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Response to Editor Comments 

Dear Editor, 

 

We greatly appreciate the efforts made by you to improve the quality of our manuscript 

(MS ID: egusphere-2025-1241). We have carefully reviewed and implemented all the 

comments provided by you and made significant revisions to the manuscript to address 

the concerns raised. In this response letter, your comments copied verbatim beneath are 

in black italic font, the author responses are in normal font, revised text is in blue, and 

line numbers refer to those in the Track Change manuscript. 

 

Thank you very much for your revision. Before the paper can be accepted in ACP, I 

would like to reiterate on an important point made by reviewer #2, which I believe was 

not sufficiently addressed and is crucial to show the significance of this work. The 

original comment read: 

"I understand that the major benefit of Vreact is the ability to predict reactivities for 

multiple oxidants. Could the authors further clarify the motivation for using a Siamese 

neural network over simpler alternative architechtures which also could provide 

prediction for multiple oxidants (such as a one-hot encoding of oxidant identity). Given 

that only four oxidants are included, it would be helpful to understand whether the 

architecture was chosen for scalability, improved interpretability, or flexibility." 

I would prefer if the authors give quantitative results for their newly added statement 

of "achieving higher accuracy, stronger interpretability and wider scalability". 

1. Accuracy: It would really strengthen the paper if the authors could show and quantify, 

using unbiased calculations (e.g. with same training time), that the Siamese neural 

network architecture is superior to simpler alternative model architectures. Can the 

authors show what happens if you train the same type of neural network (just without 

the Siamese architecture), for each oxidant? Is the result worse? I think it's not enough 

here to compare with other published models that may have different numbers of neural 

network hyperparameters, training time, etc. 

2. Interpretability: Can the authors show what precisely can be learned about the 

detailed chemical interactions of two molecules with the Siamese neural network 

architecture? If not, it should be indicated that this is only a hypothetical feature that 

was not yet explored. 

 

Response: We thank the reviewer for the careful observation and valuable feedback. 

1. Accuracy:  

To quantitatively demonstrate the benefits of the Siamese neural network 

architecture under identical training conditions, we conducted an ablation study in 

the revised manuscript. In the Vreact-Ablation model, we removed the oxidant 

input and interaction module from the original Vreact architecture, retaining only 

the VOCs input. This results in a simpler single-input MPNN architecture, while 

keeping all other settings—including training/validation/test splits, data source 

(McGillen et al., 2020), hyperparameters, training time, and evaluation metrics—
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identical to those of Vreact. We trained both models on individual oxidant datasets 

(OH, Cl, NO3, O3) as well as on the combined dataset. As shown in Fig. 3D, Vreact 

consistently outperformed Vreact-Ablation across all oxidants.  

 The improvements of R2 for OH, Cl, NO3, and O3 are 0.049, 0.113, 0.184, and 

0.021 respectively.  

 When evaluated on the full dataset (all oxidants), Vreact-Ablation achieved an 

R2 of only 0.035, indicating that the simple MPNN without oxidant information 

fails to generalize beyond single-oxidant learning.  

 Moreover, their runtime per iteration is essentially consistent. 

 

We have added the following content: 

 

Figure 3. Evaluation and comparison of the predictive performance of the Vreact model. (A) MSE, MAE, R2 

of Vreact (trained on the McGillen et al. dataset) on the validation set, internal test set, and external post-

2020 test set. (B) R2 values for log10ki predictions of four oxidants’ reactions in the internal test set. (C) 

Distribution of AE between predicted and experimental log10ki values for the four oxidants in the internal test 

set. (D) R2 of the Vreact and Vreact-Ablation on the OH, Cl, NO3, O3, and combined test sets. (E) R2 

comparison among previously published single-oxidant models, the original Vreact (evaluated on cleaned 
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literature test sets), and Retrained Vreact (trained and tested using the same original splits as the literature) 

highlighting adaptability. (F-H) The chemical spatial distribution of VOCs in the OH, O3, and NO3 datasets 

used in this study and prior literature. 

“3.3 Model Ablation Study 

To evaluate the contribution of the Siamese neural network architecture in Vreact, we 

performed an ablation study. In the ablation model (Vreact-Ablation), the oxidant input 

and interaction module were removed, leaving only the VOC input. Both Vreact and 

Vreact-Ablation were trained, validated, and tested on the OH, Cl, NO3, O3, and 

combined datasets. All experimental settings were kept consistent, including data 

sources (McGillen et al., 2020), hyperparameters and evaluation metrics. As shown in 

Fig. 3D, Vreact consistently outperformed Vreact-Ablation across all four oxidants, 

with R2 improvements of 0.049 (OH), 0.113 (Cl), 0.184 (NO3), and 0.021 (O3). When 

evaluated on the combined dataset, Vreact-Ablation achieved an R2 of only 0.035, 

indicating that it fails to generalize across multiple oxidants. Additionally, both models 

showed comparable runtime per iteration. These results demonstrate that, under the 

same training conditions, the Siamese MPNN architecture significantly enhances 

predictive performance and generalization. By explicitly modeling VOC-oxidant 

interactions, the architecture enables the network to capture shared patterns across 

reaction types, thereby improving its practical applicability in multi-reactivity 

prediction.” 

 

2. Interpretability:  

Regarding interpretability, Vreact’s architecture was specifically designed to capture 

atomic-level interactions between VOCs and oxidants. The model incorporates an 

interaction module that learns cross-molecular attention weights, enabling insights into 

which atoms in each molecule contribute most to reactivity.  

In Section 3.4, we present visualization and analysis of these interaction weights, 

illustrating how the model differentiates chemical behaviors of VOCs toward different 

oxidants. While still preliminary, this direction demonstrates the architectural potential 

for interpretable chemical learning. We have clarified that this aspect is explicitly 

explored, not merely hypothetical. 

 

l.64: "QC approaches combine ab initio or density-functional theory calculations ..." 

- DFT is generally considered an ab initio method (though not a first-principles-

method). 

Response: Thank you for your comment. “QC approaches combine ab initio or density-

functional theory calculations with transition-state theory (TST), canonical or 

variational TST to obtain temperature-dependent rate constants” has been modified to 

“QC approaches use density-functional theory calculations such as transition-state 

theory (TST) or variational TST to obtain temperature-dependent rate constants”. 

 

l.90: "They extract the interaction features of chemical reactions in depth, rather than 

performing simple reactant concatenating. Yet, their application has largely focused 

on synthesis or materials chemistry, not atmospheric multiphase oxidation." 
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- Can the authors explain what they mean with the first sentence? 

- Second sentence: this study does not look at multiphase chemistry, either. 

Response: Thank you for the comments. The following is an explanation of your 

comments one by one. 

·First sentence: We are very sorry that this sentence has caused you confusion. We 

would like to show through two examples that GNN and especially MPNN have been 

deeply applied when modeling chemical reactions. These two methods can transform 

molecules into molecular graphs, then input them into MPNN for feature depth 

extraction, and finally splice the features for reaction prediction. They do not perform 

simple concatenation for prediction by converting reactants into molecular 

fingerprints/descriptors. The MPNN provides more chemical information for chemical 

reaction modeling. So, the “They extract the interaction features of chemical reactions 

in depth, rather than performing simple reactant concatenating” has been modified to 

“Compared with the simple concatenation using molecular fingerprints/descriptors, 

they all use MPNN to deeply extract task-relevant representations of chemical reactions, 

provide abundant chemical information for subsequent reaction modeling, and achieve 

good prediction results”. 

·Second sentence: We apologize for the inappropriate expression of the second 

sentence. Our study indeed does not look at multiphase chemistry. The “atmospheric 

multiphase oxidation” has been modified to “atmospheric oxidation reaction”. 

 

l.98: " Vreact shows significantly improved performance" 

- Please provide the level of significance for this statement 

Response: Thank you for the valuable suggestion. In the ablation experiment, Vreact 

outperforms Vreact-Ablation in predictive performance across all four oxidants, with 

R2 differences between the two models on OH, Cl, NO3, and O3 being 0.049, 0.113, 

0.184, and 0.021, respectively. Additionally, when both models are tested using the 

combined dataset, Vreact-Ablation achieves an R2 of only 0.035, indicating that it lacks 

predictive capability. Vreact shows significantly improved performance compared to 

simpler alternative architectures. Then, compared with the simple single-oxidant 

prediction models reported in three literature, Vreact exhibits predictive performance 

that is either superior to or comparable with those models. Vreact did not demonstrate 

significantly improved prediction performance on the NO3 literature test set. 

 

We have removed the imprecise statement: “Compared to traditional and simple single-

oxidant prediction models, Vreact shows significantly improved performance, 

achieving higher accuracy, stronger interpretability and wider scalability across 

multiple oxidants”. 

Add new statements: 

“The dual-input design of Vreact enhances scalability and generalization across 

multiple oxidants. Ablation experiments show that Vreact significantly outperforms a 

structurally simpler single-input MPNN trained under identical conditions. The 

interaction module within Vreact provides atomic-level attention maps that offer 
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mechanistic insights into VOC-oxidant reactivity patterns, improving interpretability.” 

(Lines 97-100) 

 

Finally, we would like to thank you again for your great efforts on improving the quality 

of this manuscript. 

 

Thank you all, 

Yours sincerely, 

Xian Liu 

 


