheric

circulation and precipitation patterns (Campbell and Norman, 1998). Nevertheless, local topographic depression

with waterlogged soils and especially the proximity to flowing water or permanent water bodies can locally elevate

actual vapor pressure and therefore decrease atmospheric VPD (Wei et al. 2018, Ogeé et al. 2024) However, our

results suggest that the overall pattern in atmospheric VPD will generally follow changes in air temperature and

therefore future climate warming will result in non-linear increase in evaporative stress across the landscapes.

Given the growing recognition of VPD importance for many ecosystem processes, plant distribution, and
community assembly (Grossiord et al., 2020; Kopecky et al., 2024; Novick et al., 2024), the approach we
developed here to disentangle the contribution of saturated versus actual vapor pressure can provide new insights
into the drivers of VPD variability across spatial and temporal scales. So far, the knowledge of the relative
importance of saturated versus actual vapor pressure is limited, therefore it is difficult to compare our results with
other studies. Nevertheless, a comparison of the drivers of VPD variability across agricultural fields in Germany
supports our conclusion_that temperature-driven variability in saturated vapor pressure is a dominant control of

VPD variability at finer scales (Worlen et al., 1999).
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4.2 VPD effects on bryophytes

and-Whitfield; 1978)—In contrast to vascular plants, bryophytes tolerate desiccation and become metabolically

inactive in the absence of water (Proctor, 2000). When conditions improve, bryophytes quickly reactivate
physiological processes such as respiration, photosynthesis, cell cycle, or normal cytoskeleton function (Proctor,
Ligrone, et al., 2007; Proctor, Oliver, et al., 2007). However, this reactivation requires a lot of energy, for example
to produce specific repair proteins (Oliver and Bewley, 1984; Zeng et al., 2002) or to maintain the integrity and
normal function of cell organelles and membranes (Platt et al., 1994). Prolonged periods without evaporative stress

are therefore key for bryophyte growth and long-term survival (Proctor, Oliver, et al., 2007; Merinero et al., 2020).

Atfull-turger-Bbryophyte cells at full turgor have osmotic potential rarely more negative than -2 MPa (Proctor,
2000). An osmotic potential of -1.36 MPa is in equilibrium with air at 20 °C and 99% relative humidity (i.e. VPD
< 0.03 kPa). If the temperature remains at 20 °C, but the relative humidity drops to 90 %, the water potential
outside the bryophyte body decreases to -14 MPa (Proctor, 2000) and bryophytes start to lose water. To maintain
full turgor and normal cell function, bryophytes thus need free liquid water close to the cells. However, this external
water completely evaporates within 45-50 minutes if atmospheric VPD reaches 1.22 kPa (Le6n-Vargas et al.,
2006). Once the external water evaporates, bryophyte cells rapidly lose turgor, metabolic activity slows down, and
carbon fixation decreases.

In our study region, microclimaticsueh-faverable conditions witheut-evaperative stress-and-with VPD lower than
0.03 kPa and therefore without evaporative stress for bryophytes (Proctor, 2000) occurred on average only 9 % of

the measurement time. However, there was large variability among the sites, resulting in Large- VPD-variability
overthelandseape-ereates-fine-scaled landscape mosaic of sites with widely different evaporative stress. We found

that this fine-scale VPD variation -and-this-envirenmental- template structured bryophyte communities. Regionally

rare species with disjunct distribution in central Europe generally preferred sites with low VPD. These

species — otherwise typical for (sub)montane, boreal, or (sub)oceanic regions — are approaching their distributional
limits within our study area (Hill and Preston, 1998). For these species, sites with low VPD serve as microclimatic
refugia within an otherwise unsuitable landscape matrix. In contrast, regionally widespread mesie-bryophytes

occurred along the whole VPD gradient. Fine-scale variation in VPD thus functions as an environmental filter for

bryophyte community assembly over the landscape. Sites with low atmospheric VPD, hosting simultaneously rare

as well as widespread bryophytes, thus represent hotspots of bryophyte diversity in the landscape.

Our findings of dominant temperature control on VPD variability across the landscape suggest that even the sites

which can be considered as buffered against climate warming because of locally higher actual vapor pressure will

be negatively affected by warming. With climate warming, areas with low VPD will likely shrink, and their

bryophyte diversity will become more vulnerable (Pardow and Lakatos, 2013). Moreover, the increasingly
frequent and severe canopy disturbances will likely further increase understory temperatures and therefore
consequently also VPD (Wolf et al., 2021; Mali§ et al., 2023). Our results suggest that such changes will reshuffle
bryophyte communities, supporting widespread mesic bryophytes at the expense of regionally rare species near

their distributional limits. Such changes will likely decrease not only local and regional bryophyte species richness

but also trigger biotic homogenization of bryophyte assemblages across larger spatial scales (Staude et al., 2020).
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4.3 Disentangling atmospheric VPD and temperature

The close coupling between VPD and maximum-temperature across-the-landseape-clearly shows the need — and
simultaneously the difficulty — of disentangling the influences of VPD and temperature on plant communities.
While temperature affects basic life functions of bryophytes like photosynthesis, respiration (Dilks and Proctor,
1975), and growth (Furness and Grime, 1982), bryophytes thrive in a wide range of temperatures — from less than
-30 °C (Dilks and Proctor, 1975) to over 40 °C in a dry state (Hearnshaw and Proctor, 1982). For most bryophytes,
the optimal growth temperature ranges from 12 to 25 °C (Vanderpoorten and Goffinet, 2009). However, many
bryophyte species grow even at temperatures around 5 °C (Dilks and Proctor, 1975), and some can even
photosynthesize at temperatures below 0 °C (Losch et al., 1983). Therefore, temperature is hardly a direct limiting
factor of bryophyte distribution and community composition in temperate regions.

Our results fully support this conclusion, as we found that mean VPD was much better predictor of bryophyte

community composition and richness than maximum temperature or maximum VPD. Bryophytes probably survive

the most extreme conditions represented by maximum VPD in desiccated state. However, the time required to

recover from desiccation increases and degree of recovery decreases with the length of desiccation (Proctor, Oliver

et _al., 2007). Bryophytes are therefore probably more sensitive to time-averaged characteristics of site

microclimatic condition than to short-term extremes captured by maximum VPD. The open question is whether

these findings apply also to vascular plants, which cannot survive microclimatic extremes in desiccated state and

can be therefore more sensitive to the microclimatic extremes (Schonbeck et al., 2022).

Several studies of vascular plants have attempted to distinguish the independent effect of VPD from other
microclimatic factors affecting plant functioning and distribution (Eamus et al., 2013; Denham et al., 2021; Flo et
al., 2022; Fu et al., 2022; Kopecky et al., 2024), highlighting the critical importance of VPD (Novick et al., 2016;
Schonbeck et al., 2022). Unfortunately, no physiological studies addressed the independent effects of VPD
on bryophytes, despite clear indications that VPD plays a key role (Busby et al., 1978; Sonnleitner et al., 2009).
So far, studies of bryophyte physiology concentrated on desiccation tolerance (Morales-Sanchez et al., 2022).
While desiccation tolerance is an adaptation to cope with the external lack of water, the ultimate driver of
desiccation is atmospheric VPD. A deeper focus on atmospheric VPD can therefore bring a new insight into

bryophyte ecology and distribution.

5. Conclusions

Atmospheric VPD controls community composition, and-richness and structure of bryophyte assemblages in
temperate forest understory. Even across the landscape with extremely rugged terrain, spatial variability in
atmospheric VPD was controlled by temperature-dependent saturated vapor pressure. Maximum air temperature
and VPD are thus tightly coupled at biologically relevant scales and their effects are hard to disentangle.

Nevertheless, we found that the time-averaged mean VPD was much better predictor of bryophyte assemblages

than maximum temperature (or closely related maximum VPD) representing microclimatic extremes. This points

toward the mean atmospheric VPD as the most important variable representing time-averaged evaporative stress

and highlights so far overlooked importance of atmospheric VPD for bryophyte community ecology and

distribution
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represented-by—VPD(Busby-et-al51978: Dilks-and Proetor,1979). With climate warming, the tight coupling
between VPD and local air temperature will cause nonlinear increases in VPD-driven evaporative stress, which
will subsequently reshuffle bryophyte community composition and decrease species richness. Especially
vulnerable will be azenally—eeceurring bryophyte species occurring near their distributional range limits
ceneentrated-in microclimatic refugia with low VPD.
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Appendix B
VPD estimate from in-situ air temperature and regional air humidity

Based on our results, we speculated that local atmospheric VPD can be reasonably estimated using the in-situ air
temperature measurements paired with relative air humidity measurements representative for the whole region
(and therefore the same for all plots situated within that region).

To explore this idea, we estimated the average-daily-maximumatmespheriemean VPD using in-situ measured air
temperature (HOBO U23 ProV2 dataloggers in 1.5 m height) and relative air humidity measured in the Tokan
weather station located in the study area (Fig. 1).

While the measured and estimated VPD were closely correlated (Pearson R= 0.9897), estimated VPD tended-te
bewere consistently higher than in-situ measured VPD (Fig. B1).

Therefore, we conclude that the relative position of the site on the VPD gradient can be reasonably estimated from
in-situ microclimate temperature measurements paired with regional relative air humidity measurements.
However, this

loeallyhigher—air humiditrit should be stressed that this approach generates VPD estimates which provide

reasonable ranking of the sites along the VPD gradient, but generally overestimate the VPD (Fig. B1), likely

because it does not account for locally higher actual vapor pressure, for example near springs, water bodies or on

permanently waterlogged soils. Therefore, this approach cannot fully replace local air humidity measurements.
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Figure B1: Relationship between in-situ measured average-daily-maximum-mean VPD and average-daily maximum
mean VPD estimated from in-situ measured air temperature and relative air humidity measured in regional weather
station (June-August 2022). While the measured and estimated VPD are closely correlated (Pearson R = 0.9897),
estimated VPD tends to be higher than in-situ measured VPD, likely because oflocally higher air humidity
in topographically sheltered sites near valley bottoms.

Appendix C

List of bryophyte species;-their-oceunrrence-and biogeographical affinity

Table C1: Complete species list of bryophyte species recorded at 38 study plots. Biegeographieal-eategoriesfollowHill

e et (1000
Species name Occurence Taxonomic group
1  Dicranum scoparium 32 moss
2 Leucobryum juniperoideum 26 moss
3 Hypnum cupressiforme 24 moss
4  Tetraphis pellucida 21 moss
5  Bazzania trilobata 18 liverwort
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6  Polytrichum formosum 17 moss
7 LophecolteatheterophytlaChiloscyphus 15 liverwort
profundus
8  Plagiothecium laetum/curvifolium 15 moss
9  Orthodontium lineare 13 moss
10  Plagiothecium undulatum 11 moss
11  Pleurozium schreberi 10 moss
12 Sphagnum girgensohnii/capillifolium 10 moss
13 Dicranodontium denudatum 9 moss

14 Campylopus flexuosus 8 moss
15 Lepidozia reptans 8 liverwort
16 -Lophoeotea-bidentataChiloscyphus cuspidatus 8 liverwort
17  Pohlia nutans 8 moss
18  Mnium hornum 7 moss
19 Calypogeia integristipula 6 liverwort
20  Herzogiella seligeri 5 moss
21  Brachythecium rutabulum 4 moss
22 Calypogeia mulleriana 4 liverwort
23 Dicranella heteromalla 4 moss
24 Orthodicranum montanum 4 moss
25  Mpylia taylorii 3 liverwort
26  Atrichum undulatum 2 moss
27  Dicranum majus 2 moss
28  Odontoschisma denudatum 2 liverwort
29  Pellia epiphylla 2 liverwort
30  Polytrichum commune 2 moss
31 Ptilidium ciliare 2 liverwort
32 Cephalozia bicuspidata 1 liverwort
33  Dicranoweisia cirrata 1 moss
34  Lophozia ventricosa 1 liverwort
35 Plagiomnium affine 1 moss
36 Plagiomnium undulatum 1 moss
37 Rhabdoweisia fugax 1 moss
38  Riccardia multifida 1 liverwort
39 Scapania nemorea 1 liverwort

536 Data availability. The data supporting the findings of this study are currently provided forpeer+eview-on GitHub
537  public repository (https://doi.org/10.5281/zenodo.15805801).
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