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Responses to comments from reviewer #2 

(Manuscript number: egusphere-2025-1243) 

We sincerely thank Reviewer 2 for the thoughtful and constructive comments. In response, we 

have revised the manuscript to clarify parameterization strategies, explain the integration of 

process-based modeling with data assimilation, and refine the definitions and representations of 

soil P pools. Reviewer comments are shown in blue italic, followed by our detailed responses. We 

hope these revisions address all concerns satisfactorily. 

Comment 1B: This study developed a coupled carbon-nitrogen-phosphorus model, TECO-CNP 

Sv1.0, based on the Terrestrial ECOsystem (TECO) model. The developed model was used to 

simulate C, N, and P pools and fluxes in a phosphorus-limited subtropical forest site in East China. 

In addition, a parameter optimization algorithm was also incorporated into the model framework 

to improve the model's performance. Overall, the manuscript provides detailed information on the 

model structure, parameters, and performance. However, I still have some questions on the soil 

pool structure and calibration processes of the model. 

Response: Thank you for your constructive review and valuable comments on our TECO-CNP 

model development. We are committed to addressing your concerns and providing clarifications 

that will strengthen our manuscript. 

Comment 2B: Four inorganic P pools, including labile P, sorbed P, secondary P, and occluded 

P, are set in TECO-CNP. This structure is different from other CNP models. For example, the 

labile P pool in ORCHIDEE-CNP includes both dissolved and sorbed P. In CLM-CNP, inorganic 

P pools include labile P (including solution P), secondary P, and occluded P. In a global P dataset 

developed by He et al. (2023) Biogeosciences, the soil inorganic P is divided into labile P, 

moderate P, and occluded P. Can you explain the differences in inorganic P pool structure among 

these models? I am confused about the definition of labile P pool. In addition, how did you 

initialize these inorganic P pools？ 

Response: We have added the detailed description of labile P pool in revised version (L286-290, 

L626-631). The key difference among models in the soil inorganic P pools is how they define and 

term the most available inorganic P pools (Table RB1). In some model studies, labile P serves as 

the directly plant-available pool (e.g., TECO-CNP, CASA-CNP, JSBACH-CNP) and maintains 

dynamic equilibrium with the sorbed pool over short timescales. In contrast, other studies tend to 

use terms like “solution” or “dissolved” to represent the solution-phase P (e.g., CLM-CNP, 

ORCHIDEE-CNP, E3SM-CNP), while also setting up another pool that equilibrates with it. The 

model structure is comparable to experimental approaches. Experimentally, “labile P” represents 

the inorganic P extracted by resin and NaHCO3, and “secondary mineral P” represents NaOH-

extracted inorganic P, which some studies term "moderately available P" (He et al., 2023).  

We initialized inorganic P pools using site measurements. Labile P was determined from 0-10 

cm soil samples collected in 2023 from a nearby forest stand of similar stand age (~200 yr) 

dominated by the same species as the Tiantong forest dynamic plot. Secondary P and occluded P 

values were obtained from available literature data for the same study site (Table S3). The 

initialization method is refined in the revised version (L625-634). 
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Table RB1. Comparison of inorganic phosphorus (P) pools in ORCHIDEE-CNP, CLM-CNP, and TECO-

CNP. Bold text highlights the main differences among models. 

ORCHIDEE-

CNP 
CLM-CNP TECO-CNP General description 

Dissolved labile 

P 
Solution P Labile P 

Most readily available P and only source for 

plants uptake; can be adsorbed or lost by leaching 

Sorbed labile P Labile P Sorbed P 

P reversibly adsorbed onto soil particles; 

maintains equilibrium with the most readily 

available P pool 

Secondary 

mineral P 

Secondary 

mineral P 

Secondary 

mineral P 

Moderately stable P; can be slowly dissolved to 

enter labile pool or become occluded 

Occluded P Occluded P Occluded P 

Most stable P form; encapsulated by Fe/Al 

oxides; extremely slow release over geological 

timescales 

Comment 3B: What is the advantage of TECO-CNP compared with other CNP models? 

Response: Thank you for this insightful question. In this revised version, we have made it clearer 

that TECO-CNP has three major advantages compared with other CNP models. First, TECO-CNP 

tightly couples vegetation carbon processes with soil nutrient cycling. It simulates dynamic plant 

growth responses to both soil nutrient availability and internal physiological traits by modifying 

growth rates (Eq. 1) and allocation patterns (Eqs. 9-11). This allows for a more mechanistic 

representation of nutrient-limited growth dynamics.  

Second, unlike many current CNP models that omit non-structural carbohydrate (NSC) pools 

(e.g., JULES-CNP, CABLE, ELMv1-ECA; Nakhavali et al., 2022; Haverd et al., 2018; Zhu et al., 

2019), TECO-CNP explicitly represents NSC dynamics. This enables a more realistic 

representation of how plants adjust allocation between growth and storage under nutrient stress 

(L103-106; Hartmann et al., 2020; Merganičová et al., 2019).  

The third advantage of TECO-CNP compared to other CNP models lies in its capacity to 

integrate in situ observations with process-level forecasting. Site-scale models like TECO-CNP 

can fully leverage rich, localized datasets, including forest inventory records, experimental 

manipulations, and eddy covariance measurements, to constrain model parameters and processes. 

This integration is crucial because unobserved or weakly observed processes cannot be reliably 

constrained through data assimilation alone (Luo et al., 2011). TECO-CNP is designed to facilitate 

the fusion of such multi-process information, thereby enabling more mechanistic and robust 

representations of ecosystem C-N-P dynamics. In contrast, global-scale models often rely on 

aggregated or remote-sensing data and typically lack the resolution or flexibility to assimilate 

detailed, site-specific measurements. By bridging observational data and predictive capacity at the 

process level, TECO-CNP provides a powerful tool for advancing both model accuracy and 

ecological understanding at ecosystem-relevant scales. We have emphasized these features more 

clearly in the revised manuscript (L773-777; L949-958). 

 

Comment 4B: How were the soil P pools at the Tiantong site measured? Did you compare the 

measured soil P pool with other studies? They seem lower than other studies (Fig. 5c). 
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Response: Soil phosphorus (P) pools at the Tiantong site were measured using systematic 

sampling across 185 grid points (each 20 × 20 m) within the permanent Tiantong forest plot (a 

member site of ForestGEO; https://forestgeo.si.edu; Fig. 3). At each grid point, soil samples were 

collected at three depth intervals (0-20, 20-40, 40-60 cm) using a 5 cm diameter auger, with three 

replicates per depth. 

The measured soil P pool for the 0-60 cm profile was 181.59 ± 60.18 g P m⁻² (Table S3), which 

is well captured by the TECO-CNP simulation (157.7 g P m⁻²; Fig. 5c). These values fall within 

the typical range reported for forest ecosystems in China (220.15, interquartile range: 130.74-

341.98 g P m⁻²; Zhu et al., 2020), suggesting our field-based estimates are robust. 

Please note that some values in Figure 5c were rescaled for visualization purposes. To avoid 

confusion, we have now added an explanatory note to the figure caption (L789-790).  Further 

details on the soil sampling methodology have also been provided in the revised text (L625-639). 

Comment 5B: The simulation results of C-only, CN, and CNP versions were compared in this 

study to prove the good performance of the CNP model. Did you calibrate these three versions 

individually? Was the same parameter optimization algorithm applied to all three versions? Or 

you just calibrate the only CNP model, and apply the same parameters to other versions. Did you 

simulate the C cycle in this site by using C-only or CN versions before the development of CNP? 

How well did these two models perform? Many parameters are constant values, such as Vre. I 

guess these parameters were not calibrated but derived from the literature. Were these parameters 

suitable for subtropical forest ecosystems? 

Response: Thank you for these detailed questions. In this revised version, we have provided the 

following clarifications regarding model calibration, parameter sources, and the rationale for using 

a CNP model: 

(1) Model calibration and parameterization strategy: All three model versions (C-only, CN, and 

CNP) were calibrated using the same set of site-specific parameters derived from a measurement-

informed approach. Key parameters, including specific leaf area (SLA), Vcmax, Jmax, plant height, 

nutrient resorption fractions, and stoichiometric ratios, were obtained from in situ field 

measurements at the Tiantong site (Section 2.3.2; Tables S1-S3). This unified calibration ensures 

that differences in model performance reflect structural differences rather than inconsistencies in 

parameterization. 

For parameters not directly measurable on-site, such as occluded P release rate (𝜈𝑟𝑒), as noted 

by the reviewer, we used values informed by experimental studies and calibrated land surface 

models appropriate for the vegetation type (Table 4). For instance, the classification of Tiantong 

soils as Ultisols (Song & Wang, 1995) informed our selection of parameters for P weathering and 

sorption (e.g., Ks and Smax), while the subtropical evergreen broadleaf forest context guided the 

parameterization of P mineralization and allocation processes (e.g., Wang et al., 2010; Arora & 

Boer, 2005). To ensure ecological relevance, all literature-derived parameters were carefully 

evaluated against site-specific characteristics. This combined approach preserves mechanistic 

realism while incorporating the best available knowledge. We have clarified this approach in the 

revised text at L291-294 and L602-624 

(2) Model independence and comparison procedure: Although the C-only model served as the 

structural foundation for model development, the C-only, CN, and CNP versions were 

implemented as independent configurations. Each version was run separately after spin-up using 
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the same calibrated parameter set, and no parameters were shared post-optimization. Model 

comparisons were based on simulations prior to data assimilation (Section 2.3.4), allowing an 

unbiased evaluation of structural differences (Fig. 5, Table 5). The results show that the CNP 

model achieved the closest agreement with observed carbon, nitrogen, and phosphorus pools and 

fluxes. We have made this finding clearer in this revised version (L744-746, L828-833, and L862-

864). 

(3) Data assimilation and parameter equifinality: Only the CNP model was subjected to data 

assimilation in the original version of this study, as our focus was on evaluating the performance 

of the fully coupled structure. However, to address the reviewer’s question, we conducted a 

supplementary analysis applying data assimilation to the C-only model. We found that the 

optimized C-only model achieved performance similar to the CNP model in terms of flux 

predictions. This similarity, however, stems from compensatory parameter behavior. For example, 

Fig. RB1 (Fig. S2 in revised supplementary materials) shows that the C-only model required SLA 

values far outside the observed community-level distribution, whereas the CNP model constrained 

parameter values consistent with field data. This reflects the well-documented issue of equifinality 

(Luo et al., 2016; Sierra et al., 2015), where simpler models can match outputs by adjusting 

unrelated parameters, thereby losing ecological interpretability. We have added sentences to make 

this point clearer in this version (L949-958 and Text S1).  

 

Figure S2. Posterior distribution of constrained specific leaf area (SLA) and observed community-level 

SLA distribution. Green, blue, red, and gray represent C, CN, CNP models and observations, respectively. 

Vertical lines represent distribution means. D, Kolmogorov-Smirnov statistic. 

Comment 6B: The vegetation and soil pools simulated by the three versions were compared in 

section 3.1. What about C and nutrient fluxes? In Fig.7, I cannot identify the simulated NEE by 

the three model configurations. 

Response: Thank you for pointing this out. In the revised manuscript, carbon and nutrient fluxes 

are more clearly illustrated in the revised Table 5 and described in lines 758-761, 828-833 and 

862-864 in Section 3.1. These additions illustrate the expected effects on carbon fluxes under 

phosphorus limitation in the CNP model, and the lower nitrogen mineralization due to reduced 
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litter input and constrained microbial activity. To further support transparency, we have included 

simulated nitrogen and phosphorus flux data in the supplementary repository for potential use in 

future comparative studies.  

Regarding the original Figure 7, we have corrected the caption to clarify that it shows results 

from the CNP model before and after data assimilation, rather than from the three model 

versions. We apologize for the earlier misstatement and have updated the caption accordingly 

(Line 922). 

Table 5. Observed and simulated carbon, nitrogen and phosphorus fluxes with C, CN and CNP 

configurations. The plant litterfall rate is the sum of litterfall of leaf, wood and reproductive pool. 

C, N and P fluxes C-only CN CNP Observation Unit 

C transfer from leaf to litter 0.43 0.38 0.25 0.26±0.06 kg C m-2 yr-1 

C transfer from plant to litter 0.98 0.86 0.54 0.44±0.04 kg C m-2 yr-1 

N transfer from plant to litter - 11.36 7.44 6.74±0.68 g N m-2 yr-1 

P transfer from plant to litter - - 0.24 0.79±0.24 g P m-2 yr-1 

Soil respiration 1.72 1.59 1.13  0.99±0.07 kg C m-2 yr-1 

Net N mineralization - 18 12.3 13.14±0.73 g N m-2 yr-1 

Net P mineralization - - 0.54 0.67±0.14a g P m-2 yr-1 

aJiang et al., 2024 

 

Minor comments 

Comment 7B: L491-493. Please list the equations of P loss from SOM pools. 

Response: Done. We have added the Equation 44 to represent soil P loss from SOM pools at lines 

481-484 in the revised manuscript.  

Comment 8B: Equation 54. What is the meaning of Pl 

Response: ‘Pl’ should be ‘Plab’ representing the labile phosphorus pool. This has been corrected 

in the revised manuscript. 

Comment 9B: L607. Please correct the reference of Xu et al. 

Response: Corrected. 

Comment 10B: Fig 8. What is the meaning of the posterior distribution of parameters? Do they 

change with time? 

Response: In the revised version, we have explained the posterior distribution of parameters and 

its independence upon time (L675-677). The posterior parameter distribution represents our 

updated knowledge about parameter values after incorporating observational data through 

Bayesian inference, quantifying both the most likely parameter estimates and their associated 

uncertainties. In the context of our model, these distributions show which parameter values (e.g., 
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Q₁₀, turnover times) are most consistent with observed carbon flux data and provide confidence 

intervals for those estimates. 

Regarding temporal behavior, posterior distributions in our study do not change with time. 

We employed batch data assimilation (Evensen, 2009), processing the entire observational time 

series simultaneously to generate a single posterior distribution for each parameter. This approach 

assumes parameters are time-invariant ecological properties and yields static probability 

distributions representing the best parameter estimates constrained by all available observations. 

Sequential assimilation approaches that update posteriors over time are possible but were not 

employed in this study, as our objective was to characterize fixed ecosystem parameters rather 

than track temporal parameter evolution.  

Comment 11B: Table. How did you identify these target parameters? Did you conduct a 

sensitivity analysis? 

Response: Yes, we conducted a preliminary sensitivity analysis to support the selection of target 

parameters for data assimilation. As shown in Table RB2 (added to the revised supplementary 

materials as Table S6), parameters related to photosynthesis (SLA and Vcmax) and ecosystem 

respiration (Q10) exhibited high sensitivity indices (> 0.1) with respect to GPP, ER, and NEE. These 

parameters were therefore selected for assimilation. In addition, we included all carbon pool 

turnover parameters (T1–T9) without pre-screening, as these govern carbon residence times and 

are crucial for matching observed pool dynamics, even if their sensitivity indices were lower. In 

summary, we selected assimilation parameters based on both sensitivity analysis and their direct 

link to observed ecological processes, rather than relying solely on pre-screening. We have made 

it clear in the revised version at lines 654-660.  

 

Table RB2. Sensitivity index of selected parameters. SIGPP, SIER, and SINEE represent the sensitivity 

indices of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem 

exchange (NEE) to each parameter, respectively. Bold values indicate sensitivity indices > 0.1. 

 SIGPP SIER SINEE 

Q10 0.009  0.554  0.750  

SLA 0.112  0.110  0.115  

Vcmax 0.820  0.210  1.669  

T1 0.023  0.027  0.091  

T2 0.000  0.036  0.050  

T3 0.008  0.025  0.055  

T4 0.000  0.026  0.037  

T5 0.004  0.039  0.065  

T6 0.004  0.185  0.268  

T7 0.008  0.239  0.313  

T8 0.001  0.110  0.150  

T9 0.000  0.005  0.006  
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