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Abstract. Volatile Organic Compounds (VOCs) significantly influence global atmospheric chemistry through oxidative
reactions with oxidants. These reactions produce key precursors to the formation of atmospheric fine particulate matter (PM» s)
and ozone (O3), which in turn play a crucial role in regulating O3 pollution and reducing PM» s concentrations. With the
increasing diversity of VOCs, the need for advanced modeling techniques to accurately estimate the atmospheric oxidation
reaction rate constants (k;, where i € {OH, Cl, NOs, or Os3}) has become more urgent. Here we introduce Vreact, a Siamese
message passing neural networks (MPNN) architecture that jointly models VOC—oxidant reactivity. The model simultaneously
predicts logiok; values and achieves a mean squared error (MSE) of 0.299 and a coefficient of determination (R2%) of 0.941 on
the internal test set. This framework overcomes the single-oxidant constraint of traditional models, enabling unified and
scalable prediction of VOC oxidation kinetics across multiple oxidants. An interactive web tool

(http://vreact.envwind.site:8001) is provided to facilitate non-expert access to reactivity screening. Vreact offers valuable

insights into the formation and evolution of atmospheric pollutants, and serves as a critical resource for developing effective

control and emission strategies, ultimately supporting global efforts to mitigate air pollution and improve public health.

1 Introduction

The rapid advancement in data-driven methodologies has revolutionized various fields, such as protein structure prediction
(Abramson et al., 2024), molecular generation (Zhang et al., 2023), organic reaction prediction (Burés and Larrosa, 2023), and
bioinformatics (Theodoris et al., 2023). Environmental challenges, particularly those associated with atmospheric chemistry
and climate change (Chen et al., 2024; Kubecka et al., 2023; Qiu et al., 2023; Zhao et al., 2025), have also benefited from these
innovations. As pollutants evolve under both anthropogenic and natural influences, the understanding of their chemical and

physical properties has become increasingly vital for addressing global air quality and climate issues. Volatile Organic
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Compounds (VOCs) are organic chemicals that readily vaporize at ambient temperature, contributing significantly to the
complexity of atmospheric processes. Sources of VOCs are both natural and anthropogenic, with human activities such as
industrial production, petrochemical processing, and vehicle exhaust contributing to the emission of a variety of VOCs.
Additionally, biosphere sources, such as plants and forests, release compounds like isoprene and monoterpenes, which further
complicate atmospheric VOC dynamics (Qin et al., 2021; Sindelarova et al., 2014). These highly reactive VOCs drives critical
atmospheric reactions, such as the formation of ozone and secondary organic aerosols (SOA), and significantly contribute to
environmental pollution. For instance, VOCs interact with nitrogen oxides (NOy) and radicals to form tropospheric O3 and
SOA (Finlayson-Pitts and Pitts, 1997; Hallquist et al., 2009; Han et al., 2018; Zhang et al., 2020; Ziemann and Atkinson, 2012).
The role of VOCs in the formation of secondary pollutants such as PM, s (Huang et al., 2014; Zhao et al., 2015) and O; is a
growing concern due to the adverse impacts on human health (Kamarrudin et al., 2013), including respiratory diseases,
cardiovascular conditions, and overall mortality. The dynamic interactions between VOCs and atmospheric oxidants determine
the persistence and transformation of these pollutants, which in turn influence their contribution to global haze, photochemical
smog, and acid deposition.
VOCs undergo degradation and removal from the troposphere through diverse mechanisms driven by atmospheric oxidants.
During the daytime, OH radicals serve as the primary oxidants, facilitating rapid VOC oxidation. At night, however, the
concentration of OH decreases sharply due to the lack of photochemical reactions, shifting the dominant oxidation pathways
to NOs radicals and Os. The reaction rates of VOCs with OH are approximately 30 times faster than those with NOj; radicals,
significantly influencing the spatial and temporal variation of the atmosphere'’s self-cleaning capacity and the formation of
organic aerosols (Palmer et al., 2022; Zha et al., 2023). For example, regions with high isoprene concentrations often reflect
differences in its reaction products and rates with OH and NOy rather than solely high emissions (Wells et al., 2020).
Additionally, the structural diversity of VOCs determines their reaction mechanisms, influencing reaction rates. Highly
reactive compounds such as alkenes, multi-substituted aromatics, and phenols exhibit higher reaction rates, whereas alkanes,
alkyl nitrates, and ketones demonstrate relatively low reactivity (Ziemann and Atkinson, 2012). These variations underscore
the significance of atmospheric oxidation reaction rates as key indicators of the persistence of organic pollutants in the
atmosphere. Accurate assessment of these rates is essential for understanding the fate of VOCs, elucidating SOA formation
processes, and addressing global challenges related to PM» s and ozone development.
Given their importance, accurately predicting the atmospheric oxidation rates of VOCs is critical for understanding their
persistence, transformation, and contribution to secondary pollutant formation. Traditionally, such predictions have relied
on experimental kinetic modeling methods and computational methods (e.g., quantum-chemistry (QC) and quantitative
structure-activity relationship (QSAR) approaches) (Basant and Gupta, 2018; Liu et al., 2021). Experimental methods
involve tracking reactant and product concentrations using techniques like chemical ionization mass spectrometry (CIMS),
followed by kinetic fitting to determine Arrhenius parameters (Logan, 1982; Wells et al., 1996). However, these methods
are time-consuming and cover only a narrow subset of atmospheric VOCs. QC approaches eembine-useab—initio—or

density-functional theory calculations swith-such as transition-state theory (TST) ;eanenieal-or variational TST to obtain
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temperature-dependent rate constants (Canneaux et al., 2014; Liu et al., 2021; Meana-Pafieda et al., 2024). While QC
methods offer detailed mechanistic insight, their computational cost scales steeply with molecular size and conformational
complexity, limiting routine application to large numbers of VOCs. However, traditional computational methods have
shortcomings such as high computational complexity and low efficiency. As a more scalable alternative, QSAR models
leverage molecular descriptors and statistical learning. and it has become one of the important methods for evaluating
reaction rate constants. Previous examples include AOPWIN™ module integrated in US EPI Suite™ software, which
applies Partial Least Squares (PLS) regression to 109 gas-phase reactions with hydroxyl radicals (Atkinson, 1986, 1987;
Kwok and Atkinson, 1995), and later expansions using a broader dataset (Oberg, 2005). Some models have also
incorporated machine learning algorithms such as multiple linear regression (MLR) (Liu et al., 2020, 2022) for predicting
reactions with NO3; and OH and artificial neural networks for predicting reactions with O3 (Fatemi, 2006). Despite their
utility, these models generally rely on predefined descriptors and are typically limited to reactions with a single type of
oxidant, which constrains the scalability of the model. Recent advances in deep learning (DL), particularly graph neural
networks (GNN), have improved molecular representation by learning features directly from molecular graphs. This
enables more flexible and accurate prediction of chemical properties without requiring predefined descriptors. GNNs
have been successfully applied in atmospheric chemistry and other fields tasks, such as in predicting vapor pressures with
GC?>NN (Kriiger et al., 2025) and modeling reaction rate constants involving with OH using GAT-GIN hybrid
architectures (Huang et al., 2024). However, like traditional models, these GNN-based frameworks have been developed
for single-molecule systems and thus fall short in capturing the complexity of multi-molecule reactions in real
environments. In contrast, the atmosphere involves competing and sequential reactions between VOCs and multiple
oxidants—OH, NO,x, Cl, and O36s—depending on time of day, region, and chemical conditions. This multiplicity
underscores the urgent need for models that can simultaneously learn and predict VOC reactivity across multiple oxidants.
To meet this need, message passing neural networks (MPNN) offer a powerful framework (Gilmer et al., 2017). MPNNs
propagate information across molecular graphs, capturing both atomic-level features and topological context. Extensions
of MPNN, such as the communicative GraphRXN (Li et al., 2023) and directed MPNN Chemprop (Heid et al., 2024),

have shown promise in learning reactivity across multiple reactants. Compared with the simple concatenation using

molecular fingerprints/descriptors, they all use MPNN to deeply extract task-relevant representations of chemical

reactions, provide abundant chemical information for subsequent reaction modeling, and achieve good prediction results.

Yet, their application has largely focused on synthesis or materials chemistry, not atmospheric oxidation reaction. Fhey

This study addresses this gap by proposing Vreact, a novel Siamese MPNN architecture capable of jointly modelling reactions
between VOCs and four major atmospheric oxidants. Unlike previous models that treat each oxidant independently, Vreact

processes VOC—oxidant pairs in a unified framework, it learns representations from the molecular graphs of VOCs and
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oxidants through the MPNN, and encodes their interactions via feature aggregation. This design enables the model to accept
arbitrary VOC—oxidant combinations and simultaneously predict reaction rate constants k; (where i € {OH, Cl, NOs, or O3}).

The dual-input design of Vreact enhances scalability and generalization across multiple oxidants. Ablation experiments show

that Vreact significantly outperforms a structurally simpler single-input MPNN trained under identical conditions. The

interaction module within Vreact provides atomic-level attention maps that offer mechanistic insights into VOC-oxidant

. . . N

ility. Applying Vreact to 447 atmospheric VOCs not included in the training

data revealed a wide distribution of oxidation reactivities and confirmed that alkenes and aromatics exhibit higher reactivity,

acting as key precursors for ozone and SOA formation.

2 Methods and Data
2.1 Collection and Preprocessing of Reaction Rate Constant Dataset

The VOC:s reaction rate constant dataset compiled by McGillen et al. is utilized in the study, which includes gas-phase reaction
rate constants of natural atmospheric VOCs, halocarbons, and their degradation products with OH, Cl, NOj3 radicals, and O3,
within a temperature range of 250-370K (McGillen et al., 2020). Under thermodynamic standard conditions at 298K, a total
of 2802 gas-phase reaction rate constant data points were obtained, encompassing 1586 VOCs and 4 oxidants. This dataset
includes &; values for 1363 VOCs with OH, 735 VOCs with Cl, 393 VOCs with NOj radicals, and 311 VOCs with O3. Due to
the wide range of reaction rate constants k; in the dataset (1.460x102'~7.550x10"'%m?3/(molecule-s), S.D.=£1.040x10-'%), the
data were log-transformed to logiok; to reduce skewness and mitigate the influence of outliers on the model. To ensure a
balanced distribution of each type of oxidant in the training, validation, and internal test sets, the dataset was divided using
stratified random sampling into training, validation and internal test sets in an 8:1:1 ratio (Table S1). Combinations of the same

VOC with different oxidants may appear across the training, validation, and internal test sets.

2.2 Construction and Training of the Vreact Model

All VOCs and oxidant molecules were converted into graphs G (V, E) (Text S1). The generated molecular graph G includes

ten types of atomic information for each non-hydrogen atom, such as element type, chirality, and atomic hybridization type,
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as well as four types of bond information, including bond type and conjugation (Table S2). A Siamese MPNN architecture-
Vreact, was designed to simultaneously accept input features of VOCs and oxidant molecules (Fig. 1). The model takes the
SMILES of VOCs and oxidants as input and primarily includes a VOC molecular graph representation layer and a MPNN
layer, an oxidant molecular graph representation layer and MPNN layer, an interaction layer, and a prediction layer. The
molecular graph G(V, E) encoding layers of VOCs and oxidants containing node feature matrix X and edge feature matrix ¥,
which learn molecular properties through the MPNN layer (Gilmer et al., 2017). The MPNN forward propagation process
consists of two phases: Message Passing Phase and Readout Phase and generates molecular feature tensors 4 for VOCs and B
for oxidants. Subsequently, the interaction layer transforms the molecular features 4 of VOCs and B of oxidants into tensors
A1 and Bj of the same shape and concatenates them into tensor Z. Reaction rate constants are determined not only by the
molecular structure of the reactants but also by the interactions between the reactants. The interaction feature tensor 7 is dot-
multiplied with 4-B to obtain the oxidant-affected VOC feature tensor A"; similarly, it is dot-multiplied with B-A to obtain the
VOC-affected oxidant feature tensor B'. These operations embed the learned interaction features into the molecular structure
features, providing a more comprehensive representation of the chemical reaction mechanisms between the two reactants. The
prediction phase is composed of a pooling layer and three fully connected layers. The pooling layer uses the Set2Set method
to achieve global average pooling, and the fully connected layers map the input features to the final predicted values (logiok:).
More details can be found in Text S2.

During model training, Adaptive Moment Estimation (Adam) (Kingma and Ba, 2017) was employed to address the fixed
learning rates issue in traditional gradient descent methods. Adam adaptively adjusts the learning rate of each parameter using
first-order moment estimates (mean of the gradients) and second-order moment estimates (exponentially moving average of
the uncentered variance of the gradients), aiding in rapid model convergence. Bayesian optimization was utilized for
hyperparameter tuning, which included the initial learning rate of the optimizer (/r), batch size, L2 regularization parameter
(weight decay), dropout rate (p), and MPNN time steps (7) (Text S3).During hyperparameter optimization, the hyperparameter
combination that minimizes the Mean Squared Error (MSE) of the validation set was selected as the optimal hyperparameter
combination, and the best model was saved (Table S3).The predictive performance of the model was assessed using MSE,
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R?R2) (Text S4). For more

information on the model implementation, please refer to Text S5.



160

165

170

Molecular Graph Prediction Phase Molecular Graph

logok; .
VOCs SMILES: CC(=C)C=C Oxidant SMILES: [O-][0+]=0

X113 X2 vt Xy Yuu Yz Vi E X131 X2 vt Xy Yiu Y1z Yk
Set2Set

Xn1 Xn2 " Xy Yam1i Yamz2 " Yomk

Xn1 Xn2 Xy Yami Yamz2 " Yomk

node features X edge features Y > A B" A= & node features X edge features Y
/ 1 L] :
A B'
a 4 \ é

— interacticzn matrix | o

3

. 0
= EN Z L :

[
‘i n n =
’\rN ».- =) ... <3 .. \+/

Feature Matrix A » A, }t B, < Feature Matrix B

MPNN Interaction Phase MPNN

Figure 1. Schematic of the Vreact Architecture. SMILES of VOCs and oxidants are converted into molecular graphs, where nodes
represent atoms and edges represent bonds. Atomic and bond features form matrices X and Y. Using a Siamese MPNN architecture,
the Vreact model processes these features through separate MPNN layers for VOCs and oxidants. The final prediction layer outputs
log1oki, incorporating both molecular and interaction features.

2.3 Clustering Analysis

Morgan fingerprints (radius 2, 1024 bits, generated using RDKit) was used as the molecular embeddings before clustering and
visualization. To investigate VOC structural diversity and reactivity trends, two methods were applied: the Self-Organizing
Map (SOM) (Kohonen, 2006) and the Uniform Manifold Approximation and Projection (UMAP). The SOM algorithm
clustered VOCs into 100 structural groups (10x10 grid), using a sigma of 0.3 and learning rate of 0.5. The UMAP algorithm
projected the high-dimensional fingerprint space into 2D for visualization, with the number of neighbors set to 50, minimum

distance to 0.6, and metric as correlation.

3 Results and Discussion
3.1 Analysis of VOC and Oxidant Reaction Data Distribution and Characteristics

The categories and distribution characteristics of VOC and oxidant reaction data are first explored in the study, which includes

logiok; data for 1586 VOCs with OH, Cl, NOs, and O3 (Fig. 2A). The dataset contains the most data for OH, accounting for



175

180

185

190

48.64% of the total, as OH plays a crucial role in the atmosphere, rapidly reacting with organic pollutants and dominating their
removal process. The remaining data points are for Cl (26.23%), NOs (14.03%), and O3 (11.1%) in descending order of data
quantity. Oj is primarily produced through photochemical reactions involving NOy and VOCs, while NOs, as the principal
nighttime atmospheric oxidant, significantly contributes to the oxidation and removal of trace gases. The dataset encompasses
VOCs with diverse chemical structures, including 22 molecular motifs such as double bonds, esters, benzene rings, and halogen
atoms (F, S, Cl, Br, and I) (Fig. 2B). This extensive chemical structure space facilitates the model's ability to learn more
structural features and enhances its generalization capability.

Moreover, although there is some overlap in the reactions of the four oxidants with VOCs, each oxidant also has specific VOC
reactions (Fig. 2C). There are 747 VOCs with k; data for only one oxidant and 839 VOCs with £; data for multiple oxidants, of
which 81 VOCs have data for all four oxidants. For example, isoprene can react with OH, NOs, and Cl through hydrogen
abstraction reactions, and undergo addition reactions with O3 via its unsaturated double bonds. Furthermore, the four oxidants
exhibit different logiok; value distribution with VOCs due to differences in chemical structures and reactivity (Fig. 2D). OH,
due to its high oxidation potential, usually reacts quickly with VOCs via hydrogen abstraction, with logiok; concentrated in the
range of -14.000 to -10.000. In contrast, O3 typically undergoes slower addition reactions with unsaturated bonds in reactants
(Ziemann and Atkinson, 2012), with logiok; ranging from -20.836 to -13.721. NOj can participate in both hydrogen abstraction
and addition reactions, resulting in a wider range of logiok; values. The diverse reaction rates of these oxidants maintain the
composition and oxidative state of aerosols in the atmosphere, but the uneven distribution of their values makes predicting k;
more challenging. Even for the same oxidant, VOCs with different structures exhibit varied reaction rates in gas-phase
oxidation reactions. For example, NOs reacts very slowly with aromatic rings, with a k; value of 3.900x107!¢ cm?/(molecule-s)
for xylene. In contrast, NOs can rapidly abstract hydrogen from hydroxyl groups, with a k; value of up to 1.72x10°°

cm?®/(molecule-s) for 3-methylcatechol.
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Figure 2. Visualization of VOCs Dataset. (A) Proportion of the four types of oxidants. (B) Number of VOCs containing each
molecular motif. MultFct: multifunctional; AroRings: aromatic rings; NaRings: non-aromatic rings; Tbonds: triple bonds; CumDBs:
cumulated double bonds; ConjDBs: conjugated double bonds; SepDBs: separated double bonds. (C) Number of VOCs that can
undergo oxidation reactions with the four oxidants. (D) Distribution of logiok: values for the four oxidants. (E) Heatmap of reaction
rate constants based on VOCs clustering, where each grid represents a cluster of structurally similar VOCs. The color gradient
indicates the logioki: values, with red indicating higher logiokivalues (faster reaction rates), blue indicating lower logiok: values (slower
reaction rates), and white indicating the absence of logiok: data for that cluster. The cluster containing butyl acrylate are enclosed
within the black box.

Furthermore, the same VOCs show different reaction rates with different oxidants. The SOM algorithm was used to explore
the relationship between VOC structural variation and logiok;. Each grid in Fig. 2E represents a VOC cluster, and the color
gradient indicates reactivity (average logiok; values) for the corresponding oxidants. By comparing logok; values across clusters,
oxidant-specific reactivity patterns can be assessed. For example, butyl acrylate (CAS RN.141-32-2) reacts slowly with NO;
radicals and O3, mainly due to the unsaturated addition reactions through the carbon-carbon double bond, where the ester group
in the molecular structure produces an electron-withdrawing effect, reducing the electron density in the m bond and thus
lowering the reaction rate (Gai et al., 2009; Wang et al., 2010). In contrast, it reacts faster with OH and CI through hydrogen
abstraction rather than addition (Le Calvé et al., 1997; Ohta, 1984; Wang et al., 2018). This demonstrates that the dataset,
which includes various oxidants and VOCs, exhibits diverse logiok; values. The overall logiok; values differ significantly
between different oxidants. This diverse dataset enables the model to learn the reaction information between VOCs and

different oxidants, thereby improving model performance and prediction accuracy.
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3.2 Performance Evaluation of Vreact Model

The Siamese MPNN architecture of the Vreact captures both molecular features of VOCs and oxidants as well as their
interaction dynamics simultaneously. During hyperparameter optimization, the set of hyperparameters that minimized MSE
on the validation set was selected. After training for 46 epochs (Fig. S1), Vreact achieved robust predictive performance on
the validation set, with R?R2 0f 0.961, MSE of 0.194 and MAE of 0.314 for logiok; (Fig. 3A). On the internal test set, the model
achieved R’R? of 0.941, MSE of 0.299 and MAE of 0.322 for logiok; (Fig. 3A), indicating robust predictive capability and
excellent generalization ability for unseen VOC-oxidant combinations. The small MAE difference between the validation set
and internal test sets, despite a larger difference in MSE, indicates that MSE is more sensitive to outliers or large errors, while
MAE directly reflects the average absolute prediction error. Although the R?R2 on the internal test set is slightly lower than on
the validation set, this minor discrepancy does not affect the model's robust predictive ability. The result on the internal test
set is available in Table S4.

To explore the predictive performance of the Vreact model for different types of oxidants, we evaluated the prediction
performance for OH, Cl, O3, and NOs separately. The regression fit of predicted logiok; values versus experimental values for
the four oxidants (Fig. 3B) shows that O3 and NOs have higher dispersion compared to OH and CI. The R?R2 values for the
reactions of the four oxidants, in descending order, are OH > Cl > NO; > O3, with OH and CI having R’R2 values of 0.929 and
0.913, respectively. The prediction performance for NO; radicals and Os is comparatively lower, with R?R2 values below 0.800.
The OH dataset is the most abundant and balanced, while data amount of O3 and NO; was relatively small, and the model can’t
fully capture the reaction features, leading to prediction bias. In addition, the logok; values for NOs are highly dispersed, also
reducing the prediction performance. Additionally, the order of the size of R? is consistent with the order of the data volume
of the four oxidant datasets. This indicates that the amount of data is also an important factor affecting the prediction

performance of reaction rate constants, and that more available data help the model to fully capture reaction features.
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Figure 3. Evaluation and comparison of the predictive performance of the Vreact model. (A) MSE, MAE, R?R? of Vreact (trained
on the McGillen et al. dataset) on the validation set, internal test set, and external post-2020 test set. (B) R?R? values for logioki
predictions of four oxidants’ reactions in the internal test set. eembined(C€C) Distribution of AE between predicted and experimental
logioki values for the four oxidants in the internal test set. (D) R? of the Vreact and Vreact-Ablation on the OH, Cl, NO3, O3, and

11

combined test sets. (BE) R> R-comparison among previously published single-oxidant models, the original Vreact (evaluated on
cleaned literature test sets), and Retrained Vreact (trained and tested using the same original splits as the literature) highlighting
adaptability. (EF-GH) The chemical spatial distribution of VOCs in the OH, O3, and NO;3 datasets used in this study and prior

literatures.
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The Absolute Error (AE) between the predicted and experimental logok; values for the four types of oxidants are presented in
Fig. 3€3C. The median AE for OH is 0.149, while O3 and NOs3 exhibit median AEs of 0.301 and 0.287, respectively, which
are slightly higher than that of OH. Overall, 84% of the AE values for O3 and NO; are within 1. As depicted in the Fig. 3€3C,
individual outliers in AE contribute to the increased RMSE and MAE for O3 and NOs, and the consequent decrease in R*R2.
For example, the AE for the reaction of NO3 with azulene (CioHs) is 4.653. Azulene, an aromatic hydrocarbon composed of a
seven-membered ring fused to a five-membered ring, is an isomer of naphthalene (CioHsg). NO3, as electrophilic reagents, tend
to attack regions with higher electron density. Compared to naphthalene, the electron density distribution of azulene is uneven,
with certain regions having high electron density that may facilitate effective interactions with NOs. Additionally, the structure
of azulene may reduce steric hindrance, allowing NO; radicals easier access to reaction sites (Atkinson et al., 1992), resulting
in a higher reaction rate constant and increasing the model's prediction difficulty. Similarly, the predicted logiok; value for the
reaction of NOs with diiodomethane (CH:lb) is significantly lower than the true value (AE=2.763). This discrepancy may be
attributed to the limited representation of iodine-containing VOCs in the dataset, with only iodomethane (CH3I) and iodoethane
(CHsl) having £; values in the training and validation sets. This limited data prevents the model from fully learning the reaction

characteristics of iodine-containing compounds, resulting in a larger prediction error for diiodomethane with NO3 radicals.

3.3 Model Ablation StudyExperiment

To evaluate the contribution of the Siamese neural network architecture in Vreact, we performed an ablation study. In the

ablation model (Vreact-Ablation), the oxidant input and interaction module were removed, leaving only the VOC input. Both

Vreact and Vreact-Ablation were trained, validated, and tested on the OH, CI, NOss, O30s, and combined datasets. All

experimental settings were kept consistent, including data sources (McGillen et al., 2020), hyperparameters and evaluation

metrics. As shown in Fig. 3€D, Vreact consistently outperformed Vreact-Ablation across all four oxidants, with R* R2

improvements of 0.049 (OH), 0.113 (Cl), 0.184 (NO36s), and 0.021 (O39s). When evaluated on the combined dataset, Vreact-

Ablation achieved an R*R2 of only 0.035. indicating that it fails to generalize across multiple oxidants. Additionally, both

models showed comparable runtime per iteration. These results demonstrate that, under the same training conditions, the

Siamese MPNN architecture significantly enhances predictive performance and generalization. By explicitly modeling VOC-

oxidant interactions, the architecture enables the network to capture shared patterns across reaction types, thereby improving

its practical applicability in multi-reactivity prediction.

3.34 Comparation with Single-Oxidant Prediction Models

Most existing machine learning models for predicting VOC reaction rates constants are tailored for individual oxidants,
limiting their applicability to complex atmospheric systems involving multiple oxidants. In contrast, the Siamese MPNN
architecture of the Vreact enables simultaneous learning of molecular features and interaction patterns across different VOC—

oxidant pairs within a unified framework. To benchmark Vreact against previously published single-oxidant QSAR/ML
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models, we selected three top-performing models developed under 298K conditions: Liu et al. (2020) for OH (training/test =
144/36), Xu et al. (2013) for O3 (60/35), and Liu et al. (2022) for NOs radicals (151/38). Prior to evaluation, UMAP was
applied to reduce the dimensionality of the Morgan molecular fingerprints to visualize the chemical space of both the
comparison literature datasets and the Vreact training set (Fig. S2). The observed structural overlap confirms that Vreact’s
dataset spans a broad and diverse chemical space. Given that our study used different data than those reported in the literature,
we employed two strategies for comparison. First, the pre-trained Vreact model (trained on the McGillen dataset) was directly
applied to the literature test sets to evaluate extrapolation performance. To ensure a fair comparison, overlapping data points
between the literature test sets and the McGillen training set were remeved—(removed (2 of 38 for NO3Os, 13 of 35 for O30s,
and 6 of 36 for OH). Second, Vreact was retrained on each literature dataset using their original train/test splits (Retrained
Vreact), allowing a direct comparison with published models on original literature test sets.

As shown in Fig. 3B3E, both the original Vreact model and its retrained version consistently outperformed the single-oxidant
models from Liu et al. (2022) and Xu et al. (2013) on the OH and O; literature test sets, achieving higher R%* values and
demonstrating superior regression fits between predicted and experimental values. These results highlight the capability of the
Vreact architecture—whether trained on a broad multi-oxidant dataset or finetuned on smaller single-oxidant datasets—to
effectively learn structural features of VOCs and oxidants and capture complex molecular interactions through its Siamese
MPNN framework. Notably, Vreact shows opposite performance trends for OH and Oss between the internal and literature test
set. To understand this, UMAP was applied to project compounds from the training, internal, and literature test sets into a
shared chemical space. As shown in Fig. 3E3F, the internal OH test set overlaps well with the training data, leading to
consistently strong performance. In contrast, the literature OH set is sparse and scattered near the dataset boundaries. Despite
this, Vreact still achieves a high R?R2, demonstrating good generalization. For 0305 (Fig. 3E3G), the internal test set lies farther
from the dense training distribution, contributing to lower R*?R2. Meanwhile, the literature O3Os set is better aligned with the
training data, resulting in higher prediction accuracy. For NO;Os (Fig. 3G3H), both internal and literature sets show similar
distributions, and the model achieves comparable R?R2 values (~0.815). Although Vreact underperforms slightly compared to
the original single-oxidant model, retraining on the literature data improves performance. This suggests that multi-oxidant

training may introduce some noise but does not significantly compromise prediction accuracy.

3.54 Mechanism Insights Through Interaction Analysis

The interaction layer of the Vreact model can elucidate the atomic interaction mechanisms between VOCs and oxidants. The
interaction matrix, sized n,;%n>, where n; represents the number of non-hydrogen atoms in the VOC molecule and 7, represents
the number of non-hydrogen atoms in the oxidant molecule. Mapping these interaction coefficients onto the molecular structure
highlights key atoms that determine the reaction rate.

To exemplify this mechanism, we analysed specific cases. 2-methyl-4-penten-2-ol is an unsaturated oxygenated volatile
organic compound (OVOC) that constitutes a significant proportion of the atmospheric VOCs, primarily sourced from

industrial solvents used in ink and jet ink manufacturing (Li et al., 2021). As shown in Fig. 4A, the interaction coefficient for
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the distal unsaturated carbon atoms is the highest during the reaction with O3, indicating these are likely the reaction sites for
O3 attack. It is inferred that O3 adds to the unsaturated carbon-carbon double bond through an addition reaction, forming
primary ozonides (POZs). These POZs are unstable intermediates that rapidly cleave to produce carbonyl compounds and
carbon-based radicals, which further rearrange to form secondary ozonides (SOZs). The SOZs and their reaction products are
precursors of SOA. Another example is y-caprolactone (GCL), a five-membered ring ester used in perfumes, which rapidly
reacts and degrades with OH upon entering the atmosphere. Interaction weight analysis shows that the carbon atom linked to
the ethyl group contributes most to GCL’'s oxidative degradation by OH (Fig. 4B), suggesting that OH initially attacks this
carbon atom, abstracting a H atom to form a carbon radical. Previous studies indicate that the reactivity of carbons adjacent to
the oxygen atom in lactones is particularly significant in reactions with OH, especially when alkyl substituents are attached to

this carbon, which enhances its reactivity (Barnes et al., 2014).
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Figure 4. Visualization of atomic weights in VOC molecules. (A) Reaction process of 2-methyl-4-penten-2-ol with Os. (B) Reaction
process of y-caprolactone with OH. The darker the highlighted color of the atom, the stronger its interaction in the gas-phase
oxidation reaction.

3.65 Evaluating Extrapolation Ability and Prioritizing VOCs for Environmental Impact

To further validate the extrapolation capability and generalization performance of the Vreact model, developed using a dataset
compiled up to the year 2020 (Baptista et al., 2021; Joudan et al., 2022; Li et al., 2021), additional k; data from experimentally
measured VOCs and oxidants published after 2020 were collected as an external test set (post-2020 test set) (Table 1). The
prediction results showed that the AE between the experimental logok; and the predicted values was within 1, with the reaction

rate constant prediction for y-heptalactone and OH exhibiting the smallest prediction error. The AE for y-heptalactone with
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OH was only 0.005, and the overall MAE was 0.240, with an MSE of 0.112 and an R2 of 0.98 (Fig. 3A shown in red). The
results indicate that the Vreact can accurately predict the atmospheric oxidation reaction rate constants of unknown VOC:s,
demonstrating its potential application in addressing complex atmospheric chemistry issues involving the interactions between

VOCs and oxidants.

Table 1. The prediction results on the post-2020 test set.

Chemical Experimental Predicted
VOC name Oxidant AE Ref.
structure logioki log1oki
2-methyl-4- HO (Lietal.,
O3 -17.370 -16.712 0.658
penten-2-ol X 2021)
(Baptista et
o OH -11.194 1209 o0ts R
y-caprolactone b_/ s )
(Baptista et
Cl -9.886 -10.149 0.263
al., 2021)
(Baptista et
oo OH -11.056 -11.051 0.005 al.. 2021
y-heptalactone \Q—f v
(Baptista et
Cl -9.770 -9.943 0.173
al., 2021)
RF ] OH 11377 11876 0499 (oudanet
FESOH c%& ' ' ’ al., 2022)
‘; e Joudan et
& cl 110.824 10759 0065 coudane
al., 2022)

FESOH: 2- (1,1,2-trifluoro-2-heptafluoropropyloxy-ethylsulfanyl)-ethanol; AE: absolute error

Despite the identification of hundreds of VOC species, the environmental behavior of most VOCs in the atmosphere and their
potential contributions to particulate matter formation and ozone increase remain largely unclear. To address this gap, we
employed the Vreact model to evaluate the atmospheric oxidation reaction rate constants of a broad spectrum of VOCs.
Molecular structures for 447 VOCs with unknown atmospheric oxidation k; values were collected from previous research,
which evaluated more than 500 Chinese domestic source profiles, including literature and field measurements (Sha et al., 2021)
(Table S5). After excluding VOCs already included in the Vreact dataset, 296, 339, 416, and 369 data points for OH, Cl, Os,
and NOs; were retained, respectively. The prediction results indicated that, although the oxidation reaction rates of VOCs in
the atmosphere vary (Fig. 5A), the differences in logiok; values are primarily influenced by the type of oxidant, with smaller
variations in logok; values observed for different VOCs reacting with the same oxidant. Among these, reactions with OH and
Cl were the fastest, consistent with the results from the McGillen dataset analysis used in the modeling (Fig. 2D). Additionally,
the changes in the proportion of VOC types within different reaction rate intervals (Fig. 5B) demonstrated that the composition

of VOC types varied with reaction rates. Halocarbons exhibited relatively slower reaction rates, while alkenes and aromatics
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reacted relatively quickly, and oxygenated compounds showed a more uniform rate distribution. Consequently, areas with high
emissions of alkenes and aromatics will produce more reaction products per unit time, providing precursors for O3 and SOA
formation (Gao et al., 2021).

The top five VOCs with the fastest reaction rates with OH, Cl, O3, and NO3 were further examined in the study (Fig. 5C).
Among these, 2,6-Dimethyl-2,6-cyclooctadiene (CAS RN: 3760-14-3) is a volatile compound with an irritating odor,
exhibiting the fastest reaction rates with OH, Cl, and Os. Additionally, 1,3-cyclopentadiene (CAS RN: 542-92-7) and 1,4-
Dimethylcyclohexene (CAS RN: 70688-47-0) also showed high reaction rates with O3, Cl, and OH, likely due to the presence
of double bonds and cyclic structures in these molecules. The carbon atoms in the double bonds and those connected to methyl
groups generally have high reactivity. Therefore, it could be inferred that these VOCs, or VOCs with similar structures, may

significantly contribute to the formation of fine particulate matter and the increase in ozone in the atmosphere.
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Figure 5. Predicted reaction rate constants for VOCs atmospheric oxidation reactions. (A) Predicted mean logiok: values for different
types of VOC:s. (B) Distribution of VOC types ranked by predicted reaction rates, divided into quartiles: the fastest 25% (Q1), 25%-
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50% (Q2), 50%-75% (Q3), and the slowest 25% (Q4). (C) Molecular structures of VOCs with the fastest reaction rates with the four
oxidants.

4 Concluding

In response to growing concerns about atmospheric pollution and its impact on human health and climate, this study introduces
Vreact, a deep learning model designed to predict oxidation rate constants for VOCs with multiple oxidants (OH, Cl, O3, and

NO;OH,-CL-NOs-Os). Vreact demonstrates strong overall performance (MSE=0.299, R?>=0.941 on internal test data) and

provides mechanistic insights by capturing atomic-level interaction patterns through a Siamese MPNN framework. Its
predictive accuracy varies by oxidant, reflecting the availability and diversity of training data. The model achieves high
accuracy for OH (R?=0.929, n=1363) and C1 (R?>=0.913, n=735), supporting robust application in daytime oxidation modeling.
In contrast, lower performance is observed for NO;Os (R¥=0.721, n=393) and 0305 (R?>=0.584, n=311), pointing to challenges
in modeling oxidants with fewer data and more complex mechanisms. This underscores the importance of expanding high-
quality experimental datasets to improve generalization, particularly for underrepresented oxidants and VOC classes.

Vreact supports high-throughput screening for emission inventories and atmospheric reactivity assessments. Its applications
span VOC prioritization, emission control planning, and kinetic mechanism development, offering actionable insights for
environmental policy and modeling. An interactive web interface (http://vreact.envwind.site:8001) (Fig. S3) enhances
accessibility for researchers and policymakers. Further improvements in NO3Os and O30s predictions will expand its utility in

nighttime chemistry and secondary aerosol formation scenarios.

Data and Code Availability

The code and datasets used and/or analysed during the current study are available at https://github.com/Luo-Jiaqi/Vreact and

supplemental information.

Supplementary Material

Detailed information about the learning curve of the Vreact training process (Figure S1); The chemical spatial distribution of
VOCs in the OH, O3, and NOs datasets used in this study and prior literatures (Figure S2); User interface of the web platform
for predicting VOC reaction rate constants using the Vreact model (Figure S3); Graph representation of molecular structures
(Text S1); MPNN message passing and readout phases for molecular graphs (Text S2); Regularization and early stopping
techniques in the Vreact model training (Text S3); Model performance evaluation metrics (Text S4); Implementation of the
Vreact model (Text S5); Distribution of VOCs reactions with atmospheric oxidants across datasets (Table S1); Atomic features

and bond features used in molecular graph representation (Table S2); Hyperparameter search space and optimal settings for
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the Vreact model (Table S3);Experimental and predicted logiok; values for VOCs on the internal test dataset (Table S4); 447
real-world atmospheric VOCs (Table S5).
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