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Abstract. Volatile Organic Compounds (VOCs) significantly influence global atmospheric chemistry through oxidative 

reactions with oxidants. These reactions produce key precursors to the formation of atmospheric fine particulate matter (PM2.5) 

and ozone (O3), which in turn play a crucial role in regulating O3 pollution and reducing PM2.5 concentrations. With the 15 

increasing diversity of VOCs, the need for advanced modeling techniques to accurately estimate the atmospheric oxidation 

reaction rate constants (ki, where i ∈ {OH, Cl, NO3, or O3}) has become more urgent. Here we introduce Vreact, a Siamese 

message passing neural networks (MPNN) architecture that jointly models VOC–oxidant reactivity. The model simultaneously 

predicts log10ki values and achieves a mean squared error (MSE) of 0.299 and a coefficient of determination (R2) of 0.941 on 

the internal test set. This framework overcomes the single-oxidant constraint of traditional models, enabling unified and 20 

scalable prediction of VOC oxidation kinetics across multiple oxidants. An interactive web tool 

(http://vreact.envwind.site:8001) is provided to facilitate non-expert access to reactivity screening. Vreact offers valuable 

insights into the formation and evolution of atmospheric pollutants, and serves as a critical resource for developing effective 

control and emission strategies, ultimately supporting global efforts to mitigate air pollution and improve public health. 

1 Introduction 25 

The rapid advancement in data-driven methodologies has revolutionized various fields, such as protein structure prediction 

(Abramson et al., 2024), molecular generation (Zhang et al., 2023), organic reaction prediction (Burés and Larrosa, 2023), and 

bioinformatics (Theodoris et al., 2023). Environmental challenges, particularly those associated with atmospheric chemistry 

and climate change (Chen et al., 2024; Kubečka et al., 2023; Qiu et al., 2023; Zhao et al., 2025), have also benefited from these 

innovations. As pollutants evolve under both anthropogenic and natural influences, the understanding of their chemical and 30 

physical properties has become increasingly vital for addressing global air quality and climate issues. Volatile Organic 

http://vreact.envwind.site:8001/
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Compounds (VOCs) are organic chemicals that readily vaporize at ambient temperature, contributing significantly to the 

complexity of atmospheric processes. Sources of VOCs are both natural and anthropogenic, with human activities such as 

industrial production, petrochemical processing, and vehicle exhaust contributing to the emission of a variety of VOCs. 

Additionally, biosphere sources, such as plants and forests, release compounds like isoprene and monoterpenes, which further 35 

complicate atmospheric VOC dynamics (Qin et al., 2021; Sindelarova et al., 2014). These highly reactive VOCs drive critical 

atmospheric reactions, such as the formation of ozone and secondary organic aerosols (SOA), and significantly contribute to 

environmental pollution. For instance, VOCs interact with nitrogen oxides (NOx) and radicals to form tropospheric O3 and 

SOA (Finlayson-Pitts and Pitts, 1997; Hallquist et al., 2009; Han et al., 2018; Zhang et al., 2020; Ziemann and Atkinson, 2012). 

The role of VOCs in the formation of secondary pollutants such as PM2.5 (Huang et al., 2014; Zhao et al., 2015) and O3 is a 40 

growing concern due to the adverse impacts on human health (Kamarrudin et al., 2013), including respiratory diseases, 

cardiovascular conditions, and overall mortality. The dynamic interactions between VOCs and atmospheric oxidants determine 

the persistence and transformation of these pollutants, which in turn influence their contribution to global haze, photochemical 

smog, and acid deposition. 

VOCs undergo degradation and removal from the troposphere through diverse mechanisms driven by atmospheric oxidants. 45 

During the daytime, OH radicals serve as the primary oxidants, facilitating rapid VOC oxidation. At night, however, the 

concentration of OH decreases sharply due to the lack of photochemical reactions, shifting the dominant oxidation pathways 

to NO3 radicals and O3. The reaction rates of VOCs with OH are approximately 30 times faster than those with NO3 radicals, 

significantly influencing the spatial and temporal variation of the atmosphere’s self-cleaning capacity and the formation of 

organic aerosols (Palmer et al., 2022; Zha et al., 2023). For example, regions with high isoprene concentrations often reflect 50 

differences in its reaction products and rates with OH and NOx rather than solely high emissions (Wells et al., 2020). 

Additionally, the structural diversity of VOCs determines their reaction mechanisms, influencing reaction rates. Highly     

reactive compounds such as alkenes, multi-substituted aromatics, and phenols exhibit higher reaction rates, whereas alkanes, 

alkyl nitrates, and ketones demonstrate relatively low reactivity (Ziemann and Atkinson, 2012). These variations underscore 

the significance of atmospheric oxidation reaction rates as key indicators of the persistence of organic pollutants in the 55 

atmosphere. Accurate assessment of these rates is essential for understanding the fate of VOCs, elucidating SOA formation 

processes, and addressing global challenges related to PM2.5 and ozone development.  

Given their importance, accurately predicting the atmospheric oxidation rates of VOCs is critical for understanding their 

persistence, transformation, and contribution to secondary pollutant formation. Traditionally, such predictions have relied on 

experimental kinetic modeling methods and computational methods (e.g., quantum-chemistry (QC) and quantitative structure-60 

activity relationship (QSAR) approaches) (Basant and Gupta, 2018; Liu et al., 2021). Experimental methods involve tracking 

reactant and product concentrations using techniques like chemical ionization mass spectrometry (CIMS), followed by kinetic 

fitting to determine Arrhenius parameters (Logan, 1982; Wells et al., 1996). However, these methods are time-consuming and 

cover only a narrow subset of atmospheric VOCs. QC approaches use density-functional theory calculations such as transition-

state theory (TST) or variational TST to obtain temperature-dependent rate constants (Canneaux et al., 2014; Liu et al., 2021; 65 
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Meana-Pañeda et al., 2024). While QC methods offer detailed mechanistic insight, their computational cost scales steeply with 

molecular size and conformational complexity, limiting routine application to large numbers of VOCs. However, traditional 

computational methods have shortcomings such as high computational complexity and low efficiency. As a more scalable 

alternative, QSAR models leverage molecular descriptors and statistical learning. and it has become one of the important 

methods for evaluating reaction rate constants. Previous examples include AOPWIN™ module integrated in US EPI Suite™ 70 

software, which applies Partial Least Squares (PLS) regression to 109 gas-phase reactions with hydroxyl radicals (Atkinson, 

1986, 1987; Kwok and Atkinson, 1995), and later expansions using a broader dataset (Öberg, 2005). Some models have also 

incorporated machine learning algorithms such as multiple linear regression (MLR) (Liu et al., 2020, 2022) for predicting 

reactions with NO3 and OH and artificial neural networks for predicting reactions with O3 (Fatemi, 2006). Despite their utility, 

these models generally rely on predefined descriptors and are typically limited to reactions with a single type of oxidant, which 75 

constrains the scalability of the model. Recent advances in deep learning (DL), particularly graph neural networks (GNN), 

have improved molecular representation by learning features directly from molecular graphs. This enables more flexible and 

accurate prediction of chemical properties without requiring predefined descriptors. GNNs have been successfully applied in 

atmospheric chemistry and other fields tasks, such as in predicting vapor pressures with GC²NN (Krüger et al., 2025) and 

modeling reaction rate constants involving with OH using GAT–GIN hybrid architectures (Huang et al., 2024). However, like 80 

traditional models, these GNN-based frameworks have been developed for single-molecule systems and thus fall short in 

capturing the complexity of multi-molecule reactions in real environments. In contrast, the atmosphere involves competing 

and sequential reactions between VOCs and multiple oxidants—OH, NOx, Cl, and O3—depending on time of day, region, and 

chemical conditions. This multiplicity underscores the urgent need for models that can simultaneously learn and predict VOC 

reactivity across multiple oxidants. To meet this need, message passing neural networks (MPNN) offer a powerful framework 85 

(Gilmer et al., 2017). MPNNs propagate information across molecular graphs, capturing both atomic-level features and 

topological context. Extensions of MPNN, such as the communicative GraphRXN (Li et al., 2023) and directed MPNN 

Chemprop (Heid et al., 2024), have shown promise in learning reactivity across multiple reactants. Compared with the simple 

concatenation using molecular fingerprints/descriptors, they all use MPNN to deeply extract task-relevant representations of 

chemical reactions, provide abundant chemical information for subsequent reaction modeling, and achieve good prediction 90 

results. Yet, their application has largely focused on synthesis or materials chemistry, not atmospheric oxidation reaction.  

This study addresses this gap by proposing Vreact, a novel Siamese MPNN architecture capable of jointly modeling reactions 

between VOCs and four major atmospheric oxidants. Unlike previous models that treat each oxidant independently, Vreact 

processes VOC–oxidant pairs in a unified framework, it learns representations from the molecular graphs of VOCs and 

oxidants through the MPNN, and encodes their interactions via feature aggregation. This design enables the model to accept 95 

arbitrary VOC–oxidant combinations and simultaneously predict reaction rate constants ki (where i ∈ {OH, Cl, NO3, or O3}). 

The dual-input design of Vreact enhances scalability and generalization across multiple oxidants. Ablation experiments show 

that Vreact significantly outperforms a structurally simpler single-input MPNN trained under identical conditions. The 

interaction module within Vreact provides atomic-level attention maps that offer mechanistic insights into VOC-oxidant 
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reactivity patterns, improving interpretability. Applying Vreact to 447 atmospheric VOCs not included in the training data 100 

revealed a wide distribution of oxidation reactivities and confirmed that alkenes and aromatics exhibit higher reactivity, acting 

as key precursors for ozone and SOA formation.  

2 Methods and Data 

2.1 Collection and Preprocessing of Reaction Rate Constant Dataset 

The VOCs reaction rate constant dataset compiled by McGillen et al. is utilized in the study, which includes gas-phase reaction 105 

rate constants of natural atmospheric VOCs, halocarbons, and their degradation products with OH, Cl, NO3 radicals, and O3, 

within a temperature range of 250-370K (McGillen et al., 2020). Under thermodynamic standard conditions at 298K, a total 

of 2802 gas-phase reaction rate constant data points were obtained, encompassing 1586 VOCs and 4 oxidants. This dataset 

includes ki values for 1363 VOCs with OH, 735 VOCs with Cl, 393 VOCs with NO3 radicals, and 311 VOCs with O3. Due to 

the wide range of reaction rate constants ki in the dataset (1.460×10-21~7.550×10-10cm3/(molecule⋅s), S.D.=±1.040×10-10), the 110 

data were log-transformed to log10ki to reduce skewness and mitigate the influence of outliers on the model. To ensure a 

balanced distribution of each type of oxidant in the training, validation, and internal test sets, the dataset was divided using 

stratified random sampling into training, validation and internal test sets in an 8:1:1 ratio (Table S1). Combinations of the same 

VOC with different oxidants may appear across the training, validation, and internal test sets. 

2.2 Construction and Training of the Vreact Model 115 

All VOCs and oxidant molecules were converted into graphs G (V, E) (Text S1). The generated molecular graph G includes 

ten types of atomic information for each non-hydrogen atom, such as element type, chirality, and atomic hybridization type, 

as well as four types of bond information, including bond type and conjugation (Table S2). A Siamese MPNN architecture-

Vreact, was designed to simultaneously accept input features of VOCs and oxidant molecules (Fig. 1). The model takes the 

SMILES of VOCs and oxidants as input and primarily includes a VOC molecular graph representation layer and a MPNN 120 

layer, an oxidant molecular graph representation layer and MPNN layer, an interaction layer, and a prediction layer. The 

molecular graph G(V, E) encoding layers of VOCs and oxidants containing node feature matrix X and edge feature matrix Y, 

which learn molecular properties through the MPNN layer (Gilmer et al., 2017). The MPNN forward propagation process 

consists of two phases: Message Passing Phase and Readout Phase and generates molecular feature tensors A for VOCs and B 

for oxidants. Subsequently, the interaction layer transforms the molecular features A of VOCs and B of oxidants into tensors 125 

A1 and B1 of the same shape and concatenates them into tensor Z. Reaction rate constants are determined not only by the 

molecular structure of the reactants but also by the interactions between the reactants. The interaction feature tensor I is dot-

multiplied with B to obtain the oxidant-affected VOC feature tensor A'; similarly, it is dot-multiplied with A to obtain the 

VOC-affected oxidant feature tensor B'. These operations embed the learned interaction features into the molecular structure 

features, providing a more comprehensive representation of the chemical reaction mechanisms between the two reactants. The 130 
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prediction phase is composed of a pooling layer and three fully connected layers. The pooling layer uses the Set2Set method 

to achieve global average pooling, and the fully connected layers map the input features to the final predicted values (log10ki). 

More details can be found in Text S2. 

During model training, Adaptive Moment Estimation (Adam) (Kingma and Ba, 2017) was employed to address the fixed 

learning rates issue in traditional gradient descent methods. Adam adaptively adjusts the learning rate of each parameter using 135 

first-order moment estimates (mean of the gradients) and second-order moment estimates (exponentially moving average of 

the uncentered variance of the gradients), aiding in rapid model convergence. Bayesian optimization was utilized for 

hyperparameter tuning, which included the initial learning rate of the optimizer (lr), batch size, L2 regularization parameter 

(weight decay), dropout rate (p), and MPNN time steps (T) (Text S3).During hyperparameter optimization, the hyperparameter 

combination that minimizes the Mean Squared Error (MSE) of the validation set was selected as the optimal hyperparameter 140 

combination, and the best model was saved (Table S3).The predictive performance of the model was assessed using MSE, 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2) (Text S4). For more 

information on the model implementation, please refer to Text S5.  

 

 145 

Figure 1. Schematic of the Vreact Architecture. SMILES of VOCs and oxidants are converted into molecular graphs, where nodes 

represent atoms and edges represent bonds. Atomic and bond features form matrices X and Y. Using a Siamese MPNN architecture, 

the Vreact model processes these features through separate MPNN layers for VOCs and oxidants. The final prediction layer outputs 

log10ki, incorporating both molecular and interaction features. 
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2.3 Clustering Analysis 150 

Morgan fingerprints (radius 2, 1024 bits, generated using RDKit) was used as the molecular embeddings before clustering and 

visualization. To investigate VOC structural diversity and reactivity trends, two methods were applied: the Self-Organizing 

Map (SOM) (Kohonen, 2006) and the Uniform Manifold Approximation and Projection (UMAP). The SOM algorithm 

clustered VOCs into 100 structural groups (10×10 grid), using a sigma of 0.3 and learning rate of 0.5. The UMAP algorithm 

projected the high-dimensional fingerprint space into 2D for visualization, with the number of neighbors set to 50, minimum 155 

distance to 0.6, and metric as correlation. 

3 Results and Discussion 

3.1 Analysis of VOC and Oxidant Reaction Data Distribution and Characteristics 

The categories and distribution characteristics of VOC and oxidant reaction data are first explored in the study, which includes 

log10ki data for 1586 VOCs with OH, Cl, NO3, and O3 (Fig. 2A). The dataset contains the most data for OH, accounting for 160 

48.64% of the total, as OH plays a crucial role in the atmosphere, rapidly reacting with organic pollutants and dominating their 

removal process. The remaining data points are for Cl (26.23%), NO3 (14.03%), and O3 (11.1%) in descending order of data 

quantity. O3 is primarily produced through photochemical reactions involving NOx and VOCs, while NO3, as the principal 

nighttime atmospheric oxidant, significantly contributes to the oxidation and removal of trace gases. The dataset encompasses 

VOCs with diverse chemical structures, including 22 molecular motifs such as double bonds, esters, benzene rings, and halogen 165 

atoms (F, S, Cl, Br, and I) (Fig. 2B). This extensive chemical structure space facilitates the model's ability to learn more 

structural features and enhances its generalization capability.  

Moreover, although there is some overlap in the reactions of the four oxidants with VOCs, each oxidant also has specific VOC 

reactions (Fig. 2C). There are 747 VOCs with ki data for only one oxidant and 839 VOCs with ki data for multiple oxidants, of 

which 81 VOCs have data for all four oxidants. For example, isoprene can react with OH, NO3, and Cl through hydrogen 170 

abstraction reactions, and undergo addition reactions with O3 via its unsaturated double bonds. Furthermore, the four oxidants 

exhibit different log10ki value distribution with VOCs due to differences in chemical structures and reactivity (Fig. 2D). OH, 

due to its high oxidation potential, usually reacts quickly with VOCs via hydrogen abstraction, with log10ki concentrated in the 

range of -14.000 to -10.000. In contrast, O3 typically undergoes slower addition reactions with unsaturated bonds in reactants 

(Ziemann and Atkinson, 2012), with log10ki ranging from -20.836 to -13.721. NO3 can participate in both hydrogen abstraction 175 

and addition reactions, resulting in a wider range of log10ki values. The diverse reaction rates of these oxidants maintain the 

composition and oxidative state of aerosols in the atmosphere, but the uneven distribution of their values makes predicting ki 

more challenging. Even for the same oxidant, VOCs with different structures exhibit varied reaction rates in gas-phase 

oxidation reactions. For example, NO3 reacts very slowly with aromatic rings, with a ki value of 3.900×10-16 cm³/(molecule⋅s) 
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for xylene. In contrast, NO3 can rapidly abstract hydrogen from hydroxyl groups, with a ki value of up to 1.72×10-10 180 

cm³/(molecule⋅s) for 3-methylcatechol. 

 

Figure 2. Visualization of VOCs Dataset. (A) Proportion of the four types of oxidants. (B) Number of VOCs containing each 

molecular motif. MultFct: multifunctional; AroRings: aromatic rings; NaRings: non-aromatic rings; Tbonds: triple bonds; CumDBs: 

cumulated double bonds; ConjDBs: conjugated double bonds; SepDBs: separated double bonds. (C) Number of VOCs that can 185 
undergo oxidation reactions with the four oxidants. (D) Distribution of log10ki values for the four oxidants. (E) Heatmap of reaction 

rate constants based on VOCs clustering, where each grid represents a cluster of structurally similar VOCs. The color gradient 

indicates the log10ki values, with red indicating higher log10ki values (faster reaction rates), blue indicating lower log10ki values (slower 

reaction rates), and white indicating the absence of log10ki data for that cluster. The cluster containing butyl acrylate are enclosed 

within the black box. 190 

Furthermore, the same VOCs show different reaction rates with different oxidants. The SOM algorithm was used to explore 

the relationship between VOC structural variation and log10ki. Each grid in Fig. 2E represents a VOC cluster, and the color 

gradient indicates reactivity (average log10ki values) for the corresponding oxidants. By comparing log10ki values across clusters, 

oxidant-specific reactivity patterns can be assessed. For example, butyl acrylate (CAS RN.141-32-2) reacts slowly with NO3 

radicals and O3, mainly due to the unsaturated addition reactions through the carbon-carbon double bond, where the ester group 195 

in the molecular structure produces an electron-withdrawing effect, reducing the electron density in the π bond and thus 

lowering the reaction rate (Gai et al., 2009; Wang et al., 2010). In contrast, it reacts faster with OH and Cl through hydrogen 

abstraction rather than addition (Le Calvé et al., 1997; Ohta, 1984; Wang et al., 2018). This demonstrates that the dataset, 

which includes various oxidants and VOCs, exhibits diverse log10ki values. The overall log10ki values differ significantly 
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between different oxidants. This diverse dataset enables the model to learn the reaction information between VOCs and 200 

different oxidants, thereby improving model performance and prediction accuracy. 

3.2 Performance Evaluation of Vreact Model 

The Siamese MPNN architecture of the Vreact captures both molecular features of VOCs and oxidants as well as their 

interaction dynamics simultaneously. During hyperparameter optimization, the set of hyperparameters that minimized MSE 

on the validation set was selected. After training for 46 epochs (Fig. S1), Vreact achieved robust predictive performance on 205 

the validation set, with R2 of 0.961, MSE of 0.194 and MAE of 0.314 for log10ki (Fig. 3A). On the internal test set, the model 

achieved R2 of 0.941, MSE of 0.299 and MAE of 0.322 for log10ki (Fig. 3A), indicating robust predictive capability and 

excellent generalization ability for unseen VOC-oxidant combinations. The small MAE difference between the validation set 

and internal test sets, despite a larger difference in MSE, indicates that MSE is more sensitive to outliers or large errors, while 

MAE directly reflects the average absolute prediction error. Although the R2 on the internal test set is slightly lower than on 210 

the validation set, this minor discrepancy does not affect the model's robust predictive ability. The result on the internal test 

set is available in Table S4. 

To explore the predictive performance of the Vreact model for different types of oxidants, we evaluated the prediction 

performance for OH, Cl, O3, and NO3 separately. The regression fit of predicted log10ki values versus experimental values for 

the four oxidants (Fig. 3B) shows that O3 and NO3 have higher dispersion compared to OH and Cl. The R2 values for the 215 

reactions of the four oxidants, in descending order, are OH > Cl > NO3 > O3, with OH and Cl having R2 values of 0.929 and 

0.913, respectively. The prediction performance for NO3 radicals and O3 is comparatively lower, with R2 values below 0.800.  

The OH dataset is the most abundant and balanced, while data amount of O3 and NO3 was relatively small, and the model can’t 

fully capture the reaction features, leading to prediction bias. In addition, the log10ki values for NO3 are highly dispersed, also 

reducing the prediction performance. Additionally, the order of the size of R2 is consistent with the order of the data volume 220 

of the four oxidant datasets. This indicates that the amount of data is also an important factor affecting the prediction 

performance of reaction rate constants, and that more available data help the model to fully capture reaction features. 
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Figure 3. Evaluation and comparison of the predictive performance of the Vreact model. (A) MSE, MAE, R2 of Vreact (trained on 

the McGillen et al. dataset) on the validation set, internal test set, and external post-2020 test set. (B) R2 values for log10ki predictions 225 
of four oxidants’ reactions in the internal test set. (C) Distribution of AE between predicted and experimental log10ki values for the 

four oxidants in the internal test set. (D) R2 of the Vreact and Vreact-Ablation on the OH, Cl, NO3, O3, and combined test sets. (E) 

R2 comparison among previously published single-oxidant models, the original Vreact (evaluated on cleaned literature test sets), and 

Retrained Vreact (trained and tested using the same original splits as the literature) highlighting adaptability. (F-H) The chemical 

spatial distribution of VOCs in the OH, O3, and NO3 datasets used in this study and prior literature. 230 

The Absolute Error (AE) between the predicted and experimental log10ki values for the four types of oxidants are presented in 

Fig. 3C. The median AE for OH is 0.149, while O3 and NO3 exhibit median AEs of 0.301 and 0.287, respectively, which are 
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slightly higher than that of OH. Overall, 84% of the AE values for O3 and NO3 are within 1. As depicted in the Fig. 3C, 

individual outliers in AE contribute to the increased RMSE and MAE for O3 and NO3, and the consequent decrease in R2. For 

example, the AE for the reaction of NO3 with azulene (C10H8) is 4.653. Azulene, an aromatic hydrocarbon composed of a 235 

seven-membered ring fused to a five-membered ring, is an isomer of naphthalene (C10H8). NO3, as electrophilic reagents, tend 

to attack regions with higher electron density. Compared to naphthalene, the electron density distribution of azulene is uneven, 

with certain regions having high electron density that may facilitate effective interactions with NO3. Additionally, the structure 

of azulene may reduce steric hindrance, allowing NO3 radicals easier access to reaction sites (Atkinson et al., 1992), resulting 

in a higher reaction rate constant and increasing the model's prediction difficulty. Similarly, the predicted log10ki value for the 240 

reaction of NO3 with diiodomethane (CH2I2) is significantly lower than the true value (AE=2.763). This discrepancy may be 

attributed to the limited representation of iodine-containing VOCs in the dataset, with only iodomethane (CH3I) and iodoethane 

(C2H5I) having ki values in the training and validation sets. This limited data prevents the model from fully learning the reaction 

characteristics of iodine-containing compounds, resulting in a larger prediction error for diiodomethane with NO3 radicals. 

3.3 Model Ablation Study 245 

To evaluate the contribution of the Siamese neural network architecture in Vreact, we performed an ablation study. In the 

ablation model (Vreact-Ablation), the oxidant input and interaction module were removed, leaving only the VOC input. Both 

Vreact and Vreact-Ablation were trained, validated, and tested on the OH, Cl, NO3, O3, and combined datasets. All 

experimental settings were kept consistent, including data sources (McGillen et al., 2020), hyperparameters and evaluation 

metrics. As shown in Fig. 3D, Vreact consistently outperformed Vreact-Ablation across all four oxidants, with R2 250 

improvements of 0.049 (OH), 0.113 (Cl), 0.184 (NO3), and 0.021 (O3). When evaluated on the combined dataset, Vreact-

Ablation achieved an R2 of only 0.035, indicating that it fails to generalize across multiple oxidants. Additionally, both models 

showed comparable runtime per iteration. These results demonstrate that, under the same training conditions, the Siamese 

MPNN architecture significantly enhances predictive performance and generalization. By explicitly modeling VOC-oxidant 

interactions, the architecture enables the network to capture shared patterns across reaction types, thereby improving its 255 

practical applicability in multi-reactivity prediction. 

3.4 Comparation with Single-Oxidant Prediction Models 

Most existing machine learning models for predicting VOC reaction rate constants are tailored for individual oxidants, limiting 

their applicability to complex atmospheric systems involving multiple oxidants. In contrast, the Siamese MPNN architecture 

of the Vreact enables simultaneous learning of molecular features and interaction patterns across different VOC–oxidant pairs 260 

within a unified framework. To benchmark Vreact against previously published single-oxidant QSAR/ML models, we selected 

three top-performing models developed under 298K conditions: Liu et al. (2020) for OH (training/test = 144/36), Xu et al. 

(2013) for O3 (60/35), and Liu et al. (2022) for NO3 radicals (151/38). Prior to evaluation, UMAP was applied to reduce the 

dimensionality of the Morgan molecular fingerprints to visualize the chemical space of both the comparison literature datasets 
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and the Vreact training set (Fig. S2). The observed structural overlap confirms that Vreact’s dataset spans a broad and diverse 265 

chemical space. Given that our study used different data than those reported in the literature, we employed two strategies for 

comparison. First, the pre-trained Vreact model (trained on the McGillen dataset) was directly applied to the literature test sets 

to evaluate extrapolation performance. To ensure a fair comparison, overlapping data points between the literature test sets 

and the McGillen training set were removed (2 of 38 for NO3, 13 of 35 for O3, and 6 of 36 for OH). Second, Vreact was 

retrained on each literature dataset using their original train/test splits (Retrained Vreact), allowing a direct comparison with 270 

published models on original literature test sets.  

As shown in Fig. 3E, both the original Vreact model and its retrained version consistently outperformed the single-oxidant 

models from Liu et al. (2022) and Xu et al. (2013) on the OH and O3 literature test sets, achieving higher R2 values and 

demonstrating superior regression fits between predicted and experimental values. These results highlight the capability of the 

Vreact architecture—whether trained on a broad multi-oxidant dataset or finetuned on smaller single-oxidant datasets—to 275 

effectively learn structural features of VOCs and oxidants and capture complex molecular interactions through its Siamese 

MPNN framework. Notably, Vreact shows opposite performance trends for OH and O3 between the internal and literature test 

set. To understand this, UMAP was applied to project compounds from the training, internal, and literature test sets into a 

shared chemical space. As shown in Fig. 3F, the internal OH test set overlaps well with the training data, leading to consistently 

strong performance. In contrast, the literature OH set is sparse and scattered near the dataset boundaries. Despite this, Vreact 280 

still achieves a high R2, demonstrating good generalization. For O3 (Fig. 3G), the internal test set lies farther from the dense 

training distribution, contributing to lower R2. Meanwhile, the literature O3 set is better aligned with the training data, resulting 

in higher prediction accuracy. For NO3 (Fig. 3H), both internal and literature sets show similar distributions, and the model 

achieves comparable R2 values (~0.815). Although Vreact underperforms slightly compared to the original single-oxidant 

model, retraining on the literature data improves performance. This suggests that multi-oxidant training may introduce some 285 

noise but does not significantly compromise prediction accuracy. 

3.5 Mechanism Insights Through Interaction Analysis 

The interaction layer of the Vreact model can elucidate the atomic interaction mechanisms between VOCs and oxidants. The 

interaction matrix, sized n1×n2, where n1 represents the number of non-hydrogen atoms in the VOC molecule and n2 represents 

the number of non-hydrogen atoms in the oxidant molecule. Mapping these interaction coefficients onto the molecular structure 290 

highlights key atoms that determine the reaction rate.  

To exemplify this mechanism, we analysed specific cases. 2-methyl-4-penten-2-ol is an unsaturated oxygenated volatile 

organic compound (OVOC) that constitutes a significant proportion of the atmospheric VOCs, primarily sourced from 

industrial solvents used in ink and jet ink manufacturing (Li et al., 2021). As shown in Fig. 4A, the interaction coefficient for 

the distal unsaturated carbon atoms is the highest during the reaction with O3, indicating these are likely the reaction sites for 295 

O3 attack. It is inferred that O3 adds to the unsaturated carbon-carbon double bond through an addition reaction, forming 

primary ozonides (POZs). These POZs are unstable intermediates that rapidly cleave to produce carbonyl compounds and 
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carbon-based radicals, which further rearrange to form secondary ozonides (SOZs). The SOZs and their reaction products are 

precursors of SOA. Another example is γ-caprolactone (GCL), a five-membered ring ester used in perfumes, which rapidly 

reacts and degrades with OH upon entering the atmosphere. Interaction weight analysis shows that the carbon atom linked to 300 

the ethyl group contributes most to GCL’s oxidative degradation by OH (Fig. 4B), suggesting that OH initially attacks this 

carbon atom, abstracting a H atom to form a carbon radical. Previous studies indicate that the reactivity of carbons adjacent to 

the oxygen atom in lactones is particularly significant in reactions with OH, especially when alkyl substituents are attached to 

this carbon, which enhances its reactivity (Barnes et al., 2014). 

 305 

Figure 4. Visualization of atomic weights in VOC molecules. (A) Reaction process of 2-methyl-4-penten-2-ol with O3. (B) Reaction 

process of γ-caprolactone with OH. The darker the highlighted color of the atom, the stronger its interaction in the gas-phase 

oxidation reaction. 

3.6 Evaluating Extrapolation Ability and Prioritizing VOCs for Environmental Impact 

To further validate the extrapolation capability and generalization performance of the Vreact model, developed using a dataset 310 

compiled up to the year 2020 (Baptista et al., 2021; Joudan et al., 2022; Li et al., 2021), additional ki data from experimentally 

measured VOCs and oxidants published after 2020 were collected as an external test set (post-2020 test set) (Table 1). The 

prediction results showed that the AE between the experimental log10ki and the predicted values was within 1, with the reaction 

rate constant prediction for γ-heptalactone and OH exhibiting the smallest prediction error. The AE for γ-heptalactone with 

OH was only 0.005, and the overall MAE was 0.240, with an MSE of 0.112 and an R2 of 0.98 (Fig. 3A shown in red). The 315 

results indicate that the Vreact can accurately predict the atmospheric oxidation reaction rate constants of unknown VOCs, 
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demonstrating its potential application in addressing complex atmospheric chemistry issues involving the interactions between 

VOCs and oxidants. 

 

Table 1. The prediction results on the post-2020 test set. 320 

VOC name 
Chemical 

structure 
Oxidant 

Experimental 

log10ki 

Predicted 

log10ki 
AE Ref. 

2-methyl-4-

penten-2-ol 
 

O3 -17.370 -16.712 0.658 
(Li et al., 

2021) 

γ-caprolactone 

 

OH -11.194 -11.209 0.015 
(Baptista et 

al., 2021) 

Cl -9.886 -10.149 0.263 
(Baptista et 

al., 2021) 

γ-heptalactone 

 

OH -11.056 -11.051 0.005 
(Baptista et 

al., 2021) 

Cl -9.770 -9.943 0.173 
(Baptista et 

al., 2021) 

FESOH 

 

OH -11.377 -11.876 0.499 
(Joudan et 

al., 2022) 

Cl -10.824 -10.759 0.065 
(Joudan et 

al., 2022) 

FESOH: 2- (1,1,2-trifluoro-2-heptafluoropropyloxy-ethylsulfanyl)-ethanol; AE: absolute error 

 

Despite the identification of hundreds of VOC species, the environmental behavior of most VOCs in the atmosphere and their 

potential contributions to particulate matter formation and ozone increase remain largely unclear. To address this gap, we 

employed the Vreact model to evaluate the atmospheric oxidation reaction rate constants of a broad spectrum of VOCs. 325 

Molecular structures for 447 VOCs with unknown atmospheric oxidation ki values were collected from previous research, 

which evaluated more than 500 Chinese domestic source profiles, including literature and field measurements (Sha et al., 2021) 

(Table S5). After excluding VOCs already included in the Vreact dataset, 296, 339, 416, and 369 data points for OH, Cl, O3, 

and NO3 were retained, respectively. The prediction results indicated that, although the oxidation reaction rates of VOCs in 

the atmosphere vary (Fig. 5A), the differences in log10ki values are primarily influenced by the type of oxidant, with smaller 330 

variations in log10ki values observed for different VOCs reacting with the same oxidant. Among these, reactions with OH and 

Cl were the fastest, consistent with the results from the McGillen dataset analysis used in the modeling (Fig. 2D). Additionally, 

the changes in the proportion of VOC types within different reaction rate intervals (Fig. 5B) demonstrated that the composition 

of VOC types varied with reaction rates. Halocarbons exhibited relatively slower reaction rates, while alkenes and aromatics 

reacted relatively quickly, and oxygenated compounds showed a more uniform rate distribution. Consequently, areas with high 335 
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emissions of alkenes and aromatics will produce more reaction products per unit time, providing precursors for O3 and SOA 

formation (Gao et al., 2021). 

The top five VOCs with the fastest reaction rates with OH, Cl, O3, and NO3 were further examined in the study (Fig. 5C). 

Among these, 2,6-Dimethyl-2,6-cyclooctadiene (CAS RN: 3760-14-3) is a volatile compound with an irritating odor, 

exhibiting the fastest reaction rates with OH, Cl, and O3. Additionally, 1,3-cyclopentadiene (CAS RN: 542-92-7) and 1,4-340 

Dimethylcyclohexene (CAS RN: 70688-47-0) also showed high reaction rates with O3, Cl, and OH, likely due to the presence 

of double bonds and cyclic structures in these molecules. The carbon atoms in the double bonds and those connected to methyl 

groups generally have high reactivity. Therefore, it could be inferred that these VOCs, or VOCs with similar structures, may 

significantly contribute to the formation of fine particulate matter and the increase in ozone in the atmosphere. 

 345 
Figure 5. Predicted reaction rate constants for VOCs atmospheric oxidation reactions. (A) Predicted mean log10ki values for different 

types of VOCs. (B) Distribution of VOC types ranked by predicted reaction rates, divided into quartiles: the fastest 25% (Q1), 25%-
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50% (Q2), 50%-75% (Q3), and the slowest 25% (Q4). (C) Molecular structures of VOCs with the fastest reaction rates with the four 

oxidants. 

4 Concluding  350 

In response to growing concerns about atmospheric pollution and its impact on human health and climate, this study introduces 

Vreact, a deep learning model designed to predict oxidation rate constants for VOCs with multiple oxidants (OH, Cl, O3, and 

NO3). Vreact demonstrates strong overall performance (MSE=0.299, R2=0.941 on internal test data) and provides mechanistic 

insights by capturing atomic-level interaction patterns through a Siamese MPNN framework. Its predictive accuracy varies by 

oxidant, reflecting the availability and diversity of training data. The model achieves high accuracy for OH (R2=0.929, n=1363) 355 

and Cl (R2=0.913, n=735), supporting robust application in daytime oxidation modeling. In contrast, lower performance is 

observed for NO3 (R2=0.721, n=393) and O3 (R2=0.584, n=311), pointing to challenges in modeling oxidants with fewer data 

and more complex mechanisms. This underscores the importance of expanding high-quality experimental datasets to improve 

generalization, particularly for underrepresented oxidants and VOC classes. 

Vreact supports high-throughput screening for emission inventories and atmospheric reactivity assessments. Its applications 360 

span VOC prioritization, emission control planning, and kinetic mechanism development, offering actionable insights for 

environmental policy and modeling. An interactive web interface (http://vreact.envwind.site:8001) (Fig. S3) enhances 

accessibility for researchers and policymakers. Further improvements in NO3 and O3 predictions will expand its utility in 

nighttime chemistry and secondary aerosol formation scenarios. 

Data and Code Availability 365 

The code and datasets used and/or analysed during the current study are available at https://github.com/Luo-Jiaqi/Vreact and 

supplemental information. 

Supplementary Material  

Detailed information about the learning curve of the Vreact training process (Figure S1); The chemical spatial distribution of 

VOCs in the OH, O3, and NO3 datasets used in this study and prior literature (Figure S2); User interface of the web platform 370 

for predicting VOC reaction rate constants using the Vreact model (Figure S3); Graph representation of molecular structures 

(Text S1); MPNN message passing and readout phases for molecular graphs (Text S2); Regularization and early stopping 

techniques in the Vreact model training (Text S3); Model performance evaluation metrics (Text S4); Implementation of the 

Vreact model (Text S5); Distribution of VOCs reactions with atmospheric oxidants across datasets (Table S1); Atomic features 

and bond features used in molecular graph representation (Table S2); Hyperparameter search space and optimal settings for 375 

https://github.com/Luo-Jiaqi/Vreact
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the Vreact model (Table S3);Experimental and predicted log10ki values for VOCs on the internal test dataset (Table S4); 447 

real-world atmospheric VOCs (Table S5). 
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