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Abstract. Volatile Organic Compounds (VOCs) significantly influence global atmospheric chemistry through oxidative 

reactions with oxidants. These reactions produce key precursors to the formation of atmospheric fine particulate matter (PM2.5) 

and ozone (O3), which in turn play a crucial role in regulating O3 pollution and reducing PM2.5 concentrations. With the 15 

increasing diversity of VOCs, the need for advanced modeling techniques to accurately estimate the atmospheric oxidation 

reaction rate constants (ki, where i ∈ {OHOH, ClCl, NO3, or O3}) has become more urgent. Here we introduce Vreact, a 

Siamese message passing neural networks (MPNN) architecture that jointly models VOC–oxidant reactivity. The model 

simultaneously predicts log10ki values and achieves a mean squared error (MSE) of 0.299 and a coefficient of determination 

(R²) of 0.941 on the internal test set. This framework overcomes the single-oxidant constraint of traditional models, enabling 20 

unified and scalable prediction of VOC oxidation kinetics across multiple oxidants. An interactive web tool 

(http://vreact.envwind.site:8001) is provided to facilitate non-expert access to reactivity screening. Vreact offers valuable 

insights into the formation and evolution of atmospheric pollutants, and serves as a critical resource for developing effective 

control and emission strategies, ultimately supporting global efforts to mitigate air pollution and improve public health. 

1 Introduction 25 

The rapid advancement in data-driven methodologies has revolutionized various fields, such as protein structure prediction 

(Abramson et al., 2024), molecular generation (Zhang et al., 2023), organic reaction prediction (Burés and Larrosa, 2023), and 

bioinformatics (Theodoris et al., 2023). Environmental challenges, particularly those associated with atmospheric chemistry 

and climate change (Chen et al., 2024; Kubečka et al., 2023; Qiu et al., 2023; Zhao et al., 2025), have also benefited from these 

innovations. As pollutants evolve under both anthropogenic and natural influences, the understanding of their chemical and 30 

physical properties has become increasingly vital for addressing global air quality and climate issues. Volatile Organic 

http://vreact.envwind.site:8001/
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Compounds (VOCs) are organic chemicals that readily vaporize at ambient temperature, contributing significantly to the 

complexity of atmospheric processes. Sources of VOCs are both natural and anthropogenic, with human activities such as 

industrial production, petrochemical processing, and vehicle exhaust contributing to the emission of a variety of VOCs. 

Additionally, biosphere sources, such as plants and forests, release compounds like isoprene and monoterpenes, which further 35 

complicate atmospheric VOC dynamics (Qin et al., 2021; Sindelarova et al., 2014). These highly reactive VOCs drives critical 

atmospheric reactions, such as the formation of ozone and secondary organic aerosols (SOA), and significantly contribute to 

environmental pollution. For instance, VOCs interact with nitrogen oxides (NOx) and radicals to form tropospheric O3 and 

SOA (Finlayson-Pitts and Pitts, 1997; Hallquist et al., 2009; Han et al., 2018; Zhang et al., 2020; Ziemann and Atkinson, 2012). 

The role of VOCs in the formation of secondary pollutants such as PM2.5 (Huang et al., 2014; Zhao et al., 2015) and O3 is a 40 

growing concern due to the adverse impacts on human health (Kamarrudin et al., 2013), including respiratory diseases, 

cardiovascular conditions, and overall mortality. The dynamic interactions between VOCs and atmospheric oxidants determine 

the persistence and transformation of these pollutants, which in turn influence their contribution to global haze, photochemical 

smog, and acid deposition. 

VOCs undergo degradation and removal from the troposphere through diverse mechanisms driven by atmospheric oxidants. 45 

During the daytime, OHOH radicals serve as the primaryprimarily oxidants, facilitating rapid VOC oxidation. At night, 

however, the concentration of OHOH decreases sharply due to the lack of photochemical reactions, shifting the dominant 

oxidation pathways to NO3 radicals and O3. The reaction rates of VOCs with OHOH are approximately 30 times faster than 

those with NO3 radicals,  with NO3 radicals, significantly influencing the spatial and temporal variation of the atmosphere's 

self-cleaning capacity and the formation of organic aerosols (Palmer et al., 2022; Zha et al., 2023). For example, regions with 50 

high isoprene concentrations often reflect differences in its reaction products and rates with OHOH and NOx rather than solely 

high emissions (Wells et al., 2020). Additionally, the structural diversity of VOCs determines their reaction mechanisms, 

influencing reaction rates. Highly     reactive compounds such as alkenes, multi-substituted aromatics, and phenols exhibit 

higher reaction rates, whereas alkanes, alkyl nitrates, and ketones demonstrate relatively low reactivity (Ziemann and Atkinson, 

2012). These variations underscore the significance of atmospheric oxidation reaction rates as key indicators of the persistence 55 

of organic pollutants in the atmosphere. Accurate assessment of these rates is essential for understanding the fate of VOCs, 

elucidating SOA formation processes, and addressing global challenges related to PM2.5 and ozone development.  

Given their importance, accurately predicting the atmospheric oxidation rates of VOCs is critical for understanding their 

persistence, transformation, and contribution to secondary pollutant formation. Traditionally, such predictions have relied on 

experimental kinetic modeling methods and computational methods (e.g., quantum-chemistry (QC) and quantitative structure-60 

activity relationship (QSAR) approaches) (Basant and Gupta, 2018; Liu et al., 2021). Experimental methods involve tracking 

reactant and product concentrations using techniques like chemical ionization mass spectrometry (CIMS), followed by kinetic 

fitting to determine Arrhenius parameters (Logan, 1982; Wells et al., 1996). However, these methods are time-consuming and 

cover only a narrow subset of atmospheric VOCs. QC approaches combine ab initio or density-functional theory calculations 

with transition-state theory (TST), canonical or variational TST to obtain temperature-dependent rate constants (Canneaux et 65 
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al., 2014; Liu et al., 2021; Meana-Pañeda et al., 2024). While QC methods offer detailed mechanistic insight, their 

computational cost scales steeply with molecular size and conformational complexity, limiting routine application to large 

numbers of VOCs. However, traditional computational methods have shortcomings such as high computational complexity 

and low efficiency. As a more scalable alternative, QSAR model leverage molecular descriptors and statistical learning. and it 

has become one of the important methods for evaluating reaction rate constants.  (Meana-Pañeda et al., 2024)(Canneaux et al., 70 

2014; Liu et al., 2021)QSAR models offer a scalable alternative by leveraging molecular descriptors and statistical learning. 

EarlyPrevious Notable examples include AOPWIN™ module integrated in US EPI Suite™ software, which applies Partial 

Least Squares (PLS) regression to 109 gas-phase reaction with hydroxyl radicals (Atkinson, 1986, 1987; Kwok and Atkinson, 

1995), and later expansions using a broader dataset (Öberg, 2005). Some models have also incorporated machine learning 

algorithms such as multiple linear regression (MLR) (Liu et al., 2020, 2022) for predicting reactions with NO3 and OHOH 75 

and artificial neural networks for predicting reactions with O3 (Fatemi, 2006). Despite their utility, these models generally rely 

on predefined descriptors and are typically limited to reactions with a single type of oxidant, which constrains the scalability 

of the model.. Recent advances in deep learning (DL), particularly graph neural networks (GNN), have improved molecular 

representation by learning features directly from molecular graphs. This enables more flexible and accurate prediction of 

chemical properties without requiring predefined descriptors. GNNs have been successfully applied in atmospheric chemistry 80 

and other fields tasks, such as in predicting vapor pressures with GC²NN (Krüger et al., 2025) and modeling reaction rate 

constants involving with OHOH using GAT–GIN hybrid architectures (Huang et al., 2024). However, like traditional models, 

these GNN-based frameworks have been developed for single-molecule systems and thus fall short in capturing the complexity 

of multi-molecule reactions in real environments. In contrast, the atmosphere involves competing and sequential reactions 

between VOCs and multiple oxidants—OHOH, NOX, ClCl, and O₃—depending on time of day, region, and chemical 85 

conditions. This multiplicity underscores the urgent need for models that can simultaneously learn and predict VOC reactivity 

across multiple oxidants. To meet this need, message passing neural networks (MPNN) offer a powerful framework (Gilmer 

et al., 2017). MPNNs propagate information across molecular graphs, capturing both atomic-level features and topological 

context. Extensions of MPNN, such as the communicative GraphRXN  (Li et al., 2023) and directed MPNN Chemprop (Heid 

et al., 2024), have shown promise in learning reactivity across multiple reactants. They extract the interaction features of 90 

chemical reactions in depth, rather than performing simple reactant concatenating. Yet, their application has largely focused 

on synthesis or materials chemistry, not atmospheric multiphase oxidation. 

This study addresses this gap by proposing Vreact, a novel Siamese MPNN architecture capable of jointly modelling reactions 

between VOCs and four major atmospheric oxidants. Unlike previous models that treat each oxidant independently, Vreact 

processes VOC–oxidant pairs in a unified framework, it learns representations from the molecular graphs of VOCs and 95 

oxidants through the MPNN, and encodes their interactions via feature aggregation. This design enables the model to accept 

arbitrary VOC–oxidant combinations and simultaneously predict reaction rate constants ki (where i ∈ {OHOH, ClCl, NO3, 

or O3}). Compared to traditional and simple single-oxidant prediction models, Vreact shows significantly improved 

performance, achieving higher accuracy, stronger interpretability and wider scalabilityachieving higher accuracy and and 
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broader generalizability across multiple oxidants. Furthermore, based on the flexibility of the DL architecture, the designed 100 

the model’s interaction module captures atomic-level interaction patterns, providing mechanistic insights into VOC oxidation 

process via interpretable interaction weight matrices. Applying Vreact to 447 atmospheric VOCs not included in the training 

data revealed a wide distribution of oxidation reactivities and confirmed that alkenes and aromatics exhibit higher reactivity, 

acting as key precursors for ozone and SOA formation. 

2 Methods and Data 105 

2.1 Collection and Preprocessing of Reaction Rate Constant Dataset 

The VOCs reaction rate constant dataset compiled by McGillen et al. is utilized in the study, which includes gas-phase reaction 

rate constants of natural atmospheric VOCs, halocarbons, and their degradation products with OHOH, ClCl, NO3 radicals, 

and O3, within a temperature range of 250-370K (McGillen et al., 2020). Under thermodynamic standard conditions at 298K, 

a total of 2802 gas-phase reaction rate constant data points were obtained, encompassing 1586 VOCs and 4 oxidants. This 110 

dataset includes ki values for 1363 VOCs with OHOH, 735 VOCs with ClCl, 393 VOCs with NO3 radicals, and 311 VOCs 

with O3. Due to the wide range of reaction rate constants ki in the dataset (1.460×10-21~7.550×10-10cm3/(molecule⋅s), 

S.D.=±1.040×10-10), the data were log-transformed to log10ki to reduce skewness and mitigate the influence of outliers on the 

model. To ensure a balanced distribution of each type of oxidant in the training, validation, and internal test sets, the dataset 

was divided using stratified random sampling into training, validation and internal test sets in an 8:1:1 ratio (Table S1)). 115 

Combinations of the same VOC with different oxidants may appear across the training, validation, and internal test sets.. 

 

2.2 Construction and Training of the Vreact Model 

All VOCs and oxidant molecules were converted into graphs G (V, E) (Text S1). The generated molecular graph G includes 

ten types of atomic information for each non-hydrogen atom, such as element type, chirality, and atomic hybridization type, 120 

as well as four types of bond information, including bond type and conjugation (Table S2). A Siamese MPNN architecture-

Vreact, was designed to simultaneously accept input features of VOCs and oxidant molecules (Fig. 1). The model takes the 

SMILES of VOCs and oxidants as input and primarily includes a VOC molecular graph representation layer and a MPNN 

layer, an oxidant molecular graph representation layer and MPNN layer, an interaction layer, and a prediction layer. The 

molecular graph G(V, E) encoding layers of VOCs and oxidants containing node feature matrix X and edge feature matrix Y, 125 

which learn molecular properties through the MPNN layer (Gilmer et al., 2017). The MPNN forward propagation process 

consists of two phases: Message Passing Phase and Readout Phase and generates molecular feature tensors A for VOCs and B 

for oxidants. Subsequently, the interaction layer transforms the molecular features A of VOCs and B of oxidants into tensors 

A1 and B1 of the same shape and concatenates them into tensor Z. Reaction rate constants are determined not only by the 

molecular structure of the reactants but also by the interactions between the reactants. The interaction feature tensor I is dot-130 
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multiplied with A to obtain the oxidant-affected VOC feature tensor A'; similarly, it is dot-multiplied with B to obtain the 

VOC-affected oxidant feature tensor B'. These operations embed the learned interaction features into the molecular structure 

features, providing a more comprehensive representation of the chemical reaction mechanisms between the two reactants. The 

prediction phase is composed of a pooling layer and three fully connected layers. The pooling layer uses the Set2Set method 

to achieve global average pooling, and the fully connected layers map the input features to the final predicted values (log10ki). 135 

More details can be found in Text S2. 

During model training, Adaptive Moment Estimation (Adam) (Kingma and Ba, 2017) was employed to address the fixed 

learning rates issue in traditional gradient descent methods. Adam adaptively adjusts the learning rate of each parameter using 

first-order moment estimates (mean of the gradients) and second-order moment estimates (exponentially moving average of 

the uncentered variance of the gradients), aiding in rapid model convergence. Bayesian optimization was utilized for 140 

hyperparameter tuning, which included the initial learning rate of the optimizer (lr), batch size, L2 regularization parameter 

(weight decay), dropout rate (p), and MPNN time steps (T) (Text S3). After identifying the optimal hyperparameter 

combination (Table S3) on the validation set, and the best model was saved. The predictive performance of the model was 

assessed using Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient 

of determination (R²) (Text S4). For more information on the model implementation, please refer to Text S5.  145 
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Figure 1. Schematic of the Vreact Architecture. SMILES of VOCs and oxidants are converted into molecular graphs, 

where nodes represent atoms and edges represent bonds. Atomic and bond features form matrices X and Y. Using a 

Siamese MPNN architecture, the Vreact model processes these features through separate MPNN layers for VOCs and 150 

oxidants. The final prediction layer outputs log10ki, incorporating both molecular and interaction features.2.2 

Construction and Training of the Vreact Model 

All VOCs and oxidant molecules were converted into graphs G (V, E) (Text S1). The generated molecular graph G includes 

ten types of atomic information for each non-hydrogen atom, such as element type, chirality, and atomic hybridization type, 

as well as four types of bond information, including bond type and conjugation (Table S2). A Siamese MPNN architecture-155 

Vreact, was designed to simultaneously accept input features of VOCs and oxidant molecules (Fig. 1). The model takes the 

SMILES of VOCs and oxidants as input and primarily includes a VOC molecular graph representation layer and a MPNN 

layer, an oxidant molecular graph representation layer and MPNN layer, an interaction layer, and a prediction layer. The 

molecular graph G(V, E) encoding layers of VOCs and oxidants containing node feature matrix X and edge feature matrix Y, 

which learn molecular properties through the MPNN layer (Gilmer et al., 2017). The MPNN forward propagation process 160 

consists of two phases: Message Passing Phase and Readout Phase and generates molecular feature tensors A for VOCs and B 

for oxidants. Subsequently, the interaction layer transforms the molecular features A of VOCs and B of oxidants into tensors 

A1 and B1 of the same shape and concatenates them into tensor Z. Reaction rate constants are determined not only by the 

molecular structure of the reactants but also by the interactions between the reactants. The interaction feature tensor I is dot-

multiplied with A to obtain the oxidant-affected VOC feature tensor A'; similarly, it is dot-multiplied with B to obtain the 165 

VOC-affected oxidant feature tensor B'. These operations embed the learned interaction features into the molecular structure 

features, providing a more comprehensive representation of the chemical reaction mechanisms between the two reactants. The 

prediction phase is composed of a pooling layer and three fully connected layers. The pooling layer uses the Set2Set method 

to achieve global average pooling, and the fully connected layers map the input features to the final predicted values (log10ki). 

More details can be found in Text S2. 170 

During model training, Adaptive Moment Estimation (Adam) (Kingma and Ba, 2017) was employed to address the fixed 

learning rates issue in traditional gradient descent methods. Adam adaptively adjusts the learning rate of each parameter using 

first-order moment estimates (mean of the gradients) and second-order moment estimates (exponentially moving average of 

the uncentered variance of the gradients), aiding in rapid model convergence. Bayesian optimization was utilized for 

hyperparameter tuning, which included the initial learning rate of the optimizer (lr), batch size, L2 regularization parameter 175 

(weight decay), dropout rate (p), and MPNN time steps (T) (Text S3).During hyperparameter optimization, the hyperparameter 

combination that minimizes the Mean Squared Error (MSE) of the validation set was selected as the optimal hyperparameter 

combination, and the best model was saved (Table S3).The predictive performance of the model was assessed using MSE, 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R²) (Text S4). For more 

information on the model implementation, please refer to Text S5.  180 
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Figure 1. Schematic of the Vreact Architecture. SMILES of VOCs and oxidants are converted into molecular graphs, where nodes 

represent atoms and edges represent bonds. Atomic and bond features form matrices X and Y. Using a Siamese MPNN architecture, 

the Vreact model processes these features through separate MPNN layers for VOCs and oxidants. The final prediction layer outputs 185 
log10ki, incorporating both molecular and interaction features. 

2.3 Clustering Analysis 

Morgan fingerprints (radius 2, 1024 bits, generated using RDKit) was used as the molecular embeddings before clustering and 

visualization. To investigate VOC structural diversity and reactivity trends, two methods were applied: the Self-Organizing 

Map (SOM) (Kohonen, 2006) and the Uniform Manifold Approximation and Projection (UMAP). The SOM algorithm 190 

clustered VOCs into 100 structural groups (10×10 grid), using a sigma of 0.3 and learning rate of 0.5. The UMAP algorithm 

projected the high-dimensional fingerprint space into 2D for visualization, with the number of neighbors set to 50, minimum 

distance to 0.6, and metric as correlation. 

3 Results and Discussion 

3.1 Analysis of VOC and Oxidant Reaction Data Distribution and Characteristics 195 

The categories and distribution characteristics of VOC and oxidant reaction data are first explored in the study, which includes 

log10ki data for 1586 VOCs with OHOH, ClCl, NO3, and O3 (Fig. 2A). The dataset contains the most data for OHOH, 
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accounting for 48.64% of the total, as OHOH plays a crucial role in the atmosphere, rapidly reacting with organic pollutants 

and dominating their removal process. The remaining data points are for ClCl (26.23%), NO3 (14.03%), and O3 (11.1%) in 

descending order of data quantity. O3 is primarily produced through photochemical reactions involving NOx and VOCs, while 200 

NO3, as the principal nighttime atmospheric oxidant, significantly contributes to the oxidation and removal of trace gases. The 

dataset encompasses VOCs with diverse chemical structures, including 22 molecular motifsfunctional groups such as double 

bonds, esters, benzene rings, and halogen atoms (F, S, Cl, Br, and I) (Fig. 2B). This extensive chemical structure space 

facilitates the model's ability to learn more structural features and enhances its generalization capability.  

Moreover, although there is some overlap in the reactions of the four oxidants with VOCs, each oxidant also has specific VOC 205 

reactions (Fig. 2C). There are 747 VOCs with ki data for only one oxidant and 839 VOCs with ki data for multiple oxidants, of 

which 81 VOCs have data for all four oxidants. For example, isoprene can react with OHOH, NO3, and ClCl through 

hydrogen abstraction reactions, and undergo addition reactions with O3 via its unsaturated double bonds. Furthermore, the four 

oxidants exhibit different log10ki value distribution with VOCs due to differences in chemical structures and reactivity (Fig. 

2D). OHOH, due to its high oxidation potential, usually reacts quickly with VOCs via hydrogen abstraction, with log10ki 210 

concentrated in the range of -14.000 to -10.000. In contrast, O3 typically undergoes slower addition reactions with unsaturated 

bonds in reactants (Ziemann and Atkinson, 2012), with log10ki ranging from -20.836 to -13.721. NO3 can participate in both 

hydrogen abstraction and addition reactions, resulting in a wider range of log10ki values. The diverse reaction rates of these 

oxidants maintain the composition and oxidative state of aerosols in the atmosphere, but the uneven distribution of their values 

makes predicting ki more challenging. Even for the same oxidant, VOCs with different structures exhibit varied reaction rates 215 

in gas-phase oxidation reactions. For example, NO3 reacts very slowly with aromatic rings, with a ki value of 3.900×10-16 

cm³/(molecule⋅s) for xylene. In contrast, NO3 can rapidly abstract hydrogen from hydroxyl groups, with a ki value of up to 

1.72×10-10 cm³/(molecule⋅s) for 3-methylcatechol. 
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 220 

Figure 2. Visualization of VOCs Dataset. (A) Proportion of the four types of oxidants. (B) Number of VOCs containing each 

molecular motiffunctional group. MultFct: multifunctional; AroRings: aromatic rings; NaRings: non-aromatic rings; Tbonds: triple 

bonds; CumDBs: cumulated double bonds; ConjDBs: conjugated double bonds; SepDBs: separated double bonds. (C) Number of 

VOCs that can undergo oxidation reactions with the four oxidants. (D) Distribution of log10ki values for the four oxidants. (E) 

Heatmap of reaction rate constants based on VOCs clustering, where each grid represents a cluster of structurally similar VOCs. 225 
The color gradient indicates the log10ki values, with red indicating higher log10ki values (faster reaction rates), blue indicating lower 

log10ki values (slower reaction rates), and white indicating the absence of log10ki data for that cluster. The cluster containing butyl 

acrylate are enclosed within the black box. 

Furthermore, the same VOCs show different reaction rates with different oxidants. The SOM algorithm was used to explore 

the relationship between VOC structural variation and log10ki. Each grid in Fig. 2E represents a VOC cluster, and the color 230 

gradient indicates reactivity (average log10ki values) for the corresponding oxidants. By comparing log10ki values across clusters, 

oxidant-specific reactivity patterns can be assessed. To explore the relationship between structural differences of VOCs and 

reaction rates, the study employed the Self-Organizing Map (SOM) algorithm (Kohonen, 2006) to visualize log10ki values. 

Based on the Morgan fingerprint similarity of VOCs, the VOCs were clustered into 100 groups, each containing VOCs with 

similar molecular structures. Each grid in Fig. 2E represents a cluster of VOCs, and the color gradient indicates the log10ki 235 

values of their reactions with the corresponding oxidants. By comparing the log10ki values of the same VOCs with four oxidants, 

the relationship between structural features and reaction rates for each oxidant can be evaluated.  For example, butyl acrylate 

(CAS RN.141-32-2) reacts slowly with NO3 radicals and O3, mainly due to the unsaturated addition reactions through the 
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carbon-carbon double bond, where the ester group in the molecular structure produces an electron-withdrawing effect, reducing 

the electron density in the π bond and thus lowering the reaction rate (Gai et al., 2009; Wang et al., 2010). In contrast, it reacts 240 

faster with OHOH and ClCl through hydrogen abstraction rather than addition (Le Calvé et al., 1997; Ohta, 1984; Wang et 

al., 2018). This demonstrates that the dataset, which includes various oxidants and VOCs, exhibits diverse log10ki values. The 

overall log10ki values differ significantly between different oxidants. This diverse dataset enables the model to learn the reaction 

information between VOCs and different oxidants, thereby improving model performance and prediction accuracy. 

3.2 Performance Evaluation of Vreact Model 245 

The Siamese MPNN architecture of the  Vreact captures both molecular features of VOCs and oxidants as well as their 

interaction dynamics simultaneously. During hyperparameter optimization, the set of hyperparameters that minimized MSE 

on the validation set was selected. After training for 46 epochs (Fig. S1),  Vreact achieved robust predictive performance on 

the validation set, with R² of 0.961, MSE of 0.194 and MAE of 0.314 for log10ki (Fig. 3A). On the internal test set, the model 

achieved R² of 0.941, MSE of 0.299 and MAE of 0.322 for log10ki (Fig. 3A), indicating robust predictive capability and 250 

excellent generalization ability for unseen VOC-oxidant combinations. The small MAE difference between the validation set 

and internal test sets, despite a larger difference in MSE, indicates that MSE is more sensitive to outliers or large errors, while 

MAE directly reflects the average absolute prediction error. Although the R² on the internal test set is slightly lower than on 

the validation set, this minor discrepancy does not affect the model's robust predictive ability. The result on the internal test 

set is available in Table S4. 255 

To explore the predictive performance of the Vreact model for different types of oxidants, we evaluated the prediction 

performance for OHOH, ClCl, O3, and NO3 separately. The regression fit of predicted log10ki values versus experimental 

values for the four oxidants (Fig. 3B) shows that O3 and NO3 have higher dispersion compared to OHOH and ClCl. The R² 

values for the reactions of the four oxidants, in descending order, are OHOH > ClCl > NO3 > O3, with OHOH and ClCl 

having R² values of 0.92942 and 0.9136, respectively. The prediction performance for NO3 radicals and O3 is comparatively 260 

lower, with R² values below 0.800.  

The OHOH dataset is the most abundant and concentratedbalanced, while data amount of O3 and NO3 was relatively small, 

and the model can’t fully capture the reaction features, leading to prediction bias. whereas the log10ki values for In addition, 

the log10ki values for NO3 are highly dispersed, which may cause the model to have difficulty capturing all patterns and 

relationships for NO3, also reducing the prediction performance. Additionally, the order of the size of R2 is consistent with the 265 

order of the data volume of the four oxidant datasets. This indicates that the amount of data is also an important factor affecting 

the prediction performance of reaction rate constants, and that more available data help the model to fully capture reaction 

features. leading to prediction biases. 
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 270 

Figure 3. Evaluation and comparison of the predictive performance of the Vreact model. (A) MSE, MAE, R² of Vreact (trained on 

the McGillen et al. dataset) on the validation set, internal test set, and external post-2020 test set. (B) R² values for log10ki predictions 

of four oxidants’ reactions in the internal test set. (C) Distribution of AE between predicted and experimental log10ki values for the 

four oxidants in the internal test set. (D) R² comparison among previously published single-oxidant models, the original Vreact 

(evaluated on cleaned literature test sets), and Retrained Vreact (trained and tested using the same original splits as the literature) 275 
highlighting adaptability.  (DE-FG) The chemical spatial distribution of VOCs in the OHOH, O3, and NO3 datasets used in this 

study and prior literatures. (G) R² comparison among previously published single-oxidant models, the original Vreact (evaluated on 

literature test set), and Retrained Vreact (trained and tested using the same splits as the literature models) highlighting adaptability. 
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The Absolute Error (AE) between the predicted and experimental log10ki values for the four types of oxidants are presented in 

Fig. 3C. The median AE for OHOH is 0.149, while O3 and NO3 exhibit median AEs of 0.301 and 0.287, respectively, which 280 

are slightly higher than that of OHOH. Overall, 84% of the AE values for O3 and NO3 are within 1. As depicted in the Fig. 

3C, individual outliers in AE contribute to the increased RMSE and MAE for O3 and NO3, and the consequent decrease in R². 

For example, the AE for the reaction of NO3 with azulene (C10H8) is 4.653. Azulene, an aromatic hydrocarbon composed of a 

seven-membered ring fused to a five-membered ring, is an isomer of naphthalene (C10H8). NO3, as electrophilic reagents, tend 

to attack regions with higher electron density. Compared to naphthalene, the electron density distribution of azulene is uneven, 285 

with certain regions having high electron density that may facilitate effective interactions with NO3. Additionally, the structure 

of azulene may reduce steric hindrance, allowing NO3 radicals easier access to reaction sites (Atkinson et al., 1992), resulting 

in a higher reaction rate constant and increasing the model's prediction difficulty. Similarly, the predicted log10ki value for the 

reaction of NO3 with diiodomethane (CH2I2) is significantly lower than the true value (AE=2.763). This discrepancy may be 

attributed to the limited representation of iodine-containing VOCs in the dataset, with only iodomethane (CH3I) and iodoethane 290 

(C2H5I) having ki values in the training and validation sets. This limited data prevents the model from fully learning the reaction 

characteristics of iodine-containing compounds, resulting in a larger prediction error for diiodomethane with NO3 radicals. 

3.3 Comparation with Single-Oxidant Prediction Models 

Most existing machine learning models for predicting VOC reaction rates constants are tailored for individual oxidants, 

limiting their applicability to complex atmospheric systems involving multiple oxidants. In contrast, the Siamese MPNN 295 

architecture of the Vreact enables simultaneous learning of molecular features and interaction patterns across different VOC–

oxidant pairs within a unified framework. To benchmark Vreact against previously published single-oxidant QSAR/ML 

models, we selected three top-performing models developed under 298K conditions: Liu et al. (2020) for OHOH (training/test 

= 144/36training set:144/ test set:36180 data points), Xu et al. (2013) for O3 (training set:60/ test set:3595 data points), and 

Liu et al. (2022) for NO3 radicals (1training set:151/ test set:38189 data points). Prior to evaluation, we UMAP was applied 300 

Uniform Manifold Approximation and Projection (UMAP) to reduce the dimensionality of the Morgan molecular fingerprints 

to visualize the chemical space of both the comparison literature datasets and the Vreact training set (Fig.s. 3D-F S2). The 

observed structural overlap confirms that Vreact’s dataset spans a broad and diverse chemical space. Given that our study 

used different data than those reported in the literature, we employed two strategies for comparison. First, the pre-trained 

Vreact model (trained on the McGillen dataset) was directly applied to the literature test setstest sets from the literature to 305 

evaluate extrapolation performance. To ensure a fair comparison, overlapping data points between the literature test sets and 

the McGillen training set were removed However, there are some duplicates in the data points of the literature test set and the 

McGillen training set, and an unfair comparison can be made if duplicate data exist. So, we removed the duplicate data to 

construct cleaned literature test sets for evaluation (2 of 38 for NO₃, 13 of 35 for O₃, and 6 of 36 for OHAmong 38 NO₃ data 

points, 2 are in the training set; among 35 O₃ data points, 13 are in the training set; and among 36 OH data points, 6 are in the 310 
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training set).  Second, Vreact was retrained on each literature dataset using their original train/test splits (Retrained Vreact), 

allowing a direct comparison with published models on original literature test sets (Retrained Vreact).  

As shown in Fig. 3G3D., both the original Vreact model and its retrained version consistently outperformed the single-oxidant 

models from Liu et al. (2022) and Xu et al. (2013) on the OHOH and O3 literature test sets, achieving higher R² values and 

demonstrating superior regression fits between predicted and experimental values. These results highlight the capability of the 315 

Vreact architecture—whether trained on a broad multi-oxidant dataset or fine-tuned on smaller single-oxidant datasets—to 

effectively learn structural features of VOCs and oxidants and capture complex molecular interactions through its Siamese 

MPNN framework. Notably, Vreact shows opposite performance trends for OH and O₃ between the internal and literature test 

set. To understand this, UMAP was applied to project compounds from the training, internal, and literature test sets into a 

shared chemical space. As shown in Fig. 3E, the internal OH test set overlaps well with the training data, leading to consistently 320 

strong performance. In contrast, the literature OH set is sparse and scattered near the dataset boundaries. Despite this, Vreact 

still achieves a high R², demonstrating good generalization. For O₃ (Fig. 3F), the internal test set lies farther from the dense 

training distribution, contributing to lower R². Meanwhile, the literature O₃ set is better aligned with the training data, resulting 

in higher prediction accuracy. For NO₃ (Fig. 3G), both internal and literature sets show similar distributions, and the model 

achieves comparable R² values (~0.815). AAlthough Vreact underperforms slightly compared to the original single-oxidant 325 

model, retraining on the literature data improves performance. This suggests that multi-oxidant training may introduce some 

noise but does not significantly compromise prediction accuracy.Notably, the outcomes for OH and O₃ exhibit contrasting 

results between the literature test set and the internal test set. Use UMAP to map the compounds in the training set, literature 

test set and the internal test set into the same space simultaneously, which was used to analyse this difference. As shown in 

Fig 3E, the OH internal test set has the largest amount of data and shares similar distribution features with the training set. 330 

Furthermore, most of data points don’t exceed the coverage of the training set. In contrast, the literature test set for OH is 

characterized by sparse data points with a scattered distribution, predominantly located at the dataset boundaries. However, 

since the model already performs excellently on OH, it can also achieve a high R2 on the literature test set, only losing some 

precision. For O₃ (Fig. 3F), a distinct distributional boundary exists between the internal and literature test sets. The lower 

region (internal test set) is marked by sparse features and low overlap with the training set, where individual samples deviate 335 

from the overall distribution, leading to reduced R². Conversely, the upper region (literature test set) aligns with the training 

set's distribution, yielding the model can predict better. As a result, the differences between OH and O₃ on the literature dataset 

and the internal dataset emerge. For the NO3 prediction task, the R² of the model on the literature test set was 0.815, which 

was similar to the result on the internal test set. The similar spatial distribution patterns of the two test sets likely contributed 

to the similarity of their prediction results (Fig. 3G). However, Vreact performed poorer than the original literature results on 340 

the literature test set, and the retrained Vreact model showed an improvement in R². This suggests that a unified dataset 

containing multiple oxidants may introduce additional noise during training, affecting the model's ability to learn key 

interaction features between NO3 and VOCs. Nonetheless, the noise only causes some loss of prediction accuracy, which is 

acceptable. 
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For the NO3 prediction task, the original Vreact model performed poorly, but the retrained Vreact model showed an 345 

improvement in R². This suggests that a unified dataset containing multiple oxidants may introduce additional noise during 

training, affecting the model's ability to learn key interaction features between NO3 and VOCs. Nonetheless, the model’s R² 

on the literature test set still reached 0.842, indicating only a slight loss in predictive accuracy, which is acceptable. 

3.4 Mechanism Insights Through Interaction Analysis 

The interaction layer of the Vreact model can elucidate the atomic interaction mechanisms between VOCs and oxidants. The 350 

interaction matrix, sized n1×n2, where n1 represents the number of non-hydrogen atoms in the VOC molecule and n2 represents 

the number of non-hydrogen atoms in the oxidant molecule. Mapping these interaction coefficients onto the molecular structure 

highlights key atoms that determine the reaction rate.  

To exemplify this mechanism, we analysed specific cases. 2-methyl-4-penten-2-ol is an unsaturated oxygenated volatile 

organic compound (OVOC) that constitutes a significant proportion of the atmospheric VOCs, primarily sourced from 355 

industrial solvents used in ink and jet ink manufacturing (Li et al., 2021). As shown in Fig. 4A, the interaction coefficient for 

the distal unsaturated carbon atoms is the highest during the reaction with O3, indicating these are likely the reaction sites for 

O3 attack. It is inferred that O3 adds to the unsaturated carbon-carbon double bond through an addition reaction, forming 

primary ozonides (POZs). These POZs are unstable intermediates that rapidly cleave to produce carbonyl compounds and 

carbon-based radicals, which further rearrange to form secondary ozonides (SOZs). The SOZs and their reaction products are 360 

precursors of SOA. Another example is γ-caprolactone (GCL), a five-membered ring ester used in perfumes, which rapidly 

reacts and degrades with OHOH upon entering the atmosphere. Interaction weight analysis shows that the carbon atom linked 

to the ethyl group contributes most to GCL's oxidative degradation by OHOH (Fig. 4B), suggesting that OHOH initially 

attacks this carbon atom, abstracting a H atom to form a carbon radical. Previous studies indicate that the reactivity of carbons 

adjacent to the oxygen atom in lactones is particularly significant in reactions with OHOH, especially when alkyl substituents 365 

are attached to this carbon, which enhances its reactivity (Barnes et al., 2014). 
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Figure 4. Visualization of atomic weights in VOC molecules. (A) Reaction process of 2-methyl-4-penten-2-ol with O3. (B) Reaction 

process of γ-caprolactone with OHOH. The darker the highlighted color of the atom, the stronger its interaction in the gas-phase 370 
oxidation reaction. 
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3.5 Evaluating Extrapolation Ability and Prioritizing VOCs for Environmental Impact 

To further validate the extrapolation capability and generalization performance of the Vreact model, developed using a dataset 

compiled up to the year 2020 (Baptista et al., 2021; Joudan et al., 2022; Li et al., 2021), additional ki data from experimentally 

measured VOCs and oxidants published after 2020 were collected as an external test set (post-2020 test set) (Table 1). The 375 

prediction results showed that the AE between the experimental log10ki and the predicted values was within 1, with the reaction 

rate constant prediction for γ-heptalactone and OHOH exhibiting the smallest prediction error. The AE for γ-heptalactone 

with OHOH was only 0.005, and the overall MAE was 0.240, with an MSE of 0.112 and an R² of 0.98 (Fig. 3A shown in 

red). The results indicate that the Vreact can accurately predict the atmospheric oxidation reaction rate constants of unknown 

VOCs, demonstrating its potential application in addressing complex atmospheric chemistry issues involving the interactions 380 

between VOCs and oxidants. 

 

Table 1. The prediction results on the post-2020 test set. 

VOC name 
Chemical 

structure 
Oxidant 

Experimental 

log10ki 

Predicted 

log10ki 
AE Ref. 

2-methyl-4-

penten-2-ol 
 

O3 -17.370 -16.712 0.658 
(Li et al., 

2021) 

γ-caprolactone 

 

OHOH -11.194 -11.209 0.015 
(Baptista et 

al., 2021) 

ClCl -9.886 -10.149 0.263 
(Baptista et 

al., 2021) 

γ-heptalactone 

 

OHOH -11.056 -11.051 0.005 
(Baptista et 

al., 2021) 

ClCl -9.770 -9.943 0.173 
(Baptista et 

al., 2021) 

FESOH 

 

OHOH -11.377 -11.876 0.499 
(Joudan et 

al., 2022) 

ClCl -10.824 -10.759 0.065 
(Joudan et 

al., 2022) 

FESOH: 2- (1,1,2-trifluoro-2-heptafluoropropyloxy-ethylsulfanyl)-ethanol; AE: absolute error 

 385 

Despite the identification of hundreds of VOC species, the environmental behavior of most VOCs in the atmosphere and their 

potential contributions to particulate matter formation and ozone increase remain largely unclear. To address this gap, we 

employed the Vreact model to evaluate the atmospheric oxidation reaction rate constants of a broad spectrum of VOCs. 

Molecular structures for 447 VOCs with unknown atmospheric oxidation ki values were collected from previous research, 

which evaluated more than 500 Chinese domestic source profiles, including literature and field measurements (Sha et al., 2021) 390 

(Table S5). After excluding VOCs already included in the Vreact dataset, 296, 339, 416, and 369 data points for OHOH, 
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ClCl, O3, and NO3 were retained, respectively. The prediction results indicated that, although the oxidation reaction rates of 

VOCs in the atmosphere vary (Fig. 5A), the differences in log10ki values are primarily influenced by the type of oxidant, with 

smaller variations in log10ki values observed for different VOCs reacting with the same oxidant. Among these, reactions with 

OHOH and ClCl were the fastest, consistent with the results from the McGillen dataset analysis used in the modeling (Fig. 395 

2D). Additionally, the changes in the proportion of VOC types within different reaction rate intervals (Fig. 5B) demonstrated 

that the composition of VOC types varied with reaction rates. Halocarbons exhibited relatively slower reaction rates, while 

alkenes and aromatics reacted relatively quickly, and oxygenated compounds showed a more uniform rate distribution. 

Consequently, areas with high emissions of alkenes and aromatics will produce more reaction products per unit time, providing 

precursors for O3 and SOA formation (Gao et al., 2021). 400 

The top five VOCs with the fastest reaction rates with OHOH, ClCl, O3, and NO3 were further examined in the study (Fig. 

5C). Among these, 2,6-Dimethyl-2,6-cyclooctadiene (CAS RN: 3760-14-3) is a volatile compound with an irritating odor, 

exhibiting the fastest reaction rates with OHOH, ClCl, and O3. Additionally, 1,3-cyclopentadiene (CAS RN: 542-92-7) and 

1,4-Dimethylcyclohexene (CAS RN: 70688-47-0) also showed high reaction rates with O3, ClCl, and OHOH, likely due to 

the presence of double bonds and cyclic structures in these molecules. The carbon atoms in the double bonds and those 405 

connected to methyl groups generally have high reactivity. Therefore, it could be inferred that these VOCs, or VOCs with 

similar structures, may significantly contribute to the formation of fine particulate matter and the increase in ozone in the 

atmosphere. 
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 410 

Figure 5. Predicted reaction rate constants for VOCs atmospheric oxidation reactions. (A) Predicted mean log10ki values for different 

types of VOCs. (B) Distribution of VOC types ranked by predicted reaction rates, divided into quartiles: the fastest 25% (Q1), 25%-

50% (Q2), 50%-75% (Q3), and the slowest 25% (Q4). (C) Molecular structures of VOCs with the fastest reaction rates with the four 

oxidants. 

4 Concluding Concluding 415 

In response to growing concerns about atmospheric pollution and its impact on human health and climate, this study introduces 

Vreact, a deep learning model designed to predict oxidation rate constants for VOCs with multiple oxidants (OH, Cl, NO₃, O₃). 

Vreact demonstrates strong overall performance (MSE=0.299, R2=0.941 on internal test data) and provides mechanistic 

insights by capturing atomic-level interaction patterns through a Siamese MPNN framework. Its predictive accuracy varies by 

oxidant, reflecting the availability and diversity of training data. The model achieves high accuracy for OH (R2=0.929, n=1363) 420 

and Cl (R2=0.913, n=735), supporting robust application in daytime oxidation modeling. In contrast, lower performance is 

observed for NO₃ (R2=0.721, n=393) and O₃ (R2=0.584, n=311), pointing to challenges in modeling oxidants with fewer data 
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and more complex mechanisms. This underscores the importance of expanding high-quality experimental datasets to improve 

generalization, particularly for underrepresented oxidants and VOC classes. 

Vreact supports high-throughput screening for emission inventories and atmospheric reactivity assessments. Its applications 425 

span VOC prioritization, emission control planning, and kinetic mechanism development, offering actionable insights for 

environmental policy and modeling. An interactive web interface (http://vreact.envwind.site:8001) (Fig. S3) enhances 

accessibility for researchers and policymakers. Further improvements in NO₃ and O₃ predictions will expand its utility in 

nighttime chemistry and secondary aerosol formation scenarios.In response to growing concerns about atmospheric pollution 

and its impact on human health and climate, this study introduces Vreact, a deep learning model designed to predict oxidation 430 

rate constants for VOCs with multiple oxidants (OH, Cl, NO₃, O₃). Vreact demonstrates strong overall performance (MSE = 

0.299, R² = 0.941 on internal test data) and provides mechanistic insights by capturing atomic-level interaction patterns through 

a Siamese MPNN framework. Its predictive accuracy varies by oxidant, reflecting the availability and diversity of training 

data. The model achieves high accuracy for OH (R² = 0.929, n = 1363) and Cl (R² = 0.913, n = 735), supporting robust 

application in daytime oxidation modeling. In contrast, lower performance is observed for NO₃ (R² = 0.721, n = 393) and O₃ 435 

(R² = 0.584, n = 311), pointing to challenges in modeling oxidants with fewer data and more complex mechanisms. This 

underscores the importance of expanding high-quality experimental datasets to improve generalization, particularly for 

underrepresented oxidants and VOC classes. 

Vreact supports high-throughput screening for emission inventories and atmospheric reactivity assessments. Its applications 

span VOC prioritization, emission control planning, and kinetic mechanism development, offering actionable insights for 440 

environmental policy and modeling. An interactive web interface (http://vreact.envwind.site:8001) (Fig. S3) enhances 

accessibility for researchers and policymakers. Further improvements in NO₃ and O₃ predictions will expand its utility in 

nighttime chemistry and secondary aerosol formation scenarios. 

 

 445 

Given the increasing complexity of atmospheric pollution and its global impacts on human health and climate, these 

advancements in predictive modeling offer valuable resources for addressing worldwide air quality challenges. Understanding 

the oxidation rates of VOCs is crucial for evaluating their impact on atmospheric chemistry and air pollution. In this study, 

Vreact, a deep learning-based model, is introduced to predict VOC oxidation reaction rate constants with multiple oxidants 

(OH, Cl, NO₃ and O₃) simultaneously while offering mechanistic insights into VOC oxidation by analyzing atomic-level 450 

interaction patterns. Vreact achieves robust predictive performance, with MSE of 0.299 and R2 of 0.941 on internal test data. 

By incorporating a broad range of VOC structures and oxidant interactions, Vreact enhances its generalizability, allowing for 

large-scale screening of previously uncharacterized VOC oxidation rates. Additionally, an interactive web-based tool 

(http://vreact.envwind.site:8001) is provided (Fig. S3), which facilitates VOC oxidation rate predictions for non-experts. This 

tool significantly improves accessibility, enabling researchers, policymakers, and environmental agencies to assess VOC 455 

reactivity and prioritize mitigation efforts effectively. Furthermore, the study found that the model’s reliable model accuracy 
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depends on the quantity and quality of available experimental kinetic data, which vary significantly among oxidants. Vreact 

demonstrates superior accuracy for OH (R²=0.929) and Cl (R²=0.913), where extensive datasets (1363 and 735 VOCs) 

facilitate robust learning of structure-reactivity relationships. In contrast, predictions for NO₃ (R2=0.721) and O₃ (R2=0.584) 

are less precise, reflecting smaller data volumes (393 and 311 VOCs) and higher complexity in reaction mechanisms. The 460 

difference underscores the critical role of data availability in achieving reliable model performance, particularly for oxidants 

with sparse experimental coverage or complex reaction mechanisms, which requires further and adequate data collection.  

Considering the current accuracy of Vreact and the discussion and analysis of this study, some potential applications and 

improvements can be amenable to an outlook. Vreact has excellent overall performance and supports high-throughput 

reactivity assessment, thus enabling it to identify highly reactive VOCs for prioritizing emission control. In addition, the high 465 

accuracy of Vreact in OH and Cl data demonstrates its application advantages in daytime atmospheric simulation, allowing 

model to integrate into regional air quality models to simulate VOCs degradation pathways under daytime conditions. However, 

the model needs further improvement for simulating nighttime reaction processes (NO₃ and O₃). Improved data coverage for 

these oxidants is essential for refining forecasts of nocturnal aerosol formation. Due to limited training data, which may not 

cover all VOCs, especially those with complex structures or containing halogen and sulfur groups. As a result, VOC classes 470 

that are underrepresented in the dataset, such as iodine-containing compounds, may exhibit prediction errors, which also 

highlights the need for further data collection to make the model more broadly applicable. Additionally, while Vreact captures 

essential molecular interactions, biases may arise from the existing reaction rate constants datasets, especially when reaction 

conditions or mechanisms differ from those used in training. Extrapolating reaction rate constants for uncharacterized VOCs 

presents another challenge. While the model shows strong generalization capabilities, its accuracy may decrease for highly 475 

reactive or structurally unique compounds. To address these challenges, future work should focus on integrating high-

throughput quantum chemical calculations and automated experimental validation to augment existing datasets, especially for 

data-poor oxidants and functional groups. Optimizing Vreact’s inference speed and coupling it with atmospheric chemistry 

models could further enable real-time simulations of air quality scenarios, enhancing its applicability for regulatory decision-

making. 480 

Understanding the oxidation rates of VOCs is crucial for evaluating their impact on atmospheric chemistry and air pollution. 

In this study, Vreact, a deep learning-based model, is introduced to predict VOC oxidation reaction rate constants with multiple 

oxidants simultaneously. The model demonstrates high predictive accuracy while offering mechanistic insights into VOC 

oxidation by analyzing atomic-level interaction patterns. By incorporating a broad range of VOC structures and oxidant 

interactions, Vreact enhances its generalizability, allowing for large-scale screening of previously uncharacterized VOC 485 

oxidation rates. Additionally, an interactive web-based tool (http://vreact.envwind.site:8001) is provided (Fig. S2), which 

facilitates VOC oxidation rate predictions for non-experts. This tool significantly improves accessibility, enabling researchers, 

policymakers, and environmental agencies to assess VOC reactivity and prioritize mitigation efforts effectively. Given the 

increasing complexity of atmospheric pollution and its global impacts on human health and climate, these advancements in 

predictive modeling offer valuable resources for addressing worldwide air quality challenges. 490 
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However, Vreact has several limitations. The model’s performance depends on the availability and quality of experimental 

kinetic data. The training dataset primarily relies on measured reaction rate constants, which may not cover all VOCs, 

especially those with complex structures or containing halogen and sulfur groups. As a result, VOC classes that are 

underrepresented in the dataset, such as iodine-containing compounds, may exhibit prediction errors, highlighting the need for 

further data collection. Additionally, while Vreact captures essential molecular interactions, biases may arise from the existing 495 

reaction rate constants datasets, especially when reaction conditions or mechanisms differ from those used in training. 

Extrapolating reaction rate constants for uncharacterized VOCs presents another challenge. While the model shows strong 

generalization capabilities, its accuracy may decrease for highly reactive or structurally unique compounds. To improve 

predictions, future work could integrate high-throughput quantum chemical calculations and automated experimental 

validation. Optimizing inference speed and integrating Vreact with atmospheric chemistry models could enhance its 500 

applicability in real-time air quality simulations. 
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