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Abstract  14 

Subtropical forests play a crucial role in global the global carbon cycle, yet their carbon 15 

sink capacity is significantly constrained by phosphorus availability. Models that omit 16 

phosphorus dynamics risk overestimating carbon sinks, potentially undermining the 17 

scientific basis for carbon neutrality strategies. In this study, we developed TECO-CNP 18 

Sv1.0, a coupled carbon-nitrogen-phosphorus model based on the Terrestrial ECOsystem 19 

(TECO) model, which explicitly capturing captures key biogeochemical interactions and 20 

nutrient-regulated carbon cycling. The model simulates how plant growth and carbon 21 

partitioning respond to both external soil nutrient availability and internal physiological 22 

constraints, enabling plant acclimation to varying nutrient conditions. Using observations 23 

from a phosphorus-limited subtropical forest in East China, we first evaluated model 24 

performance onthe model's performance in estimating state variables with empirically 25 

calibrated parameters. Compared to the C-only and coupled C-N configurations, the CNP 26 

model better reproduced more accurately reproduced the observed plant and soil C, N, and 27 

P poolspools of plant and soil C, N, and P. To systematically optimize model parameters 28 

and reduce uncertainties in predictions, we further incorporated a built-in data assimilation 29 

framework for parameter optimization. The CNP model with optimized parameters 30 

significantly improved carbon flux estimates, reducing root mean square errors and 31 

enhancing concordance correlation coefficients for gross primary productivity, ecosystem 32 

respiration, and net ecosystem exchange. By explicitly incorporating phosphorus dynamics 33 

and data assimilation, this study provides a more accurate and robust framework for 34 

predicting carbon sequestration in phosphorus-limited subtropical forests.  35 
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1 Introduction 36 

Accurately representing phosphorus (P) cycling in land surface models (LSMs) is crucial 37 

for projecting terrestrial carbon sink dynamics under climate change (Wieder et al., 2015). 38 

As an essential element, P availability regulates plant growth and ecosystem productivity 39 

(Walton et al., 2023; Vitousek et al., 2010). For instance, nutrient addition experiments in 40 

an old-growth Amazon rainforest demonstrated that net primary productivity increased 41 

exclusively with P addition (Cunha et al., 2022). Likewise, in subtropical mature forests, 42 

soil P availability was found to exert dominant control over plant functional traits at both 43 

species and community levels (Cui et al., 2022). Recent global syntheses have revealed a 44 

more widespread distribution of terrestrial P limitation than previously recognized (Hou et 45 

al., 2020; Du et al., 2020, ; Xia & Wan, 2008; Elser et al., 2007). More concerning is that 46 

P limitation is expected to intensify (Wang et al., 2023; Luo et al., 2022) due to factors 47 

such as N deposition-induced N:P stoichiometric imbalance (Peng et al., 2019; Lu and Tian, 48 

2017; Du et al., 2016; Peñuelas, 2013) and reduced P availability under elevated CO2 49 

concentration (Wang et al., 2023). Consequently, incorporating P limitation into LSMs has 50 

become a pressing challenge for improving carbon cycle projections (Fisher & Koven, 51 

2020; Achat et al., 2016; Reed et al., 2015). 52 

To address this challenge, several modeling groups have incorporated a prognostic P 53 

cycle into their existing frameworks over the past decade, including CASACNP (Carnegie-54 

Ames-Stanford Approach; Wang et al., 2010), JSBACH (Jena Scheme for Biosphere-55 

Atmosphere Coupling in Hamburg; Goll et al., 2012), CLM-CNP (Community Land 56 

Model; Yang et al., 2014), among others. These pioneering efforts in coupled carbon-57 

nitrogen-phosphorus (C-N-P) modeling have laid a solid foundation for increasing 58 

incorporation of P cycling in LSMs (e.g., Goll et al., 2017; Nakhavali et al., 2022) and 59 

demographic vegetation models (Knox et al., 2024), shedding light on how P limitation 60 

constrains ecosystem productivity under elevated atmospheric CO2 (Wang et al., 2024; 61 

Fleischer et al., 2019; Medley et al., 2016). However, current C-N-P models often yield 62 

"right answers for wrong reasons" (Jiang et al., 2024a), largely due to two key limitations: 63 

(1) calibration and validation data are predominantly derived from a narrow range of 64 

ecosystems, with most coupled C-N-P models relying on in-situ data from tropical regions, 65 
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particularly Hawaii and the Amazon (e.g., Nakhavali et al., 2023; Yang et al., 2014; Goll 66 

et al., 2012, 2017; Zhu et al., 2016), and (2) oversimplified representations of P cycling 67 

processes (Achat et al., 2016; Reed et al., 2015), such as the absence of physiological 68 

mechanisms governing vegetation P uptake (Jiang et al., 2019). Addressing these gaps 69 

require advancing requires advancing the coupled C-N-P model with improved 70 

mechanistic process-based representations and broader ecosystem applicability (Jiang et 71 

al., 2024a). 72 

Subtropical forest ecosystems are recognized as important carbon sinks in the global 73 

carbon cycle (Pan et al., 2024; Keenan et al., 2018; Yu et al., 2014). In particular, East 74 

Asian monsoon subtropical forests exhibit high carbon sink capacity, with an average net 75 

ecosystem productivity of about 400 g C m−2 yr−1 (Yu et al., 2014). These ecosystems are 76 

likely subject to substantial phosphorus limitation, as evidenced by a meta-analysis of 77 

nutrient addition experiments showing that forest productivity exhibits the strongest 78 

standardized response to P addition in the subtropical regions (25-40 latitude; Hou et al., 79 

2021). Moreover, intensive nitrogen deposition may further exacerbate P limitation (Zhu 80 

et al., 2016; Yu et al., 2014). Accurately projecting of the future carbon sink capacity of 81 

subtropical forests is essential for assessing their role in climate change mitigation 82 

(Friedlingstein et al., 2023; Requena Suarezcrucial for assessing their role in climate 83 

change mitigation (Friedlingstein et al., 2023; Requena-Suarez et al., 2019; Grassi et al., 84 

2017). However, substantial uncertainties remain in current model projections of 85 

subtropical carbon dynamics (Wei et al., 2024), highlighting the urgent need for improved 86 

carbon cycle predictions through better representation of coupled C-N-P interactions in 87 

these regions. 88 

In this study, we develop TECO-CNP Sv1.0, an advanced version of the Terrestrial 89 

ECOsystem (TECO) model (Weng & Luo, 2008, 2011), incorporating detailed mechanistic 90 

representations of coupled C-N-P cycling processes, such as dynamic plant growth 91 

response to soil available nutrient through modified growth rates and allocation patterns, 92 

and the combined physical and physiological controls on phosphorus uptake. Additionally, 93 

we integrated a data assimilation module based on a Bayesian probabilistic inversion 94 

approach (Xu et al., 2006; Ma et al., 2017; Shi et al., 2016, 2018; Zhou et al., 2020), 95 
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providing an efficient framework for model reparameterization and broader applications. 96 

Based on comprehensive observations from a P-limited subtropical evergreen broadleaf 97 

forest in eastern China, we further test two key hypotheses: (1) the CNP model can 98 

reproduce ecosystem state variables through traditional spin-up and manual parameter 99 

tuning, and (2) the built-in data assimilation system can substantially improve carbon flux 100 

predictions. 101 

2 Materials and Methods  102 

2.1 TECO developments 103 

The TECO-CNP model has evolved from its precursor model, the Terrestrial ECOsystem, 104 

the Terrestrial Ecosystem model (TECO, Weng & Luo, 2008). The TECO model is a 105 

process-based ecosystem model encompassing eight organic carbon pools and a plant non-106 

structural carbohydrate (NSC) pool (Weng & Luo, 2008). The representation of the NSC 107 

pool in TECO is advantageous for capturing the seasonal decoupling of growth and nutrient 108 

acquisition within plants (Zavisic & Polle, 2018; Jones et al., 2020) and for managing 109 

Ccarbon that is not utilized for plant growth under nutrient-limited conditions (Nakhavali 110 

et al., 2022; Haverd et al., 2018). The TECO model has been part of model intercomparison 111 

ensembles (Zaehle et al., 2014; De Kauwe et al., 2014) and has been applied across diverse 112 

ecosystem types, such as grassland (Weng & Luo, 2008; Zhou et al., 2021), temperate 113 

coniferous forests (Luo et al., 2003; Weng & Luo, 2011; Jiang et al., 2017) and deciduous 114 

broadleaf forests (Jiang et al., 2017) and northern peatland (Ma et al., 2017, 2022; Huang 115 

et al., 2017). 116 

Simplified N and P cycling were incorporated in the TECO successively (Shi et al., 117 

2016; Du et al., 2018; Du et al., 2021), where the structure of the carbon processes was 118 

expressed as a matrix form (Luo et al., 2003; Xu et al., 2006; Weng & Luo, 2011). Thus, 119 

the photosynthesis was simulated aided by an external model, ; for instance, Shi et al. (2016) 120 

utilized MAESTRA to generate the gross primary productivity. The processes related to 121 

the N and P cycle were only represented in a parsimonious way in the matrix versions. For 122 

example, the nutrient uptake process was simplified at a constant rate, and the interactions 123 
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of carbon, nitrogen, and phosphorus were treated implicitly (Shi et al., 2016; Du et al., 124 

2021). 125 

In this study, we developed TECO-CNP, a coupled C-N-P model based on the full 126 

version of TECO, which fundamentally differs from previous matrix-based approaches. 127 

This new model explicitly represents the mechanistic processes of nutrient cycling (Sect. 128 

2.2), with a focus on nutrient regulation of carbon cyclingthe regulation of carbon cycling 129 

by nutrients. Specifically, the model incorporates four key nutrient-carbon interactions: (1) 130 

growth rate limitations controlled by internal plant nutrient concentrations and nutrient 131 

supply-demand relationships; (2) allocation patterns dependent on nitrogen and 132 

phosphorus availability; (3) decomposition processes constrained by microbially-mediated 133 

nutrient availability; and (4) carbon costs associated with nutrient uptake and fixation. 134 

These process-based implementations, which aim to provide a more realistic representation 135 

of terrestrial biogeochemical cycles, are described in detail in the following sections. 136 

2.2 Model description 137 

We introduce a comprehensive biogeochemical N and P cycle into the full TECO, named 138 

TECO-CNP Sv1.0. Key processes of N and P cycling and their interactions with the carbon 139 

cycle have been represented using reliable mechanistic assumptions based on our 140 

experimental measurements or validated by state-of-the-art LSMs. In the following 141 

sections, we first document an overview of the carbon cycle and highlight the effects of 142 

nutrient limitation on the carbon cycle in Sect. 2.2.1. We then describe the shared and 143 

specific N and P cycling processes in Sects. 2.2.2 and 2.2.3, respectively.  144 

2.2.1 Nutrient-limited carbon cycle 145 

The carbon cycle in the new model builds upon the TECO model, incorporating processes 146 

such as photosynthesis, plant growth controlled by allocation and phenology, autotrophic 147 

and heterotrophic respiration, litter production, and carbon transfer (Fig. 1). See Luo et al., 148 

(2003) and Weng & Luo (2008) for detailed descriptions. These processes regulate the 149 

dynamics of plant, litter, and soil pools (Fig. 2). Nutrients directly or indirectly constrain 150 

them. For instance, plant growth rates and carbon allocation strategies are directly 151 

influenced by internal nutrient availability within pools and the availability of soil-152 
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accessible nitrogen and phosphorus. Additionally, resource limitations adhere to Liebig’s 153 

law of the minimum, where the nutrient-constrained process is hindered only by the most 154 

limiting resources (Rastetter, 2011).  155 

 156 

Figure 1. The schematic diagram of the biogeochemical processes of the carbon, 157 

nitrogen, and phosphorus cycles and associated interactions in TECO-CNP. 158 

Representation of carbon cycling processes controlled by nitrogen and phosphorus in 159 

TECO-CNP. Solid lines indicate carbon cycling processes (labelled 1-7) comprise (1) 160 

photosynthesis, (2) carbon allocation, (3) plant growth, (4) autotrophic respiration, (5) litter 161 

production, (6) carbon transfer, and (7) heterotrophic respiration. These processes are 162 

controlled directly by nitrogen and phosphorus (black control characters) or indirectly 163 

(colorless control characters). Dashed lines indicate the common processes controlling the 164 

dynamics of soil availablethat control the dynamics of soil-available nitrogen and 165 

phosphorus, simplified as plant uptake, mineralization, immobilization, biogeochemical 166 

mineralization, and external input and loss. Irregular pink shapes represent competition for 167 
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soil available nitrogen and phosphorus between plants and microorganisms. Min., 168 

mineralization; BMin., biochemical mineralization; Imm., Immobilization. 169 

 170 
Figure 2. Model structure of TECO-CNP. The model represents the nine organic carbon, 171 

nitrogen, and phosphorus stocks within the plant (denoted as Q1-4), litter (Q5-7), and soil 172 

(Q7-9). Fluxes among these organic pools are depicted by black arrows. Specific N and P 173 

fluxes are indicated by dark red arrows, with associated processes labeled accordingly. Min 174 

denotes mineralization, and Imm denotes immobilization. The circled numbers (1-7) 175 

correspond to the carbon cycling processes in Fig Fig. 1. 176 

 177 

  178 
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The canopy-level photosynthesis is simulated by a two-leaf model, which consists of 179 

a radiation sub-model and a coupled sub-model of stomata-photosynthesis-transpiration 180 

for using a two-leaf model, which consists of a radiation sub-model and a coupled sub-181 

model of stomata, photosynthesis, and transpiration for both sunlight and shaded leaves 182 

(Wang & Leuning, 1998). Leaf photosynthesis is estimated by the equations derived from 183 

the Farquhar model (Farquhar et al., 1980) and a stomatal conductance model (Ball et al., 184 

1987; Leuning et al., 1995). The photosynthesis of a single leaf is then upscale scaled up 185 

to the canopy level (Wang & Leuning, 1998). We hypothesize that plant photosynthesis is 186 

downregulated as photosynthetic surface area decreases when nutrient limits the plant 187 

growth. Plant growth is adjusted based on the nutrient limitation factor calculated at each 188 

time step, meaning that plants tend to reduce growth under low nutrient conditions to avoid 189 

nutrient deficiency within the organism (Veneklaas et al., 2012).  Accordingly, the nutrient-190 

constrained growth rate (𝐺𝑃!) is dependent on the potential growth rate (𝐺𝑃") and nutrient 191 

limitation scalar for plant growth (𝐿#$) as the following equation: 192 

𝐺𝑃𝑎,𝑖 = 𝐺𝑃𝑝,𝑖 ∗ 𝐿𝐺𝑃 , (1) 

where subscript i indicates leaf (i = 1), wood (i = 2), root (i = 3) or reproduction (i = 4) 193 

(Table 1). The difference between actual and potential plant growth is referred to as excess 194 

carbon, which implicitly represents the carbon lost from the NSC pool through various 195 

pathways to cope with nutrient limitations.  196 

The nutrient limitation scalar for plant growth incorporates both the nutrient status of 197 

plant tissues and soil nutrient supply (Fig. 1b). which can be expressed as: 198 

𝐿𝐺𝑃 = 𝐿𝑖𝑛,𝑙𝑒𝑎𝑓𝐿𝑠𝑝 , (2) 

where 𝐿%&,()!* and 𝐿+" represent the nutrient limitation factors derived from leaf nutrient 199 

concentration (Eqs. 3-5) and the nutrient demand-supply process (Eqs. 6-8), respectively. 200 

Shifts in leaf nutrient concentrations act as a potential limiting factor for plant growth, 201 

implying the mechanism by which changes in leaf nutrient concentration can impact 202 

photosynthesis (Ellsworth et al., 2022; Sterner & Elser, 2002). Description of limitation 203 

factors that account for plant tissue’s nutrient concentration can be given by: 204 
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𝐿𝑖𝑛,𝑖 = min$𝐿𝑖𝑛,𝑁,𝑖, 𝐿𝑖𝑛,𝑃,𝑖% ,  (3) 

𝐿𝑖𝑛,𝑁,𝑖 =
𝑅𝑁,𝑖

𝑅𝑁,𝑖+𝑘𝐶𝑁
 , (4) 

𝐿𝑖𝑛,𝑃,𝑖 =
𝑅𝑃,𝑖

𝑅𝑃,𝑖+𝑘𝐶𝑃
 , (5) 

where 𝑅,  and  𝑅$ represent the C:N ratios and C:P ratios, respectively. 𝑘-, and 𝑘-$ are 205 

empirical parameters. A study by Cui et al. (2020) reveals that the Tiantong site is identified 206 

as a P-limited ecosystem, as indicated by the leaf N:P thresholds from Koerselman and 207 

Meuleman (1996). Thus, we adopted the values of 𝑘-$ (0.0006 gPC gCP-1) in Wang et al., . 208 

(2010) to achieve a N limitation when N:P < 16 (gN gP-1) ), and otherwise , plant growth 209 

is limited by P. 𝑘-, (0.01 gN gC-1) is given based on the results of Linder & Rook (1984).  210 

Table 1. Variables for carbon cycling processes in TECO-CNP. 211 

Variables Description Unit 
GPp Potential plant growth rate without nutrient limitation gC m-2 h-1 

GPa Nutrient-limited plant growth rate gC m-2 h-1 

Da,x Actual decomposition rate of litter pool m or soil pool j, accounting for 
nutrient limitation, x = m, j gC m-2 h-1 

Dx Potential decomposition rate of litter pool m or soil pool j, controlled by soil 
temperature and moisture, x = m, j gC m-2 h-1 

NPPi Net primary productivity allocated to plant pool i gC m-2 h-1 

Fnew,C,i Newly input carbon from NSC pool for plant growth gC m-2 h-1 

bC,i Allocation fraction of carbon to plant pool i unitless 

ri,j Fraction of carbon from plant pool i to litter pools j unitless 

BMroot Plant root biomass g biomassC m-

2 
BMroot* Root biomass density g biomass m-3 

fnsc Plant labile carbon limiting factor unitless 

fW Soil moisture limiting factor unitless 

fT Soil temperature limiting factor unitless 

W Soil water availability index unitless 
κ Light availability factor unitless 

* i indicates leaf (i = 1), wood (i = 2), root (i = 3) or reproduction (i = 4), jj indicates metabolic litter (j 212 
= 5) or structure litter (j = 6), and mm indicates fast SOM (mm = 7), slow SOM (m =8) and passive 213 
SOM (m = 9).  214 
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The nutrient demand-supply limitation factor is calculated as a function of plant 215 

nutrient uptake and demand. When nutrient demand is not satisfied, the value of the 216 

limitation factor falls below one, thereby impacting plant growth. This assumption is in 217 

line with the field findings that reveal an increase in plant productivity underaligns with 218 

field findings that reveal an increase in plant productivity following nutrient addition 219 

(Cunha et al., 2022; Liang et al., 2021). Description of nutrient demand-supply limitation 220 

factor (𝐿+") can be given by:  221 

𝐿𝑠𝑝 = min$𝐿𝑠𝑝,𝑁, 𝐿𝑠𝑝,𝑃% , (6) 

𝐿𝑠𝑝,𝑁 =
1

1+exp	(−12∗
𝐹𝑢𝑝,𝑁
𝐹𝑑𝑚,𝑁	

./)
 , (7) 

𝐿𝑠𝑝,𝑃 =
1

1+exp	(−12∗
𝐹𝑢𝑝,𝑃
𝐹𝑑𝑚,𝑃	

./)
 , (8) 

where 𝐹1",, and 𝐹1",$ represent plant nutrient uptake for N and P, respectively, which is 222 

determined by both supply and demand (Eq. 23). 𝐹23,,  and 𝐹23,$  represent the plant 223 

required N and P to sustain a given NPP (Eq. 24). We implemented a logistic function to 224 

represent the phosphorus limitation factor, which provides a more mechanistically sound 225 

representation of nutrient limitation compared to the simple linear ratio. This formulation 226 

ensures a smooth transition between phosphorus-limited and phosphorus-sufficient 227 

conditions, with values bounded between zero and one. The coefficients were carefully 228 

selected to maintain appropriate sensitivity in the transition zone while avoiding unrealistic 229 

sharp thresholds. This sigmoidal response better reflects the gradual physiological 230 

adjustments of plants to varying nutrient availability and is consistent with a theoretical 231 

understanding of nutrient limitation effects more accurately reflects the gradual 232 

physiological adjustments of plants to varying nutrient availability. It is consistent with a 233 

theoretical understanding of the effects of nutrient limitation on plant growth. The method 234 

of determining whether plants are nutrient-limited based on the supply-demand method is 235 

widely employed in many models, for example, CASACNP (Wang et al., 2010), CLM-236 

CNP (Yang et al., 2014), and ORCHIDEE (revision 4520; Goll et al., 2017).  237 
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The carbohydrates available for plant growth will be redistributed among the plant 238 

pools based on their actual growth rates. A prescribed proportion of those allocated to 239 

reproductive processes (Sitch et al., 2003; Smith et al., 2001), such as flower formation, 240 

fruit development, and seed production, are is stored in the reproductive pool. Vegetation 241 

growth is assumed to take priority over reproduction (Zust et al., 2015; Tang et al., 2021). 242 

Thus, the plant’s reproductive allocation is zero when the leaf area index (LAI) is below 243 

the minimum threshold. When the LAI exceeds the minimum threshold, After allocating 244 

12% of the available and growth carbon is allocated to the reproduction pool. if the LAI is 245 

below the minimum threshold), Tthe remaining carbon is subsequently distributed among 246 

leaf, wood, and root pools based on a resource limitation allocation scheme as follows.  247 

The dynamic allocation for leaf, wood, and root is regulated by light availability, soil 248 

water supply, canopy phenological status (Luo et al., 1995; Denison & Loomis, 1989; 249 

Arora and Bore, 2005), and plant’s internal nutrient status (Fig. 1b). This allocation strategy 250 

permits a reduction in photosynthetic surface area and enhanced root growth under nutrient 251 

limitation, exemplifying a structural adjustment in line with the observations (Keith et al., 252 

1997; Thomas et al., 2015; Yan et al., 2016). The allocation fractions for leaf, wood, and 253 

root are given by: 254 

𝑏𝐶,𝑙𝑒𝑎𝑓 =
𝜀𝐿∗𝐿𝑖𝑛,𝑙𝑒𝑎𝑓

1+𝜔(2−κ−𝑊)
 ,  (9) 

𝑏𝐶,𝑤𝑜𝑜𝑑 =
𝜀𝑤∗𝐿𝑖𝑛,𝑤𝑜𝑜𝑑+	𝜔(1−κ)

1+𝜔(2−κ−𝑊)
 , (10) 

𝑏𝐶,𝑟𝑜𝑜𝑡 =
(1−𝜀𝐿∗𝐿𝑖𝑛,𝑙𝑒𝑎𝑓−𝜀𝑤∗𝐿𝑖𝑛,𝑤𝑜𝑜𝑑)+	𝜔(1−κ)

1+𝜔(2−κ−𝑊)
= 1 −	𝑏𝐶,𝑙𝑒𝑎𝑓 −	𝑏𝐶,𝑤𝑜𝑜𝑑 , (11) 

where 𝑏-,()!* , 𝑏-,5662  and  𝑏-,7668  represent the carbon fractions available for growth 255 

allocated to leaf, wood, and root, respectively. 𝑊 is the root zone soil water availability 256 

stress factor (Arora & Boer, 2005). The soil water availability is weighted by the existing 257 

fraction of roots in each soil layer (Weng & Luo et al., 2008; Arora & Boer, 2005).  𝜅 258 

represents the availability of light (Arora & Boer, 2005). Parameters 𝜀5 , 𝜀9 , and 𝜔 are 259 

calibrated based on the broadleaf evergreen PFT parameters given in Arora and Boer 260 

(2005). 𝐿%&,5662  and 𝐿%&,()!*  represent the limitation factor determined by the nutrient 261 
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status of tissues (Eqs. 3-5), designed to capture the reduction of Ccarbon allocated to leaf 262 

and wood as an adaptation to nutrient limitation (Binkley et al., 1995; Yan et al., 2016) and 263 

the negative correlation between fine root biomass and soil fertility (Fortier et al., 2019). 264 

Canopy phenology is represented by annual variation in LAI. The beginning of a 265 

growing season is determined by growing degree days. Leaf senescence results from low 266 

air temperature and soil moisture (Arora & Boer, 2005), reducingis triggered by low air 267 

temperatures and soil moisture (Arora & Boer, 2005), resulting in a reduction of LAI. The 268 

litter production rates of wood and root roots are prescribed. The phenological parameters 269 

are adjusted according to the vegetation characteristics in the studied evergreen forest 270 

(Table S1).  271 

Carbon transfer between litter pools and soil organic pools through microbial 272 

decomposition (Luo & Reynold, 1999; Weng & Luo, 2008). The decomposition of litter 273 

and soil organic matter (SOM) is diminished when the amount of available inorganic N 274 

and P restricts nutrient immobilization during decomposition: 275 

𝐷𝑎,𝑗 = 𝐷𝑗 ∗ 𝐿𝑑𝑒 , (12) 

𝐷𝑎,𝑚 = 𝐷𝑚 ∗ 𝐿𝑑𝑒 , (13) 

where j indicates metabolic litter (j = 5) or structure litter (j = 6), and m indicates fast SOM 276 

(m =7), slow SOM (m = 8) and passive SOM (m = 9). 𝐷!  is the nutrient-constrained 277 

decomposition rate, and 𝐷  is the default decomposition rate controlled by the soil 278 

temperature and moisture (Weng & Luo, 2008). 𝐿2) is the limiting factor of decomposition, 279 

and the calculation involves dividing the un-limited net mineralization rate by the size of 280 

the inorganic nutrient pool, which can be addressed in the following equations: 281 

𝐿𝑑𝑒,𝑁 = max /0, 1 + 𝐹𝑁,𝑛𝑒𝑡
′

𝑁𝑚𝑖𝑛
0 , (14) 

𝐿𝑑𝑒,𝑃 = max /0, 1 + 𝐹𝑃,𝑛𝑒𝑡
′

𝑃𝑙𝑎𝑏
0 , (15) 

𝐿𝑑𝑒 = min$𝐿𝑑𝑒,𝑁, 𝐿𝑑𝑒,𝑃% , (16) 
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where 𝐹,,&)8:  and 𝐹$,&)8:  represent the net mineralization rate for nitrogen and phosphorus, 282 

respectively, assuming no nutrient limitation on mineralization (Wang et al., 2010). 283 

2.2.2 Shared processes in the N and P cycle 284 

The shared processes of N and P cycling include plant uptake, resorption, allocation, 285 

transfer from plant to the soil through litterfall, and transfer between organic litter and soil 286 

pools via biological mineralization and N, P biological immobilization (Fig. 2). Underlying 287 

these processes, TECO-CNP incorporates two key N-P interaction mechanisms: P uptake 288 

regulated by a nutrient balance scalar and a cost-benefit approach-based regulation of 289 

phosphatase production. To avoid duplication, these the shared processes were described 290 

collectively.  291 

The organic N (𝑄, ) and P pools (𝑄$ ) are coupled with C pools through flexible 292 

stoichiometry within plant, litter, and soil pools. Inorganic nutrient components consist of 293 

one inorganic soil N pool (𝑁3%&) and four inorganic soil P pools, including labile P,   (𝑃(!;; 294 

), sorbed P (, 𝑃<; ), secondary P,  (𝑃<<; ), and occluded P,  (𝑃=). Labile P represents readily 295 

bioavailable inorganic phosphate for biotic uptake and soil leaching. Sorbed P is weakly 296 

bound to soil surfaces in dynamic equilibrium with labile P. Through petrochemical 297 

processes, sorbed P transforms into secondary mineral P, which eventually becomes 298 

occluded P with minimal bioavailability. The key variables of N and P cycling are listed in 299 

Tables 2 and 3, respectively, and the key parameters are presented in Table 4.. Key 300 

parameter values were derived from site-specific field observations of plant functional 301 

traits and biogeochemical properties, as well as from validated studies chosen based on 302 

careful consideration of the ecosystem characteristics of the study site (Tables S1-S3, Table 303 

4). 304 

The initial size of the organic nutrient pool is determined by the carbon pool sizes and 305 

the carbon to nutrient ratiossize of the carbon pool and the carbon-to-nutrient ratio. The 306 

dynamics of organic nitrogen and phosphorus transfer from donor to recipient pools within 307 

plants, litter, and soil are coupled with carbon cycling through flexible stoichiometry. The 308 

dynamic dynamics of plant nutrient pools can be expressed as: 309 
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𝑑

𝑑𝑡
𝑄𝜒,𝑖(𝑡) = 𝐹𝑛𝑒𝑤,𝜒,𝑖 − 𝑄𝐶,𝑖 ∗ 𝜏𝑖 ∗ 𝑅𝜒,𝑖

>? , (17) 

𝐹𝑛𝑒𝑤,𝜒,𝑖 =	𝐹𝑛𝑒𝑤,𝐶,𝑖 ∗ 𝑅𝜒,𝑖−1 + (𝑄𝐶,𝑖 ∗ 𝑅𝜒,𝑖,0
>? − 𝑄𝐶,𝑖 ∗ 𝑅𝜒,𝑖

>?) 	 (18) 

where subscript 𝜒 = N, P, 𝐹&)5,@,% represents the newly input nutrients from non-structural 310 

nutrient pool	to sustain plant growth (Table 2), 𝐹&)5,-,% is determined by the newly input 311 

carbon from the NSC pool to plant pool i and stoichiometric ratios (Eq. 25). 𝑅@,%,A and 𝑅@,% 312 

denote the initial and updated C:N (or C:P) ratios of plant pool i. 𝑄-,% and 𝜏% represent the 313 

carbon pool size and turnover rate of plant pool i. The dynamically constrained nutrient 314 

redistribution process in plants (Eq. 18) follows the principles of stoichiometric 315 

homeostasis theory (Sterner & Elser, 2002) and helps avoid excessive flexibility in 316 

stoichiometry during model simulations (Meyerholt & Zaehle, 2015; Goll et al., 2017). 317 

  318 
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Table 2. Common variables for N and P cycle modeling. 319 

Variable Description Unit 
Fup,χ Amount of nutrient uptake by plant roots g m-2 h-1 
Fres,χ Amount of nutrient resorption before tissue litterfall g m-2 h-1 
Fdm,χ Nutrient demand for plant growth g m-2 h-1 
Fsp,χ Soil nutrient supply g m-2 h-1 
ucroot,χ Root uptake capacity g m-2 h-1 
Fnew,χ,i Nutrient input for plant pool i g m-2 h-1 
Fχ,min,x Mineralization fluxes of litter or soil pools, x = m, j g m-2 h-1 
Fχ,imm,x Immobilization fluxes of litter or soil pools, x = m, j g m-2 h-1 
Fχ,min,total Total mineralization flux g m-2 h-1 
Fχ,imm,total Total immobilization flux g m-2 h-1 
Fχ,net Net mineralization flux g m-2 h-1 
Fχ,in Nutrient input to ecosystem g m-2 h-1 
Fχ,loss Nutrient loss from ecosystem g m-2 h-1 
Fχ,leach Nutrient loss through leaching g m-2 h-1 
Fχ,fert Nutrient fertilization rate g m-2 h-1 
Fχ,dep Nutrient atmospheric deposition rate g m-2 h-1 
FP2L,ij Nutrient flux from plant pool i to litter pool j g m-2 h-1 
Rχ,i Carbon: nutrient ratio of plant pool i g gC-1 
ck Unit conversion factor for root uptake capacity unitless 
Vrunoff Volume of drainage water mm s-1 
Dsoil Soil depth cm 
Tsoil Soil temperature ∘C 
fχ,leach Scalar for nutrient leaching unitless 
Θ Volumetric soil water content m3 m-3 
Lin,i Tissue nutrient concertation stress factor of plant pool i unitless 
Lsp Nutrient uptake stress factor unitless 
Lde Nutrient limitation factor for decomposition unitless 
LGP Nutrient limitation scalar for plant growth unitless 
fχ,ratio Nutrient concentration stress scalar affecting nutrient uptake unitless 

* χ indicates N or P. Subscripts i, m, and j referrefer to the values in Table 1.  320 
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Table 3. Specific variables in N and P cycle modeling. 321 

Variables Description Unit 
N cycling specific 
FN,fix N fixation rate gN m-2 h-1 
Cfix Carbon cost for biological N fixation gCN gCN m-2 h-1 
FN,gas N loss in gaseous form gN m-2 h-1 
P cycling specific 
K Permeability of the soil to P m2 h-1  

αroot Represents the fraction of the reduction in P concentration 
surrounding the roots relative to the initial concentration unitless 

Plab Soil labile P gP m-2 
Plab' Root surface soil labile P gP m-2 

∆Plab P concentrations in the soil solution at the root surface compared to 
the labile P in the surrounding soil outside the root's diffusive zone  gP m-2 

PS Sorbed P gP m-2 
PSS Secondary P gP m-2 
PO Occluded P gP m-2 
FPbiomin P biochemical mineralization rate gP m-2 h-1 
FPdiff Diffusion of P from the surroundings to the root surface gP m-2 h-1 
Fwea P weathering rate gP m-2 h-1 

 322 

323 
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Table 4. Parameters for nitrogen and phosphorus cycling in TECO-CNP. 324 
Short 
name Value Description Reference 

N cycling 

kcn 0.01  Empirical parameter for nitrogen concentration limitation (gN gC -1) Ref 1 
αN 0.20  Fraction of N relocated before littering (Unitless) Ref 2 

FN,dep 3.60  N deposition (gN m-2 yr-1) Ref 4 

vfix 1.67×10-3  Maximum N fixation ratio (gN gC-1 m-2 h-1) Ref 5 

vmax,N 5.40  Maximal root uptake capacity for N (μmol gC-1 h-1) Ref 6 

kN,1 2.00×10-3  Parameter to match the observed rate of increase in overall N uptake at 
high mineral N concentration (μmol l-1) Ref 6 

kN,2 98.00  For Michaelis-Menten constants, mineral N concentration at which 
uptake equals νmax/2 (μmol l-1) Ref 6 

P cycling 

vmax,P 1.39  Maximal root uptake capacity for P (μmol gC-1 h-1) Ref 6 

kP,1 0.01  Parameter to match the observed rate of increase in overall P uptake at 
high labile P concentration (μmol l-1) Ref 6 

kP,2 3.00  For Michaelis-Menten constants, labile P concentration at which uptake 
equals νmax/2 (μmol l-1) Ref 7 

Smax 133.00  Maximum amount of sorbed P (gP m-2) Ref 8 

Ks 64.00  An empirical parameter for describing the equilibrium between labile P 
and sorbed P (gP m-2) Ref 8 

νm 2.05×10-5  Rate constant of conversion from sorbed P to secondary P (gP m-2 h-1) Ref 1 

νdis 2.40×10-6  Rate constant of conversion from secondary P to sorbed P (gP m-2 h-1) Calibrated 

λup 25.00  N cost of plant root P uptake (gN gP -1) Ref 1 

λptase 15.00  N cost of phosphatase production (gN gP -1) Ref 1 

κm 150.00  Michaelis-Menten constant for biochemical P mineralization (gN gP -1) Ref 1 

νmax 0.02  Maximal specific rate of biochemical P mineralization (gP m-2 h-1) Ref 1 

kcp 0.0006  Empirical parameter for phosphorus concentration limitation (gNP gC -1) Ref 1 

αP 0.40  Fraction of P relocated before littering (Unitless) Ref 2 

Fwea 0.05  P weathering rate (gP m-2 yr-1) Ref 1 

FP,dep 0.06  Atmospheric P deposition rate (gP m-2 yr-1) Ref 4 

rd 3.10×105 Root specific density (g biomass m-3) Ref 9 

rr 2.90×10-4 Fine root radius (mm) Ref 6 

f1 1.58  Empirical parameters for calculation of the tortuosity factor (Unitless) Ref 10 

f2 -0.17  Empirical parameters for calculation of the tortuosity factor (Unitless) Ref 10 

K0 3.20×10-6 Diffusion coefficient of phosphate in free water at 25 ∘C (m2 h-1) Ref 11 

Θ1 0.12  relative water content (m3 m-3) Ref 6 

αP 0.40  Fraction of P relocated before littering (Unitless) Ref 2 

* For reference codes, see Table S4.  325 
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Nutrients newly acquired from root uptake (𝐹1",@) and tissue resorption (𝐹7)+,B) enter 326 

the labile nutrient pool, which buffers the nutrient dynamics and mitigates imbalances 327 

between supply and demand (Weng et al., 2017). Thus, the dynamics of plant labile nutrient 328 

pools are modeled as: 329 

𝑑

𝑑𝑡
𝑁𝑆𝜒(𝑡) = 𝐹𝑢𝑝,𝜒 + 𝐹𝑟𝑒𝑠,𝜒 − ∑ 𝐹𝑛𝑒𝑤,𝜒,𝑖𝑖   . (19) 

Since the reproduction pool is designed as a long-term pool supporting a series of 330 

reproductive events, from flower bud formation to fruiting, no resorption is prescribed in 331 

this pool. The relocation of nutrients from senesced plant tissues (𝐹7)+,@) is modeled as: 332 

𝐹𝑟𝑒𝑠,𝜒 = ∑ 𝛼𝜒 × 𝑄𝐶,𝑖 ∗ 𝜏𝑖 ∗ 𝑅𝜒,𝑖
>?

𝑖  (i ≠ reproduction) , (20) 

where 𝛼@ is the resorption rate and the second term represents the loss of carbon from plant 333 

pool i (Table 4). We assume that the different plant organs have the same and fixed 334 

resorption rate to simplify this process. Additionally, we prescribe a higher resorption rate 335 

for P at 0.4 compared to N at 0.2, considering the higher phosphorus use efficiency in the 336 

P-limit habitat (Xu et al., 2020).  337 

Litter nutrient dynamics is given by: 338 

𝑑

𝑑𝑡
𝑄𝜒,𝑗(𝑡) = 𝐹𝑃2𝐿,𝑖𝑗 − 𝑄𝐶,𝑗 ∗ 𝜏𝑗 ∗ 𝑅𝜒,𝑗

>? , (21) 

where 𝐹$C9,%D represent the nutrient flux from plant pool i to metabolic litter (j = 5) and 339 

structure litter (j = 6): 340 

𝐹𝑃2𝐿,𝑖𝑗 = ;
	$1 − 𝛼𝜒%𝑄𝐶,𝑖 ∗ 𝑅𝜒,𝑖

−1 ∗ 𝜏𝑖 ∗ 𝑟𝑖,𝑗	, 𝑖 = 1, 2, 3

	𝑄𝐶,𝑖 ∗ 𝑅𝜒,𝑖
−1 ∗ 𝜏𝑖 ∗ 𝑟𝑖,𝑗	, 𝑖 = 4

 , (22) 

where 𝑟%,D represents the fraction of plant carbon to different litter pools.  341 

The TECO-CNP model exclusively considers the active uptake of inorganic P through 342 

specialized transporters on the root surface (Schachtman et al., 1998), as inorganic P is the 343 

form most readily absorbed by plants (Bieleski, 1973). Plants possess specific transporters 344 

and mechanisms dedicated to transmembrane transport, ensuring they can acquire P even 345 

from soil solutions with low P concentrations, where the P concentration can be as low as 346 
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one-thousandth of the intracellular concentration (Schachtman et al., 1998). Therefore, we 347 

assume that plants absorb only inorganic P from the soil. Similarly, we also only consider 348 

the plant uptake of inorganic N. Soil labile nutrients taken up by plants is are generally 349 

contingent upon both nutrient demand for growth (Wang et al., 2010) and root uptake 350 

capacity (Grant et al., 1999, 2001; Goll et al., 2017) that are related to root morphology 351 

and soil nutrient concentrations. The nutrient demand-supply scheme has been widely 352 

employed in most coupled C-nutrient models (Achat et al., 2016). We assume plants will 353 

not consume nutrients beyond their luxury consumption demand for assimilating nutrients 354 

(Van Wijk et al., 2003; Chapin, 1980). Therefore, the  𝐹1",B is determined by either the 355 

nutrient demand (𝐹23,@ ) or the nutrients supplied by soil (𝐹+",@), whichever is lower: 356 

𝐹𝑢𝑝,𝜒 = ;
𝐹𝑑𝑚,𝜒											$𝐹𝑑𝑚,𝜒 < 𝑈𝐶𝑟𝑜𝑜𝑡,𝜒	%
𝐹𝑠𝑝,𝜒													$𝐹𝑑𝑚,𝜒 > 𝑈𝐶𝑟𝑜𝑜𝑡,𝜒%

 . (23) 

The 𝐹23,@ is determined by the invested Ccarbon for newly formatted tissues (𝑁𝑃𝑃%) and 357 

C:nutrient ratios. The actual demand is considered as the difference between the demand 358 

for growth and resorption capacity:  359 

𝐹𝑑𝑚,𝜒 = ∑
𝐹𝑛𝑒𝑤,𝐶,𝑖
𝑅𝜒,𝑖

𝑖 	− 𝐹𝑟𝑒𝑠,𝜒 , (24) 

𝐹𝑛𝑒𝑤,𝐶,𝑖 = 𝑁𝑃𝑃𝑎 ∗ 𝑏𝐶,𝑖:  , (25) 

where 𝑁𝑃𝑃! represents the net primary productivity derived from actual plant growth (Eq. 360 

1), 𝑏-,%:  denotes the 𝑏-,% (Eqs. 9-11) specifically influenced by the leaf phenology (Weng & 361 

Luo, 2008). 362 

The nutrients supplied from soil to plants from the soil depend not only on the amount 363 

of P in the soil but also on soil conditions and the root uptake capacity. We implemented 364 

the function of 𝐹+",@ as described by Goll et al. (2017), and it is calculated by the function 365 

of root biomass (𝐵𝑀7668), and root uptake capacity (𝑢𝑐7668,@), soil temperature scalar (𝑓	F) 366 

and the nutrient balance scalar  (𝑓@,7!8%6) as follows: 367 

𝐹𝑠𝑝,𝜒 = 𝐵𝑀𝑟𝑜𝑜𝑡 ∗ 𝑢𝑐𝑟𝑜𝑜𝑡,𝜒 ∗ 𝑓	𝑇 ∗ 𝑓𝜒,𝑟𝑎𝑡𝑖𝑜 . (26) 
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The linear index scalar 𝑓@,7!8%6 regulates the balance between C, N, and P by constraining 368 

nutrient uptake rates based on prescribed maximum ratios (Eqs. 27-28), thereby preventing 369 

resource overconsumption (Goll et al., 2017). Experiments have shown that N addition 370 

enhances the uptake of both N and P, suggesting a benefit for P uptake when more N is 371 

available (Zhu et al., 2021). Thus, we assume the dependence of P uptake on the plant P:N 372 

ratio is modeled as a function of the P:N ratio of the plant and that the dependence of P 373 

uptake on the plant P:N ratio is modeled as a function of the P:N ratio of both the plant and 374 

its leaves, thereby capturing the essential N-P interaction through stoichiometric regulation. 375 

This regulatory mechanism helps prevent excessive P uptake, which would constitute 376 

luxury consumption for the plant (Schachtman et al., 1998). Similarly, if nitrogen uptake 377 

exceeds the plant's requirements, it also constitutes luxury consumption. Therefore, to 378 

avoid luxury absorption and nutrient accumulation, the uptake of N (or P) by roots needs 379 

to be regulated based on the N:C (or P:N) ratios within plant tissues (Goll et al., 2017). The 380 

maximum uptake occurs when the leaf N:C (or P:N) ratio is equal to the minimum leaf N:C 381 

(or P:N) ratio, which is calculated using a minimum function: 382 

𝑓𝑃,𝑟𝑎𝑡𝑖𝑜 = min Bmax B 𝑝𝑛𝑝𝑙𝑎𝑛𝑡−𝑝𝑛𝑙𝑒𝑎𝑓,𝑚𝑎𝑥
𝑝𝑛𝑙𝑒𝑎𝑓,𝑚𝑖𝑛−𝑝𝑛𝑙𝑒𝑎𝑓,𝑚𝑎𝑥

, 0.0C , 1.0C , (27) 

𝑓𝑁,𝑟𝑎𝑡𝑖𝑜 = min Bmax B 𝑛𝑐𝑝𝑙𝑎𝑛𝑡−𝑛𝑐𝑙𝑒𝑎𝑓,𝑚𝑎𝑥
𝑛𝑐𝑙𝑒𝑎𝑓,𝑚𝑖𝑛−𝑛𝑐𝑙𝑒𝑎𝑓,𝑚𝑎𝑥

, 0.0C , 1.0C , (28) 

where 𝑝𝑛()!*,3!B  and 𝑝𝑛()!*,3%&  are prescribed maximum and minimum values of leaf 383 

P:N ratios, 𝑛𝑐()!*,3!B and 𝑛𝑐()!*,3%& are prescribed maximum and minimum values of leaf 384 

N:C ratios.  385 

The Rroot  nutrient-uptake capacity function for nutrients (𝑢𝑐7668,@) incorporates both 386 

linear and Michaelis-Menten components to accurately represent the uptake process, 387 

considering the low-affinity and high-affinity transporter systems operating in parallel for 388 

a given solute concentration (Goll et al., 2017). Notably, the root uptake capacity for soil 389 

labile P (𝑢7668,$ ) considers the replenishment of P from soil around the roots to root 390 

surfaces (Goll et al., 2017) rather than the total labile P in soil volume (Schachtman et al., 391 

1998; Johnson et al., 2003). Hence, the calculation of root uptake capacity for N and P can 392 

be expressed as follows: 393 
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𝑢𝑟𝑜𝑜𝑡,𝑃 = 𝑣𝑚𝑎𝑥,𝑃 ∗ 𝑃𝑙𝑎𝑏
′ B𝑘𝑃𝑚1

𝑐𝑘
+ 1

𝑃𝑙𝑎𝑏+𝑐𝑘𝑘𝑃𝑚2
C , (29) 

𝑢𝑟𝑜𝑜𝑡,𝑁 = 𝑣𝑚𝑎𝑥,𝑁 ∗ 𝑁𝑚𝑖𝑛 B
𝑘𝑁𝑚1
𝑐𝑘

+ 1

𝑁𝑚𝑖𝑛+𝑐𝑘𝑘𝑁𝑚2
C , (30) 

where 𝑣3!B,@ is the maximum uptake capacity (Table 4). 𝑁3%& and 𝑃(!; is the soil mineral 394 

N pool and labile P pool. 𝑃(!;:  represents the dissolved labile P concentration at the root 395 

surface and depends on the diffusion of soil labile P from the soil surrounding the roots to 396 

the root surface (Table 3; Eq. 5354). 𝑐G  is a unit conversion factor using the soil-type 397 

specific parameter for soil moisture content at saturation as an approximation of pore space 398 

following Smith et al. (2014). 𝑘@"# was chosen to match the observed rate of increase in 399 

overall P uptake at high dissolved labile P concentration (low-affinity transporter), and 400 

𝑘B"$
 is a parameter for Michaelis-Menten constants, dissolved phosphorus concentration 401 

at which uptake equals H"%&
C

. 402 

 403 

Mineralization and immobilization processes occur concurrentlysimultaneously. The 404 

nNutrient mineralization fluxes are estimated from the decomposition of litter and soil 405 

organic matterbased on the litter and soil organic matter decomposition, assuming that 406 

similar rates for C, N, and P mineralization mineralize at similar rates (Wang et al., 2010; 407 

Yang et al., 2014). The mineralization rate is determined by multiplying the litter and soil 408 

C pool turnover fluxes bywith the nutrient-to-carbon ratio. This can be mathematically 409 

represented by the following equations: 410 

𝐹𝜒,𝑚𝑖𝑛,𝑗 = 𝑄𝐶(𝑡)𝜏𝑗𝜉(𝑡)𝑅𝜒,𝑗
−1 , (31) 

𝐹𝜒,𝑚𝑖𝑛,𝑚 = 𝑄𝐶(𝑡)𝜏𝑚𝜉(𝑡)𝑅𝜒,𝑚
−1 , (32) 

where 𝑄-(𝑡)𝜏𝜉(𝑡) estimates the C decomposition rate under environmental stress for litter 411 

or soil pool. The total mineralization (𝐹@,3%&,868!() is estimated as the sum of mineralization 412 

rate for each pool, which can be expressed as follows:  413 

𝐹𝜒,𝑚𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐹𝜒,𝑚𝑖𝑛,𝑗𝑗 +∑ 𝐹𝜒,𝑚𝑖𝑛,𝑚𝑚  . (33) 
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Nutrients are immobilized during the decomposition process of litter and SOM, 414 

ultimately entering the SOM pools.  Consequently, only three SOM pools can be the 415 

receiving pools. The dependency of immobilization rates on the ratios of the receiving 416 

pools, under the assumption of approximately constant stoichiometry ratios of SOM pools 417 

(Tian et al., 2010; McGroddy et al., 2004), is described as:  418 

𝐹P,QRR,R =	∑ 𝑓STU,VR𝜉(𝑡)𝜏V𝑋V(𝑡)𝑅P,RWXVR + ∑ 𝑓UTU,RR𝜉(𝑡)𝜏R𝑋R(𝑡)𝑅P,RWXRR  , (34) 

where 𝑅@,3>?  represent the N:C ratio (𝜒 = 𝑁) or the P:C ratio (𝜒 = 𝑃)  of the existing SOM. 419 

The total amount of immobilization is then calculated as follows: 420 

𝐹𝜒,𝑖𝑚𝑚,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐹𝜒,𝑖𝑚𝑚,𝑚𝑚  . (35) 

Therefore, the net nutrient mineralization is calculated by the difference of total 421 

mineralization and total immobilization:  422 

𝐹𝜒,𝑛𝑒𝑡 = 𝐹𝜒,𝑚𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 − 𝐹𝜒,𝑖𝑚𝑚,𝑡𝑜𝑡𝑎𝑙 . (36) 

When net mineralization is negative, the decomposition rate is limited by nutrient 423 

availability, 𝐿,$. Since the N:C ratio of the soil pool is higher than that of the litter pool, 424 

microbes extract inorganic nitrogen from the soil mineral N pool, leading to negative net 425 

mineralization and a 𝐿,$. value less than one. A similar approach has been applied in the 426 

CASA-CNP model (Wang et al., 2007).  427 

Plants and microorganisms utilize dissolved inorganic N and P from the soil to fulfill 428 

their growth requirements (Vitousek et al., 2010). We assume microbial processes 429 

modulate nutrient availability for plants (Jiang et al., 2024b; Pellitier et al., 2023; Jonasson 430 

et al., 1999), i.e., the nutrient limitation on plant growth will be alleviated if the net 431 

mineralization is positive. Furthermore, the competition between plants and 432 

microorganisms for nutrients can be simplified by emphasizing the sequence of 433 

immobilization and plant uptake (Achat et al., 2016). In the TECO-CNP model, 434 

immobilization takes precedence in nutrient access through decomposing the 435 

decomposition of litter and soil organic matter. A similar method was used in many models, 436 

e.g., models of the CENTURY family (e.g., Parton et al., 1988); O-CN (Zaehle and Friend 437 

2010); ORCHIDEE (revision 4520; Goll et al., 2017). This also aligns with recent findings 438 
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regarding the competition between plants and microbes under elevated CO2. (Keane et al., 439 

2023). Specifically, in the acidic grassland, aboveground productivity and P uptake 440 

declined by 11% and 20%, respectively, while P immobilization into microbial biomass 441 

increased by 36%. 442 

 443 

2.2.3 Distinct processes in N and P cycle 444 

The dynamic of soil inorganic N (𝑁3%&) is described as: 445 

𝑑𝑡

𝑑
𝑁
𝑚𝑖𝑛

= 𝐹𝑓𝑖𝑥 + 𝐹𝑁,𝑓𝑒𝑟𝑡 + 𝐹𝑁,𝑑𝑒𝑝 − 𝐹𝑁,𝑙𝑒𝑎𝑐ℎ − 𝐹𝑁,gas , (37) 

where 𝐹*%B , 𝐹,,*)78  and 𝐹,,2)"  represent the biological N2-fixation, atmospheric N 446 

deposition, and biological N fixation (Tables 2, 3). 𝐹,,()!IJ  and 𝐹,,KLM  represent the N 447 

leaching and gaseous N loss. 448 

Biological nitrogen fixation, a dominant source of new nitrogen in terrestrial 449 

ecosystems (Chapin et al., 2011; Vitousek et al., 2013), is performed by N2-fixing 450 

symbionts in plant roots (i.e., symbiotic N2-fixation; Vitousek et al., 2002; Augusto et al., 451 

2013). This process enhances nitrogen availability when carbon is sufficient for additional 452 

nutrient acquisition (Fisher et al., 2010), which is given by: 453 

𝐹𝑓𝑖𝑥 = 𝑣𝑓𝑖𝑥 ∗ 𝑓𝑛𝑠𝑐 ∗ 𝑁𝑆𝐶 ∗ 𝑓𝑁 , (38) 

where 𝑣*%B = 0.00167 (gN gC-1 m-2 h-1) is the maximum N fixation rate. 𝑣*%B is chosen 454 

based on estimates ranging from 58 Tg N yr-1 (Vitousek et al., 2013) to 100 Tg N yr-1 455 

(Wiltshire et al., 2021) for a global NPP of 60 Pg C yr-1. The term 𝑓&+I ∗ 𝑁𝑆𝐶 represents 456 

the limitation of NSC on nitrogen fixation, implicitly capturing the carbon constraint on 457 

this process (Chou et al., 2018; Taylor et al., 2021).  To prevent unrealistic nitrogen fixation, 458 

a scaling function (𝑓, ) is applied, as nitrogen fixation is an energy-intensive process 459 

(Gutschick, 1981; Goll et al., 2017). The 𝑓, is calculated as: 460 

𝑓𝑁 = ;
𝑁𝑚𝑎𝑥−𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥
		𝑁𝑚𝑎𝑥 < 𝑁𝑚𝑖𝑛	

0													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																	
	 . 

(39) 
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The carbon cost for biological N fixation is calculated by a function of soil temperature 461 

(𝑇+6%() with the observed C cost range (Fisher et al., 2010):  462 

𝐶]Q^ = −6.25 ∗ XexpX−3.62 + 0.27 ∗ 𝑇_`Qa ∗ ]1 − 0.5 ^
b<=>?
Tc.Xc

_`a − 2a . 
(40) 

Nitrogen loss occurs in two pathways: gaseous loss (𝐹𝑁	N!+), and leaching (𝐹,,()!IJ). 463 

Losses from denitrification and volatilization are not distinguished separately. Both are 464 

proportional to the availability of soil mineral N (𝑁3%&). The expression of N leaching is: 465 

𝐹𝑁,𝑙𝑒𝑎𝑐ℎ = 	 𝑓𝑁,𝑙𝑒𝑎𝑐ℎ
𝑉𝑟𝑢𝑛𝑜𝑓𝑓
𝐷𝑠𝑜𝑖𝑙

𝑁𝑚𝑖𝑛 , (41) 

where 𝑓,,(6++ = 0.001 and 𝑓,,()!IJ = 0.5, 𝑉71&6** is the soil surface runoff and 𝐷+6%( is the 466 

soil depth. Moreover, the gaseous loss is dependent on the soil temperature and soil mineral 467 

N. The equation is: 468 

𝐹	𝑔𝑎𝑠 = 	 𝑓𝑁,𝑙𝑜𝑠𝑠𝑒
(𝑇𝑠𝑜𝑖𝑙−25)

10
)𝑁𝑚𝑖𝑛 . (42) 

The specific processes of the P cycle include biochemical mineralization, weathering, 469 

the dynamics of different inorganic soil P components, and the diffusion pathways of soil 470 

labile P. In addition to biological mineralization, organic P can be mineralized through 471 

direct cleavage by extracellular enzymes produced by plant roots and other organisms 472 

(McGill and Cole, 1981). This process decouples the P cycle from the C and N cycles, 473 

serving as an adaptive mechanism that can be enhanced under P-limited conditions 474 

(Lambers et al., 2006). This decoupling allows for phosphorus acquisition from organic 475 

matter without releasing carbon dioxide. We consider this process an N-consuming one, 476 

aiming to represent the chemical characteristic that phosphatases are N-rich enzymes and 477 

their production in plants can be N-limited (Treseder and Vitousek, 2001; Wassen et al., 478 

2013). The biochemical mineralization of P can be expressed by: 479 

𝐹𝑃	𝑏𝑖𝑜𝑚𝑖𝑛,𝑚 = 	
𝜐𝑚𝑎𝑥O𝜆𝑢𝑝−𝜆𝑝𝑡𝑎𝑠𝑒P
𝜆𝑢𝑝−𝜆𝑝𝑡𝑎𝑠𝑒+𝜅𝑚

∑ 𝐾𝑚𝑄𝑃,𝑚𝑚  , (43) 

where 𝜐3!B is maximal specific rate of biochemical P mineralization. 𝜆1" is N cost of plant 480 

root P uptake. 𝜆"8!+) is the N cost of phosphatase production, 𝜅3 is the Michaelis-Menten 481 
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constant for biochemical P mineralization. 𝐾3  and 𝑄$,3  represent turnover rate and 482 

phosphorus pool size of slow (m = 8) and passive pools (m = 9). Phosphatase production 483 

is activated when 𝜆1" > 𝜆"8!+), reflecting N regulation of P acquisition strategy by plants, 484 

similar to the cost-benefit approach established in existing coupled carbon-nutrient models 485 

(Wang et al., 2007; Houlton et al., 2008). This modeling approach aligns with findings that 486 

nitrogen addition significantly increases phosphatase activity (Schleuss et al., 2020; 487 

Marklein et al., 2012), potentially through enhanced phosphorus limitation and elevated 488 

plant nitrogen status, which favor investment in the phosphatase enzyme. While direct field 489 

quantification of biochemical mineralization rates is not yet possible, this mechanistic 490 

representation becomes particularly important for predicting ecosystem responses to 491 

elevated CO₂ and enhanced N deposition, where enhanced biochemical mineralization of 492 

soil organic P may facilitate additional plant growth (Jiang et al., 2024a). 493 

The soil P loss from soil organic P pools can be simulated by the following equations: 494 

𝐹𝑃,𝑜𝑢𝑡,𝑚(𝑡) = 𝑄𝐶,𝑚 ∗ 𝜏𝑚 ∗ 𝑅𝜒,𝑚
>? + 𝐹𝑃	𝑏𝑖𝑜𝑚𝑖𝑛,𝑚.	 (44) 

The term 𝐹𝑃	;%63%&,3  equals 0 when m =7 as organic P losses through biochemical 495 

mineralization only occur in two soil pools with slow turnover rates (slow and passive 496 

pools; Wang et al., 2010). 497 

 498 

The external phosphorus input (𝐹$,%&) is modeled as:  499 

𝐹𝑃,𝑖𝑛 = 𝐹𝑤𝑒𝑎 + 𝐹𝑃,𝑓𝑒𝑟𝑡 + 𝐹𝑃,𝑑𝑒𝑝 , (454) 

where 𝐹5)! , 𝐹$,*)78 , and 𝐹$,2)"  represent phosphorus input rates from weathering, 500 

fertilization, and deposition. Based on the soil texture at the Tiantong site (Song & Wang, 501 

1995), the weathering rate is set to 0.005 (gP m-2 year-1) (Wang et al., 2010). The deposition 502 

rate of phosphorus has been set to 0.06 (gP m-2 year-1) (Zhu et al., 2016).  503 

Labile phosphorus (Plab) can be directly utilized by plants or microorganisms and 504 

adsorbed onto soil particles, organic matter, and other minerals as adsorbed phosphorus (PS) 505 

(Vitousek et al., 2010). The assumption is made that the rapid equilibration of 𝑃(!; with 𝑃< 506 

occurs within a timestep of less than one hour (Olander and Vitousek, 2005). For the 1-507 



 

27 

 

hour time step used in our study, we therefore assume that 𝑃(!; and 𝑃< are in a state of 508 

equilibrium. The equilibrium assumption is applied extensively (e.g., Wang et al., 2007,; 509 

Yang et al., 2014). The relationship between them is described by a Langmuir isotherm 510 

(Barrow, 2008): 511 

PS=
SmaxPlab
Ks+Plab

 , (465) 

where 𝑆3!B  is the maximum amount of sorbed P in the soil, and 𝐾+  is the empirical 512 

constant representing the tendency of soil labile P to be sorbed. 𝑆3!B and 𝐾+ is set as 133 513 

and 64 (Wang et al., 2010), respectively, according to the soil sorption capacity and 514 

substrate age (Olander and Vitousek, 2005) at the Tiantong site. The differential form of 515 

Eq. 45 46 is: 516 

𝑑𝑃𝑆
𝑑𝑡
= 𝑆𝑚𝑎𝑥𝑃𝑙𝑎𝑏

(𝐾𝑠+𝑃𝑙𝑎𝑏)
2
𝑑𝑃𝑙𝑎𝑏
𝑑𝑡

 . (476) 

Assuming equilibrium between 𝑃(!; and 𝑃<, we can model the simultaneous changes in 517 

𝑃(!; and 𝑃< as follows: 518 

𝑑(𝑃𝑆+𝑃𝑙𝑎𝑏)
𝑑𝑡

= 𝐹𝑃,𝑛𝑒𝑡 + 𝐹
𝑃,𝑖𝑛

+ 𝐹𝑃,𝑏𝑖𝑜𝑚𝑖𝑛 − 𝐹𝑢𝑝,𝑃 − 𝐹𝑃,𝑙𝑒𝑎𝑐ℎ − 𝜈𝑚𝑃𝑆 , (487) 

𝐹𝑃,𝑛𝑒𝑡 = 𝐹𝑃,𝑚𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 − 𝐹𝑃,𝑖𝑚𝑚,𝑡𝑜𝑡𝑎𝑙 , (4948) 

where 𝐹$,&)8 is the net mineralization of litter and soil phosphorus pool, 𝐹$,;%63%& is the P 519 

flux from biochemical mineralization, 𝑈$   represents the plant uptake of P, 𝐹$,()!IJ 520 

represents the loss of labile P from leaching (Eq. 5253), and 𝜈3 is the rate constant for the 521 

transformation of sorbed P to secondary P. Based on Eq. 47 48 and Eq. 4849, the dynamics 522 

of labile phosphorus can be expressed as follows: 523 

pq?OP
pr

= e𝐹q,str + 𝐹q,Qs + 𝐹𝑃uQ`RQs − 𝐹vw,q − 𝐹q,a`__ − 𝜈R𝑃Uf
X

Xx QROST?OP
UV<WT?OPX

Y
 , (4950) 

The use of solution P would be theoretically more appropriate, as previous studies 524 

have shown that models operating at very fine temporal resolutions (hourly or finer) may 525 

require distinction between labile and solution phosphorus pools (Reed et al., 2015; Yang 526 

et al., 2013). However, implementing this simulation approach is currently not feasible due 527 
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to limited data availability. Some synthesis studies (Yang et al., 2013; Hou et al., 2018) 528 

have indicated that most experimental measurements report total labile P, without 529 

separating it into distinct fractions. Additionally, previous studies have demonstrated 530 

strong correlations between these fractions. For example, strip- and NaHCO3-extracted 531 

inorganic P are positively correlated and exhibit similar temporal patterns during 532 

experimental periods (Hou et al., 2019). Due to these reasons, we adopted labile P as our 533 

primary plant-available phosphorus pool in our model. 534 

Secondary mineral phosphorus (𝑃<<) can be dissolved and enter the labile P pool or 535 

encapsulated by iron oxides to form closed-P (𝑃6; Walker & Syers, 1976; Vitousek et al., 536 

2010). The dynamics of 𝑃++ and 𝑃6 can be modeled as: 537 

𝑑𝑃𝑆𝑆
𝑑𝑡

= 𝜈𝑚𝑃𝑆 − 𝜈𝑑𝑖𝑠𝑃𝑆𝑆 − 𝜈𝑜𝑃++ , (5051) 

𝑑𝑃𝑜
𝑑𝑡
= 𝜈𝑜𝑃++ − 𝜈7)𝑃𝑜 , (5152) 

where 𝜈2%+   and 𝜈6  is the rate constant for the conversion of secondary P to labile and 538 

sorbed P, and occluded P, respectively.  𝜈7) is the rate constant for occluded P re-entering 539 

the cycle as bioavailable phosphorus, indicating that occluded phosphorus can transition 540 

back into available forms (Huang et al., 2014; Schubert et al., 2020). In this study, we 541 

assume that the formation of occluded P pool and loss of occluded P can be considered 542 

negligible within the short timescale of simulations (Weihrauch & Opp, 2018). The P losses 543 

from organic matter only occur in two SOM pools with a slow turnover rate: slow and 544 

passive SOM pools (Wang et al. 2010). P leaching from the soil inorganic labile pool and 545 

is proportional to the availability of soil labile P. Description of P leaching below: 546 

𝐹𝑃,𝑙𝑒𝑎𝑐ℎ = 	 𝑓𝑝,𝑙𝑒𝑎𝑐ℎ
𝑉𝑟𝑢𝑛𝑜𝑓𝑓
𝐷𝑠𝑜𝑖𝑙

𝑃𝑙𝑎𝑏 , (5253) 

where 𝑉71&6**   is the value of runoff, 𝐷+6%(  is the soil depth. 𝑓",()!IJ  is an empirical 547 

parameter for P leaching, representing the fraction of soil mineral P for leaching. 548 

Notably, due to the low mobility of phosphorus in the soil (Vitousek et al., 2010), the 549 

actual P concentration that roots can absorb depends on the diffusion of P from the 550 

surrounding soil to the root surface (𝑃(!;: ). This is consistent with the experimental finding 551 
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that roots acquire most inorganic phosphorus primarily tfinding is consistent with the 552 

experimental evidence that roots primarily acquire most inorganic phosphorus through 553 

diffusion along concentration gradients (Laliberté et al., 2015). Thus, the root uptake 554 

capacity for soil labile P (𝑢7668,$) considers the replenishment of P from soil around the 555 

roots to root surfaces (Schachtman et al., 1998) rather than the total labile P in soil volume 556 

(Johnson et al., 2003).  Thus, the root surface P concentration is calculated by the following 557 

equation: 558 

𝑃𝑙𝑎𝑏
′ = 	 𝑎𝑟𝑜𝑜𝑡 ∗

𝑃𝑙𝑎𝑏
𝛩

 , (5354) 

where 𝛩	is the volumetric soil water content and  𝑎7668  representing the fraction of the 559 

reduction in P concentration surrounding the roots relative to the initial concentration. 560 

𝑎7668 is updated after plant uptake as: 561 

d𝑎𝑟𝑜𝑜𝑡
d𝑡

=
𝐹𝑃𝑑𝑖𝑓𝑓−𝐹𝑢𝑝,𝑃

𝑃𝑙𝑎𝑏
 , (5455) 

where 𝐹𝑃2%**	is the diffusion of P from the surroundings to the root surface, which is the 562 

function of the permeability of the soil to P (Κ) and the difference in the P concentrations 563 

between the soil solution at the root surface and the labile P in the surrounding soil volume 564 

outside the diffusive zone around the root (∆𝑃(!;) 565 

𝐹𝑃𝑑𝑖𝑓𝑓 = −𝐾 ∗ ∆𝑃𝑙𝑎𝑏 . (5556) 

∆𝑃(!; can be described as:  566 

∆𝑃a{u = (𝑎|``r − 1)
q?OP
}

 . (5657) 

The K has been calculated analogously to the diffusion coefficient of phosphorus in soils 567 

following Barraclough and Tinker (1981), which accounts for the increased path length in 568 

soil using a tortuosity factor (𝑓8), and it is a broken-line function of the volumetric soil 569 

water content (𝛩). The K and 𝑓8 can be calculated based on the following equations:  570 

𝐾 = 𝐾~𝑐}𝛩𝑡𝑓
X

|Z>[[
 , (5758) 
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𝑓𝑡 = X
𝑓1𝛩 + 𝑓2								𝑓𝑜𝑟	𝛩 ≥ 𝛩1
𝛩O𝑓1𝛩+𝑓2P

𝛩1
					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (5859) 

where 𝛩?is soil water content at which the two functions intersect according to Barraclough 571 

and Tinker (1981), 𝑓? and 𝑓C are empirical parameters (Barraclough and Tinker, 1981), 𝐷A 572 

is diffusion coefficient in free water, 𝑐U is a unit conversion factor, 𝑟2%**	is diffusion path, 573 

which can be calculated from the function of root length density (𝑅𝐿𝐷, Bonan et al., 2014): 574 

𝑟𝑑𝑖𝑓𝑓 = min(0.1, (𝜋𝑅𝐿𝐷)0.5) . (5960) 

We assume that the diffusion path can be approximated as half the average distance 575 

between roots. We limit the diffusion path length to 0.1 m because the influence of active 576 

P uptake by roots on soil P concentrations is negligible beyond a distance of 10 cm (Li et 577 

al., 1991). 𝑅𝐿𝐷 is given by:  578 

𝑅𝐿𝐷 = �\==]∗

|Z�|\Y
 , (6061) 

where 𝑟2 is the root-specific density and 𝜋𝑟7C is the cross-sectional area calculated from the 579 

fine root radius, 𝑟7, and 𝐵7668∗  is the root biomass density per unit soil volume. 580 

2.3 Model validation 581 

2.3.1 Study site 582 

The tension between high carbon sink capacity and nutrient limitations in subtropical 583 

forests warrants detailed investigation to understand the role of nutrients in carbon cycling 584 

processes in these regions. To this end, we selected a mature subtropical evergreen 585 

broadleaf forest in eastern China, located at the Zhejiang Tiantong Forest Ecosystem 586 

National Observation and Research Station (Tiantong, 29°48ʹ N, 121°47ʹ E, Fig. 3) for the 587 

newly model developmentdeveloped model. The Tiantong forest has been preserved free 588 

from human disturbance since the mid-twentieth century. The average reported annual 589 

temperature of Tiantong is 17°C, and annual temperature in Tiantong is 17°C, and the 590 

annual precipitation is 1600 mm (Cui et al., 2022). The soil type is mainly mountainous 591 

yellow-red soil, with the parent material primarily composed of Mesozoic sedimentary 592 
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rocks, acidic igneous rocks, and residual weathering products of granite (Song & Wang, 593 

1995).  594 

Research at this site identified the dominant role of soil phosphorus in driving 595 

variations in plant functional traits (Cui et al., 2022), suggestingconducted at this site 596 

revealed the dominant role of soil phosphorus in driving variations in plant functional traits 597 

(Cui et al., 2022), indicating phosphorus deficiency in this mature forest. Consequently, 598 

this phosphorus-limited mature subtropical forest with abundant field observations, mature 599 

subtropical forest, with abundant field observations, can contribute to the development of 600 

carbon-nutrient coupling models and further explore phosphorus-limited carbon cycling 601 

processes within the ecosystem through the integration of modeling and experiments.  602 

 603 
Figure 3. Schematic diagram of the observation system at Tiantong subtropical 604 

evergreen forest (29°5' N, 121°5' E). The system comprises: (1) a forest dynamic plot for 605 

monitoring ecosystem state variables, including stoichiometric ratios, plant traits, and C, 606 

N, P pools and fluxes. These measurements were conducted in a 5-ha subplot of the whole 607 

plot. The asterisk (*) indicates manual periodic measuredmanually measured periodic 608 

fluxes. And (2) an eddy covariance (EC) flux tower providing half-hourly NEE 609 

measurements, from which GPP and ER were derived. These observations were used for 610 

TECO-CNP model parameterization and evaluationparameterizing and evaluating the 611 



 

32 

 

TECO-CNP model. Detailed measurement protocols are described in Methodsthe Methods 612 

section, and specific variable applications are listed in Tables S1-S3. The site topography 613 

and elevation data were obtained from Google Maps and renderedThe 3D terrain 614 

visualization of the study site created using Blender (v4.2.1) with topographic data from 615 

Google Maps. 616 

 617 

2.3.2 Data for model evaluationData collection and site parameterization 618 

The data used for model calibration and validation were primarily derived from our field 619 

measurements and literature focusing on the same site (Fig. 3, Tables S1-S3). The forcing 620 

data for TECO are Forcing data, collected at 1-hour intervals from site-levelfield-based 621 

meteorological observations at the study site, include precipitation (mm), relative humidity 622 

(%), air and soil temperatures (˚C), vapor pressure deficit (Pa), wind speed (m s-1), and 623 

photosynthetically active radiation (μmol m-2 s-1). Forcing data from 2001 were was used 624 

for model spin-up. 625 

Site-specific parameters that can be empirically measured are derived from field 626 

observations at the study site, including both our measurements and values reported in 627 

previous studies. Plant traits, including specific leaf area (SLA, cm2 g-1), leaf area index 628 

(LAI, m2 m-2), plant height (H, m), maximum rate of carboxylation (Vcmax, µmol m-2 s-1), 629 

and maximum rate of electron transport (Jmax, µmol m-2 s-1) and leaf P concentration (Leaf 630 

P, g m-2), were measured at the species level in the forest dynamic plot, and scale up to 631 

community-level traits using the community-weight mean method (for detailed sampling 632 

methods, refer to Cui et al., 2022). Plant stoichiometry ratios were derived from area-based 633 

C, N, and P concentrations from both our measurements and previous studies at Tiantong 634 

(Zhou et al., 2020). N and P resorption efficiencies were determined forbased on dominant 635 

species (i.e., Schima superba, Lithocarpus glaber) at the Tiantong site (Xu et al., 2020).  636 

The observed data used for model parameterization are presented in Tables S1-S3. External 637 

inputs of N and P, including deposition and weathering, were assumed to occur at constant 638 

rates. Deposition rates for N and P were prescribed based on the observed range (Zhu et 639 

al., 2016), while the P weathering rate followed the specific weathering rate for Utisol soils 640 

(Wang et al., 2010). 641 
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Parameters not readily accessible through field measurements are estimated using 642 

commonstandard procedures that have been extensively validated in other modeling 643 

studies, with appropriate selection based on the characteristics of Tiantong. For example, 644 

Tiantong forest soils are classified as Ultisols (Song & Wang, 1995), which directly 645 

informed our selection of phosphorus weathering rates and inorganic P dynamics 646 

parameters (e.g., Ks and Smax, Table 4). Similarly, the subtropical evergreen broadleaf 647 

forest vegetation type guided our parameterization of phosphorus mineralization (Wang et 648 

al., 2010) and allocation processes (Arora & Boer, 2005). External inputs of N and P, 649 

including deposition and weathering, were assumed to occur at constant rates. Deposition 650 

rates for N and P were prescribed based on the observed range (Zhu et al., 2016). Specific 651 

parameterization settings are described in Table 4, along with the accompanying process 652 

descriptions. 653 

The observed pool sizes and fluxes primarily serve as a basis for model evaluation and 654 

as references for model initialization. Soil inorganic pools of mineral N and labile P were 655 

determined from 0-10 cm soil samples collected in 2023 from a nearby forest stand of 656 

similar age (~200 yr) dominated by the same species (Schima superba and Castanopsis 657 

fargesii) as the Tiantong forest dynamic plot. Labile P is the soil inorganic phosphorus 658 

fraction that can be extracted by resin and NaHCO3. Sampling employed a five-point 659 

design with three replicates per point.Model parameters were primarily derived from site 660 

observations, supplemented with literature values when site-specific data were unavailable 661 

(Tables 4, S1-S3). Plant traits, including specific leaf area (SLA, cm2 g-1), leaf area index 662 

(LAI, m2 m-2), plant height (H, m), maximum rate of carboxylation (Vcmax, µmol m-2 s-1), 663 

and maximum rate of electron transport (Jmax, µmol m-2 s-1), were measured at the species 664 

level and scale up to community-level traits using the community-weight mean method. N 665 

and P resorption efficiencies were determined for dominant species (i.e., Schima superba, 666 

Lithocarpus glaber) at the Tiantong site. External inputs of N and P, including deposition 667 

and weathering, were assumed to occur at constant rates. Deposition rates for N and P were 668 

prescribed based on the observed range (Zhu et al., 2016), while the P weathering rate 669 

followed the specific weathering rate for Utisol soils (Wang et al., 2010). 670 
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Second, for model validation, we primarily used measured values of plant and soil C: 671 

N: P pools, along with carbon flux data from the site's eddy covariance tower (Fig. 3). 672 

Organic plant and soil pool (kg m-2) measured at the site encompass C, N and P content 673 

across leaf, wood, root, reproductive organs (fruit and flower), and soil. Additionally, 674 

secondary P and occluded P refer to the measured moderately labile inorganic phosphorus 675 

(extracted by NaOH) and moderately stable inorganic phosphorus (extracted by HCl), 676 

respectively, at the Tiantong site (Wang, 2022). 677 

Soil C, N, and P were measured using systematic sampling across 185 grid points (each 678 

20 × 20 m) within the permanent Tiantong forest dynamic plot (Fig. 3). At each grid point, 679 

soil samples were collected at three depth intervals (0-20, 20-40, 40-60 cm) in 2017 using 680 

a 5 cm diameter auger, with three replicates per depthSoil C, N, and P pools were measured 681 

to a depth of 60 cm, which aligned with the soil profile depth specified in the model 682 

configuration. Soil inorganic pool (g m-2) includes measurements of soil mineral N and 683 

labile P. Additionally Litterfall rates (kg m-2 yr-1) for C, N, and P from leaf, wood, and fruit 684 

and flower pools are also available. Soil respiration (kg m⁻² yr⁻¹) and mineralization rates 685 

for N and P (g m⁻² d⁻¹), secondary P (g m-2), and occluded P (g m-2) sourced from the 686 

literature. observed plant pools and fluxes, including fluxes from plant to litter and soil 687 

respiration, used for model evaluation and their sources are listed in Tables S1-S3. We 688 

obtained qQuality-controlled hourly eddy covariance measurements of gross primary 689 

productivity (GPP, g C m⁻² h⁻¹), ecosystem respiration (ER, g C m⁻² h⁻¹), and net ecosystem 690 

exchange (NEE, g C m⁻² h⁻¹) were obtained from the on-site flux tower for the year 2021.  691 

All model configurations used identical site-specific parameter sets obtained according 692 

to the methods described above. Although a previous study has highlighted the necessity 693 

for model-specific reparameterization (Wang et al., 2022), we adopted a consistent 694 

parameterization approach across all configurations. This follows common practice in land 695 

surface model development studies, where uniform parameterization is essential for 696 

isolating the effects of different nutrient coupling schemes. 697 

2.3.3 Data assimilation 698 

We specifically optimized the carbon-related parameters for CNP configuration only,s by 699 

utilizing GPP, ER, and NEE data in 2021 at the study site, in order the CNP configuration 700 
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only, utilizing GPP, ER, and NEE data from 2021 at the study site, to evaluate the 701 

effectiveness of the CNP structure coupled with a data assimilation algorithm. Based on 702 

the initial carbon pool sizes from the spin-up process, a preliminary sensitivity analysis 703 

was first conducted to support the selection of target parameters for data assimilation. We 704 

focused on parameters that determine carbon input and retention (Table 6), including SLA, 705 

Vcmax, and temperature sensitivity (Q10), which showed high sensitivity in the analysis 706 

(Table S6). Additionally, our parameter selection strategy included all carbon pool turnover 707 

parameters (T1-T9), as these govern carbon residence times and are crucial for matching 708 

observed pool dynamics, regardless of their sensitivity indices. we focus on the parameters 709 

that determine the carbon input and retention (Table 6), including SLA, Vcmax, temperature 710 

sensitivity (Q10), and turnover rate (T1-T9). The prior range of parameters was prescribed 711 

according to the situ measurement or assumed as the range of the distribution to be 712 

[𝜃A 3⁄ , 3𝜃A], where 𝜃A  is the default value. Using the Bayesian probabilistic inversion 713 

approach, we estimated the posterior distribution of model parameters based on prior 714 

knowledge of the parameters.  715 

Bayesian probabilistic inversion approach is based on Bayes’ theorem: 716 

𝑝(𝜃|𝑍) ∝ w�𝑍�𝜃�×w(�)
w(�)

 , (61) 

where 𝑝(𝜃|𝑍) is the posterior distribution of the parameters 𝜃 given the observations 𝑍. 717 

Here, we assume that the prior knowledge of parameter distribution 𝑝(𝜃) is uniformly 718 

distributed. 𝑝(𝑍|𝜃)  is the likelihood function for a parameter set calculated with the 719 

assumption that each parameter is independent from all other parameters and has a normal 720 

distribution with a zero mean: 721 

𝑝(𝑍|𝜃) ∝ exp	{−∑ [�>(r)W�(r)]Y

T�Y(r)r∈�> 	} , (62) 

where 𝑍%(𝑡)  is the observations of carbon fluxes at time t, 𝑋(𝑡)  is the simulated 722 

corresponding variable, and 𝜎(𝑡) is the standard deviation of the observation set. 723 

Posterior probability distributions of parameters were obtained using a Metropolis-724 

Hastings (M-H) algorithm (MCMC)the parameters were obtained using a Metropolis-725 

Hastings (M-H) algorithm within the Markov Chain Monte Carlo (MCMC) framework. 726 

The posterior parameter distribution represents our updated knowledge about parameter 727 
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values after incorporating observational data through Bayesian inference, quantifying both 728 

the most likely parameter estimates and their associated uncertainties. The detailed 729 

description of the M-H algorithm can be found in Xu et al. (2006). In brief, the M-H 730 

algorithm consists of iterations of that alternate between a proposing step and a moving 731 

step. In the proposing step, a new parameter set 𝜃&)5is proposed based on the previously 732 

accepted parameter set 𝜃6(2 and a proposal distribution (𝑟 × (𝜃3!B − 𝜃3%&)/𝐷): 733 

𝜃𝑛𝑒𝑤 	 = 	 𝜃𝑜𝑙𝑑 + 𝑟 × (𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛)/𝐷 , (63) 

where 𝜃3!B  and 𝜃3%&  corresponding to the upon upper and lower values of prescribed 734 

ranges, r is a random variable between -0.5 and 0.5, and D is used to control the proposed 735 

step size and was set to 5 (Xu et al., 2006). The new set of parameter values would be 736 

accepted when "O𝜃
&)5W𝑍P

"X𝜃6(2Y𝑍Z  is equal or greater than a uniform random number from 0 to 1 737 

(Xu et al., 2006). 738 

We get 10,000 accepted samples from the MCMC chain. The first 5000 accepted 739 

samples were discarded, considering the burn-in period. We randomly selected 1,000 740 

parameter sets from the accepted space to run the simulations in 2021. The mean and 741 

maximum likelihood estimations are calculated to compare the parameters. 742 

2.3.4 Model performance evaluation 743 

The state variables estimations from three nutrient coupling configurations of TECO-CNP: 744 

(1) carbon-only (C-only), (2) carbon-nitrogen coupled (CN), and (3) carbon-nitrogen-745 

phosphorus coupled (CNP) are evaluated against observations. Model initialization 746 

involved a spin-up process using 2001 meteorological forcing data until reaching a quasi-747 

equilibrium state, which is defined as inter-annual variations a quasi-equilibrium state was 748 

reached, defined as inter-annual variations of less than 0.05 gC m-2 yr-1 in the slowest pools. 749 

Following initialization, we conducted transient simulations from 2002 to 2021 using the 750 

tuned parameter set. To evaluate model performance, we compared pool sizes from 751 

different nutrient coupling configurations (C-only, CN, and CNP) in 2021 with observed 752 

data (Tables S1-S3), assuming our mature forest study site was at a quasi-steady state 753 

where inter-annualthat our mature forest study site was at a quasi-steady state, where 754 
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interannual changes in major pool sizes were negligible. The configuration that produced 755 

pool sizes closest to observations was selected to determine the initial state for subsequent 756 

simulations. Model performance was further evaluated by comparing simulated carbon 757 

fluxes in 2021 against observational data using both manually tuned and optimized 758 

parameters. The model evaluation metrics for carbon fluxes included the Root Mean 759 

Square Error (RMSE) and concordance correlation coefficient (CC), which quantify the 760 

absolute errors and the agreement between simulated and observed values. All statistical 761 

analyses and data visualizations were implemented in R (version 4.3.1). 762 

3 Results & Discussion 763 

3.1 Evaluate the carbon-nutrient configurations 764 

3.1.1 Carbon cycle 765 

The CNP configuration accurately reproduced carbon pool sizes across ecosystem 766 

components, while. In contrast, the C-only and CN configurations tended to overestimate 767 

these pools (Fig. 4, Fig. 5a). In this P-limited site, the introduction of phosphorus 768 

limitations in CNP configurations progressively reduced carbon pool sizes compared to the 769 

C-only and CN configuration configurations (Fig. 4a). This reduction reflects a 770 

fundamental assumption in carbon-nutrient coupled models that nutrient availability 771 

constrains carbon sequestration (Wieder et al., 2015; Sun et al., 2017) through various 772 

physiological processes (Jiang et al., 2019). At the ecosystem level (Fig. 4b), the C-only 773 

and CN configurations substantially overestimated total carbon stocks by 73.7% and 57.5%, 774 

respectively, while the CNP configuration produced estimates much closer to observed 775 

values. In contrast, the CNP configuration produced estimates that were much closer to the 776 

observed values, with only a slight overestimate of 1.9%. The partitioning between plant 777 

and soil pools (Fig. 4b) showed that this overestimation occurred in both compartments, 778 

with the CNP configuration providing the closest match to observations. 779 
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 780 
Figure 4. Comparison of carbon pools among different nutrient coupling 781 

configurations. (a) Trajectories of ecosystem carbon pools during model spin-up for 782 

carbon-only (C-only), coupled carbon-nitrogen (CN), and coupled carbon-nitrogen-783 

phosphorus (CNP) simulations. The ecosystem carbon pool consists of nine pools within 784 

plant, litter, and soil organic matter componentscomprises nine pools within the 785 

components of plant, litter, and soil organic matter. (b) Comparison of simulated and 786 

observed (OBS) carbon pools in plant biomass and soil organic matter. Plant carbon pools 787 

comprise leaf, wood, and root carbon (excluding reproductive organs due to data 788 

unavailability), and soil carbon pools include fast, slow, and passive soil organic carbon 789 

components. Error The error bar for observation represent represents the standard deviation 790 

of the sum of plant and soil pools. 791 

 792 

A more detailed examination of individual carbon pools (Fig. 5a) revealed that the 793 

overestimation was mainly contributed by wood and soil pools for C-only and CN 794 

configurations, which represent the major carbon stocks in the ecosystem. For plant 795 

components, wood carbon stocks were substantially overestimated by approximately 122.2% 796 

and 89.6% in C-only and CN configurations, whilethe C-only and CN configurations, 797 

respectively. In contrast, the CNP configuration showed remarkable agreement with 798 

observations, with only a 5% deviation. Leaf carbon pools showed similar patterns of 799 

overestimation (C-only: 82.7%, CN: 59.1%, CNP: 3.6%). This improvement in leaf carbon 800 
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estimation by CNP was further confirmed by its closer meanbetter LAI prediction: the CNP 801 

configuration (3.94 m2 m-2) showed only 5% deviation from observations (3.75 ± 0.15 m2 802 

m-2), while C-only and CN configurations overestimated by 85% and 61%, respectively.  803 

The observed reduction in LAI represents a decrease in photosynthetic capacity 804 

achieved through nutrient limitation of plant growth, which reduces the photosynthetic leaf 805 

area rather than directly affecting leaf-level photosynthetic physiological parameters. The 806 

relationships between leaf nitrogen and phosphorus concentrations and photosynthetic 807 

traits (e.g., Vcmax, Jmax) are well established (Walker et al., 2014; Ellsworth et al., 2022) and 808 

have been incorporated into some land surface models (e.g., JULES-CNP). However, these 809 

large-scale emergent relationships significantly overestimated photosynthetic parameters 810 

at our study site (Table S5), while. At the same time, our site-specific dataset was 811 

insufficient to derive robust empirical relationships between nutrient concentrations and 812 

photosynthetic capacity. Future studies with more comprehensive site-level measurements 813 

could improve this aspect of the model to better represent nutrient-carbon 814 

interactionsenhance this aspect of the model to represent nutrient-carbon interactions better.  815 

Additionally, the CNP configuration better captured observed carbon fluxes compared 816 

to the C-only and CN configurations  and leaf litterfall rate with observations compared to 817 

C and CN configurations (Table 5). Although the total plant carbon litterfall rate was 818 

moderately overestimated by 22.7%, this still reflects improved simulation of aboveground 819 

carbon dynamics and could be further refinedSimilarly, the superior performance of CNP 820 

in simulating the aboveground carbon pool was also reflected in the total plant C litterfall 821 

rate (Table 5), although a moderate overestimation (22.7%) was observed, which could be 822 

improved by incorporating reproductive pool measurements in future studies. 823 

In contrast, root carbon pools showed overestimation across all configurations, with 824 

CNP showing the lowest bias (34.2%) and falling within one standard deviation of 825 

observed values (Table S1), while an overestimation across all configurations, with CNP 826 

exhibiting the lowest bias (34.2%) and falling within one standard deviation of the 827 

observed values (Table S1), while the C-only and CN configurations showed larger 828 

deviations (68.8% and 65.1%, respectively). The relatively higher root carbon estimation 829 

in CNP may be attributed to its dynamic allocation strategy, which preferentially allocates 830 
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carbon to roots under nutrient-limited conditions. While our model successfully 831 

reproduced the enhanced belowground carbon allocation under nutrient limitation, 832 

consistent with experimental evidence (Wu et al., 2025; Gill et al., 2016), the overestimated 833 

root carbon suggests additional constraints are needed. Indeed, the nutrient-dependent 834 

allocation scheme remains a major significant source of uncertainty in terrestrial biosphere 835 

models (Zaehle et al., 2014; Jiang et al., 2024a)., Although dynamic allocation schemes 836 

have been demonstrated to be significantly influenced by nutrient availability (Xia et al., 837 

2023), explicit nutrient controls on allocation remain underrepresented in many ecosystem 838 

models (De Kauwe et al., 2014; but see Knox et al., 2024). Our model presents an effectivea 839 

practical approach for representing nutrient regulation of carbon allocation processes, with 840 

thesethe nutrient regulation of carbon allocation processes. These results highlighting the 841 

necessity of improved observational constraints on root turnover and carbon allocation 842 

patterns for more accurate process-based simulations. 843 

  844 
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 845 
Figure 5. Comparison of simulated and observed ecosystem pools across different 846 

nutrient coupling configurations (C-only, CN, and CNP). (a) Carbon pools in vegetation 847 

components (leaf, wood, root) and soil, with values for leaf and root scaled by 10¹. (b) 848 

Nitrogen pools in vegetation components, soil (scaled by 10⁻²), and mineral nitrogen (Nmin). 849 

(c) Phosphorus pools in vegetation components, soil organic P (scaled by 10⁻²), labile P 850 

(Plab), and sorbed P (Ps). Error bars on observed data (OBS) indicate standard deviations. 851 

Numbers in parentheses indicate scaling factors applied to improve visualization. For 852 

example, the soil P value marked with 10-2 indicates that this value has been scaled down, 853 

and the actual value is 1.58/10-2 = 158 g P m-2. Shaded areas indicate inorganic nutrient 854 

pools. 855 

For soil carbon pools, while C and CN configurations showed significant 856 

overestimations of 59.1% and 52.1%, respectively, the CNP configuration demonstrated 857 

the closest agreement with observations, with a slight overestimation of 1.06%. Despite the 858 

large considerable observational uncertainty in soil carbon stocks (Table S1), the 859 

substantial overestimation by C-only and CN configurations was clearly beyond the 860 

reasonable range. This distinct improvement in soil carbon estimation by CNP 861 

configuration suggests that proper representation of nutrient limitations is crucial for 862 

realistic soil carbon predictions (Cui et al., 2024; Wei et al., 2022; Achat et al., 2016). In 863 

conclusion, the CNP model consistently shows better alignment with observed carbon 864 
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pools, particularly in reducing the systematic overestimation seen in the C-only and CN 865 

models.  866 

Table 5. Observed and simulated carbon, nitrogen and phosphorus fluxes with C, CN, and 867 

phosphorus fluxes with C-only, CN, and CNP configurations. The plant litterfall rate is the 868 

sum of the litterfall of leaf, woof and reproductive poolleaves, woody, and reproductive 869 

parts, and the N and P litterfall rate exclude the resorption part. 870 

  C, N and P fluxes 

C, N and P fluxes C-only CN CNP ObservationOBS Unit 

C transfer from leaf to litter 0.43 0.38 0.25 0.26±0.06 kg C m-2 yr-1 
C transfer from plant to litter 0.98 0.86 0.54 0.44±0.04 kg C m-2 yr-1 
N transfer from plant to litter - 11.36 7.44 6.74±0.68 g N m-2 yr-1 
P transfer from plant to litter - - 0.24 0.79±0.24 g P m-2 yr-1 
Soil respiration 1.72 1.59 1.13  0.99±0.07 kg C m-2 yr-1 
N netNet N mineralization - 18 12.3 13.14±0.73 g N m-2 yr-1 
Net P mineralization - - 0.54 0.67±0.14a g P m-2 yr-1 

a Jiang et al., ( 2024b). 871 

3.1.2 N cycle 872 

For nitrogen cycling properties, the CNP configuration exhibited superior performance in 873 

simulating nutrient pools compared to CN configurations (Fig. 5b). Regarding plant 874 

nitrogen pools, the CN configuration demonstrated substantial overestimations for leaf 875 

(59.2%), woody tissue (89.9%), and root N (55.9%). In contrast, the CNP configuration 876 

showed markedly improved accuracy, with only slight overestimations of 3.3%, 5.0% for 877 

leaf and wood N, and 28.8% for root N. The patterns of plant organic N across model 878 

configuration simulations were consistent with the carbon simulation results in both CN 879 

and CNP configurations, reflecting the constraints of plant tissue stoichiometry on coupled 880 

C-nutrient dynamics (Knox et al., 2024; Wang et al., 2010). For soil N pools, the CNP 881 

simulation (16.74 g N m⁻²) fell within the range of observed values (18.6 ± 5.5 g N m⁻²), 882 

whereas the CN configuration substantially overestimated soil N (28.75 g N m⁻²). The 883 

slight underestimation of soil N in CNP relative to observations may be attributed to the 884 

flexible soil C:N ratios, as these ratios can vary within certain specific ranges due to 885 

complex microbial processes and organic matter decomposition dynamics dynamics of 886 

organic matter decomposition (Tian et al., 2010, 2021). The introduction of P cycling into 887 
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the model resulted in reduced carbon allocation to both plant and soil pools, which 888 

consequently led to proportional reductions in organic N pools compared to the CN 889 

configuration, ultimately better capturing the observed N poolscapturing the observed N 890 

pools more accurately. 891 

For soil mineral N content, the CN configuration underestimated soil mineral N 892 

content by 33.3% despite simulating higher net N mineralization rates (Table 5). This 893 

discrepancy likely reflects the absence of phosphorus constraints in the CN model. While 894 

the CN model simulated higher net N mineralization than the CNP model (Table 5), this 895 

enhanced nitrogen input was offset by excessive plant N uptake. This is consistent with the 896 

substantial overestimation of plant carbon pools in the CN configuration (Fig. 5a) and the 897 

correspondingly lower soil mineral N reserves (Fig. 5b)This depletion of soil mineral N 898 

pool likely resulted from excessive plant N uptake, which was consistent with the 899 

substantial overestimation of plant carbon pools in CN configuration (Fig. 5a). In contrast, 900 

the CNP configuration showed a moderate overestimation (15.9%) of soil mineral N 901 

content, demonstrating better agreement with observations compared to CN. The elevated 902 

soil mineral N levels in CNP could be attributed to the higher plant N litterfall rates (10.4% 903 

above observations, Table 5), even excluding relocated N fluxes, which compensated for 904 

itsobserved rates, Table 5), which compensated for the underestimated net N mineralization 905 

rates.  906 

The incorporation of P cycling constraints in the CNP configuration substantially 907 

improved the simulation of N pools and fluxes compared to the CN configuration, 908 

demonstrating the importance of considering P-NN-P interactions in ecosystem modeling. 909 

This improvement reflects the fundamental interconnectedness of nitrogen and phosphorus 910 

cycles, where phosphorus availability directly regulates plant nitrogen demand and uptake 911 

efficiency, while nitrogen status influences phosphorus acquisition strategies (Elser et al., 912 

2007; Peñuelas et al., 2013). In our model, these interactions are primarily captured through 913 

the tight coupling between soil nutrient availability, plant stoichiometry, and plant growth 914 

processes, which prevents unrealistic carbon and nitrogen accumulation when phosphorus 915 

becomes limiting. Notably, our model has limitations in capturing the full complexity of 916 

N-P interactions, reflecting broader challenges in coupled CNP modeling (Achat et al., 917 
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2016). For example, the absence of linkages between nitrogen fixation processes and 918 

phosphatase enzyme activity (Batterman et al., 2018), as well as the simplified plant-919 

microbe competition for nutrients and the absencerepresentation of plant-microbe 920 

competition for nutrients and the lack of explicit mycorrhizal associations (Zhu et al., 921 

2019)some discrepancies in N transformation processes, particularly in soil mineral N 922 

dynamics and plant nutrient uptake mechanism, suggest areas for future model refinement.  923 

3.1.3 P cycle 924 

The CNP model showed good overall performance in simulating phosphorus pools across 925 

ecosystem compartments (Fig. 5c). For plant components, the model accurately reproduced 926 

organic P pools, with slight overestimations of 5.0%, 2.8%, and 10.0% for leaf, wood, and 927 

root compartments, respectively. For the soil P, the CNP simulated a lower value (1.58 g 928 

P m⁻²) than observed, but within its range (1.8 ± 0.6).  Those organic P pools have the same 929 

pattern as organic N pools for CNP simulations, as C-N-P is coupled through stoichiometry. 930 

The simulated inorganic P content (0.8 g P m⁻²) fell within the observed range (0.48-931 

1.6 g P m⁻²). Additionally, the simulated net P mineralization rate (0.54 g P m⁻² yr⁻¹) was 932 

comparable to observations from tropical forests (0.67 ± 0.14 g P m⁻² yr⁻¹; Jiang et al., 933 

2024b). The model successfully reproduced the observed levels of various P pools overall; 934 

however, it significantly underestimated plant P litterfall rates by 69% after accounting for 935 

resorption (Table 5). This discrepancy suggests potential limitations in the model's 936 

representation of nutrient-related processes, for instance, insuch as plant nutrient resorption 937 

mechanisms. Nutrient resorption is a crucial physiological process through which plants 938 

adapt to varying N and P availability in ecosystems. In our model, we implemented a fixed 939 

resorption coefficient (Table 4), which may oversimplify the dynamic nature of nutrient 940 

resorption. Additionally, our model does not account for the reciprocal effects of nitrogen 941 

and phosphorus availability on nutrient resorption dynamics, where N availability 942 

influences P resorption efficiency and vice versa (See et al., 2015; Li et al., 2019). This 943 

simplified representation likely contributes to the contrasting patterns observed in plant 944 

nutrient litterfall rates, which overestimate N litterfall while underestimating P litterfall. 945 

Plants typically adjust their nutrient resorption efficiency in response to both internal 946 

nutrient status and external resource availability (Mao et al., 2015; Sasha et al., 2012; Aerts 947 
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and Chapin, 2000; Aerts, 1996). The fixed resorption coefficients in the current model 948 

structure may not capture these adaptive responses, potentially leading to unrealistic 949 

nutrient cycling patterns, especially under varying environmental conditions. 950 

The CNP configuration successfully captured the steady-state P distributions across 951 

ecosystem pools despite some discrepancies in P cycling processes. Further refinements in 952 

P cycling processes, particularly in plant-soil P transfer mechanisms and plant internal P 953 

recycling, would be valuable for improving model performance (Jiang et al., 2019; 2024a). 954 

However, these improvements are currently constrained by limited observational data, as 955 

data scarcity remains a major significant challenge for C-nutrient coupled modeling (Achat 956 

et al., 2016; Reed et al., 2015). Future research should prioritize comprehensive field 957 

measurements of P cycling processes, including plant P resorption efficiency, soil P 958 

transformation rates, and plant-soil P transfer dynamics. Such empirical data would not 959 

only help validate and improve model performance but also enhance our understanding of 960 

terrestrial P cycling and its interactions with C and N cycles in terrestrial ecosystems.  961 

3.2 Evaluate the model-data fusion module 962 

To evaluate the efficiency of the integrated data assimilation module, we compared the 963 

carbon fluxes from CNP simulations with default and optimized parameters (Figs. 6,   and 964 

7). The optimization showed varied improvements across different carbon flux components. 965 

For gross primary productivity (GPP), both default and optimized simulations captured the 966 

seasonal patterns well, with only minor improvement in RMSE from 10.94 to 10.69 and a 967 

minor improvement in RMSE from 10.94 to 10.69 and a slightly increased correlation 968 

coefficient from 0.53 to 0.57 after optimization (Fig. 6a, e).  969 

The photosynthetic capacity per unit area and photosynthetic surface area, indicated 970 

by Vcmax and SLA respectively through data assimilation in our case, are key determinants 971 

of GPP. Both Vcmax and SLA were adjusted within their reference ranges during data 972 

assimilation (Fig. 8). Although these parameters showed compensatory effects in their 973 

adjustments, their combined effect still demonstrated a tendency to enhance GPP (Fig. 6a, 974 

e). Notably, the systematic underestimation of GPP particularly during the growing season, 975 

particularly during the growing season, suggests the need for improving current carbon 976 

cycle process representations. These improvements should include (1) the soil moisture 977 
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control on stomatal conductance specific to evergreen broadleaf forests (Weng & Luo, 978 

2008) and (2) the calculation of sunlit and shaded leaf proportions through more accurate 979 

clumping index parameterization in the two-leaf model (Wang et al., 2024; Bi et al., 2022; 980 

Yan et al., 2017). 981 

 982 
Figure 6. Comparison of weekly observed and simulated carbon fluxes using default 983 

parameters and optimized parameters for the Tiantong site in 2021. (a-c) Time series 984 

of observed (black dots) and simulated values with default parameters (blue line) and 985 

optimized parameters (red line), where the optimized results are derived from 1000 986 

parameter sets randomly selected from 10,000 accepted parameter sets during the data 987 

assimilation process (shaded areas represent standard deviation). (d-f) Scatter plots of 988 

simulated versus observed values corresponding to the time series above, where the dashed 989 

line represents the 1:1 line. CC, correlation coefficient; RMSE, root mean square error. 990 



 

47 

 

 991 
Figure 7. Diurnal patterns of hourly net ecosystem exchange (NEE) across different 992 

months simulated by the CNP model configuration before (Default) and after data 993 

assimilation (MCMC)by three model configurations (C, CN, and CNP) compared 994 

with observations. Black dots lines with error bars represent observational sdata with 995 

shaded areas indicating( ±1 standard deviation, (SD). Colored lines indicate model 996 

simulations with shaded areas showing their respective SD ranges. Root mean square errors 997 

(RMSE) between model outputs and observations are colored in blue for default parameter 998 
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simulations with default parameters and in red for accepted parameter simulations with 999 

accepted parameters. 1000 

Ecosystem respiration (ER) showed more substantial improvement with data 1001 

assimilation, with RMSE decreasing from 11.03 to 6.72 g C per m² per week, particularly 1002 

in reducing the high-frequency fluctuations present in the default simulation (Fig. 6b). This 1003 

improvement in ER led to a notable improvement in NEE, where the RMSE decreased 1004 

from 14.21 to 8.83 g C per m² per week, and the correlation coefficient improved 1005 

dramatically from -0.03 to 0.51. The significantly improved representation of carbon 1006 

exchange dynamics with parameter optimization is further confirmed by the diurnal 1007 

patterns across months (Fig. 7), with reduced RMSE in most months (7 out of 12). However, 1008 

certain limitations persist, notably the underestimated NEE during midday hours in the 1009 

growing season, primarily attributed to underestimated GPP, which requires further 1010 

investigation. 1011 

The enhancement in ER and NEE primarily resulted from the efficiently constrained 1012 

key parameters (Table 6, Fig. 8) based on the validated state variables (Fig. 5). While the 1013 

default parameters achieved reasonable state variables, the response of state variables to 1014 

new meteorological forcing conditions required adjustment (Ma et al., 2021). For instance, 1015 

the Q10 and soil carbon residence time (T6-T8) are well-constrained in our case. The 1016 

temperature sensitivity parameter represents microbial responses to soil temperature, and 1017 

carbon residence times serve as a proxy for microbial accessibility to carbon substrates 1018 

rather than just soil carbon properties, both of them , rather than just soil carbon properties, 1019 

both of which are related to heterotrophic -respiration. Through the optimization of these 1020 

parameters, the CNP model effectively reduced the high-frequency fluctuations present in 1021 

the default simulation and better captured the observed temporal dynamics. 1022 

Data assimilation substantially improved CNP model performance in carbon flux 1023 

simulation, highlighting the potential for applying our developed model to other flux sites 1024 

without tedious manual calibration procedures. Given that parameter optimization can 1025 

potentially compensate for structural deficiencies in models (e.g., the equifinality issue; 1026 

Luo et al., 2016, 2009; Sierra et al., 2015), it’s understandable that models with different 1027 

nutrient coupling schemes can generate similar performance with optimized parameters 1028 
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(Fig. S1, Text S1). However, while parameter optimization can help the C-only model fit 1029 

historical data, it may result in unrealistic parameter values (Fig. S2) and essentially “bakes 1030 

in” current nutrient conditions without representing the underlying processes, thereby 1031 

compromising its predictive capacity for future scenarios. 1032 

 1033 
Figure 8. Posterior distributions of model parameters derived from Bayesian 1034 

calibration. Grey shaded areas represent parameter posterior distributions, with red and 1035 

blue vertical lines indicating posterior means and default values, respectively. The 1036 

parameters (listed in Table 6) include Q10, SLA, Vcmax, and carbon residence time 1037 

parameters (T1-T9). The corresponding numerical values are shown in matching colors. 1038 

Table 6. Target parameters, their ranges, mean values and maximum likelihood estimation 1039 

(MLE) of the posterior distribution. Q10 represents temperature sensitivity; SLA, specific 1040 
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leaf area; and Vcmax, maximum carboxylation rate. T1–T9 indicate turnover times for 1041 

individual pools.  1042 

Parameters Lower Upper  Mean MLE 

Q10 1.00  3.00  1.29  1.26  
SLA 89.04  184.26  147.23  166.68  

Vcmax 23.29  29.11  24.52  24.42  
Carbon turnover rate 

T1 0.25  8.76  5.19  6.11  

T2 25.00  750.00  373.13  260.58  

T3 0.24  1.80  1.03  0.79  

T4 0.10  5.00  2.19  0.76  

T5 0.10  0.50  0.27  0.21  

T6 0.50  20.00  7.75  1.69  

T7 0.05  1.00  0.53  0.43  

T8 2.00  200.00  26.41  9.75  

T9 400.00  2000.00  1197.29  1090.48  

 1043 

4 Conclusions 1044 

In this study, we developed and evaluated a process-based CNP-coupled model for 1045 

subtropical evergreen broadleaf forest. The CNP configuration demonstrated superior 1046 

performance compared to C-only and CN models across most biogeochemical pools and 1047 

fluxes, effectively addressing the overestimation issues prevalent in models with simplified 1048 

biogeochemical processes. The incorporation of phosphorus cycling mechanisms proved 1049 

crucial for capturing ecosystem dynamics in these phosphorus-limited systems, providing 1050 

an importantessential foundation for predicting subtropical evergreen broadleaf forest 1051 

responses to climate change. Beyond mechanistic improvements, site-scale models like 1052 

TECO-CNP can fully leverage rich, localized datasets, including forest inventory records, 1053 

experimental manipulations, and eddy covariance measurements, to constrain model 1054 

parameters and processes. This integration is crucial because unobserved or weakly 1055 

observed processes cannot be reliably constrained through data assimilation alone (Luo et 1056 

al., 2011). TECO-CNP is designed to facilitate the fusion of such multi-process information, 1057 

thereby enabling more mechanistic and robust representations of ecosystem C-N-P 1058 
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dynamics. . Furthermore, we implemented and evaluated a model-data fusion framework 1059 

using the MCMC algorithm, which significantly improved the simulation of carbon fluxes. 1060 

The optimization of key parameters, such as those controllingincluding those that control 1061 

photosynthetic capacity, temperature sensitivity, and carbon turnover rate, effectively 1062 

reduced simulation uncertainties and enhanced model performance. The success of the data 1063 

assimilation approach not only demonstrates its effectiveness in current model 1064 

optimization but also provides a promising path for future model improvement and 1065 

applications across diverse ecosystems. More importantly, integrating data assimilation 1066 

frameworks with site-level biogeochemical models facilitates a synergistic loop between 1067 

experimental findings and model development, enhancing our understanding of the 1068 

nutrient cycle processes and our ability to make reliable predictions. This integrated 1069 

approach provides a robust framework for improving ecosystem models and advancing our 1070 

understanding of nutrient cycling underimproving ecosystem models and advancing our 1071 

understanding of nutrient cycling in response to environmental changes. 1072 
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