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Abstract  14 

Subtropical forests play a crucial role in the global carbon cycle, yet their carbon sink 15 

capacity is significantly constrained by phosphorus availability. Models that omit 16 

phosphorus dynamics risk overestimating carbon sinks, potentially undermining the 17 

scientific basis for carbon neutrality strategies. In this study, we developed TECO-CNP 18 

Sv1.0, a coupled carbon-nitrogen-phosphorus model based on the Terrestrial ECOsystem 19 

(TECO) model, which explicitly captures key biogeochemical interactions and nutrient-20 

regulated carbon cycling. The model simulates how plant growth and carbon partitioning 21 

respond to both external soil nutrient availability and internal physiological constraints, 22 

enabling plant acclimation to varying nutrient conditions. Using observations from a 23 

phosphorus-limited subtropical forest in East China, we first evaluated the model's 24 

performance in estimating state variables with empirically calibrated parameters. 25 

Compared to the C-only and coupled C-N configurations, the CNP model more accurately 26 

reproduced the observed pools of plant and soil C, N, and P. To systematically optimize 27 

model parameters and reduce uncertainties in predictions, we further incorporated a built-28 

in data assimilation framework for parameter optimization. The CNP model with optimized 29 

parameters significantly improved carbon flux estimates, reducing root mean square errors 30 

and enhancing concordance correlation coefficients for gross primary productivity, 31 

ecosystem respiration, and net ecosystem exchange. By explicitly incorporating 32 

phosphorus dynamics and data assimilation, this study provides a more accurate and robust 33 

framework for predicting carbon sequestration in phosphorus-limited subtropical forests.  34 
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1 Introduction 35 

Accurately representing phosphorus (P) cycling in land surface models (LSMs) is crucial 36 

for projecting terrestrial carbon sink dynamics under climate change (Wieder et al., 2015). 37 

As an essential element, P availability regulates plant growth and ecosystem productivity 38 

(Walton et al., 2023; Vitousek et al., 2010). For instance, nutrient addition experiments in 39 

an old-growth Amazon rainforest demonstrated that net primary productivity increased 40 

exclusively with P addition (Cunha et al., 2022). Likewise, in subtropical mature forests, 41 

soil P availability was found to exert dominant control over plant functional traits at both 42 

species and community levels (Cui et al., 2022). Recent global syntheses have revealed a 43 

more widespread distribution of terrestrial P limitation than previously recognized (Hou et 44 

al., 2020; Du et al., 2020; Xia & Wan, 2008; Elser et al., 2007). More concerning is that P 45 

limitation is expected to intensify (Wang et al., 2023; Luo et al., 2022) due to factors such 46 

as N deposition-induced N:P stoichiometric imbalance (Peng et al., 2019; Lu and Tian, 47 

2017; Du et al., 2016; Peñuelas, 2013) and reduced P availability under elevated CO2 48 

concentration (Wang et al., 2023). Consequently, incorporating P limitation into LSMs has 49 

become a pressing challenge for improving carbon cycle projections (Fisher & Koven, 50 

2020; Achat et al., 2016; Reed et al., 2015). 51 

To address this challenge, several modeling groups have incorporated a prognostic P 52 

cycle into their existing frameworks over the past decade, including CASACNP (Carnegie-53 

Ames-Stanford Approach; Wang et al., 2010), JSBACH (Jena Scheme for Biosphere-54 

Atmosphere Coupling in Hamburg; Goll et al., 2012), CLM-CNP (Community Land 55 

Model; Yang et al., 2014), among others. These pioneering efforts in coupled carbon-56 

nitrogen-phosphorus (C-N-P) modeling have laid a solid foundation for increasing 57 

incorporation of P cycling in LSMs (e.g., Goll et al., 2017; Nakhavali et al., 2022) and 58 

demographic vegetation models (Knox et al., 2024), shedding light on how P limitation 59 

constrains ecosystem productivity under elevated atmospheric CO2 (Wang et al., 2024; 60 

Fleischer et al., 2019; Medley et al., 2016). However, current C-N-P models often yield 61 

"right answers for wrong reasons" (Jiang et al., 2024a), largely due to two key limitations: 62 

(1) calibration and validation data are predominantly derived from a narrow range of 63 

ecosystems, with most coupled C-N-P models relying on in-situ data from tropical regions, 64 
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particularly Hawaii and the Amazon (e.g., Nakhavali et al., 2023; Yang et al., 2014; Goll 65 

et al., 2012, 2017; Zhu et al., 2016), and (2) oversimplified representations of P cycling 66 

processes (Achat et al., 2016; Reed et al., 2015), such as the absence of physiological 67 

mechanisms governing vegetation P uptake (Jiang et al., 2019). Addressing these gaps 68 

requires advancing the coupled C-N-P model with improved mechanistic process-based 69 

representations and broader ecosystem applicability (Jiang et al., 2024a). 70 

Subtropical forest ecosystems are recognized as important carbon sinks in the global 71 

carbon cycle (Pan et al., 2024; Keenan et al., 2018; Yu et al., 2014). In particular, East 72 

Asian monsoon subtropical forests exhibit high carbon sink capacity, with an average net 73 

ecosystem productivity of about 400 g C m−2 yr−1 (Yu et al., 2014). These ecosystems are 74 

likely subject to substantial phosphorus limitation, as evidenced by a meta-analysis of 75 

nutrient addition experiments showing that forest productivity exhibits the strongest 76 

standardized response to P addition in the subtropical regions (25-40 latitude; Hou et al., 77 

2021). Moreover, intensive nitrogen deposition may further exacerbate P limitation (Zhu 78 

et al., 2016; Yu et al., 2014). Accurately projecting the future carbon sink capacity of 79 

subtropical forests is crucial for assessing their role in climate change mitigation 80 

(Friedlingstein et al., 2023; Requena-Suarez et al., 2019; Grassi et al., 2017). However, 81 

substantial uncertainties remain in current model projections of subtropical carbon 82 

dynamics (Wei et al., 2024), highlighting the urgent need for improved carbon cycle 83 

predictions through better representation of coupled C-N-P interactions in these regions. 84 

In this study, we develop TECO-CNP Sv1.0, an advanced version of the Terrestrial 85 

ECOsystem (TECO) model (Weng & Luo, 2008, 2011), incorporating detailed mechanistic 86 

representations of coupled C-N-P cycling processes, such as dynamic plant growth 87 

response to soil available nutrient through modified growth rates and allocation patterns, 88 

and the combined physical and physiological controls on phosphorus uptake. Additionally, 89 

we integrated a data assimilation module based on a Bayesian probabilistic inversion 90 

approach (Xu et al., 2006; Ma et al., 2017; Shi et al., 2016, 2018; Zhou et al., 2020), 91 

providing an efficient framework for model reparameterization and broader applications. 92 

Based on comprehensive observations from a P-limited subtropical evergreen broadleaf 93 

forest in eastern China, we further test two key hypotheses: (1) the CNP model can 94 
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reproduce ecosystem state variables through traditional spin-up and manual parameter 95 

tuning, and (2) the built-in data assimilation system can substantially improve carbon flux 96 

predictions. 97 

2 Materials and Methods  98 

2.1 TECO developments 99 

The TECO-CNP model has evolved from its precursor, the Terrestrial Ecosystem model 100 

(TECO, Weng & Luo, 2008). The TECO model is a process-based ecosystem model 101 

encompassing eight organic carbon pools and a plant non-structural carbohydrate (NSC) 102 

pool (Weng & Luo, 2008). The representation of the NSC pool in TECO is advantageous 103 

for capturing the seasonal decoupling of growth and nutrient acquisition within plants 104 

(Zavisic & Polle, 2018; Jones et al., 2020) and for managing carbon that is not utilized for 105 

plant growth under nutrient-limited conditions (Nakhavali et al., 2022; Haverd et al., 2018). 106 

The TECO model has been part of model intercomparison ensembles (Zaehle et al., 2014; 107 

De Kauwe et al., 2014) and has been applied across diverse ecosystem types, such as 108 

grassland (Weng & Luo, 2008; Zhou et al., 2021), temperate coniferous forests (Luo et al., 109 

2003; Weng & Luo, 2011; Jiang et al., 2017) and deciduous broadleaf forests (Jiang et al., 110 

2017) and northern peatland (Ma et al., 2017, 2022; Huang et al., 2017). 111 

Simplified N and P cycling were incorporated in the TECO successively (Shi et al., 112 

2016; Du et al., 2018; Du et al., 2021), where the structure of the carbon processes was 113 

expressed as a matrix form (Luo et al., 2003; Xu et al., 2006; Weng & Luo, 2011). Thus, 114 

the photosynthesis was simulated aided by an external model; for instance, Shi et al. (2016) 115 

utilized MAESTRA to generate the gross primary productivity. The processes related to 116 

the N and P cycle were only represented in a parsimonious way in the matrix versions. For 117 

example, the nutrient uptake process was simplified at a constant rate, and the interactions 118 

of carbon, nitrogen, and phosphorus were treated implicitly (Shi et al., 2016; Du et al., 119 

2021). 120 

In this study, we developed TECO-CNP, a coupled C-N-P model based on the full 121 

version of TECO, which fundamentally differs from previous matrix-based approaches. 122 

This new model explicitly represents the mechanistic processes of nutrient cycling (Sect. 123 
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2.2), with a focus on the regulation of carbon cycling by nutrients. Specifically, the model 124 

incorporates four key nutrient-carbon interactions: (1) growth rate limitations controlled 125 

by internal plant nutrient concentrations and nutrient supply-demand relationships; (2) 126 

allocation patterns dependent on nitrogen and phosphorus availability; (3) decomposition 127 

processes constrained by microbially-mediated nutrient availability; and (4) carbon costs 128 

associated with nutrient uptake and fixation. These process-based implementations, which 129 

aim to provide a more realistic representation of terrestrial biogeochemical cycles, are 130 

described in detail in the following sections. 131 

2.2 Model description 132 

We introduce a comprehensive biogeochemical N and P cycle into the full TECO, named 133 

TECO-CNP Sv1.0. Key processes of N and P cycling and their interactions with the carbon 134 

cycle have been represented using reliable mechanistic assumptions based on our 135 

experimental measurements or validated by state-of-the-art LSMs. In the following 136 

sections, we first document an overview of the carbon cycle and highlight the effects of 137 

nutrient limitation on the carbon cycle in Sect. 2.2.1. We then describe the shared and 138 

specific N and P cycling processes in Sects. 2.2.2 and 2.2.3, respectively.  139 

2.2.1 Nutrient-limited carbon cycle 140 

The carbon cycle in the new model builds upon the TECO model, incorporating processes 141 

such as photosynthesis, plant growth controlled by allocation and phenology, autotrophic 142 

and heterotrophic respiration, litter production, and carbon transfer (Fig. 1). See Luo et al. 143 

(2003) and Weng & Luo (2008) for detailed descriptions. These processes regulate the 144 

dynamics of plant, litter, and soil pools (Fig. 2). Nutrients directly or indirectly constrain 145 

them. For instance, plant growth rates and carbon allocation strategies are directly 146 

influenced by internal nutrient availability within pools and the availability of soil-147 

accessible nitrogen and phosphorus. Additionally, resource limitations adhere to Liebig’s 148 

law of the minimum, where the nutrient-constrained process is hindered only by the most 149 

limiting resources (Rastetter, 2011).  150 
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 151 

Figure 1. The schematic diagram of the biogeochemical processes of the carbon, 152 

nitrogen, and phosphorus cycles and associated interactions in TECO-CNP. 153 

Representation of carbon cycling processes controlled by nitrogen and phosphorus in 154 

TECO-CNP. Solid lines indicate carbon cycling processes (labelled 1-7) comprise (1) 155 

photosynthesis, (2) carbon allocation, (3) plant growth, (4) autotrophic respiration, (5) litter 156 

production, (6) carbon transfer, and (7) heterotrophic respiration. These processes are 157 

controlled directly by nitrogen and phosphorus (black control characters) or indirectly 158 

(colorless control characters). Dashed lines indicate the common processes that control the 159 

dynamics of soil-available nitrogen and phosphorus, simplified as plant uptake, 160 

mineralization, immobilization, biogeochemical mineralization, and external input and loss. 161 

Irregular pink shapes represent competition for soil available nitrogen and phosphorus 162 

between plants and microorganisms. Min., mineralization; BMin., biochemical 163 

mineralization; Imm., Immobilization. 164 
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 165 
Figure 2. Model structure of TECO-CNP. The model represents the nine organic carbon, 166 

nitrogen, and phosphorus stocks within the plant (denoted as Q1-4), litter (Q5-7), and soil 167 

(Q7-9). Fluxes among these organic pools are depicted by black arrows. Specific N and P 168 

fluxes are indicated by dark red arrows, with associated processes labeled accordingly. Min 169 

denotes mineralization, and Imm denotes immobilization. The circled numbers (1-7) 170 

correspond to the carbon cycling processes in Fig. 1. 171 

 172 

  173 
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The canopy-level photosynthesis is simulated using a two-leaf model, which consists 174 

of a radiation sub-model and a coupled sub-model of stomata, photosynthesis, and 175 

transpiration for both sunlight and shaded leaves (Wang & Leuning, 1998). Leaf 176 

photosynthesis is estimated by the equations derived from the Farquhar model (Farquhar 177 

et al., 1980) and a stomatal conductance model (Ball et al., 1987; Leuning et al., 1995). 178 

The photosynthesis of a single leaf is then scaled up to the canopy level (Wang & Leuning, 179 

1998). We hypothesize that plant photosynthesis is downregulated as photosynthetic 180 

surface area decreases when nutrient limits plant growth. Plant growth is adjusted based on 181 

the nutrient limitation factor calculated at each time step, meaning that plants tend to reduce 182 

growth under low nutrient conditions to avoid nutrient deficiency within the organism 183 

(Veneklaas et al., 2012).  Accordingly, the nutrient-constrained growth rate (𝐺𝑃! ) is 184 

dependent on the potential growth rate (𝐺𝑃") and nutrient limitation scalar for plant growth 185 

(𝐿#$) as the following equation: 186 

𝐺𝑃𝑎,𝑖 = 𝐺𝑃𝑝,𝑖 ∗ 𝐿𝐺𝑃 , (1) 

where subscript i indicates leaf (i = 1), wood (i = 2), root (i = 3) or reproduction (i = 4) 187 

(Table 1). The difference between actual and potential plant growth is referred to as excess 188 

carbon, which implicitly represents the carbon lost from the NSC pool through various 189 

pathways to cope with nutrient limitations.  190 

The nutrient limitation scalar for plant growth incorporates both the nutrient status of 191 

plant tissues and soil nutrient supply (Fig. 1b). which can be expressed as: 192 

𝐿𝐺𝑃 = 𝐿𝑖𝑛,𝑙𝑒𝑎𝑓𝐿𝑠𝑝 , (2) 

where 𝐿%&,()!* and 𝐿+" represent the nutrient limitation factors derived from leaf nutrient 193 

concentration (Eqs. 3-5) and the nutrient demand-supply process (Eqs. 6-8), respectively. 194 

Shifts in leaf nutrient concentrations act as a potential limiting factor for plant growth, 195 

implying the mechanism by which changes in leaf nutrient concentration can impact 196 

photosynthesis (Ellsworth et al., 2022; Sterner & Elser, 2002). Description of limitation 197 

factors that account for plant tissue’s nutrient concentration can be given by: 198 

𝐿𝑖𝑛,𝑖 = min$𝐿𝑖𝑛,𝑁,𝑖, 𝐿𝑖𝑛,𝑃,𝑖% ,  (3) 
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𝐿𝑖𝑛,𝑁,𝑖 =
𝑅𝑁,𝑖

𝑅𝑁,𝑖+𝑘𝐶𝑁
 , (4) 

𝐿𝑖𝑛,𝑃,𝑖 =
𝑅𝑃,𝑖

𝑅𝑃,𝑖+𝑘𝐶𝑃
 , (5) 

where 𝑅,  and  𝑅$ represent the C:N ratios and C:P ratios, respectively. 𝑘-, and 𝑘-$ are 199 

empirical parameters. A study by Cui et al. (2020) reveals that the Tiantong site is identified 200 

as a P-limited ecosystem, as indicated by the leaf N:P thresholds from Koerselman and 201 

Meuleman (1996). Thus, we adopted the values of 𝑘-$ (0.0006 gP gC-1) in Wang et al. 202 

(2010) to achieve N limitation when N:P < 16 (gN gP-1), and otherwise, plant growth is 203 

limited by P. 𝑘-, (0.01 gN gC-1) is given based on the results of Linder & Rook (1984).  204 

 205 

Table 1. Variables for carbon cycling processes in TECO-CNP. 206 

Variables Description Unit 

GPp Potential plant growth rate without nutrient limitation gC m-2 h-1 

GPa Nutrient-limited plant growth rate gC m-2 h-1 

Da,x Actual decomposition rate of litter pool m or soil pool j, accounting 
for nutrient limitation, x = m, j gC m-2 h-1 

Dx Potential decomposition rate of litter pool m or soil pool j, controlled 
by soil temperature and moisture, x = m, j gC m-2 h-1 

NPPi Net primary productivity allocated to plant pool i gC m-2 h-1 

Fnew,C,i Newly input carbon from NSC pool for plant growth gC m-2 h-1 

bC,i Allocation fraction of carbon to plant pool i unitless 

ri,j Fraction of carbon from plant pool i to litter pools j unitless 

BMroot Plant root biomass g biomass m-2 
BMroot* Root biomass density g biomass m-3 
fnsc Plant labile carbon limiting factor unitless 

fW Soil moisture limiting factor unitless 

fT Soil temperature limiting factor unitless 
W Soil water availability index unitless 
κ Light availability factor unitless 

* i indicates leaf (i = 1), wood (i = 2), root (i = 3) or reproduction (i = 4), j indicates metabolic litter (j 207 
= 5) or structure litter (j = 6), and m indicates fast SOM (m = 7), slow SOM (m =8) and passive SOM 208 
(m = 9).  209 
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The nutrient demand-supply limitation factor is calculated as a function of plant 210 

nutrient uptake and demand. When nutrient demand is not satisfied, the value of the 211 

limitation factor falls below one, thereby impacting plant growth. This assumption aligns 212 

with field findings that reveal an increase in plant productivity following nutrient addition 213 

(Cunha et al., 2022; Liang et al., 2021). Description of nutrient demand-supply limitation 214 

factor (𝐿+") can be given by:  215 

𝐿𝑠𝑝 = min$𝐿𝑠𝑝,𝑁, 𝐿𝑠𝑝,𝑃% , (6) 

𝐿𝑠𝑝,𝑁 =
1

1+exp	(−12∗
𝐹𝑢𝑝,𝑁
𝐹𝑑𝑚,𝑁	

./)
 , (7) 

𝐿𝑠𝑝,𝑃 =
1

1+exp	(−12∗
𝐹𝑢𝑝,𝑃
𝐹𝑑𝑚,𝑃	

./)
 , (8) 

where 𝐹1",, and 𝐹1",$ represent plant nutrient uptake for N and P, respectively, which is 216 

determined by both supply and demand (Eq. 23). 𝐹23,,  and 𝐹23,$  represent the plant 217 

required N and P to sustain a given NPP (Eq. 24). We implemented a logistic function to 218 

represent the phosphorus limitation factor, which provides a more mechanistically sound 219 

representation of nutrient limitation compared to the simple linear ratio. This formulation 220 

ensures a smooth transition between phosphorus-limited and phosphorus-sufficient 221 

conditions, with values bounded between zero and one. The coefficients were carefully 222 

selected to maintain appropriate sensitivity in the transition zone while avoiding unrealistic 223 

sharp thresholds. This sigmoidal response more accurately reflects the gradual 224 

physiological adjustments of plants to varying nutrient availability. It is consistent with a 225 

theoretical understanding of the effects of nutrient limitation on plant growth. The method 226 

of determining whether plants are nutrient-limited based on the supply-demand method is 227 

widely employed in many models, for example, CASACNP (Wang et al., 2010), CLM-228 

CNP (Yang et al., 2014), and ORCHIDEE (revision 4520; Goll et al., 2017).  229 

The carbohydrates available for plant growth will be redistributed among the plant 230 

pools based on their actual growth rates. A prescribed proportion of those allocated to 231 

reproductive processes (Sitch et al., 2003; Smith et al., 2001), such as flower formation, 232 

fruit development, and seed production, is stored in the reproductive pool. Vegetation 233 
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growth is assumed to take priority over reproduction (Zust et al., 2015; Tang et al., 2021). 234 

Thus, the plant’s reproductive allocation is zero when the leaf area index (LAI) is below 235 

the minimum threshold. When LAI exceeds the minimum threshold, 12% of the available 236 

carbon is allocated to the reproduction pool. The remaining carbon is subsequently 237 

distributed among leaf, wood, and root pools based on a resource limitation allocation 238 

scheme.  239 

The dynamic allocation for leaf, wood, and root is regulated by light availability, soil 240 

water supply, canopy phenological status (Luo et al., 1995; Denison & Loomis, 1989; 241 

Arora and Bore, 2005), and plant’s internal nutrient status (Fig. 1b). This allocation strategy 242 

permits a reduction in photosynthetic surface area and enhanced root growth under nutrient 243 

limitation, exemplifying a structural adjustment in line with the observations (Keith et al., 244 

1997; Thomas et al., 2015; Yan et al., 2016). The allocation fractions for leaf, wood, and 245 

root are given by: 246 

𝑏𝐶,𝑙𝑒𝑎𝑓 =
𝜀𝐿∗𝐿𝑖𝑛,𝑙𝑒𝑎𝑓

1+𝜔(2−κ−𝑊)
 ,  (9) 

𝑏𝐶,𝑤𝑜𝑜𝑑 =
𝜀𝑤∗𝐿𝑖𝑛,𝑤𝑜𝑜𝑑+	𝜔(1−κ)

1+𝜔(2−κ−𝑊)
 , (10) 

𝑏𝐶,𝑟𝑜𝑜𝑡 =
(1−𝜀𝐿∗𝐿𝑖𝑛,𝑙𝑒𝑎𝑓−𝜀𝑤∗𝐿𝑖𝑛,𝑤𝑜𝑜𝑑)+	𝜔(1−κ)

1+𝜔(2−κ−𝑊)
= 1 −	𝑏𝐶,𝑙𝑒𝑎𝑓 −	𝑏𝐶,𝑤𝑜𝑜𝑑 , (11) 

where 𝑏-,()!* , 𝑏-,5662  and  𝑏-,7668  represent the carbon fractions available for growth 247 

allocated to leaf, wood, and root, respectively. 𝑊 is the root zone soil water availability 248 

stress factor (Arora & Boer, 2005). The soil water availability is weighted by the existing 249 

fraction of roots in each soil layer (Weng & Luo et al., 2008; Arora & Boer, 2005).  𝜅 250 

represents the availability of light (Arora & Boer, 2005). Parameters 𝜀5 , 𝜀9 , and 𝜔 are 251 

calibrated based on the broadleaf evergreen PFT parameters given in Arora and Boer 252 

(2005). 𝐿%&,5662  and 𝐿%&,()!*  represent the limitation factor determined by the nutrient 253 

status of tissues (Eqs. 3-5), designed to capture the reduction of carbon allocated to leaf 254 

and wood as an adaptation to nutrient limitation (Binkley et al., 1995; Yan et al., 2016) and 255 

the negative correlation between fine root biomass and soil fertility (Fortier et al., 2019). 256 
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Canopy phenology is represented by annual variation in LAI. The beginning of a 257 

growing season is determined by growing degree days. Leaf senescence is triggered by low 258 

air temperatures and soil moisture (Arora & Boer, 2005), resulting in a reduction of LAI. 259 

The litter production rates of wood and roots are prescribed. The phenological parameters 260 

are adjusted according to the vegetation characteristics in the studied evergreen forest 261 

(Table S1).  262 

Carbon transfer between litter pools and soil organic pools through microbial 263 

decomposition (Luo & Reynold, 1999; Weng & Luo, 2008). The decomposition of litter 264 

and soil organic matter (SOM) is diminished when the amount of available inorganic N 265 

and P restricts nutrient immobilization during decomposition: 266 

𝐷𝑎,𝑗 = 𝐷𝑗 ∗ 𝐿𝑑𝑒 , (12) 

𝐷𝑎,𝑚 = 𝐷𝑚 ∗ 𝐿𝑑𝑒 , (13) 

where j indicates metabolic litter (j = 5) or structure litter (j = 6), and m indicates fast SOM 267 

(m =7), slow SOM (m = 8) and passive SOM (m = 9). 𝐷!  is the nutrient-constrained 268 

decomposition rate, and 𝐷  is the default decomposition rate controlled by the soil 269 

temperature and moisture (Weng & Luo, 2008). 𝐿2) is the limiting factor of decomposition, 270 

and the calculation involves dividing the un-limited net mineralization rate by the size of 271 

the inorganic nutrient pool, which can be addressed in the following equations: 272 

𝐿𝑑𝑒,𝑁 = max /0, 1 + 𝐹𝑁,𝑛𝑒𝑡
′

𝑁𝑚𝑖𝑛
0 , (14) 

𝐿𝑑𝑒,𝑃 = max /0, 1 + 𝐹𝑃,𝑛𝑒𝑡
′

𝑃𝑙𝑎𝑏
0 , (15) 

𝐿𝑑𝑒 = min$𝐿𝑑𝑒,𝑁, 𝐿𝑑𝑒,𝑃% , (16) 

where 𝐹,,&)8:  and 𝐹$,&)8:  represent the net mineralization rate for nitrogen and phosphorus, 273 

respectively, assuming no nutrient limitation on mineralization (Wang et al., 2010).  274 
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2.2.2 Shared processes in the N and P cycle 275 

The shared processes of N and P cycling include plant uptake, resorption, allocation, 276 

transfer from plant to the soil through litterfall, and transfer between organic litter and soil 277 

pools via biological mineralization and N, P biological immobilization (Fig. 2). Underlying 278 

these processes, TECO-CNP incorporates two key N-P interaction mechanisms: P uptake 279 

regulated by a nutrient balance scalar and a cost-benefit approach-based regulation of 280 

phosphatase production. To avoid duplication, the shared processes were described 281 

collectively.  282 

The organic N (𝑄,) and P pools (𝑄$) are coupled with carbon pools through flexible 283 

stoichiometry within plant, litter, and soil pools. Inorganic nutrient components consist of 284 

one inorganic soil N pool (𝑁3%&) and four inorganic soil P pools, including labile P (𝑃(!;), 285 

sorbed P (𝑃< ), secondary P (𝑃<< ), and occluded P (𝑃= ). Labile P represents readily 286 

bioavailable inorganic phosphate for biotic uptake and soil leaching. Sorbed P is weakly 287 

bound to soil surfaces in dynamic equilibrium with labile P. Through petrochemical 288 

processes, sorbed P transforms into secondary mineral P, which eventually becomes 289 

occluded P with minimal bioavailability. The key variables of N and P cycling are listed in 290 

Tables 2 and 3, respectively. Key parameter values were derived from site-specific field 291 

observations of plant functional traits and biogeochemical properties, as well as from 292 

validated studies chosen based on careful consideration of the ecosystem characteristics of 293 

the study site (Tables S1-S3, Table 4). 294 

The initial size of the organic nutrient pool is determined by the size of the carbon 295 

pool and the carbon-to-nutrient ratio. The dynamics of organic nitrogen and phosphorus 296 

transfer from donor to recipient pools within plants, litter, and soil are coupled with carbon 297 

cycling through flexible stoichiometry. The dynamics of plant nutrient pools can be 298 

expressed as: 299 

𝑑

𝑑𝑡
𝑄𝜒,𝑖(𝑡) = 𝐹𝑛𝑒𝑤,𝜒,𝑖 − 𝑄𝐶,𝑖 ∗ 𝜏𝑖 ∗ 𝑅𝜒,𝑖

>? , (17) 

𝐹𝑛𝑒𝑤,𝜒,𝑖 =	𝐹𝑛𝑒𝑤,𝐶,𝑖 ∗ 𝑅𝜒,𝑖−1 + (𝑄𝐶,𝑖 ∗ 𝑅𝜒,𝑖,0
>? − 𝑄𝐶,𝑖 ∗ 𝑅𝜒,𝑖

>?) 	 (18) 
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where subscript 𝜒 = N, P, 𝐹&)5,@,% represents the newly input nutrients from non-structural 300 

nutrient pool	to sustain plant growth (Table 2), 𝐹&)5,-,% is determined by the newly input 301 

carbon from the NSC pool to plant pool i and stoichiometric ratios (Eq. 25). 𝑅@,%,A and 𝑅@,% 302 

denote the initial and updated C:N (or C:P) ratios of plant pool i. 𝑄-,% and 𝜏% represent the 303 

carbon pool size and turnover rate of plant pool i. The dynamically constrained nutrient 304 

redistribution process in plants (Eq. 18) follows the principles of stoichiometric 305 

homeostasis theory (Sterner & Elser, 2002) and helps avoid excessive flexibility in 306 

stoichiometry during model simulations (Meyerholt & Zaehle, 2015; Goll et al., 2017). 307 

  308 
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Table 2. Common variables for N and P cycle modeling. 309 

Variable Description Unit 
Fup,χ Amount of nutrient uptake by plant roots g m-2 h-1 
Fres,χ Amount of nutrient resorption before tissue litterfall g m-2 h-1 
Fdm,χ Nutrient demand for plant growth g m-2 h-1 
Fsp,χ Soil nutrient supply g m-2 h-1 
ucroot,χ Root uptake capacity g m-2 h-1 
Fnew,χ,i Nutrient input for plant pool i g m-2 h-1 
Fχ,min,x Mineralization fluxes of litter or soil pools, x = m, j g m-2 h-1 
Fχ,imm,x Immobilization fluxes of litter or soil pools, x = m, j g m-2 h-1 
Fχ,min,total Total mineralization flux g m-2 h-1 
Fχ,imm,total Total immobilization flux g m-2 h-1 
Fχ,net Net mineralization flux g m-2 h-1 
Fχ,in Nutrient input to ecosystem g m-2 h-1 
Fχ,loss Nutrient loss from ecosystem g m-2 h-1 
Fχ,leach Nutrient loss through leaching g m-2 h-1 
Fχ,fert Nutrient fertilization rate g m-2 h-1 
Fχ,dep Nutrient atmospheric deposition rate g m-2 h-1 
FP2L,ij Nutrient flux from plant pool i to litter pool j g m-2 h-1 
Rχ,i Carbon: nutrient ratio of plant pool i g gC-1 
ck Unit conversion factor for root uptake capacity unitless 
Vrunoff Volume of drainage water mm s-1 
Dsoil Soil depth cm 
Tsoil Soil temperature ∘C 
fχ,leach Scalar for nutrient leaching unitless 
Θ Volumetric soil water content m3 m-3 
Lin,i Tissue nutrient concertation stress factor of plant pool i unitless 
Lsp Nutrient uptake stress factor unitless 
Lde Nutrient limitation factor for decomposition unitless 
LGP Nutrient limitation scalar for plant growth unitless 
fχ,ratio Nutrient concentration stress scalar affecting nutrient uptake unitless 

* χ indicates N or P. Subscripts i, m, and j refer to the values in Table 1.  310 
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Table 3. Specific variables in N and P cycle modeling. 311 

Variables Description Unit 
N cycling specific 
FN,fix N fixation rate gN m-2 h-1 
Cfix Carbon cost for biological N fixation gC gN-1 
FN,gas N loss in gaseous form gN m-2 h-1 
P cycling specific 
K Permeability of the soil to P m2 h-1  

αroot Represents the fraction of the reduction in P concentration surrounding 
the roots relative to the initial concentration unitless 

Plab Soil labile P gP m-2 
Plab' Root surface soil labile P gP m-2 

∆Plab P concentrations in the soil solution at the root surface compared to the 
labile P in the surrounding soil outside the root's diffusive zone  gP m-2 

PS Sorbed P gP m-2 
PSS Secondary P gP m-2 
PO Occluded P gP m-2 
FPbiomin P biochemical mineralization rate gP m-2 h-1 
FPdiff Diffusion of P from the surroundings to the root surface gP m-2 h-1 
Fwea P weathering rate gP m-2 h-1 

 312 

313 
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Table 4. Parameters for nitrogen and phosphorus cycling in TECO-CNP. 314 
Short 
name Value Description Reference 

N cycling 

kcn 0.01  Empirical parameter for nitrogen concentration limitation (gN gC -1) Ref 1 
αN 0.20  Fraction of N relocated before littering (Unitless) Ref 2 

FN,dep 3.60  N deposition (gN m-2 yr-1) Ref 4 

vfix 1.67×10-3  Maximum N fixation ratio (gN gC-1 m-2 h-1) Ref 5 

vmax,N 5.40  Maximal root uptake capacity for N (μmol gC-1 h-1) Ref 6 

kN,1 2.00×10-3  Parameter to match the observed rate of increase in overall N uptake at 
high mineral N concentration (μmol l-1) Ref 6 

kN,2 98.00  For Michaelis-Menten constants, mineral N concentration at which 
uptake equals νmax/2 (μmol l-1) Ref 6 

P cycling 

vmax,P 1.39  Maximal root uptake capacity for P (μmol gC-1 h-1) Ref 6 

kP,1 0.01  Parameter to match the observed rate of increase in overall P uptake at 
high labile P concentration (μmol l-1) Ref 6 

kP,2 3.00  For Michaelis-Menten constants, labile P concentration at which uptake 
equals νmax/2 (μmol l-1) Ref 7 

Smax 133.00  Maximum amount of sorbed P (gP m-2) Ref 8 

Ks 64.00  An empirical parameter for describing the equilibrium between labile P 
and sorbed P (gP m-2) Ref 8 

νm 2.05×10-5  Rate constant of conversion from sorbed P to secondary P (gP m-2 h-1) Ref 1 

νdis 2.40×10-6  Rate constant of conversion from secondary P to sorbed P (gP m-2 h-1) Calibrated 

λup 25.00  N cost of plant root P uptake (gN gP -1) Ref 1 

λptase 15.00  N cost of phosphatase production (gN gP -1) Ref 1 

κm 150.00  Michaelis-Menten constant for biochemical P mineralization (gN gP -1) Ref 1 

νmax 0.02  Maximal specific rate of biochemical P mineralization (gP m-2 h-1) Ref 1 

kcp 0.0006  Empirical parameter for phosphorus concentration limitation (gP gC -1) Ref 1 

αP 0.40  Fraction of P relocated before littering (Unitless) Ref 2 

Fwea 0.05  P weathering rate (gP m-2 yr-1) Ref 1 

FP,dep 0.06  Atmospheric P deposition rate (gP m-2 yr-1) Ref 4 

rd 3.10×105 Root specific density (g biomass m-3) Ref 9 

rr 2.90×10-4 Fine root radius (mm) Ref 6 

f1 1.58  Empirical parameters for calculation of the tortuosity factor (Unitless) Ref 10 

f2 -0.17  Empirical parameters for calculation of the tortuosity factor (Unitless) Ref 10 

K0 3.20×10-6 Diffusion coefficient of phosphate in free water at 25 ∘C (m2 h-1) Ref 11 

Θ1 0.12  relative water content (m3 m-3) Ref 6 

αP 0.40  Fraction of P relocated before littering (Unitless) Ref 2 

* For reference codes, see Table S4.  315 
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Nutrients newly acquired from root uptake (𝐹1",@) and tissue resorption (𝐹7)+,B) enter 316 

the labile nutrient pool, which buffers the nutrient dynamics and mitigates imbalances 317 

between supply and demand (Weng et al., 2017). Thus, the dynamics of plant labile nutrient 318 

pools are modeled as: 319 

𝑑

𝑑𝑡
𝑁𝑆𝜒(𝑡) = 𝐹𝑢𝑝,𝜒 + 𝐹𝑟𝑒𝑠,𝜒 − ∑ 𝐹𝑛𝑒𝑤,𝜒,𝑖𝑖   . (19) 

Since the reproduction pool is designed as a long-term pool supporting a series of 320 

reproductive events, from flower bud formation to fruiting, no resorption is prescribed in 321 

this pool. The relocation of nutrients from senesced plant tissues (𝐹7)+,@) is modeled as: 322 

𝐹𝑟𝑒𝑠,𝜒 = ∑ 𝛼𝜒 × 𝑄𝐶,𝑖 ∗ 𝜏𝑖 ∗ 𝑅𝜒,𝑖
>?

𝑖  (i ≠ reproduction) , (20) 

where 𝛼@ is the resorption rate and the second term represents the loss of carbon from plant 323 

pool i (Table 4). We assume that the different plant organs have the same and fixed 324 

resorption rate to simplify this process. Additionally, we prescribe a higher resorption rate 325 

for P at 0.4 compared to N at 0.2, considering the higher phosphorus use efficiency in the 326 

P-limit habitat (Xu et al., 2020).  327 

Litter nutrient dynamics is given by: 328 

𝑑

𝑑𝑡
𝑄𝜒,𝑗(𝑡) = 𝐹𝑃2𝐿,𝑖𝑗 − 𝑄𝐶,𝑗 ∗ 𝜏𝑗 ∗ 𝑅𝜒,𝑗

>? , (21) 

where 𝐹$C9,%D represent the nutrient flux from plant pool i to metabolic litter (j = 5) and 329 

structure litter (j = 6): 330 

𝐹𝑃2𝐿,𝑖𝑗 = ;
	$1 − 𝛼𝜒%𝑄𝐶,𝑖 ∗ 𝑅𝜒,𝑖

−1 ∗ 𝜏𝑖 ∗ 𝑟𝑖,𝑗	, 𝑖 = 1, 2, 3

	𝑄𝐶,𝑖 ∗ 𝑅𝜒,𝑖
−1 ∗ 𝜏𝑖 ∗ 𝑟𝑖,𝑗	, 𝑖 = 4

 , (22) 

where 𝑟%,D represents the fraction of plant carbon to different litter pools.  331 

The TECO-CNP model exclusively considers the active uptake of inorganic P through 332 

specialized transporters on the root surface (Schachtman et al., 1998), as inorganic P is the 333 

form most readily absorbed by plants (Bieleski, 1973). Plants possess specific transporters 334 

and mechanisms dedicated to transmembrane transport, ensuring they can acquire P even 335 

from soil solutions with low P concentrations, where the P concentration can be as low as 336 
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one-thousandth of the intracellular concentration (Schachtman et al., 1998). Therefore, we 337 

assume that plants absorb only inorganic P from the soil. Similarly, we also only consider 338 

the plant uptake of inorganic N. Soil labile nutrients taken up by plants are generally 339 

contingent upon both nutrient demand for growth (Wang et al., 2010) and root uptake 340 

capacity (Grant et al., 1999, 2001; Goll et al., 2017) that are related to root morphology 341 

and soil nutrient concentrations. The nutrient demand-supply scheme has been widely 342 

employed in most coupled C-nutrient models (Achat et al., 2016). We assume plants will 343 

not consume nutrients beyond their luxury consumption demand for assimilating nutrients 344 

(Van Wijk et al., 2003; Chapin, 1980). Therefore, the  𝐹1",B is determined by either the 345 

nutrient demand (𝐹23,@ ) or the nutrients supplied by soil (𝐹+",@), whichever is lower: 346 

𝐹𝑢𝑝,𝜒 = ;
𝐹𝑑𝑚,𝜒											$𝐹𝑑𝑚,𝜒 < 𝑈𝐶𝑟𝑜𝑜𝑡,𝜒	%
𝐹𝑠𝑝,𝜒													$𝐹𝑑𝑚,𝜒 > 𝑈𝐶𝑟𝑜𝑜𝑡,𝜒%

 . (23) 

The 𝐹23,@ is determined by the invested carbon for newly formatted tissues (𝑁𝑃𝑃%) and 347 

C:nutrient ratios. The actual demand is considered as the difference between the demand 348 

for growth and resorption capacity:  349 

𝐹𝑑𝑚,𝜒 = ∑
𝐹𝑛𝑒𝑤,𝐶,𝑖
𝑅𝜒,𝑖

𝑖 	− 𝐹𝑟𝑒𝑠,𝜒 , (24) 

𝐹𝑛𝑒𝑤,𝐶,𝑖 = 𝑁𝑃𝑃𝑎 ∗ 𝑏𝐶,𝑖:  , (25) 

where 𝑁𝑃𝑃! represents the net primary productivity derived from actual plant growth (Eq. 350 

1), 𝑏-,%:  denotes the 𝑏-,% (Eqs. 9-11) specifically influenced by the leaf phenology (Weng & 351 

Luo, 2008). 352 

The nutrients supplied to plants from the soil depend not only on the amount of P in 353 

the soil but also on soil conditions and the root uptake capacity. We implemented the 354 

function of 𝐹+",@ as described by Goll et al. (2017), and it is calculated by the function of 355 

root biomass (𝐵𝑀7668), and root uptake capacity (𝑢𝑐7668,@), soil temperature scalar (𝑓	F) 356 

and the nutrient balance scalar  (𝑓@,7!8%6) as follows: 357 

𝐹𝑠𝑝,𝜒 = 𝐵𝑀𝑟𝑜𝑜𝑡 ∗ 𝑢𝑐𝑟𝑜𝑜𝑡,𝜒 ∗ 𝑓	𝑇 ∗ 𝑓𝜒,𝑟𝑎𝑡𝑖𝑜 . (26) 
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The linear index scalar 𝑓@,7!8%6 regulates the balance between C, N, and P by constraining 358 

nutrient uptake rates based on prescribed maximum ratios (Eqs. 27-28), thereby preventing 359 

resource overconsumption (Goll et al., 2017). Experiments have shown that N addition 360 

enhances the uptake of both N and P, suggesting a benefit for P uptake when more N is 361 

available (Zhu et al., 2021). Thus, we assume that the dependence of P uptake on the plant 362 

P:N ratio is modeled as a function of the P:N ratio of both the plant and its leaves, thereby 363 

capturing the essential N-P interaction through stoichiometric regulation. This regulatory 364 

mechanism helps prevent excessive P uptake, which would constitute luxury consumption 365 

for the plant (Schachtman et al., 1998). Similarly, if nitrogen uptake exceeds the plant's 366 

requirements, it also constitutes luxury consumption. Therefore, to avoid luxury absorption 367 

and nutrient accumulation, the uptake of N (or P) by roots needs to be regulated based on 368 

the N:C (or P:N) ratios within plant tissues (Goll et al., 2017). The maximum uptake occurs 369 

when the leaf N:C (or P:N) ratio is equal to the minimum leaf N:C (or P:N) ratio, which is 370 

calculated using a minimum function: 371 

𝑓𝑃,𝑟𝑎𝑡𝑖𝑜 = min Bmax B 𝑝𝑛𝑝𝑙𝑎𝑛𝑡−𝑝𝑛𝑙𝑒𝑎𝑓,𝑚𝑎𝑥
𝑝𝑛𝑙𝑒𝑎𝑓,𝑚𝑖𝑛−𝑝𝑛𝑙𝑒𝑎𝑓,𝑚𝑎𝑥

, 0.0C , 1.0C , (27) 

𝑓𝑁,𝑟𝑎𝑡𝑖𝑜 = min Bmax B 𝑛𝑐𝑝𝑙𝑎𝑛𝑡−𝑛𝑐𝑙𝑒𝑎𝑓,𝑚𝑎𝑥
𝑛𝑐𝑙𝑒𝑎𝑓,𝑚𝑖𝑛−𝑛𝑐𝑙𝑒𝑎𝑓,𝑚𝑎𝑥

, 0.0C , 1.0C , (28) 

where 𝑝𝑛()!*,3!B  and 𝑝𝑛()!*,3%&  are prescribed maximum and minimum values of leaf 372 

P:N ratios, 𝑛𝑐()!*,3!B and 𝑛𝑐()!*,3%& are prescribed maximum and minimum values of leaf 373 

N:C ratios.  374 

The root nutrient-uptake capacity function (𝑢𝑐7668,@ ) incorporates both linear and 375 

Michaelis-Menten components to accurately represent the uptake process, considering the 376 

low-affinity and high-affinity transporter systems operating in parallel for a given solute 377 

concentration (Goll et al., 2017). Notably, the root uptake capacity for soil labile P (𝑢7668,$) 378 

considers the replenishment of P from soil around the roots to root surfaces (Goll et al., 379 

2017) rather than the total labile P in soil volume (Schachtman et al., 1998; Johnson et al., 380 

2003). Hence, the calculation of root uptake capacity for N and P can be expressed as 381 

follows: 382 
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𝑢𝑟𝑜𝑜𝑡,𝑃 = 𝑣𝑚𝑎𝑥,𝑃 ∗ 𝑃𝑙𝑎𝑏
′ B𝑘𝑃𝑚1

𝑐𝑘
+ 1

𝑃𝑙𝑎𝑏+𝑐𝑘𝑘𝑃𝑚2
C , (29) 

𝑢𝑟𝑜𝑜𝑡,𝑁 = 𝑣𝑚𝑎𝑥,𝑁 ∗ 𝑁𝑚𝑖𝑛 B
𝑘𝑁𝑚1
𝑐𝑘

+ 1

𝑁𝑚𝑖𝑛+𝑐𝑘𝑘𝑁𝑚2
C , (30) 

where 𝑣3!B,@ is the maximum uptake capacity (Table 4). 𝑁3%& and 𝑃(!; is the soil mineral 383 

N pool and labile P pool. 𝑃(!;:  represents the dissolved labile P concentration at the root 384 

surface and depends on the diffusion of soil labile P from the soil surrounding the roots to 385 

the root surface (Table 3; Eq. 54). 𝑐G is a unit conversion factor using the soil-type specific 386 

parameter for soil moisture content at saturation as an approximation of pore space 387 

following Smith et al. (2014). 𝑘@"# was chosen to match the observed rate of increase in 388 

overall P uptake at high dissolved labile P concentration (low-affinity transporter), and 389 

𝑘B"$
 is a parameter for Michaelis-Menten constants, dissolved phosphorus concentration 390 

at which uptake equals H"%&
C

. 391 

Mineralization and immobilization processes occur concurrently. Nutrient 392 

mineralization fluxes are estimated from the decomposition of litter and soil organic matter, 393 

assuming that C, N, and P mineralize at similar rates (Wang et al., 2010; Yang et al., 2014). 394 

The mineralization rate is determined by multiplying the litter and soil C pool turnover 395 

fluxes by the nutrient-to-carbon ratio. This can be mathematically represented by the 396 

following equations: 397 

𝐹𝜒,𝑚𝑖𝑛,𝑗 = 𝑄𝐶(𝑡)𝜏𝑗𝜉(𝑡)𝑅𝜒,𝑗
−1 , (31) 

𝐹𝜒,𝑚𝑖𝑛,𝑚 = 𝑄𝐶(𝑡)𝜏𝑚𝜉(𝑡)𝑅𝜒,𝑚
−1 , (32) 

where 𝑄-(𝑡)𝜏𝜉(𝑡) estimates the carbon decomposition rate under environmental stress for 398 

litter or soil pool. The total mineralization (𝐹@,3%&,868!( ) is estimated as the sum of 399 

mineralization rate for each pool, which can be expressed as follows:  400 

𝐹𝜒,𝑚𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐹𝜒,𝑚𝑖𝑛,𝑗𝑗 +∑ 𝐹𝜒,𝑚𝑖𝑛,𝑚𝑚  . (33) 

Nutrients are immobilized during the decomposition process of litter and SOM, 401 

ultimately entering the SOM pools.  Consequently, only three SOM pools can be the 402 
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receiving pools. The dependency of immobilization rates on the ratios of the receiving 403 

pools, under the assumption of approximately constant stoichiometry ratios of SOM pools 404 

(Tian et al., 2010; McGroddy et al., 2004), is described as:  405 

𝐹P,QRR,R =	∑ 𝑓STU,VR𝜉(𝑡)𝜏V𝑋V(𝑡)𝑅P,RWXVR + ∑ 𝑓UTU,RR𝜉(𝑡)𝜏R𝑋R(𝑡)𝑅P,RWXRR  , (34) 

where 𝑅@,3>?  represent the N:C ratio (𝜒 = 𝑁) or the P:C ratio (𝜒 = 𝑃)  of the existing SOM. 406 

The total amount of immobilization is then calculated as follows: 407 

𝐹𝜒,𝑖𝑚𝑚,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐹𝜒,𝑖𝑚𝑚,𝑚𝑚  . (35) 

Therefore, the net nutrient mineralization is calculated by the difference of total 408 

mineralization and total immobilization:  409 

𝐹𝜒,𝑛𝑒𝑡 = 𝐹𝜒,𝑚𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 − 𝐹𝜒,𝑖𝑚𝑚,𝑡𝑜𝑡𝑎𝑙 . (36) 

When net mineralization is negative, the decomposition rate is limited by nutrient 410 

availability, 𝐿,$. Since the N:C ratio of the soil pool is higher than that of the litter pool, 411 

microbes extract inorganic nitrogen from the soil mineral N pool, leading to negative net 412 

mineralization and a 𝐿,$. value less than one. A similar approach has been applied in the 413 

CASA-CNP model (Wang et al., 2007).  414 

Plants and microorganisms utilize dissolved inorganic N and P from the soil to fulfill 415 

their growth requirements (Vitousek et al., 2010). We assume microbial processes 416 

modulate nutrient availability for plants (Jiang et al., 2024b; Pellitier et al., 2023; Jonasson 417 

et al., 1999), i.e., the nutrient limitation on plant growth will be alleviated if the net 418 

mineralization is positive. Furthermore, the competition between plants and 419 

microorganisms for nutrients can be simplified by emphasizing the sequence of 420 

immobilization and plant uptake (Achat et al., 2016). In the TECO-CNP model, 421 

immobilization takes precedence in nutrient access through the decomposition of litter and 422 

soil organic matter. A similar method was used in many models, e.g., models of the 423 

CENTURY family (e.g., Parton et al., 1988); O-CN (Zaehle and Friend 2010); ORCHIDEE 424 

(revision 4520; Goll et al., 2017). This also aligns with recent findings regarding the 425 

competition between plants and microbes under elevated CO2. (Keane et al., 2023). 426 

Specifically, in the acidic grassland, aboveground productivity and P uptake declined by 427 
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11% and 20%, respectively, while P immobilization into microbial biomass increased by 428 

36%. 429 

 430 

2.2.3 Distinct processes in N and P cycle 431 

The dynamic of soil inorganic N (𝑁3%&) is described as: 432 

𝑑𝑡

𝑑
𝑁
𝑚𝑖𝑛

= 𝐹𝑓𝑖𝑥 + 𝐹𝑁,𝑓𝑒𝑟𝑡 + 𝐹𝑁,𝑑𝑒𝑝 − 𝐹𝑁,𝑙𝑒𝑎𝑐ℎ − 𝐹𝑁,gas , (37) 

where 𝐹*%B , 𝐹,,*)78  and 𝐹,,2)"  represent the biological N2-fixation, atmospheric N 433 

deposition, and biological N fixation (Tables 2, 3). 𝐹,,()!IJ  and 𝐹,,KLM  represent the N 434 

leaching and gaseous N loss. 435 

Biological nitrogen fixation, a dominant source of new nitrogen in terrestrial 436 

ecosystems (Chapin et al., 2011; Vitousek et al., 2013), is performed by N2-fixing 437 

symbionts in plant roots (i.e., symbiotic N2-fixation; Vitousek et al., 2002; Augusto et al., 438 

2013). This process enhances nitrogen availability when carbon is sufficient for additional 439 

nutrient acquisition (Fisher et al., 2010), which is given by: 440 

𝐹𝑓𝑖𝑥 = 𝑣𝑓𝑖𝑥 ∗ 𝑓𝑛𝑠𝑐 ∗ 𝑁𝑆𝐶 ∗ 𝑓𝑁 , (38) 

where 𝑣*%B = 0.00167 (gN gC-1 m-2 h-1) is the maximum N fixation rate. 𝑣*%B is chosen 441 

based on estimates ranging from 58 Tg N yr-1 (Vitousek et al., 2013) to 100 Tg N yr-1 442 

(Wiltshire et al., 2021) for a global NPP of 60 Pg C yr-1. The term 𝑓&+I ∗ 𝑁𝑆𝐶 represents 443 

the limitation of NSC on nitrogen fixation, implicitly capturing the carbon constraint on 444 

this process (Chou et al., 2018; Taylor et al., 2021).  To prevent unrealistic nitrogen fixation, 445 

a scaling function (𝑓, ) is applied, as nitrogen fixation is an energy-intensive process 446 

(Gutschick, 1981; Goll et al., 2017). The 𝑓, is calculated as: 447 

𝑓𝑁 = ;
𝑁𝑚𝑎𝑥−𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥
		𝑁𝑚𝑎𝑥 < 𝑁𝑚𝑖𝑛	

0													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																	
	 . 

(39) 

The carbon cost for biological N fixation is calculated by a function of soil temperature 448 

(𝑇+6%() with the observed carbon cost range (Fisher et al., 2010):  449 
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𝐶]Q^ = −6.25 ∗ XexpX−3.62 + 0.27 ∗ 𝑇_`Qa ∗ ]1 − 0.5 ^
b<=>?
Tc.Xc

_`a − 2a . 
(40) 

Nitrogen loss occurs in two pathways: gaseous loss (𝐹𝑁	N!+), and leaching (𝐹,,()!IJ). 450 

Losses from denitrification and volatilization are not distinguished separately. Both are 451 

proportional to the availability of soil mineral N (𝑁3%&). The expression of N leaching is: 452 

𝐹𝑁,𝑙𝑒𝑎𝑐ℎ = 	 𝑓𝑁,𝑙𝑒𝑎𝑐ℎ
𝑉𝑟𝑢𝑛𝑜𝑓𝑓
𝐷𝑠𝑜𝑖𝑙

𝑁𝑚𝑖𝑛 , (41) 

where 𝑓,,(6++ = 0.001 and 𝑓,,()!IJ = 0.5, 𝑉71&6** is the soil surface runoff and 𝐷+6%( is the 453 

soil depth. Moreover, the gaseous loss is dependent on the soil temperature and soil mineral 454 

N. The equation is: 455 

𝐹	𝑔𝑎𝑠 = 	 𝑓𝑁,𝑙𝑜𝑠𝑠𝑒
(𝑇𝑠𝑜𝑖𝑙−25)

10 𝑁𝑚𝑖𝑛 . (42) 

The specific processes of the P cycle include biochemical mineralization, weathering, 456 

the dynamics of different inorganic soil P components, and the diffusion pathways of soil 457 

labile P. In addition to biological mineralization, organic P can be mineralized through 458 

direct cleavage by extracellular enzymes produced by plant roots and other organisms 459 

(McGill and Cole, 1981). This process decouples the P cycle from the C and N cycles, 460 

serving as an adaptive mechanism that can be enhanced under P-limited conditions 461 

(Lambers et al., 2006). This decoupling allows for phosphorus acquisition from organic 462 

matter without releasing carbon dioxide. We consider this process an N-consuming one, 463 

aiming to represent the chemical characteristic that phosphatases are N-rich enzymes and 464 

their production in plants can be N-limited (Treseder and Vitousek, 2001; Wassen et al., 465 

2013). The biochemical mineralization of P can be expressed by: 466 

𝐹𝑃	𝑏𝑖𝑜𝑚𝑖𝑛,𝑚 = 	
𝜐𝑚𝑎𝑥O𝜆𝑢𝑝−𝜆𝑝𝑡𝑎𝑠𝑒P
𝜆𝑢𝑝−𝜆𝑝𝑡𝑎𝑠𝑒+𝜅𝑚

∑ 𝐾𝑚𝑄𝑃,𝑚𝑚  , (43) 

where 𝜐3!B is maximal specific rate of biochemical P mineralization. 𝜆1" is N cost of plant 467 

root P uptake. 𝜆"8!+) is the N cost of phosphatase production, 𝜅3 is the Michaelis-Menten 468 

constant for biochemical P mineralization. 𝐾3  and 𝑄$,3  represent turnover rate and 469 

phosphorus pool size of slow (m = 8) and passive pools (m = 9). Phosphatase production 470 
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is activated when 𝜆1" > 𝜆"8!+), reflecting N regulation of P acquisition strategy by plants, 471 

similar to the cost-benefit approach established in existing coupled carbon-nutrient models 472 

(Wang et al., 2007; Houlton et al., 2008). This modeling approach aligns with findings that 473 

nitrogen addition significantly increases phosphatase activity (Schleuss et al., 2020; 474 

Marklein et al., 2012), potentially through enhanced phosphorus limitation and elevated 475 

plant nitrogen status, which favor investment in the phosphatase enzyme. While direct field 476 

quantification of biochemical mineralization rates is not yet possible, this mechanistic 477 

representation becomes particularly important for predicting ecosystem responses to 478 

elevated CO₂ and enhanced N deposition, where enhanced biochemical mineralization of 479 

soil organic P may facilitate additional plant growth (Jiang et al., 2024a). 480 

The soil P loss from soil organic P pools can be simulated by the following equations: 481 

𝐹𝑃,𝑜𝑢𝑡,𝑚(𝑡) = 𝑄𝐶,𝑚 ∗ 𝜏𝑚 ∗ 𝑅𝜒,𝑚
>? + 𝐹𝑃	𝑏𝑖𝑜𝑚𝑖𝑛,𝑚.	 (44) 

The term 𝐹𝑃	;%63%&,3  equals 0 when m =7 as organic P losses through biochemical 482 

mineralization only occur in two soil pools with slow turnover rates (slow and passive 483 

pools; Wang et al., 2010). 484 

The external phosphorus input (𝐹$,%&) is modeled as:  485 

𝐹𝑃,𝑖𝑛 = 𝐹𝑤𝑒𝑎 + 𝐹𝑃,𝑓𝑒𝑟𝑡 + 𝐹𝑃,𝑑𝑒𝑝 , (45) 

where 𝐹5)! , 𝐹$,*)78 , and 𝐹$,2)"  represent phosphorus input rates from weathering, 486 

fertilization, and deposition. Based on the soil texture at the Tiantong site (Song & Wang, 487 

1995), the weathering rate is set to 0.005 (gP m-2 year-1) (Wang et al., 2010). The deposition 488 

rate of phosphorus has been set to 0.06 (gP m-2 year-1) (Zhu et al., 2016).  489 

Labile phosphorus (Plab) can be directly utilized by plants or microorganisms and 490 

adsorbed onto soil particles, organic matter, and other minerals as adsorbed phosphorus (PS) 491 

(Vitousek et al., 2010). The assumption is made that the rapid equilibration of 𝑃(!; with 𝑃< 492 

occurs within a timestep of less than one hour (Olander and Vitousek, 2005). For the 1-493 

hour time step used in our study, we therefore assume that 𝑃(!; and 𝑃< are in a state of 494 

equilibrium. The equilibrium assumption is applied extensively (e.g., Wang et al., 2007; 495 

Yang et al., 2014). The relationship between them is described by a Langmuir isotherm 496 

(Barrow, 2008): 497 
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PS=
SmaxPlab
Ks+Plab

 , (46) 

where 𝑆3!B  is the maximum amount of sorbed P in the soil, and 𝐾+  is the empirical 498 

constant representing the tendency of soil labile P to be sorbed. 𝑆3!B and 𝐾+ is set as 133 499 

and 64 (Wang et al., 2010), respectively, according to the soil sorption capacity and 500 

substrate age (Olander and Vitousek, 2005) at the Tiantong site. The differential form of 501 

Eq. 46 is: 502 

𝑑𝑃𝑆
𝑑𝑡
= 𝑆𝑚𝑎𝑥𝑃𝑙𝑎𝑏

(𝐾𝑠+𝑃𝑙𝑎𝑏)
2
𝑑𝑃𝑙𝑎𝑏
𝑑𝑡

 . (47) 

Assuming equilibrium between 𝑃(!; and 𝑃<, we can model the simultaneous changes in 503 

𝑃(!; and 𝑃< as follows: 504 

𝑑(𝑃𝑆+𝑃𝑙𝑎𝑏)
𝑑𝑡

= 𝐹𝑃,𝑛𝑒𝑡 + 𝐹
𝑃,𝑖𝑛

+ 𝐹𝑃,𝑏𝑖𝑜𝑚𝑖𝑛 − 𝐹𝑢𝑝,𝑃 − 𝐹𝑃,𝑙𝑒𝑎𝑐ℎ − 𝜈𝑚𝑃𝑆 , (48) 

𝐹𝑃,𝑛𝑒𝑡 = 𝐹𝑃,𝑚𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 − 𝐹𝑃,𝑖𝑚𝑚,𝑡𝑜𝑡𝑎𝑙 , (49) 

where 𝐹$,&)8 is the net mineralization of litter and soil phosphorus pool, 𝐹$,;%63%& is the P 505 

flux from biochemical mineralization, 𝑈$   represents the plant uptake of P, 𝐹$,()!IJ 506 

represents the loss of labile P from leaching (Eq. 53), and 𝜈3 is the rate constant for the 507 

transformation of sorbed P to secondary P. Based on Eq. 48 and Eq. 49, the dynamics of 508 

labile phosphorus can be expressed as follows: 509 

pq?OP
pr

= e𝐹q,str + 𝐹q,Qs + 𝐹𝑃uQ`RQs − 𝐹vw,q − 𝐹q,a`__ − 𝜈R𝑃Uf
X

Xx QROST?OP
UV<WT?OPX

Y
 , (50) 

The use of solution P would be theoretically more appropriate, as previous studies 510 

have shown that models operating at very fine temporal resolutions (hourly or finer) may 511 

require distinction between labile and solution phosphorus pools (Reed et al., 2015; Yang 512 

et al., 2013). However, implementing this simulation approach is currently not feasible due 513 

to limited data availability. Some synthesis studies (Yang et al., 2013; Hou et al., 2018) 514 

have indicated that most experimental measurements report total labile P, without 515 

separating it into distinct fractions. Additionally, previous studies have demonstrated 516 

strong correlations between these fractions. For example, strip- and NaHCO3-extracted 517 
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inorganic P are positively correlated and exhibit similar temporal patterns during 518 

experimental periods (Hou et al., 2019). Due to these reasons, we adopted labile P as our 519 

primary plant-available phosphorus pool in our model. 520 

Secondary mineral phosphorus (𝑃<<) can be dissolved and enter the labile P pool or 521 

encapsulated by iron oxides to form closed-P (𝑃6; Walker & Syers, 1976; Vitousek et al., 522 

2010). The dynamics of 𝑃++ and 𝑃6 can be modeled as: 523 

𝑑𝑃𝑆𝑆
𝑑𝑡

= 𝜈𝑚𝑃𝑆 − 𝜈𝑑𝑖𝑠𝑃𝑆𝑆 − 𝜈𝑜𝑃++ , (51) 

𝑑𝑃𝑜
𝑑𝑡
= 𝜈𝑜𝑃++ − 𝜈7)𝑃𝑜 , (52) 

where 𝜈2%+   and 𝜈6  is the rate constant for the conversion of secondary P to labile and 524 

sorbed P, and occluded P, respectively.  𝜈7) is the rate constant for occluded P re-entering 525 

the cycle as bioavailable phosphorus, indicating that occluded phosphorus can transition 526 

back into available forms (Huang et al., 2014; Schubert et al., 2020). In this study, we 527 

assume that the formation of occluded P pool and loss of occluded P can be considered 528 

negligible within the short timescale of simulations (Weihrauch & Opp, 2018). P leaching 529 

from the soil inorganic labile pool is proportional to the availability of soil labile P. 530 

Description of P leaching below: 531 

𝐹𝑃,𝑙𝑒𝑎𝑐ℎ = 	 𝑓𝑝,𝑙𝑒𝑎𝑐ℎ
𝑉𝑟𝑢𝑛𝑜𝑓𝑓
𝐷𝑠𝑜𝑖𝑙

𝑃𝑙𝑎𝑏 , (53) 

where 𝑉71&6**   is the value of runoff, 𝐷+6%(  is the soil depth. 𝑓",()!IJ  is an empirical 532 

parameter for P leaching, representing the fraction of soil mineral P for leaching. 533 

Notably, due to the low mobility of phosphorus in the soil (Vitousek et al., 2010), the 534 

actual P concentration that roots can absorb depends on the diffusion of P from the 535 

surrounding soil to the root surface (𝑃(!;: ). This finding is consistent with the experimental 536 

evidence that roots primarily acquire most inorganic phosphorus through diffusion along 537 

concentration gradients (Laliberté et al., 2015). Thus, the root uptake capacity for soil labile 538 

P (𝑢7668,$) considers the replenishment of P from soil around the roots to root surfaces 539 

(Schachtman et al., 1998) rather than the total labile P in soil volume (Johnson et al., 2003).  540 

Thus, the root surface P concentration is calculated by the following equation: 541 
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𝑃𝑙𝑎𝑏
′ = 	 𝑎𝑟𝑜𝑜𝑡 ∗

𝑃𝑙𝑎𝑏
𝛩

 , (54) 

where 𝛩	is the volumetric soil water content and  𝑎7668  representing the fraction of the 542 

reduction in P concentration surrounding the roots relative to the initial concentration. 543 

𝑎7668 is updated after plant uptake as: 544 

d𝑎𝑟𝑜𝑜𝑡
d𝑡

=
𝐹𝑃𝑑𝑖𝑓𝑓−𝐹𝑢𝑝,𝑃

𝑃𝑙𝑎𝑏
 , (55) 

where 𝐹𝑃2%**	is the diffusion of P from the surroundings to the root surface, which is the 545 

function of the permeability of the soil to P (Κ) and the difference in the P concentrations 546 

between the soil solution at the root surface and the labile P in the surrounding soil volume 547 

outside the diffusive zone around the root (∆𝑃(!;) 548 

𝐹𝑃𝑑𝑖𝑓𝑓 = −𝐾 ∗ ∆𝑃𝑙𝑎𝑏 . (56) 

∆𝑃(!; can be described as:  549 

∆𝑃a{u = (𝑎|``r − 1)
q?OP
}

 . (57) 

The K has been calculated analogously to the diffusion coefficient of phosphorus in soils 550 

following Barraclough and Tinker (1981), which accounts for the increased path length in 551 

soil using a tortuosity factor (𝑓8), and it is a broken-line function of the volumetric soil 552 

water content (𝛩). The K and 𝑓8 can be calculated based on the following equations:  553 

𝐾 = 𝐾~𝑐}𝛩𝑡𝑓
X

|Z>[[
 , (58) 

𝑓𝑡 = X
𝑓1𝛩 + 𝑓2								𝑓𝑜𝑟	𝛩 ≥ 𝛩1
𝛩O𝑓1𝛩+𝑓2P

𝛩1
					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (59) 

where 𝛩?is soil water content at which the two functions intersect according to Barraclough 554 

and Tinker (1981), 𝑓? and 𝑓C are empirical parameters (Barraclough and Tinker, 1981), 𝐷A 555 

is diffusion coefficient in free water, 𝑐U is a unit conversion factor, 𝑟2%**	is diffusion path, 556 

which can be calculated from the function of root length density (𝑅𝐿𝐷, Bonan et al., 2014): 557 

𝑟𝑑𝑖𝑓𝑓 = min(0.1, (𝜋𝑅𝐿𝐷)0.5) . (60) 
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We assume that the diffusion path can be approximated as half the average distance 558 

between roots. We limit the diffusion path length to 0.1 m because the influence of active 559 

P uptake by roots on soil P concentrations is negligible beyond a distance of 10 cm (Li et 560 

al., 1991). 𝑅𝐿𝐷 is given by:  561 

𝑅𝐿𝐷 = �\==]∗

|Z�|\Y
 , (61) 

where 𝑟2 is the root-specific density and 𝜋𝑟7C is the cross-sectional area calculated from the 562 

fine root radius, 𝑟7, and 𝐵7668∗  is the root biomass density per unit soil volume. 563 

2.3 Model validation 564 

2.3.1 Study site 565 

The tension between high carbon sink capacity and nutrient limitations in subtropical 566 

forests warrants detailed investigation to understand the role of nutrients in carbon cycling 567 

processes in these regions. To this end, we selected a mature subtropical evergreen 568 

broadleaf forest in eastern China, located at the Zhejiang Tiantong Forest Ecosystem 569 

National Observation and Research Station (Tiantong, 29°48ʹ N, 121°47ʹ E, Fig. 3) for the 570 

newly developed model. The Tiantong forest has been preserved free from human 571 

disturbance since the mid-twentieth century. The average annual temperature in Tiantong 572 

is 17°C, and the annual precipitation is 1600 mm (Cui et al., 2022). The soil type is mainly 573 

mountainous yellow-red soil, with the parent material primarily composed of Mesozoic 574 

sedimentary rocks, acidic igneous rocks, and residual weathering products of granite (Song 575 

& Wang, 1995).  576 

Research conducted at this site revealed the dominant role of soil phosphorus in 577 

driving variations in plant functional traits (Cui et al., 2022), indicating phosphorus 578 

deficiency in this mature forest. Consequently, this phosphorus-limited mature subtropical 579 

forest, with abundant field observations, can contribute to the development of carbon-580 

nutrient coupling models and further explore phosphorus-limited carbon cycling processes 581 

within the ecosystem through the integration of modeling and experiments.  582 
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 583 
Figure 3. Schematic diagram of the observation system at Tiantong subtropical 584 

evergreen forest (29°5' N, 121°5' E). The system comprises: (1) a forest dynamic plot for 585 

monitoring ecosystem state variables, including stoichiometric ratios, plant traits, and C, 586 

N, P pools and fluxes. These measurements were conducted in a 5-ha subplot of the whole 587 

plot. The asterisk (*) indicates manually measured periodic fluxes. And (2) an eddy 588 

covariance (EC) flux tower providing half-hourly NEE measurements, from which GPP 589 

and ER were derived. These observations were used for parameterizing and evaluating the 590 

TECO-CNP model. Detailed measurement protocols are described in the Methods section, 591 

and specific variable applications are listed in Tables S1-S3. The 3D visualization of the 592 

study site was created in Blender (v4.2.1) using topographic data sourced from 593 

OpenTopography (https://opentopography.org). 594 

 595 

2.3.2 Data collection and site parameterization 596 

The data used for model calibration and validation were primarily derived from our field 597 

measurements and literature focusing on the same site (Fig. 3). The forcing data for TECO 598 

are collected at 1-hour intervals from field-based meteorological observations at the study 599 

site, include precipitation (mm), relative humidity (%), air and soil temperatures (˚C), 600 

https://opentopography.org/
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vapor pressure deficit (Pa), wind speed (m s-1), and photosynthetically active radiation 601 

(μmol m-2 s-1). Forcing data from 2001 was used for model spin-up. 602 

Site-specific parameters that can be empirically measured are derived from field 603 

observations at the study site, including both our measurements and values reported in 604 

previous studies. Plant traits, including specific leaf area (SLA, cm2 g-1), leaf area index 605 

(LAI, m2 m-2), plant height (H, m), maximum rate of carboxylation (Vcmax, µmol m-2 s-1), 606 

maximum rate of electron transport (Jmax, µmol m-2 s-1) and leaf P concentration (Leaf P, g 607 

m-2), were measured at the species level in the forest dynamic plot, and scale up to 608 

community-level traits using the community-weight mean method (for detailed sampling 609 

methods, refer to Cui et al., 2022). Plant stoichiometry ratios were derived from area-based 610 

C, N, and P concentrations from both our measurements and previous studies at Tiantong 611 

(Zhou et al., 2020). N and P resorption efficiencies were determined based on dominant 612 

species (i.e., Schima superba, Lithocarpus glaber) at the Tiantong site (Xu et al., 2020).  613 

The observed data used for model parameterization are presented in Tables S1-S3.  614 

Parameters not readily accessible through field measurements are estimated using 615 

standard procedures that have been extensively validated in other modeling studies, with 616 

appropriate selection based on the characteristics of Tiantong. For example, Tiantong forest 617 

soils are classified as Ultisols (Song & Wang, 1995), which directly informed our selection 618 

of phosphorus weathering rates and inorganic P dynamics parameters (e.g., Ks and Smax, 619 

Table 4). Similarly, the subtropical evergreen broadleaf forest vegetation type guided our 620 

parameterization of phosphorus mineralization (Wang et al., 2010) and allocation 621 

processes (Arora & Boer, 2005). External inputs of N and P, including deposition and 622 

weathering, were assumed to occur at constant rates. Deposition rates for N and P were 623 

prescribed based on the observed range (Zhu et al., 2016). Specific parameterization 624 

settings are described in Table 4, along with the accompanying process descriptions. 625 

The observed pool sizes and fluxes primarily serve as a basis for model evaluation and 626 

as references for model initialization. Soil inorganic pools of mineral N and labile P were 627 

determined from 0-10 cm soil samples collected in 2023 from a nearby forest stand of 628 

similar age (~200 yr) dominated by the same species (Schima superba and Castanopsis 629 

fargesii) as the Tiantong forest dynamic plot. Labile P is the soil inorganic phosphorus 630 
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fraction that can be extracted by resin and NaHCO3. Sampling employed a five-point 631 

design with three replicates per point. Additionally, secondary P and occluded P refer to 632 

the measured moderately labile inorganic phosphorus (extracted by NaOH) and moderately 633 

stable inorganic phosphorus (extracted by HCl), respectively, at the Tiantong site (Wang, 634 

2022). 635 

Soil C, N, and P were measured using systematic sampling across 185 grid points (each 636 

20 × 20 m) within the permanent Tiantong forest dynamic plot (Fig. 3). At each grid point, 637 

soil samples were collected at three depth intervals (0-20, 20-40, 40-60 cm) in 2017 using 638 

a 5 cm diameter auger, with three replicates per depth. Additionally, observed plant pools 639 

and fluxes, including fluxes from plant to litter and soil respiration, used for model 640 

evaluation and their sources are listed in Tables S1-S3. Quality-controlled hourly eddy 641 

covariance measurements of gross primary productivity (GPP), ecosystem respiration (ER), 642 

and net ecosystem exchange (NEE) were obtained from the on-site flux tower for the year 643 

2021.  644 

All model configurations used identical site-specific parameter sets obtained according 645 

to the methods described above. Although a previous study has highlighted the necessity 646 

for model-specific reparameterization (Wang et al., 2022), we adopted a consistent 647 

parameterization approach across all configurations. This follows common practice in land 648 

surface model development studies, where uniform parameterization is essential for 649 

isolating the effects of different nutrient coupling schemes. 650 

2.3.3 Data assimilation 651 

We specifically optimized carbon-related parameters for the CNP configuration only, 652 

utilizing GPP, ER, and NEE data from 2021 at the study site, to evaluate the effectiveness 653 

of the CNP structure coupled with a data assimilation algorithm. Based on the initial carbon 654 

pool sizes from the spin-up process, a preliminary sensitivity analysis was first conducted 655 

to support the selection of target parameters for data assimilation. We focused on 656 

parameters that determine carbon input and retention (Table 6), including SLA, Vcmax, and 657 

temperature sensitivity (Q10), which showed high sensitivity in the analysis (Table S6). 658 

Additionally, our parameter selection strategy included all carbon pool turnover parameters 659 

(T1-T9), as these govern carbon residence times and are crucial for matching observed pool 660 
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dynamics, regardless of their sensitivity indices. The prior range of parameters was 661 

prescribed according to the situ measurement or assumed as the range of the distribution 662 

to be [𝜃A 3⁄ , 3𝜃A], where 𝜃A is the default value. Using the Bayesian probabilistic inversion 663 

approach, we estimated the posterior distribution of model parameters based on prior 664 

knowledge of the parameters.  665 

Bayesian probabilistic inversion approach is based on Bayes’ theorem: 666 

𝑝(𝜃|𝑍) ∝ w�𝑍�𝜃�×w(�)
w(�)

 , (61) 

where 𝑝(𝜃|𝑍) is the posterior distribution of the parameters 𝜃 given the observations 𝑍. 667 

Here, we assume that the prior knowledge of parameter distribution 𝑝(𝜃) is uniformly 668 

distributed. 𝑝(𝑍|𝜃)  is the likelihood function for a parameter set calculated with the 669 

assumption that each parameter is independent from all other parameters and has a normal 670 

distribution with a zero mean: 671 

𝑝(𝑍|𝜃) ∝ exp	{−∑ [�>(r)W�(r)]Y

T�Y(r)r∈�> 	} , (62) 

where 𝑍%(𝑡)  is the observations of carbon fluxes at time t, 𝑋(𝑡)  is the simulated 672 

corresponding variable, and 𝜎(𝑡) is the standard deviation of the observation set. 673 

Posterior probability distributions of the parameters were obtained using a 674 

Metropolis-Hastings (M-H) algorithm within the Markov Chain Monte Carlo (MCMC) 675 

framework. The posterior parameter distribution represents our updated knowledge about 676 

parameter values after incorporating observational data through Bayesian inference, 677 

quantifying both the most likely parameter estimates and their associated uncertainties. The 678 

detailed description of the M-H algorithm can be found in Xu et al. (2006). In brief, the M-679 

H algorithm consists of iterations that alternate between a proposing step and a moving 680 

step. In the proposing step, a new parameter set 𝜃&)5is proposed based on the previously 681 

accepted parameter set 𝜃6(2 and a proposal distribution (𝑟 × (𝜃3!B − 𝜃3%&)/𝐷): 682 

𝜃𝑛𝑒𝑤 	 = 	 𝜃𝑜𝑙𝑑 + 𝑟 × (𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛)/𝐷 , (63) 

where 𝜃3!B and 𝜃3%& corresponding to the upper and lower values of prescribed ranges, r 683 

is a random variable between -0.5 and 0.5, and D is used to control the proposed step size 684 
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and was set to 5 (Xu et al., 2006). The new set of parameter values would be accepted when 685 

"O𝜃&)5W𝑍P
"X𝜃6(2Y𝑍Z  is equal or greater than a uniform random number from 0 to 1 (Xu et al., 2006). 686 

We get 10,000 accepted samples from the MCMC chain. The first 5000 accepted 687 

samples were discarded, considering the burn-in period. We randomly selected 1,000 688 

parameter sets from the accepted space to run the simulations in 2021. The mean and 689 

maximum likelihood estimations are calculated to compare the parameters. 690 

2.3.4 Model performance evaluation 691 

The state variables estimations from three nutrient coupling configurations of TECO-CNP: 692 

(1) carbon-only (C-only), (2) carbon-nitrogen coupled (CN), and (3) carbon-nitrogen-693 

phosphorus coupled (CNP) are evaluated against observations. Model initialization 694 

involved a spin-up process using 2001 meteorological forcing data until a quasi-695 

equilibrium state was reached, defined as inter-annual variations of less than 0.05 gC m-2 696 

yr-1 in the slowest pools. Following initialization, we conducted transient simulations from 697 

2002 to 2021 using the tuned parameter set. To evaluate model performance, we compared 698 

pool sizes from different nutrient coupling configurations (C-only, CN, and CNP) in 2021 699 

with observed data (Tables S1-S3), assuming that our mature forest study site was at a 700 

quasi-steady state, where interannual changes in major pool sizes were negligible. The 701 

configuration that produced pool sizes closest to observations was selected to determine 702 

the initial state for subsequent simulations. Model performance was further evaluated by 703 

comparing simulated carbon fluxes in 2021 against observational data using both manually 704 

tuned and optimized parameters. The model evaluation metrics for carbon fluxes included 705 

the Root Mean Square Error (RMSE) and concordance correlation coefficient (CC), which 706 

quantify the absolute errors and the agreement between simulated and observed values. All 707 

statistical analyses and data visualizations were implemented in R (version 4.3.1). 708 
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3 Results & Discussion 709 

3.1 Evaluate the carbon-nutrient configurations 710 

3.1.1 Carbon cycle 711 

The CNP configuration accurately reproduced carbon pool sizes across ecosystem 712 

components. In contrast, the C-only and CN configurations tended to overestimate these 713 

pools (Fig. 4, Fig. 5a). In this P-limited site, the introduction of phosphorus limitations in 714 

CNP configurations progressively reduced carbon pool sizes compared to the C-only and 715 

CN configurations (Fig. 4a). This reduction reflects a fundamental assumption in carbon-716 

nutrient coupled models that nutrient availability constrains carbon sequestration (Wieder 717 

et al., 2015; Sun et al., 2017) through various physiological processes (Jiang et al., 2019). 718 

At the ecosystem level (Fig. 4b), the C-only and CN configurations substantially 719 

overestimated total carbon stocks by 73.7% and 57.5%, respectively. In contrast, the CNP 720 

configuration produced estimates that were much closer to the observed values, with only 721 

a slight overestimate of 1.9%. The partitioning between plant and soil pools (Fig. 4b) 722 

showed that this overestimation occurred in both compartments, with the CNP 723 

configuration providing the closest match to observations. 724 

 725 
Figure 4. Comparison of carbon pools among different nutrient coupling 726 

configurations. (a) Trajectories of ecosystem carbon pools during model spin-up for 727 

carbon-only (C-only), coupled carbon-nitrogen (CN), and coupled carbon-nitrogen-728 
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phosphorus (CNP) simulations. The ecosystem carbon pool comprises nine pools within 729 

the components of plant, litter, and soil organic matter. (b) Comparison of simulated and 730 

observed (OBS) carbon pools in plant biomass and soil organic matter. Plant carbon pools 731 

comprise leaf, wood, and root carbon (excluding reproductive organs due to data 732 

unavailability), and soil carbon pools include fast, slow, and passive soil organic carbon 733 

components. The error bar for observation represents the standard deviation of the sum of 734 

plant and soil pools. 735 

 736 

A more detailed examination of individual carbon pools (Fig. 5a) revealed that the 737 

overestimation was mainly contributed by wood and soil pools for C-only and CN 738 

configurations, which represent the major carbon stocks in the ecosystem. For plant 739 

components, wood carbon stocks were substantially overestimated by approximately 122.2% 740 

and 89.6% in the C-only and CN configurations, respectively. In contrast, the CNP 741 

configuration showed remarkable agreement with observations, with only a 5% deviation. 742 

Leaf carbon pools showed similar patterns of overestimation (C-only: 82.7%, CN: 59.1%, 743 

CNP: 3.6%). This improvement in leaf carbon estimation by CNP was further confirmed 744 

by better LAI prediction: the CNP configuration (3.94 m2 m-2) showed only 5% deviation 745 

from observations (3.75 ± 0.15 m2 m-2), while C-only and CN configurations overestimated 746 

by 85% and 61%, respectively.  747 

The observed reduction in LAI represents a decrease in photosynthetic capacity 748 

achieved through nutrient limitation of plant growth, which reduces the photosynthetic leaf 749 

area rather than directly affecting leaf-level photosynthetic physiological parameters. The 750 

relationships between leaf nitrogen and phosphorus concentrations and photosynthetic 751 

traits (e.g., Vcmax, Jmax) are well established (Walker et al., 2014; Ellsworth et al., 2022) and 752 

have been incorporated into some land surface models (e.g., JULES-CNP). However, these 753 

large-scale emergent relationships significantly overestimated photosynthetic parameters 754 

at our study site (Table S5). At the same time, our site-specific dataset was insufficient to 755 

derive robust empirical relationships between nutrient concentrations and photosynthetic 756 

capacity. Future studies with more comprehensive site-level measurements could enhance 757 

this aspect of the model to represent nutrient-carbon interactions better.  758 
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Additionally, the CNP configuration better captured observed carbon fluxes compared 759 

to the C-only and CN configurations (Table 5). Although the total plant carbon litterfall 760 

rate was moderately overestimated by 22.7%, this still reflects improved simulation of 761 

aboveground carbon dynamics and could be further refined by incorporating reproductive 762 

pool measurements in future studies. 763 

In contrast, root carbon pools showed an overestimation across all configurations, 764 

with CNP exhibiting the lowest bias (34.2%) and falling within one standard deviation of 765 

the observed values (Table S1), while the C-only and CN configurations showed larger 766 

deviations (68.8% and 65.1%, respectively). The relatively higher root carbon estimation 767 

in CNP may be attributed to its dynamic allocation strategy, which preferentially allocates 768 

carbon to roots under nutrient-limited conditions. While our model successfully 769 

reproduced the enhanced belowground carbon allocation under nutrient limitation, 770 

consistent with experimental evidence (Wu et al., 2025; Gill et al., 2016), the overestimated 771 

root carbon suggests additional constraints are needed. Indeed, the nutrient-dependent 772 

allocation scheme remains a significant source of uncertainty in terrestrial biosphere 773 

models (Zaehle et al., 2014; Jiang et al., 2024a). Although dynamic allocation schemes 774 

have been demonstrated to be significantly influenced by nutrient availability (Xia et al., 775 

2023), explicit nutrient controls on allocation remain underrepresented in many ecosystem 776 

models (De Kauwe et al., 2014; but see Knox et al., 2024). Our model presents a practical 777 

approach for representing the nutrient regulation of carbon allocation processes. These 778 

results highlight the necessity of improved observational constraints on root turnover and 779 

carbon allocation patterns for more accurate process-based simulations. 780 

  781 
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 782 
Figure 5. Comparison of simulated and observed ecosystem pools across different 783 

nutrient coupling configurations (C-only, CN, and CNP). (a) Carbon pools in vegetation 784 

components (leaf, wood, root) and soil, with values for leaf and root scaled by 101. (b) 785 

Nitrogen pools in vegetation components, soil (scaled by 10⁻2), and mineral nitrogen (Nmin). 786 

(c) Phosphorus pools in vegetation components, soil organic P (scaled by 10-2), labile P 787 

(Plab), and sorbed P (Ps). Error bars on observed data (OBS) indicate standard deviations. 788 

Numbers in parentheses indicate scaling factors applied to improve visualization. For 789 

example, the soil P value marked with 10-2 indicates that this value has been scaled down, 790 

and the actual value is 1.58/10-2 = 158 g P m-2. Shaded areas indicate inorganic nutrient 791 

pools. 792 

 793 

For soil carbon pools, while C-only and CN configurations showed significant 794 

overestimations of 59.1% and 52.1%, respectively, the CNP configuration demonstrated 795 

the closest agreement with observations, with a slight overestimation of 1.06%. Despite the 796 

considerable observational uncertainty in soil carbon stocks (Table S1), the substantial 797 

overestimation by C-only and CN configurations was clearly beyond the reasonable range. 798 

This distinct improvement in soil carbon estimation by CNP configuration suggests that 799 

proper representation of nutrient limitations is crucial for realistic soil carbon predictions 800 

(Cui et al., 2024; Wei et al., 2022; Achat et al., 2016). In conclusion, the CNP model 801 
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consistently shows better alignment with observed carbon pools, particularly in reducing 802 

the systematic overestimation seen in the C-only and CN models.  803 

 804 

Table 5. Observed and simulated carbon, nitrogen, and phosphorus fluxes with C-only, 805 

CN, and CNP configurations. The plant litterfall rate is the sum of the litterfall of leaves, 806 

woody, and reproductive parts. 807 

C, N and P fluxes C-only CN CNP Observation Unit 

C transfer from leaf to litter 0.43 0.38 0.25 0.26±0.06 kg C m-2 yr-1 
C transfer from plant to litter 0.98 0.86 0.54 0.44±0.04 kg C m-2 yr-1 
N transfer from plant to litter - 11.36 7.44 6.74±0.68 g N m-2 yr-1 
P transfer from plant to litter - - 0.24 0.79±0.24 g P m-2 yr-1 
Soil respiration 1.72 1.59 1.13  0.99±0.07 kg C m-2 yr-1 
Net N mineralization - 18 12.3 13.14±0.73 g N m-2 yr-1 
Net P mineralization - - 0.54 0.67±0.14a g P m-2 yr-1 

a Jiang et al. (2024b). 808 

3.1.2 N cycle 809 

For nitrogen cycling properties, the CNP configuration exhibited superior performance in 810 

simulating nutrient pools compared to CN configurations (Fig. 5b). Regarding plant 811 

nitrogen pools, the CN configuration demonstrated substantial overestimations for leaf 812 

(59.2%), woody tissue (89.9%), and root N (55.9%). In contrast, the CNP configuration 813 

showed markedly improved accuracy, with only slight overestimations of 3.3%, 5.0% for 814 

leaf and wood N, and 28.8% for root N. The patterns of plant organic N across model 815 

configuration simulations were consistent with the carbon simulation results in both CN 816 

and CNP configurations, reflecting the constraints of plant tissue stoichiometry on coupled 817 

C-nutrient dynamics (Knox et al., 2024; Wang et al., 2010). For soil N pools, the CNP 818 

simulation (16.74 g N m-2) fell within the range of observed values (18.6 ± 5.5 g N m-2), 819 

whereas the CN configuration substantially overestimated soil N (28.75 g N m-2). The 820 

slight underestimation of soil N in CNP relative to observations may be attributed to the 821 

flexible soil C:N ratios, as these ratios can vary within specific ranges due to complex 822 

microbial processes and dynamics of organic matter decomposition (Tian et al., 2010, 823 

2021). The introduction of P cycling into the model resulted in reduced carbon allocation 824 
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to both plant and soil pools, which consequently led to proportional reductions in organic 825 

N pools compared to the CN configuration, ultimately capturing the observed N pools more 826 

accurately. 827 

For soil mineral N content, the CN configuration underestimated soil mineral N 828 

content by 33.3% despite simulating higher net N mineralization rates (Table 5). This 829 

discrepancy likely reflects the absence of phosphorus constraints in the CN model. While 830 

the CN model simulated higher net N mineralization than the CNP model (Table 5), this 831 

enhanced nitrogen input was offset by excessive plant N uptake. This is consistent with the 832 

substantial overestimation of plant carbon pools in the CN configuration (Fig. 5a) and the 833 

correspondingly lower soil mineral N reserves (Fig. 5b). In contrast, the CNP configuration 834 

showed a moderate overestimation (15.9%) of soil mineral N content, demonstrating better 835 

agreement with observations compared to CN. The elevated soil mineral N levels in CNP 836 

could be attributed to the higher plant N litterfall rates (10.4% above observed rates, Table 837 

5), which compensated for the underestimated net N mineralization rates.  838 

The incorporation of P cycling constraints in the CNP configuration substantially 839 

improved the simulation of N pools and fluxes compared to the CN configuration, 840 

demonstrating the importance of considering N-P interactions in ecosystem modeling. This 841 

improvement reflects the fundamental interconnectedness of nitrogen and phosphorus 842 

cycles, where phosphorus availability directly regulates plant nitrogen demand and uptake 843 

efficiency, while nitrogen status influences phosphorus acquisition strategies (Elser et al., 844 

2007; Peñuelas et al., 2013). In our model, these interactions are primarily captured through 845 

the tight coupling between soil nutrient availability, plant stoichiometry, and plant growth 846 

processes, which prevents unrealistic carbon and nitrogen accumulation when phosphorus 847 

becomes limiting. Notably, our model has limitations in capturing the full complexity of 848 

N-P interactions, reflecting broader challenges in coupled CNP modeling (Achat et al., 849 

2016). For example, the absence of linkages between nitrogen fixation processes and 850 

phosphatase enzyme activity (Batterman et al., 2018), as well as the simplified 851 

representation of plant-microbe competition for nutrients and the lack of explicit 852 

mycorrhizal associations, suggest areas for future model refinement (Wu et al., 2023; 853 

Braghiere et al., 2021; Zhu et al., 2019).  854 
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3.1.3 P cycle 855 

The CNP model showed good overall performance in simulating phosphorus pools across 856 

ecosystem compartments (Fig. 5c). For plant components, the model accurately reproduced 857 

organic P pools, with slight overestimations of 5.0%, 2.8%, and 10.0% for leaf, wood, and 858 

root compartments, respectively. For the soil P, the CNP simulated a lower value (1.58 g 859 

P m⁻²) than observed, but within its range (1.8 ± 0.6).  Those organic P pools have the same 860 

pattern as organic N pools for CNP simulations, as C-N-P is coupled through stoichiometry. 861 

The simulated inorganic P content (0.8 g P m-2) fell within the observed range (0.48-862 

1.6 g P m-2). Additionally, the simulated net P mineralization rate (0.54 g P m-2 yr-1) was 863 

comparable to observations from tropical forests (0.67 ± 0.14 g P m-2 yr-1; Jiang et al., 864 

2024b). The model successfully reproduced the observed levels of various P pools overall; 865 

however, it significantly underestimated plant P litterfall rates by 69% (Table 5). This 866 

discrepancy suggests potential limitations in the model's representation of nutrient-related 867 

processes, such as plant nutrient resorption mechanisms. Nutrient resorption is a crucial 868 

physiological process through which plants adapt to varying N and P availability in 869 

ecosystems. In our model, we implemented a fixed resorption coefficient (Table 4), which 870 

may oversimplify the dynamic nature of nutrient resorption. Additionally, our model does 871 

not account for the reciprocal effects of nitrogen and phosphorus availability on nutrient 872 

resorption dynamics, where N availability influences P resorption efficiency and vice versa 873 

(See et al., 2015; Li et al., 2019). This simplified representation likely contributes to the 874 

contrasting patterns observed in plant nutrient litterfall rates, which overestimate N 875 

litterfall while underestimating P litterfall. Plants typically adjust their nutrient resorption 876 

efficiency in response to both internal nutrient status and external resource availability 877 

(Mao et al., 2015; Sasha et al., 2012; Aerts and Chapin, 2000; Aerts, 1996). The fixed 878 

resorption coefficients in the current model structure may not capture these adaptive 879 

responses, potentially leading to unrealistic nutrient cycling patterns, especially under 880 

varying environmental conditions. 881 

The CNP configuration successfully captured the steady-state P distributions across 882 

ecosystem pools despite some discrepancies in P cycling processes. Further refinements in 883 

P cycling processes, particularly in plant-soil P transfer mechanisms and plant internal P 884 
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recycling, would be valuable for improving model performance (Jiang et al., 2019; 2024a). 885 

However, these improvements are currently constrained by limited observational data, as 886 

data scarcity remains a significant challenge for C-nutrient coupled modeling (Achat et al., 887 

2016; Reed et al., 2015). Future research should prioritize comprehensive field 888 

measurements of P cycling processes, including plant P resorption efficiency, soil P 889 

transformation rates, and plant-soil P transfer dynamics. Such empirical data would not 890 

only help validate and improve model performance but also enhance our understanding of 891 

terrestrial P cycling and its interactions with C and N cycles in terrestrial ecosystems.  892 

3.2 Evaluate the model-data fusion module 893 

To evaluate the efficiency of the integrated data assimilation module, we compared the 894 

carbon fluxes from CNP simulations with default and optimized parameters (Figs. 6 and 895 

7). The optimization showed varied improvements across different carbon flux components. 896 

For gross primary productivity (GPP), both default and optimized simulations captured the 897 

seasonal patterns well, with only a minor improvement in RMSE from 10.94 to 10.69 and 898 

a slightly increased correlation coefficient from 0.53 to 0.57 after optimization (Fig. 6a, e).  899 

The photosynthetic capacity per unit area and photosynthetic surface area, indicated 900 

by Vcmax and SLA respectively, are key determinants of GPP. Both Vcmax and SLA were 901 

adjusted within their reference ranges during data assimilation (Fig. 8). Although these 902 

parameters showed compensatory effects in their adjustments, their combined effect still 903 

demonstrated a tendency to enhance GPP (Fig. 6a, e). Notably, the systematic 904 

underestimation of GPP, particularly during the growing season, suggests the need for 905 

improving current carbon cycle process representations. These improvements should 906 

include (1) the soil moisture control on stomatal conductance specific to evergreen 907 

broadleaf forests (Weng & Luo, 2008) and (2) the calculation of sunlit and shaded leaf 908 

proportions through more accurate clumping index parameterization in the two-leaf model 909 

(Wang et al., 2024; Bi et al., 2022; Yan et al., 2017). 910 
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 911 
Figure 6. Comparison of weekly observed and simulated carbon fluxes using default 912 

parameters and optimized parameters for the Tiantong site in 2021. (a-c) Time series 913 

of observed (black dots) and simulated values with default parameters (blue line) and 914 

optimized parameters (red line), where the optimized results are derived from 1000 915 

parameter sets randomly selected from 10,000 accepted parameter sets during the data 916 

assimilation process (shaded areas represent standard deviation). (d-f) Scatter plots of 917 

simulated versus observed values corresponding to the time series above, where the dashed 918 

line represents the 1:1 line. CC, correlation coefficient; RMSE, root mean square error. 919 



 

45 

 

 920 
Figure 7. Diurnal patterns of hourly net ecosystem exchange (NEE) across different 921 

months simulated by the CNP model configuration before (default) and after data 922 

assimilation (MCMC) compared with observations. Black lines represent observational 923 

data with shaded areas indicating ± 1 standard deviation (SD). Colored lines indicate model 924 

simulations with shaded areas showing their respective ± 1 SD. Root mean square errors 925 

(RMSE) between model outputs and observations are colored in blue for simulations with 926 

default parameters and in red for simulations with accepted parameters. 927 
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Ecosystem respiration (ER) showed more substantial improvement with data 928 

assimilation, with RMSE decreasing from 11.03 to 6.72 g C per m2 per week, particularly 929 

in reducing the high-frequency fluctuations present in the default simulation (Fig. 6b). This 930 

improvement in ER led to a notable improvement in NEE, where the RMSE decreased 931 

from 14.21 to 8.83 g C per m2 per week, and the correlation coefficient improved 932 

dramatically from -0.03 to 0.51. The significantly improved representation of carbon 933 

exchange dynamics with parameter optimization is further confirmed by the diurnal 934 

patterns across months (Fig. 7), with reduced RMSE in most months (7 out of 12). However, 935 

certain limitations persist, notably the underestimated NEE during midday hours in the 936 

growing season, primarily attributed to underestimated GPP, which requires further 937 

investigation. 938 

The enhancement in ER and NEE primarily resulted from the efficiently constrained 939 

key parameters (Table 6, Fig. 8) based on the validated state variables (Fig. 5). While the 940 

default parameters achieved reasonable state variables, the response of state variables to 941 

new meteorological forcing conditions required adjustment (Ma et al., 2021). For instance, 942 

the Q10 and soil carbon residence time (T6-T8) are well-constrained in our case. The 943 

temperature sensitivity parameter represents microbial responses to soil temperature, and 944 

carbon residence times serve as a proxy for microbial accessibility to carbon substrates, 945 

rather than just soil carbon properties, both of which are related to heterotrophic respiration. 946 

Through the optimization of these parameters, the CNP model effectively reduced the high-947 

frequency fluctuations present in the default simulation and better captured the observed 948 

temporal dynamics. 949 

Data assimilation substantially improved CNP model performance in carbon flux 950 

simulation, highlighting the potential for applying our developed model to other flux sites 951 

without tedious manual calibration procedures. Given that parameter optimization can 952 

potentially compensate for structural deficiencies in models (e.g., the equifinality issue; 953 

Luo et al., 2016, 2009; Sierra et al., 2015), it’s understandable that models with different 954 

nutrient coupling schemes can generate similar performance with optimized parameters 955 

(Fig. S1, Text S1). However, while parameter optimization can help the C-only model fit 956 

historical data, it may result in unrealistic parameter values (Fig. S2) and essentially “bakes 957 
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in” current nutrient conditions without representing the underlying processes, thereby 958 

compromising its predictive capacity for future scenarios. 959 

 960 
Figure 8. Posterior distributions of model parameters derived from Bayesian 961 

calibration. Grey shaded areas represent parameter posterior distributions, with red and 962 

blue vertical lines indicating posterior means and default values, respectively. The 963 

parameters (listed in Table 6) include Q10, SLA, Vcmax, and carbon residence time 964 

parameters (T1-T9). The corresponding numerical values are shown in matching colors. 965 

  966 
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Table 6. Target parameters, their ranges, mean values and maximum likelihood estimation 967 

(MLE) of the posterior distribution. Q10 represents temperature sensitivity; SLA, specific 968 

leaf area; and Vcmax, maximum carboxylation rate. T1–T9 indicate turnover times for 969 

individual pools.  970 

Parameters Lower Upper  Mean MLE 

Q10 1.00  3.00  1.29  1.26  
SLA 89.04  184.26  147.23  166.68  

Vcmax 23.29  29.11  24.52  24.42  
Carbon turnover rate 

T1 0.25  8.76  5.19  6.11  

T2 25.00  750.00  373.13  260.58  

T3 0.24  1.80  1.03  0.79  

T4 0.10  5.00  2.19  0.76  

T5 0.10  0.50  0.27  0.21  

T6 0.50  20.00  7.75  1.69  

T7 0.05  1.00  0.53  0.43  

T8 2.00  200.00  26.41  9.75  

T9 400.00  2000.00  1197.29  1090.48  
 971 

4 Conclusions 972 

In this study, we developed and evaluated a process-based CNP-coupled model for 973 

subtropical evergreen broadleaf forest. The CNP configuration demonstrated superior 974 

performance compared to C-only and CN models across most biogeochemical pools and 975 

fluxes, effectively addressing the overestimation issues prevalent in models with simplified 976 

biogeochemical processes. The incorporation of phosphorus cycling mechanisms proved 977 

crucial for capturing ecosystem dynamics in these phosphorus-limited systems, providing 978 

an essential foundation for predicting subtropical evergreen broadleaf forest responses to 979 

climate change. Beyond mechanistic improvements, site-scale models like TECO-CNP can 980 

fully leverage rich, localized datasets, including forest inventory records, experimental 981 

manipulations, and eddy covariance measurements, to constrain model parameters and 982 

processes. This integration is crucial because unobserved or weakly observed processes 983 

cannot be reliably constrained through data assimilation alone (Luo et al., 2011). TECO-984 
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CNP is designed to facilitate the fusion of such multi-process information, thereby enabling 985 

more mechanistic and robust representations of ecosystem C-N-P dynamics. Furthermore, 986 

we implemented and evaluated a model-data fusion framework using the MCMC algorithm, 987 

which significantly improved the simulation of carbon fluxes. The optimization of key 988 

parameters, including those that control photosynthetic capacity, temperature sensitivity, 989 

and carbon turnover rate, effectively reduced simulation uncertainties and enhanced model 990 

performance. The success of the data assimilation approach not only demonstrates its 991 

effectiveness in current model optimization but also provides a promising path for future 992 

model improvement and applications across diverse ecosystems. More importantly, 993 

integrating data assimilation frameworks with site-level biogeochemical models facilitates 994 

a synergistic loop between experimental findings and model development, enhancing our 995 

understanding of the nutrient cycle processes and our ability to make reliable predictions. 996 

This integrated approach provides a robust framework for improving ecosystem models 997 

and advancing our understanding of nutrient cycling in response to environmental changes. 998 
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