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Abstract. Volatile Organic Compounds (VOCs) significantly influence global atmospheric chemistry through oxidative
reactions with oxidants. These reactions produce key precursors to the formation of atmospheric fine particulate matter (PM3 s)
and ozone (O3), which in turn play a crucial role in regulating O3 pollution and reducing PM» s concentrations. With the
increasing diversity of VOCs, the need for advanced modeling techniques to accurately estimate the atmospheric oxidation
reaction rate constants (k;, where i € {*OHOH, <CICI, NOs, or O3}) has become more urgent. Here we introduce Vreact, a
Siamese message passing neural networks (MPNN) architecture that jointly models VOC-oxidant reactivity. The model
simultaneously predicts logiok; values and achieves a mean squared error (MSE) of 0.299 and a coefficient of determination
(R?) 0f 0.941 on the internal test set. This framework overcomes the single-oxidant constraint of traditional models, enabling
unified and scalable prediction of VOC oxidation kinetics across multiple oxidants. An interactive web tool

(http://vreact.envwind.site:8001) is provided to facilitate non-expert access to reactivity screening. Vreact offers valuable

insights into the formation and evolution of atmospheric pollutants, and serves as a critical resource for developing effective

control and emission strategies, ultimately supporting global efforts to mitigate air pollution and improve public health.

1 Introduction

The rapid advancement in data-driven methodologies has revolutionized various fields, such as protein structure prediction
(Abramson et al., 2024), molecular generation (Zhang et al., 2023), organic reaction prediction (Burés and Larrosa, 2023), and
bioinformatics (Theodoris et al., 2023). Environmental challenges, particularly those associated with atmospheric chemistry
and climate change (Chen et al., 2024; Kubecka et al., 2023; Qiu et al., 2023; Zhao et al., 2025), have also benefited from these
innovations. As pollutants evolve under both anthropogenic and natural influences, the understanding of their chemical and

physical properties has become increasingly vital for addressing global air quality and climate issues. Volatile Organic
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Compounds (VOCs) are organic chemicals that readily vaporize at ambient temperature, contributing significantly to the
complexity of atmospheric processes. Sources of VOCs are both natural and anthropogenic, with human activities such as
industrial production, petrochemical processing, and vehicle exhaust contributing to the emission of a variety of VOCs.
Additionally, biosphere sources, such as plants and forests, release compounds like isoprene and monoterpenes, which further
complicate atmospheric VOC dynamics (Qin et al., 2021; Sindelarova et al., 2014). These highly reactive VOCs drives critical
atmospheric reactions, such as the formation of ozone and secondary organic aerosols (SOA), and significantly contribute to
environmental pollution. For instance, VOCs interact with nitrogen oxides (NOy) and radicals to form tropospheric O3 and
SOA (Finlayson-Pitts and Pitts, 1997; Hallquist et al., 2009; Han et al., 2018; Zhang et al., 2020; Ziemann and Atkinson, 2012).
The role of VOCs in the formation of secondary pollutants such as PM, s (Huang et al., 2014; Zhao et al., 2015) and O; is a
growing concern due to the adverse impacts on human health (Kamarrudin et al., 2013), including respiratory diseases,
cardiovascular conditions, and overall mortality. The dynamic interactions between VOCs and atmospheric oxidants determine
the persistence and transformation of these pollutants, which in turn influence their contribution to global haze, photochemical
smog, and acid deposition.

VOCs undergo degradation and removal from the troposphere through diverse mechanisms driven by atmospheric oxidants.
During the daytime, *OHOH radicals serve as the primaryprimarity oxidants, facilitating rapid VOC oxidation. At night,
however, the concentration of *OHOH decreases sharply due to the lack of photochemical reactions, shifting the dominant
oxidation pathways to NOj; radicals and Os. The reaction rates of VOCs with *OHOH are approximately 30 times faster than
those with NOj radicals, -with-NOs-radieals;-significantly influencing the spatial and temporal variation of the atmosphere's
self-cleaning capacity and the formation of organic aerosols (Palmer et al., 2022; Zha et al., 2023). For example, regions with
high isoprene concentrations often reflect differences in its reaction products and rates with *OHOH and NOy rather than solely
high emissions (Wells et al., 2020). Additionally, the structural diversity of VOCs determines their reaction mechanisms,
influencing reaction rates. Highly _ reactive compounds such as alkenes, multi-substituted aromatics, and phenols exhibit
higher reaction rates, whereas alkanes, alkyl nitrates, and ketones demonstrate relatively low reactivity (Ziemann and Atkinson,
2012). These variations underscore the significance of atmospheric oxidation reaction rates as key indicators of the persistence
of organic pollutants in the atmosphere. Accurate assessment of these rates is essential for understanding the fate of VOCs,
elucidating SOA formation processes, and addressing global challenges related to PM» s and ozone development.

Given their importance, accurately predicting the atmospheric oxidation rates of VOCs is critical for understanding their

persistence, transformation, and contribution to secondary pollutant formation. Traditionally, such predictions have relied on

experimental kinetic modeling methods and computational methods (e.g., quantum-chemistry (QC) and quantitative structure-
activity relationship (QSAR) approaches) (Basant and Gupta, 2018; Liu et al., 2021). Experimental methods involve tracking
reactant and product concentrations using techniques like chemical ionization mass spectrometry (CIMS), followed by kinetic
fitting to determine Arrhenius parameters (Logan, 1982; Wells et al., 1996). However, these methods are time-consuming and

cover only a narrow subset of atmospheric VOCs. QC approaches combine ab initio or density-functional theory calculations

with transition-state theory (TST), canonical or variational TST to obtain temperature-dependent rate constants (Canneaux et
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al., 2014; Liu et al.,, 2021; Meana-Pafieda et al., 2024). While QC methods offer detailed mechanistic insight, their

computational cost scales steeply with molecular size and conformational complexity, limiting routine application to large

numbers of VOCs. However, traditional computational methods have shortcomings such as high computational complexity

and low efficiency. As a more scalable alternative, QSAR model leverage molecular descriptors and statistical learning. and it

has become one of the important methods for evaluating reaction rate constants. (Meana-Pafieda-etal;2024)(Canneavxetal;
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EarlyPrevious Netable-examples include AOPWIN™ module integrated in US EPI Suite™ software, which applies Partial
Least Squares (PLS) regression to 109 gas-phase reaction with hydroxyl radicals (Atkinson, 1986, 1987; Kwok and Atkinson,
1995), and later expansions using a broader dataset (Oberg, 2005). Some models have also incorporated machine learning
algorithms such as multiple linear regression (MLR) (Liu et al., 2020, 2022) for predicting reactions with NO3 and *OHOH
and artificial neural networks for predicting reactions with O3 (Fatemi, 2006). Despite their utility, these models generally rely

on predefined descriptors and are typically limited to reactions with a single type of oxidant, which constrains the scalability

of the model.- Recent advances in deep learning (DL), particularly graph neural networks (GNN), have improved molecular
representation by learning features directly from molecular graphs. This enables more flexible and accurate prediction of
chemical properties without requiring predefined descriptors. GNNs have been successfully applied in atmospheric chemistry
and other fields tasks, such as in predicting vapor pressures with GC2NN (Kriiger et al., 2025) and modeling reaction rate
constants involving with *OHOH using GAT—GIN hybrid architectures (Huang et al., 2024). However, like traditional models,
these GNN-based frameworks have been developed for single-molecule systems and thus fall short in capturing the complexity
of multi-molecule reactions in real environments. In contrast, the atmosphere involves competing and sequential reactions
between VOCs and multiple oxidants—*OHOH, NOx, «€ICl, and Os—depending on time of day, region, and chemical
conditions. This multiplicity underscores the urgent need for models that can simultaneously learn and predict VOC reactivity
across multiple oxidants. To meet this need, message passing neural networks (MPNN) offer a powerful framework (Gilmer
et al., 2017). MPNNs propagate information across molecular graphs, capturing both atomic-level features and topological
context. Extensions of MPNN, such as the communicative GraphRXN -(Li et al., 2023) and directed MPNN Chemprop (Heid

et al., 2024), have shown promise in learning reactivity across multiple reactants. They extract the interaction features of

chemical reactions in depth, rather than performing simple reactant concatenating. Yet, their application has largely focused

on synthesis or materials chemistry, not atmospheric multiphase oxidation.

This study addresses this gap by proposing Vreact, a novel Siamese MPNN architecture capable of jointly modelling reactions
between VOCs and four major atmospheric oxidants. Unlike previous models that treat each oxidant independently, Vreact
processes VOC—oxidant pairs in a unified framework, it learns representations from the molecular graphs of VOCs and
oxidants through the MPNN, and encodes their interactions via feature aggregation. This design enables the model to accept
arbitrary VOC—-oxidant combinations and simultaneously predict reaction rate constants k; (where i € {*OHOH, <CICl, NOs3,
or O3}). Compared to traditional and simple single-oxidant prediction models, Vreact shows significantly improved
performance, achieving higher accuracy, stronger interpretability and wider scalabilityachievinghigher-aceuracy—and-and
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broadergeneralizability across multiple oxidants. Furthermore, based on the flexibility of the DL architecture, the designed

the-medel’s-interaction module captures atomic-level interaction patterns, providing mechanistic insights into VOC oxidation

process via interpretable interaction weight matrices. Applying Vreact to 447 atmospheric VOCs not included in the training
data revealed a wide distribution of oxidation reactivities and confirmed that alkenes and aromatics exhibit higher reactivity,

acting as key precursors for ozone and SOA formation.

2 Methods and Data
2.1 Collection and Preprocessing of Reaction Rate Constant Dataset

The VOCs reaction rate constant dataset compiled by McGillen et al. is utilized in the study, which includes gas-phase reaction
rate constants of natural atmospheric VOCs, halocarbons, and their degradation products with *6HOH, <€ICI, NOs radicals,
and O3, within a temperature range of 250-370K (McGillen et al., 2020). Under thermodynamic standard conditions at 298K,
a total of 2802 gas-phase reaction rate constant data points were obtained, encompassing 1586 VOCs and 4 oxidants. This
dataset includes 4; values for 1363 VOCs with «<OHOH, 735 VOCs with <ClCl, 393 VOCs with NOs; radicals, and 311 VOCs
with O;. Due to the wide range of reaction rate constants k; in the dataset (1.460x1072'~7.550x10""%cm?3/(molecule-s),
S.D.=£1.040x10"1%), the data were log-transformed to logok; to reduce skewness and mitigate the influence of outliers on the
model. To ensure a balanced distribution of each type of oxidant in the training, validation, and internal test sets, the dataset

was divided using stratified random sampling into training, validation and internal test sets in an 8:1:1 ratio (Table S19).

Combinations of the same VOC with different oxidants may appear across the training, validation, and internal test sets.-
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Construction and Training of the Vreact Model

All VOCs and oxidant molecules were converted into graphs G (V. E) (Text S1). The generated molecular graph G includes

ten types of atomic information for each non-hydrogen atom, such as element type, chirality, and atomic hybridization type,

as well as four types of bond information, including bond type and conjugation (Table S2). A Siamese MPNN architecture-

Vreact, was designed to simultaneously accept input features of VOCs and oxidant molecules (Fig. 1). The model takes the

SMILES of VOCs and oxidants as input and primarily includes a VOC molecular graph representation layer and a MPNN

layer, an oxidant molecular graph representation layer and MPNN layer, an interaction layer, and a prediction layer. The

molecular graph G(V, E) encoding layers of VOCs and oxidants containing node feature matrix X and edge feature matrix ¥,

which learn molecular properties through the MPNN layer (Gilmer et al., 2017). The MPNN forward propagation process

consists of two phases: Message Passing Phase and Readout Phase and generates molecular feature tensors 4 for VOCs and B

for oxidants. Subsequently, the interaction layer transforms the molecular features 4 of VOCs and B of oxidants into tensors

As and B; of the same shape and concatenates them into tensor Z. Reaction rate constants are determined not only by the

molecular structure of the reactants but also by the interactions between the reactants. The interaction feature tensor I is dot-

multiplied with A4 to obtain the oxidant-affected VOC feature tensor A4'; similarly, it is dot-multiplied with B to obtain the

VOC-affected oxidant feature tensor B'. These operations embed the learned interaction features into the molecular structure

features, providing a more comprehensive representation of the chemical reaction mechanisms between the two reactants. The

prediction phase is composed of a pooling layer and three fully connected layers. The pooling layer uses the Set2Set method

to achieve global average pooling, and the fully connected layers map the input features to the final predicted values (logiok;).

More details can be found in Text S2.

During model training, Adaptive Moment Estimation (Adam) (Kingma and Ba, 2017) was employed to address the fixed

learning rates issue in traditional gradient descent methods. Adam adaptively adjusts the learning rate of each parameter using

first-order moment estimates (mean of the gradients) and second-order moment estimates (exponentially moving average of

the uncentered variance of the gradients), aiding in rapid model convergence. Bayesian optimization was utilized for

hyperparameter tuning, which included the initial learning rate of the optimizer (/r), batch size, L2 regularization parameter

weight decay), dropout rate and MPNN time steps Text S3).During hyperparameter optimization, the hyperparameter

combination that minimizes the Mean Squared Error (MSE) of the validation set was selected as the optimal hyperparameter

combination, and the best model was saved (Table S3).The predictive performance of the model was assessed using MSE,
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R?) (Text S4). For more

information on the model implementation, please refer to Text S5.
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Figure 1. Schematic of the Vreact Architecture. SMILES of VOCs and oxidants are converted into molecular graphs, where nodes
represent atoms and edges represent bonds. Atomic and bond features form matrices X and Y. Using a Siamese MPNN architecture,
the Vreact model processes these features through separate MPNN layers for VOCs and oxidants. The final prediction layer outputs
logioki, incorporating both molecular and interaction features.

2.3 Clustering Analysis

Morgan fingerprints (radius 2, 1024 bits, generated using RDKit) was used as the molecular embeddings before clustering and

visualization. To investigate VOC structural diversity and reactivity trends, two methods were applied: the Self-Organizing

Map (SOM) (Kohonen, 2006) and the Uniform Manifold Approximation and Projection (UMAP). The SOM algorithm

clustered VOCs into 100 structural groups (10x10 grid), using a sigma of 0.3 and learning rate of 0.5. The UMAP algorithm

projected the high-dimensional fingerprint space into 2D for visualization, with the number of neighbors set to 50, minimum

distance to 0.6, and metric as correlation.

3 Results and Discussion
3.1 Analysis of VOC and Oxidant Reaction Data Distribution and Characteristics

The categories and distribution characteristics of VOC and oxidant reaction data are first explored in the study, which includes

logiok; data for 1586 VOCs with «<OHOH, <CICl, NOs, and O3 (Fig. 2A). The dataset contains the most data for *OHOH,
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accounting for 48.64% of the total, as *OHOH plays a crucial role in the atmosphere, rapidly reacting with organic pollutants
and dominating their removal process. The remaining data points are for <€ICl (26.23%), NO3 (14.03%), and O3 (11.1%) in
descending order of data quantity. O3 is primarily produced through photochemical reactions involving NOx and VOCs, while
NO;3, as the principal nighttime atmospheric oxidant, significantly contributes to the oxidation and removal of trace gases. The
dataset encompasses VOCs with diverse chemical structures, including 22 molecular motifsfanetional-sreups such as double
bonds, esters, benzene rings, and halogen atoms (F, S, Cl, Br, and I) (Fig. 2B). This extensive chemical structure space
facilitates the model's ability to learn more structural features and enhances its generalization capability.

Moreover, although there is some overlap in the reactions of the four oxidants with VOCs, each oxidant also has specific VOC
reactions (Fig. 2C). There are 747 VOCs with k; data for only one oxidant and 839 VOCs with £; data for multiple oxidants, of
which 81 VOCs have data for all four oxidants. For example, isoprene can react with *OHOH, NO3, and +ClCl through
hydrogen abstraction reactions, and undergo addition reactions with O3 via its unsaturated double bonds. Furthermore, the four
oxidants exhibit different logiok; value distribution with VOCs due to differences in chemical structures and reactivity (Fig.
2D). *O0HOH, due to its high oxidation potential, usually reacts quickly with VOCs via hydrogen abstraction, with logiok;
concentrated in the range of -14.000 to -10.000. In contrast, O3 typically undergoes slower addition reactions with unsaturated
bonds in reactants (Ziemann and Atkinson, 2012), with logiok; ranging from -20.836 to -13.721. NOs can participate in both
hydrogen abstraction and addition reactions, resulting in a wider range of logok; values. The diverse reaction rates of these
oxidants maintain the composition and oxidative state of aerosols in the atmosphere, but the uneven distribution of their values
makes predicting k; more challenging. Even for the same oxidant, VOCs with different structures exhibit varied reaction rates
in gas-phase oxidation reactions. For example, NO; reacts very slowly with aromatic rings, with a k; value of 3.900x101¢
cm?®/(molecule-s) for xylene. In contrast, NO3 can rapidly abstract hydrogen from hydroxyl groups, with a k; value of up to

1.72x107'° cm3/(molecule-s) for 3-methylcatechol.
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Figure 2. Visualization of VOCs Dataset. (A) Proportion of the four types of oxidants. (B) Number of VOCs containing each
molecular motiffunetionalgreup. MultFct: multifunctional; AroRings: aromatic rings; NaRings: non-aromatic rings; Tbonds: triple
bonds; CumDBs: cumulated double bonds; ConjDBs: conjugated double bonds; SepDBs: separated double bonds. (C) Number of
VOCs that can undergo oxidation reactions with the four oxidants. (D) Distribution of logiok: values for the four oxidants. (E)
Heatmap of reaction rate constants based on VOCs clustering, where each grid represents a cluster of structurally similar VOCs.
The color gradient indicates the logiok: values, with red indicating higher logioki values (faster reaction rates), blue indicating lower
logioki values (slower reaction rates), and white indicating the absence of logioki data for that cluster. The cluster containing butyl
acrylate are enclosed within the black box.

Furthermore, the same VOCs show different reaction rates with different oxidants. The SOM algorithm was used to explore

the relationship between VOC structural variation and logiok;. Each grid in Fig. 2E represents a VOC cluster, and the color

gradient indicates reactivity (average logjok; values) for the corresponding oxidants. By comparing log;ok; values across clusters,

— For example, butyl acrylate
(CAS RN.141-32-2) reacts slowly with NO; radicals and O3z, mainly due to the unsaturated addition reactions through the
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carbon-carbon double bond, where the ester group in the molecular structure produces an electron-withdrawing effect, reducing
the electron density in the 7 bond and thus lowering the reaction rate (Gai et al., 2009; Wang et al., 2010). In contrast, it reacts
faster with *OHOH and +CICI through hydrogen abstraction rather than addition (Le Calvé et al., 1997; Ohta, 1984; Wang et
al., 2018). This demonstrates that the dataset, which includes various oxidants and VOCs, exhibits diverse logiok; values. The
overall logok; values differ significantly between different oxidants. This diverse dataset enables the model to learn the reaction

information between VOCs and different oxidants, thereby improving model performance and prediction accuracy.

3.2 Performance Evaluation of Vreact Model

The Siamese MPNN architecture of the —Vreact captures both molecular features of VOCs and oxidants as well as their
interaction dynamics simultaneously. During hyperparameter optimization, the set of hyperparameters that minimized MSE
on the validation set was selected. After training for 46 epochs (Fig. S1), -Vreact achieved robust predictive performance on
the validation set, with R? 0f 0.961, MSE of 0.194 and MAE of 0.314 for logiok; (Fig. 3A). On the internal test set, the model
achieved R? of 0.941, MSE of 0.299 and MAE of 0.322 for logiok; (Fig. 3A), indicating robust predictive capability and
excellent generalization ability for unseen VOC-oxidant combinations. The small MAE difference between the validation set
and internal test sets, despite a larger difference in MSE, indicates that MSE is more sensitive to outliers or large errors, while
MAE directly reflects the average absolute prediction error. Although the R? on the internal test set is slightly lower than on
the validation set, this minor discrepancy does not affect the model's robust predictive ability. The result on the internal test
set is available in Table S4.

To explore the predictive performance of the Vreact model for different types of oxidants, we evaluated the prediction
performance for *OHOH, <CICl, O3, and NO; separately. The regression fit of predicted logiok; values versus experimental
values for the four oxidants (Fig. 3B) shows that O3 and NOj; have higher dispersion compared to *OHOH and <C€ICI. The R?
values for the reactions of the four oxidants, in descending order, are *OHOH > +ClICl > NO3; > O3, with *OHOH and +€1Cl
having R? values of 0.92942 and 0.9136, respectively. The prediction performance for NOj3 radicals and O3 is comparatively
lower, with R? values below 0.800.

The *OHOH dataset is the most abundant and eencentratedbalanced, while data amount of O; and NO3; was relatively small,
and the model can’t fully capture the reaction features, leading to prediction bias. whereas-thelogiok—~valuesfor-In addition,

the logiok; values for NOs are highly dispersed,—which-may—eause-the-modelto-havedifficultyeapturingall-patterns—and
relationshipsfor NO;; also reducing the prediction performance. Additionally, the order of the size of R? is consistent with the

order of the data volume of the four oxidant datasets. This indicates that the amount of data is also an important factor affecting

the prediction performance of reaction rate constants, and that more available data help the model to fully capture reaction
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Figure 3. Evaluation and comparison of the predictive performance of the Vreact model. (A) MSE, MAE, R? of Vreact (trained on

the McGillen et al. dataset) on the validation set, internal test set, and external post-2020 test set. (B) R? values for logioki predictions

of four oxidants’ reactions in the internal test set. (C) Distribution of AE between predicted and experimental logiok: values for the
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study and prlor llteratures on HOREH g pub d oxids 0 origing act-(evaluated-o
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The Absolute Error (AE) between the predicted and experimental logok; values for the four types of oxidants are presented in
Fig. 3C. The median AE for *OHOH is 0.149, while O3 and NO; exhibit median AEs of 0.301 and 0.287, respectively, which
are slightly higher than that of *OHOH. Overall, 84% of the AE values for O3 and NOs are within 1. As depicted in the Fig.
3C, individual outliers in AE contribute to the increased RMSE and MAE for O3 and NOs, and the consequent decrease in R2.
For example, the AE for the reaction of NO3 with azulene (CioHs) is 4.653. Azulene, an aromatic hydrocarbon composed of a
seven-membered ring fused to a five-membered ring, is an isomer of naphthalene (CioHsg). NO3, as electrophilic reagents, tend
to attack regions with higher electron density. Compared to naphthalene, the electron density distribution of azulene is uneven,
with certain regions having high electron density that may facilitate effective interactions with NOs. Additionally, the structure
of azulene may reduce steric hindrance, allowing NO; radicals easier access to reaction sites (Atkinson et al., 1992), resulting
in a higher reaction rate constant and increasing the model's prediction difficulty. Similarly, the predicted logiok; value for the
reaction of NOs with diiodomethane (CH:lb) is significantly lower than the true value (AE=2.763). This discrepancy may be
attributed to the limited representation of iodine-containing VOCs in the dataset, with only iodomethane (CH3I) and iodoethane
(CHsl) having £; values in the training and validation sets. This limited data prevents the model from fully learning the reaction

characteristics of iodine-containing compounds, resulting in a larger prediction error for diiodomethane with NO3 radicals.

3.3 Comparation with Single-Oxidant Prediction Models

Most existing machine learning models for predicting VOC reaction rates constants are tailored for individual oxidants,
limiting their applicability to complex atmospheric systems involving multiple oxidants. In contrast, the Siamese MPNN
architecture of the Vreact enables simultaneous learning of molecular features and interaction patterns across different VOC—
oxidant pairs within a unified framework. To benchmark Vreact against previously published single-oxidant QSAR/ML
models, we selected three top-performing models developed under 298K conditions: Liu et al. (2020) for *0HOH (training/test
= 144/36trainingset144/ test set:36180-datapeints), Xu et al. (2013) for O3 (trainingset:60/-testset:3595-datapeints), and
Liu et al. (2022) for NOj radicals (1training—set45|/~testset:38489-datapeints). Prior to evaluation, we-UMAP was applied
Uniferm Manifeld Approximationand Prejeetion- (MAP)to reduce the dimensionality of the Morgan molecular fingerprints

to visualize the chemical space of both the comparison literature datasets and the Vreact training set (Fig.s=3B-E S2). The
observed structural overlap confirms that Vreact’s dataset spans a broad and diverse chemical space. Given that our study
used different data than those reported in the literature, we employed two strategies for comparison. First, the pre-trained
Vreact model (trained on the McGillen dataset) was directly applied to the literature test setstest-setsfromtheliterature to

evaluate extrapolation performance. To ensure a fair comparison, overlapping data points between the literature test sets and

the McGillen training set were removed He
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tratningset). -Second, Vreact was retrained on each literature dataset using their original train/test splits_(Retrained Vreact),
allowing a direct comparison with published models on original literature test sets{Retrained-Vreaet).

As shown in Fig. 3G3D-, both the original Vreact model and its retrained version consistently outperformed the single-oxidant
models from Liu et al. (2022) and Xu et al. (2013) on the *OHOH and O3 literature test sets, achieving higher R? values and
demonstrating superior regression fits between predicted and experimental values. These results highlight the capability of the
Vreact architecture—whether trained on a broad multi-oxidant dataset or fine-tuned on smaller single-oxidant datasets—to
effectively learn structural features of VOCs and oxidants and capture complex molecular interactions through its Siamese

MPNN framework. Notably, Vreact shows opposite performance trends for OH and Os between the internal and literature test

set. To understand this, UMAP was applied to project compounds from the training, internal, and literature test sets into a

shared chemical space. As shown in Fig. 3E, the internal OH test set overlaps well with the training data, leading to consistently

strong performance. In contrast, the literature OH set is sparse and scattered near the dataset boundaries. Despite this, Vreact

still achieves a high R2, demonstrating good generalization. For Os (Fig. 3F), the internal test set lies farther from the dense

training distribution, contributing to lower R%. Meanwhile, the literature Os set is better aligned with the training data, resulting

in higher prediction accuracy. For NOs (Fig. 3G), both internal and literature sets show similar distributions, and the model

achieves comparable R? values (~0.815). AAlthough Vreact underperforms slightly compared to the original single-oxidant

model, retraining on the literature data improves performance. This suggests that multi-oxidant training may introduce some

noise but does not significantly compromise prediction accuracy.Netably—the-outcomesfor OH and-Os-exhibit-contrasting
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3.4 Mechanism Insights Through Interaction Analysis

The interaction layer of the Vreact model can elucidate the atomic interaction mechanisms between VOCs and oxidants. The
interaction matrix, sized n;xn,, where n; represents the number of non-hydrogen atoms in the VOC molecule and #; represents
the number of non-hydrogen atoms in the oxidant molecule. Mapping these interaction coefficients onto the molecular structure
highlights key atoms that determine the reaction rate.

To exemplify this mechanism, we analysed specific cases. 2-methyl-4-penten-2-ol is an unsaturated oxygenated volatile
organic compound (OVOC) that constitutes a significant proportion of the atmospheric VOCs, primarily sourced from
industrial solvents used in ink and jet ink manufacturing (Li et al., 2021). As shown in Fig. 4A, the interaction coefficient for
the distal unsaturated carbon atoms is the highest during the reaction with O3, indicating these are likely the reaction sites for
O3 attack. It is inferred that O3 adds to the unsaturated carbon-carbon double bond through an addition reaction, forming
primary ozonides (POZs). These POZs are unstable intermediates that rapidly cleave to produce carbonyl compounds and
carbon-based radicals, which further rearrange to form secondary ozonides (SOZs). The SOZs and their reaction products are
precursors of SOA. Another example is y-caprolactone (GCL), a five-membered ring ester used in perfumes, which rapidly
reacts and degrades with *OHOH upon entering the atmosphere. Interaction weight analysis shows that the carbon atom linked
to the ethyl group contributes most to GCL's oxidative degradation by *0HOH (Fig. 4B), suggesting that *OHOH initially
attacks this carbon atom, abstracting a H atom to form a carbon radical. Previous studies indicate that the reactivity of carbons
adjacent to the oxygen atom in lactones is particularly significant in reactions with *OHOH, especially when alkyl substituents

are attached to this carbon, which enhances its reactivity (Barnes et al., 2014).
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3.5 Evaluating Extrapolation Ability and Prioritizing VOCs for Environmental Impact

To further validate the extrapolation capability and generalization performance of the Vreact model, developed using a dataset
compiled up to the year 2020 (Baptista et al., 2021; Joudan et al., 2022; Li et al., 2021), additional k; data from experimentally
measured VOCs and oxidants published after 2020 were collected as an external test set (post-2020 test set) (Table 1). The
prediction results showed that the AE between the experimental logiok; and the predicted values was within 1, with the reaction
rate constant prediction for y-heptalactone and *OHOH exhibiting the smallest prediction error. The AE for y-heptalactone
with *OHOH was only 0.005, and the overall MAE was 0.240, with an MSE of 0.112 and an R? of 0.98 (Fig. 3A shown in
red). The results indicate that the Vreact can accurately predict the atmospheric oxidation reaction rate constants of unknown
VOCs, demonstrating its potential application in addressing complex atmospheric chemistry issues involving the interactions

between VOCs and oxidants.

Table 1. The prediction results on the post-2020 test set.

Chemical Experimental Predicted
VOC name Oxidant AE Ref.
structure logioki logioki
2-methyl-4- HO (Lietal,
(0]} -17.370 -16.712 0.658
penten-2-ol X 2021)
Baptista et
~OHOH 11,194 11200 0015 (Baptistac
0, al., 2021)
y-caprolactone .
\D_/ . (Baptista et
~CliCl -9.886 -10.149 0.263
al., 2021)
(Baptista et
o} +~OHOH -11.056 -11.051 0.005
O al., 2021)
y-heptalactone W (Baptista et
aptista e
~CiCl -9.770 -9.943 0.173 P
al., 2021)
: Joudan et
o . *OHOH 11,377 11876 0499 (101123226)
FESOH %.ﬂ,& al.,
e Joudan et
ot ~CiCl -10.824 10759 0065  Ooudane
al., 2022)

FESOH: 2- (1,1,2-trifluoro-2-heptafluoropropyloxy-ethylsulfanyl)-ethanol; AE: absolute error

Despite the identification of hundreds of VOC species, the environmental behavior of most VOCs in the atmosphere and their
potential contributions to particulate matter formation and ozone increase remain largely unclear. To address this gap, we
employed the Vreact model to evaluate the atmospheric oxidation reaction rate constants of a broad spectrum of VOCs.
Molecular structures for 447 VOCs with unknown atmospheric oxidation k; values were collected from previous research,
which evaluated more than 500 Chinese domestic source profiles, including literature and field measurements (Sha et al., 2021)

(Table S5). After excluding VOCs already included in the Vreact dataset, 296, 339, 416, and 369 data points for *OHOH,
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+CICl, O3, and NO; were retained, respectively. The prediction results indicated that, although the oxidation reaction rates of
VOC:s in the atmosphere vary (Fig. 5A), the differences in logjok; values are primarily influenced by the type of oxidant, with
smaller variations in logjok; values observed for different VOCs reacting with the same oxidant. Among these, reactions with
*OHOH and «C€1Cl were the fastest, consistent with the results from the McGillen dataset analysis used in the modeling (Fig.
2D). Additionally, the changes in the proportion of VOC types within different reaction rate intervals (Fig. 5B) demonstrated
that the composition of VOC types varied with reaction rates. Halocarbons exhibited relatively slower reaction rates, while
alkenes and aromatics reacted relatively quickly, and oxygenated compounds showed a more uniform rate distribution.
Consequently, areas with high emissions of alkenes and aromatics will produce more reaction products per unit time, providing
precursors for Oz and SOA formation (Gao et al., 2021).

The top five VOCs with the fastest reaction rates with *OHOH, +CICI, O3, and NO3 were further examined in the study (Fig.
5C). Among these, 2,6-Dimethyl-2,6-cyclooctadiene (CAS RN: 3760-14-3) is a volatile compound with an irritating odor,
exhibiting the fastest reaction rates with *OHOH, «€1Cl, and Os. Additionally, 1,3-cyclopentadiene (CAS RN: 542-92-7) and
1,4-Dimethylcyclohexene (CAS RN: 70688-47-0) also showed high reaction rates with O3, «€lCl, and *OHOH, likely due to
the presence of double bonds and cyclic structures in these molecules. The carbon atoms in the double bonds and those
connected to methyl groups generally have high reactivity. Therefore, it could be inferred that these VOCs, or VOCs with
similar structures, may significantly contribute to the formation of fine particulate matter and the increase in ozone in the

atmosphere.
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Figure S. Predicted reaction rate constants for VOCs atmospheric oxidation reactions. (A) Predicted mean logiok: values for different
types of VOC:s. (B) Distribution of VOC types ranked by predicted reaction rates, divided into quartiles: the fastest 25% (Q1), 25%-
50% (Q2),50%-75% (Q3), and the slowest 25% (Q4). (C) Molecular structures of VOCs with the fastest reaction rates with the four
oxidants.

4 Concluding Cenecluding

In response to growing concerns about atmospheric pollution and its impact on human health and climate, this study introduces

Vreact, a deep learning model designed to predict oxidation rate constants for VOCs with multiple oxidants (OH., CI, NOs, Os).

Vreact demonstrates strong overall performance (MSE=0.299. R?>=0.941 on internal test data) and provides mechanistic

insights by capturing atomic-level interaction patterns through a Siamese MPNN framework. Its predictive accuracy varies by

oxidant, reflecting the availability and diversity of training data. The model achieves high accuracy for OH (R*=0.929. n=1363)

and Cl (R>=0.913, n=735), supporting robust application in daytime oxidation modeling. In contrast, lower performance is

observed for NOs (R?>=0.721, n=393) and Os (R?>=0.584, n=311), pointing to challenges in modeling oxidants with fewer data
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and more complex mechanisms. This underscores the importance of expanding high-quality experimental datasets to improve

generalization, particularly for underrepresented oxidants and VOC classes.

425 Vreact supports high-throughput screening for emission inventories and atmospheric reactivity assessments. Its applications

span VOC prioritization, emission control planning, and kinetic mechanism development, offering actionable insights for

environmental policy and modeling. An interactive web interface (http://vreact.envwind.site:8001) (Fig. S3) enhances

accessibility for researchers and policymakers. Further improvements in NOs and Os predictions will expand its utility in

nighttime chemistry and secondary aerosol formation scenarios.
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Data and Code Availability

The code and datasets used and/or anabyzedanalysed during the current study are available at https://github.com/Luo-

Jiagi/Vreact and supplemental information.

Supplementary Material

Detailed information about the learning curve of the Vreact training process (Figure S1); The chemical spatial distribution of

VOCs in the OH, O3, and NO3 datasets used in this study and prior literatures (Figure S2); User interface of the web platform

for predicting VOC reaction rate constants using the Vreact model (Figure S2S3); Graph representation of molecular structures
(Text S1); MPNN message passing and readout phases for molecular graphs (Text S2); Regularization and early stopping
techniques in the Vreact model training (Text S3); Model performance evaluation metrics (Text S4); Implementation of the
Vreact model (Text S5); Distribution of VOCs reactions with atmospheric oxidants across datasets (Table S1); Atomic features
and bond features used in molecular graph representation (Table S2); Hyperparameter search space and optimal settings for
the Vreact model (Table S3);Experimental and predicted logiok; values for VOCs on the internal test dataset (Table S4); 447
real-world atmospheric VOCs (Table S5).
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