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Author’s Response 

Dear Editor and Referees, 

 

We greatly appreciate the efforts made by you to improve the quality of our manuscript 

(MS ID: egusphere-2025-1241). We have carefully reviewed and implemented all the 

comments provided by you and made significant revisions to the manuscript to address 

the concerns raised. In this response letter, your comments copied verbatim beneath are 

in black italic font, the author responses are in normal font, revised text is in blue, and 

line numbers refer to those in the Track Change manuscript. 

 

Response to Editor Comments 

 

Thank you for your submission to Atmospheric Chemistry and Physics. I believe that 

this manuscript about the estimation of kinetic rate coefficients using a machine 

learning technique will be very interesting for our readership. Before the manuscript 

goes into peer-review, I would like the authors to improve on a few aspects as detailed 

in the following bullet points. 

Response: Thank you for your thoughtful and constructive comments. We appreciate 

your recognition of the significance and quality of our work. We have provided detailed 

responses and made revisions addressing each of the comments. 

 

Background on methodology: The manuscript contains hardly any information about 

this and similar approaches to estimate reaction rate coefficients or other properties 

for molecules in the atmospheric sciences. It seems that the methodology of using 

message-passing neural networks is well established and even part of major packages 

(e.g. https://keras.io/examples/graph/mpnn-molecular-graphs/), however, this method 

is not well referenced. You can also refer to similar machine learning studies using 

graph neural networks (e.g. 

https://egusphere.copernicus.org/preprints/2025/egusphere-2025-1191/). 

Response:  

We thank the editor for pointing out the need to better contextualize our methodology 

within the broader landscape of machine learning approaches in atmospheric sciences. 

In response, we have substantially revised the Introduction section to provide a more 

comprehensive overview of existing methods used for predicting VOC reaction rate 

constants, including both traditional QSAR models and recent advances in graph-based 

deep learning. 

Specifically, we now describe the limitations of classical experimental and descriptor-

based QSAR approaches, and highlight the emergence of graph neural networks (GNNs) 

as a promising alternative. We cite recent applications of GNNs in atmospheric 

chemistry and other fields tasks, including GC²NN for vapor pressure prediction 

(Krüger et al., 2025) and GAT–GIN hybrids for estimating reaction rate constants with 

OH (Huang et al., 2024). We further discuss the general MPNN framework (Gilmer et 

al., 2017), its extensions such as GraphRXN (Li et al., 2023) and Chemprop (Heid et 

https://egusphere.copernicus.org/preprints/2025/egusphere-2025-1191/
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al., 2024), and clarify that while such models are well established in cheminformatics 

and synthesis modeling, their use in atmospheric oxidation scenarios remains 

underexplored. 

These additions ensure that our manuscript provides the necessary methodological 

background and clearly delineates how our contribution advances current approaches. 

 

The revised content could be found in lines 57-94: 

“Given their importance, accurately predicting the atmospheric oxidation rates of VOCs 

is critical for understanding their persistence, transformation, and contribution to 

secondary pollutant formation. Traditionally, such predictions have relied on 

experimental kinetic modeling methods and quantitative structure-activity relationship 

(QSAR) approaches (Basant and Gupta, 2018; Liu et al., 2021). Experimental methods 

involve tracking reactant and product concentrations using techniques like chemical 

ionization mass spectrometry (CIMS), followed by kinetic fitting to determine 

Arrhenius parameters (Logan, 1982; Wells et al., 1996). However, these methods are 

time-consuming and cover only a narrow subset of atmospheric VOCs. QSAR models 

offer a scalable alternative by leveraging molecular descriptors and statistical learning. 

Notable examples include AOPWIN™ module integrated in US EPI Suite™ software, 

which applies Partial Least Squares (PLS) regression to 109 gas-phase reaction with 

hydroxyl radicals (Atkinson, 1986, 1987; Kwok and Atkinson, 1995), and later 

expansions using a broader dataset (Öberg, 2005). Some models have also incorporated 

machine learning algorithms such as multiple linear regression (MLR) (Liu et al., 2020, 

2022) for predicting reactions with NO3 and OH and artificial neural networks for 

predicting reactions with O3 (Fatemi, 2006). Despite their utility, these models 

generally rely on predefined descriptors and are typically limited to reactions with a 

single type of oxidant. Recent advances in deep learning (DL), particularly graph neural 

networks (GNN), have improved molecular representation by learning features directly 

from molecular graphs. This enables more flexible and accurate prediction of chemical 

properties without requiring predefined descriptors. GNNs have been successfully 

applied in atmospheric chemistry and other fields tasks, such as in predicting vapor 

pressures with GC²NN (Krüger et al., 2025) and modeling reaction rate constants 

involving with OH using GAT–GIN hybrid architectures (Huang et al., 2024). 

However, like traditional models, these GNN-based frameworks have been developed 

for single-molecule systems and thus fall short in capturing the complexity of multi-

molecule reactions in real environments. In contrast, the atmosphere involves 

competing and sequential reactions between VOCs and multiple oxidants—OH, NOX, 

Cl, and O₃—depending on time of day, region, and chemical conditions. This 

multiplicity underscores the urgent need for models that can simultaneously learn and 

predict VOC reactivity across multiple oxidants. To meet this need, message passing 

neural networks (MPNN) offer a powerful framework (Gilmer et al., 2017). MPNNs 

propagate information across molecular graphs, capturing both atomic-level features 

and topological context. Extensions of MPNN, such as the communicative GraphRXN  

(Li et al., 2023) and directed MPNN Chemprop (Heid et al., 2024), have shown promise 

in learning reactivity across multiple reactants. Yet, their application has largely focused 
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on synthesis or materials chemistry, not atmospheric multiphase oxidation. 

This study addresses this gap by proposing Vreact, a novel Siamese MPNN architecture 

capable of jointly modelling reactions between VOCs and four major atmospheric 

oxidants. Unlike previous models that treat each oxidant independently, Vreact 

processes VOC–oxidant pairs in a unified framework, it learns representations from the 

molecular graphs of VOCs and oxidants through the MPNN, and encodes their 

interactions via feature aggregation. This design enables the model to accept arbitrary 

VOC–oxidant combinations and simultaneously predict reaction rate constants ki 

(where i ∈ {OH, Cl, NO3, or O3}). Compared to traditional single-oxidant prediction 

models, Vreact shows significantly improved performance, achieving higher accuracy 

and and broader generalizability across multiple oxidants. Furthermore, the model’s 

interaction module captures atomic-level interaction patterns, providing mechanistic 

insights into VOC oxidation process via interpretable interaction weight matrices. 

Applying Vreact to 447 atmospheric VOCs not included in the training data revealed a 

wide distribution of oxidation reactivities and confirmed that alkenes and aromatics 

exhibit higher reactivity, acting as key precursors for ozone and SOA formation.” 

 

The new added references are follows: 

Logan, S. R.: The origin and status of the Arrhenius equation, J. Chem. Educ., 59, 279, 

https://doi.org/10.1021/ed059p279, 1982. 

Wells, R., Baxley, S., and Williams, D.: Rate constants and atmospheric transformations of Air Force 

VOCs, in: Advanced Technologies for Environmental Monitoring and Remediation, Advanced 

Technologies for Environmental Monitoring and Remediation, 153–160, 

https://doi.org/10.1117/12.259768, 1996. 

Huang, Z., Yu, J., He, W., Yu, J., Deng, S., Yang, C., Zhu, W., and Shao, X.: AI-enhanced chemical 

paradigm: From molecular graphs to accurate prediction and mechanism, Journal of Hazardous Materials, 

465, 133355, https://doi.org/10.1016/j.jhazmat.2023.133355, 2024. 

Krüger, M., Galeazzo, T., Eremets, I., Schmidt, B., Pöschl, U., Shiraiwa, M., and Berkemeier, T.: 

Improved vapor pressure predictions using group contribution-assisted graph convolutional neural 

networks (GC2NN), EGUsphere, 1–22, https://doi.org/10.5194/egusphere-2025-1191, 2025. 

Li, B., Su, S., Zhu, C., Lin, J., Hu, X., Su, L., Yu, Z., Liao, K., and Chen, H.: A deep learning framework 

for accurate reaction prediction and its application on high-throughput experimentation data, Journal of 

Cheminformatics, 15, 72, https://doi.org/10.1186/s13321-023-00732-w, 2023. 

Heid, E., Greenman, K. P., Chung, Y., Li, S.-C., Graff, D. E., Vermeire, F. H., Wu, H., Green, W. H., and 

McGill, C. J.: Chemprop: A Machine Learning Package for Chemical Property Prediction, J. Chem. Inf. 

Model., 64, 9–17, https://doi.org/10.1021/acs.jcim.3c01250, 2024. 

 

Logarithmic error: From the abstract, it is not clear that the reported MSE relates to 

the logarithm of the rate coefficient. Please indicate that 0.281 is the error for log(k) 

or that it is given in log units. 

Response: We appreciate the reviewer’s observation regarding the clarity of the error 

metrics in the abstract.  

In response, we have revised the abstract to explicitly state that the reported MSE of 

0.299 and R² of 0.941 refer to predictions of log10ki, where ki denotes the gas-phase 
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oxidation rate constant of a VOC with oxidants OH, Cl, NO3, or O3. The revised 

sentence now reads: 

“The model simultaneously predicts log10ki values and achieves a mean squared error 

(MSE) of 0.299 and a coefficient of determination (R²) of 0.941 on the internal test set.” 

 

Fig. 3: I would have expected that Fig. 3B and 3G show the same data, but this does 

not seem to be the case as in panel G Vreact scores very well for ozone (R^2 ca. 0.9), 

but it does not in panel B (R^2 = 0.584). Why is that? In panel C you have to make 

clear that this is the absolute error of log(k), not the absolute error of k. Overall, panel 

C is hard to decipher. 

Response: We thank the reviewer for the careful observation and valuable feedback. 

The apparent inconsistency between Figure 3B and Figure 3G arises from the fact that 

they evaluate the model on different datasets and under different setups: 

(1) Figure 3B shows the performance of the Vreact model on the internal test set split 

from the McGillen et al. dataset, which is a comprehensive compilation of 

experimentally measured gas-phase reaction rate constants of VOCs with four 

oxidants (OH, Cl, NO3, O3). The R²= 0.584 for O₃ corresponds to the model’s 

prediction accuracy on a hold-out set from this unified multi-oxidant dataset. 

Figure 3G, on the other hand, compares three different models on literature test 

datasets for OH, O₃, and NO₃: 

a) The Vreact model (termed Vreact) trained on the McGillen dataset and directly 

applied to external test sets (to assess generalizability), 

b) The Retrained Vreact model (termed Retrained Vreact), retrained and evaluated 

using the same train-test split as in the respective literature (to assess 

adaptability), 

c) The original published single-oxidant models (Liu et al., Xu et al., etc.). 

The higher R² (~0.9) for O3 in Figure 3G reflects the Retrained Vreact model’s 

performance on Xu et al.’s dataset, rather than the original multi-oxidant training 

setup (R²= 0.584) shown in 3B. This has now been clarified in both the fig. 3 caption 

(lines 209-215): “Figure 3. Evaluation and comparison of the predictive 

performance of the Vreact model. (A) MSE, MAE, R² of Vreact (trained on the 

McGillen et al. dataset) on the validation set, internal test set, and external post-

2020 test set. (B) R² values for log10ki predictions of four oxidants reactions in the 

internal test set. (C) Distribution of AE between predicted and experimental log10ki 

values for the four oxidants in the internal test set. (D-F) The chemical spatial 

distribution of VOCs in the OH, O3, and NO3 datasets used in this study and prior 

literatures. (G) R² comparison among previously published single-oxidant models, 

the original Vreact (evaluated on literature test set), and retrained Vreact (trained 

and tested using the same splits as the literature models) highlighting adaptability.” 

and the main text (lines 232-244): “Most existing machine learning models for 

predicting VOC reaction rates constants are tailored for individual oxidants, 

limiting their applicability to complex atmospheric systems involving multiple 

oxidants. In contrast, the Siamese MPNN architecture of the Vreact enables 

simultaneous learning of molecular features and interaction patterns across different 
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VOC–oxidant pairs within a unified framework. To benchmark Vreact against 

previously published single-oxidant QSAR/ML models, we selected three top-

performing models developed under 298K conditions: Liu et al. (2020) for OH 

(180 data points), Xu et al. (2013) for O3 (95 data points), and Liu et al. (2022) for 

NO3 radicals (189 data points)……Given that our study used different data than 

those reported in the literature, we employed two strategies for comparison. First, 

the pre-trained Vreact model (trained on the McGillen dataset) was directly applied 

to the test sets from the literature to evaluate extrapolation performance. Second, 

Vreact was retrained on each literature dataset using their original train/test splits, 

allowing a direct comparison with published models on literature test sets 

(Retrained Vreact).” 

(2) We also thank the reviewer for pointing out that the clearly labeled shown in Fig. 

3C. We have now revised the figure axis label to state clearly that it shows the 

absolute error of log10ki, not ki. The revised figure is as follows: 

 

 

Online tool: I commend the authors for putting their code and tool online, this will be 

very much valued by the community. However, in my testing, I could not get a value 

returned by the web tool. Even after minutes of waiting, it still says "running". Can this 

be fixed or explained? 

Response: Thank you for your comment. We apologize that the web tool was not 

working properly due to a port malfunction, we fixed the web tool and replaced the port 

with a new one, the web tool is now at the following: http://vreact.envwind.site:8001/. 

The web tool is already working. 

 

Formatting of references: Please insert a space before each reference, e.g. l. 26 

"prediction (Abramson et al., 2024)". This must be a relic from the conversion from a 

previously submitted version. 

Response: We appreciate the reviewer bringing up this important point. We have 

inserted a space before each reference, e.g. line 27 of the revised manuscript “molecular 

generation (Zhang et al., 2023)”. 

 

Formatting: Consider using a lower-case k for reaction rates as upper case K could be 

mistaken for equilibrium constants - what does "i" stand for in K_i? 
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Response: Thank you for the reviewer’s insightful comments. We have changed the 

upper case “K” to a lower case “k” to indicate the reaction rates. The “i” in ki represents 

the four oxidants (OH, Cl, NO3 or O3), e.g., kOH represents the reaction rate for the 

reaction of VOCs with OH. We have added an explanation of “i” in line 88 of the 

revised manuscript: “reaction rate constants ki (where i ∈ {OH, Cl, NO3, or O3})”.
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Response to Referee #1 

 

General comments 

The study in question presents a new model for the prediction of reaction rate constants 

of volatile organic compounds (VOCs). The authors used the reaction rate constant 

dataset by McGillen et al. to train a Siamese message passing neural network (MPNN) 

to predict these rate constants. The outcoming model was given the name “Vreact” 

and it was shown to outperform existing models for reaction rate constant prediction. 

The dataset used in this study comprises 2802 gas-phase reaction rate constants for 

1586 VOCs and 4 oxidants (·OH, ·Cl, ·NO3 and O3). The authors underline this 

diversity of oxidants as one of their advantages compared to previous models which 

only use a single oxidant per model. Because of the wide value range of reaction 

constants, the values were log-transformed. Vreact takes the SMILES string of the VOC 

and the oxidant as inputs, which is an established and modern approach in chem-

informatics. Graph representations are generated from these inputs and fed to the 

neural network that creates the molecular feature tensors A and B. Further 

mathematical operations are executed to account for the effects of molecular 

interactions. Finally, the prediction value for the reaction rate constant is made. 

Moreover, the authors evaluate how Vreact can contribute to the understanding of 

aerosol formation mechanisms. They showcase the oxidation of 2-methyl-4-penten-2-

ol, discussing different reaction pathways and how the interaction layer of Vreact can 

be used for comprehension. Furthermore, the authors gathered more data from 2020 

and onwards, which they called the ‘post-2020 test set’ to analyze the extrapolation 

ability of Vreact, leading to satisfactory results. Besides, more insights on the reaction 

rates of specific chemical classes are provided. 

All in all, the article presents a modern and sustainable study. The Vreact model that 

is the key component of this work was built on well-established methods and principles 

and could overall convince with its performance. Vreact’s advantages and 

improvements towards other models were clearly outlined in a comprehensible way. 

The study was conducted scientifically correct with no obvious shortcomings. Despite 

it being a rather data scientific topic, its atmospheric relevance became evident. The 

illustrations used are helpful and supporting. The supplementary material contains 

further details on the model architecture and is useful for a deeper understanding. 

Another valuable resource is the web tool version of Vreact, reinforcing reproducibility 

and open data. 

Response: Thank you for your thoughtful and constructive comments. We appreciate 

your recognition of the significance and quality of our work. We have provided detailed 

responses and made revisions addressing your comments. 

 

Specific comments 

After the results of the test set were presented, the authors provided more extensive 

evaluations and showcases of the model’s abilities. First, they draw a more detailed 

comparison between Vreact and the existing single-oxidant models. Therefore, they use 

two independent approaches: 1) using the pre-trained Vreact to predict the test sets 
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from the literature and 2) retraining Vreact on the original train/test splits of the 

literature. Approach 2) is a bullet-proof method that really isolates the model’s 

predictive capability and delivers a nice comparison. Approach 1) has the potential 

problem, that the literature test sets contain data points that are part of Vreact’s training 

set. This would be problematic, because generally, machine learning models perform 

significantly better on seen data, resulting in an unfair comparison. It would be 

appreciated, if the authors could address this issue briefly, since it was unmentioned in 

the text so far. 

Response:  

We thank the reviewer for highlighting the issue in Approach 1 regarding the partial 

overlap between the literature test sets and the Vreact training set, which could lead to 

an unfair performance comparison. We identified and removed the duplicate molecules 

(2 of 38 for NO₃, 13 of 35 for O₃, and 6 of 36 for OH) from the literature test sets. The 

revised R² values were recalculated and are now presented in the updated Figure 3G. 

While the R² values have decreased slightly (OH:0.024/O3:0.016/NO3:0.027), the 

overall comparative trends remain unchanged. To enhance clarity, we now refer to the 

modified test sets as “cleaned literature test sets” and the original ones as “original 

literature test sets” throughout the revised manuscript. 

 

(G) R² comparison among previously published single-oxidant models, the original Vreact 

(evaluated on cleaned literature test sets), and Retrained Vreact (trained and tested using the 

same original splits as the literature models) highlighting adaptability. 

 

The revised main text lines 232-241: 

The original text “Liu et al. (2020) for •OH (180 data points), Xu et al. (2013) for O3 

(95 data points), and Liu et al. (2022) for NO3 radicals (189 data points). ” has been 

revised to “Liu et al. (2020) for OH (training/test = 144/36), Xu et al. (2013) for O3 

(60/35), and Liu et al. (2022) for NO3 radicals (151/38).” 

“To ensure a fair comparison, overlapping data points between the literature test sets 

and the McGillen training set were removed (2 of 38 for NO₃, 13 of 35 for O₃, and 6 of 

36 for OH). Second, Vreact was retrained on each literature dataset using their original 

train/test splits (Retrained Vreact), allowing a direct comparison with published models 
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on original literature test sets.” has been added. 

 

Technical corrections 

No typing errors or other technical problems were found. 

Response: Thank you for checking for typing errors or other technical problems. 
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Response to Referee #2 

 

Zhang and co-authors present a machine learning model for predicting reaction rate 

constants of VOC–oxidant pairs using a Siamese neural network. The model is novel in 

its design and application combination, especially in handling multiple atmospheric 

oxidants. The results demonstrate good predictive performance alongside chemical 

insight. The results also demonstrate varying performance on the test set depending on 

which oxidant is considered. The model is tested on an additional external dataset, and 

is used to make predictions of rate constants for compounds lacking measurements. 

From my point of view, the manuscript is generally well-written and clearly structured. 

However, methodological and interpretative aspects would benefit from clarification 

to ensure reproducibility and help contextualize the findings. However, I happily 

recommend it for publication subject to minor revision. 

Response: Thank you for your thoughtful and constructive comments. We appreciate 

your recognition of the significance and quality of our work. We have provided detailed 

responses and made revisions addressing your comments. 

 

General comments 

1.I understand that the major benefit of Vreact is the ability to predict reactivities for 

multiple oxidants. Could the authors further clarify the motivation for using a Siamese 

neural network over simpler alternative architechtures which also could provide 

prediction for multiple oxidants (such as a one-hot encoding of oxidant identity). Given 

that only four oxidants are included, it would be helpful to understand whether the 

architecture was chosen for scalability, improved interpretability, or flexibility. Will 

more oxidants be considered in the future? 

Response: Thank you for the insightful comments. As you mentioned, simpler 

architectures can indeed provide predictions for multiple oxidants simultaneously. We 

chose the Siamese architecture for the following reasons: 
1. Flexibility: The Siamese GNN architecture used in Vreact possesses the flexibility 

inherent to deep learning, which simple one-hot encoding/machine learning models 

lack. Because oxidants are treated as molecules rather than abstract categories, the 

model can leverage structural similarities between known and novel oxidants to transfer 

learned interaction patterns. This is particularly important in atmospheric chemistry, 

where newly identified or understudied oxidants may be structurally or electronically 

related to those in the training set. 

2. Interpretability: The pairwise design enables the extraction of interaction matrices 

between atoms of VOCs and oxidants, which can be visualized and interpreted (Figure 

4). This level of interpretability would not be possible in architectures where the oxidant 

is reduced to a categorical token, and it provides mechanistic insights into reactive sites 

and molecular interactions.  

3. Scalability: The Siamese GNN architecture of Vreact enhances its scalability. For 

simple one-hot encoding/machine learning models, designed descriptors/molecular 

fingerprints are required for the research objects. However, there are numerous 

reactions in the atmosphere with diverse mechanisms. Requiring a simple architecture 
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to be applicable to non-research objects will affect its interpretability and predictive 

performance. Therefore, the scalability of a simple architecture is very limited. The 

Siamese GNN used in Vreact does not rely on predefined descriptors/molecular 

fingerprints but performs end-to-end modeling. This architecture grants Vreact the 

ability to expand to other oxidants. Currently, we have only considered four oxidants 

because these four are widely studied and have sufficient data, which facilitates 

modeling. In the future, if higher-quality and more extensive datasets become available, 

we will incorporate more oxidants and update the website in a timely manner. 

 

In the main text, we further elaborate on the limitations of other methods and the 

advantages of Vreact: 

“Despite their utility, these models generally rely on predefined descriptors and are 

typically limited to reactions with a single type of oxidant, which constrains the 

scalability of the model.” (Line 76 in the revised manuscript) 

“Extensions of MPNN, such as the communicative GraphRXN (Li et al., 2023) and 

directed MPNN Chemprop (Heid et al., 2024), have shown promise in learning 

reactivity across multiple reactants. They extract the interaction features of chemical 

reactions in depth, rather than performing simple reactant concatenating. Yet, their 

application has largely focused on synthesis or materials chemistry, not atmospheric 

multiphase oxidation.” (Lines 88-89 in the revised manuscript) 

“Compared to traditional and simple single-oxidant prediction models, Vreact shows 

significantly improved performance, achieving higher accuracy, stronger 

interpretability and wider scalability across multiple oxidants. Furthermore, based on 

the flexibility of the DL architecture, the designed interaction module captures atomic-

level interaction patterns, providing mechanistic insights into VOC oxidation process 

via interpretable interaction weight matrices.” (Lines 96-98 in the revised manuscript) 

 

2.A brief discussion of quantum chemistry methods to compute these types of rate 

constants is not mentioned in the background, but could help position this new method 

in the broader context of rate constant prediction for atmospheric reactions. 

Response: Thank you for the comment. We appreciate this suggestion and have now 

added a concise overview of quantum‐chemical (QC) approaches that are widely used 

to estimate gas-phase rate constants for atmospheric reactions.  

The new paragraph (see additions below) highlights both the strengths and limitations 

of quantum chemistry (QC) methods. This context helps position Vreact as a 

complementary, data-driven alternative that can deliver near-instant predictions for 

thousands of VOC–oxidant pairs while retaining mechanistic interpretability. 

“Traditionally, such predictions have determined either through experimental kinetic 

modeling methods, (Basant and Gupta, 2018; Liu et al., 2021). which track reactant and 

product concentrations using techniques such as chemical ionization mass spectrometry 

(CIMS) and apply kinetic fitting to derive Arrhenius parameters (Logan, 1982; Wells et 

al., 1996), or through computational methods based on high-level quantum chemical 

calculations that simulate reaction pathways and energy barriers. However, these 

methods are time-consuming and cover only a narrow subset of atmospheric VOCs. 
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“…a narrow subset of atmospheric VOCs. QC approaches combine ab initio or density-

functional theory calculations with transition-state theory (TST), canonical or 

variational TST to obtain temperature-dependent rate constants (Canneaux et al., 2014; 

Liu et al., 2021; Meana-Pañeda et al., 2024). While QC methods offer detailed 

mechanistic insight, their computational cost scales steeply with molecular size and 

conformational complexity, limiting routine application to large numbers of VOCs. 

However, traditional computational methods have shortcomings such as high 

computational complexity and low efficiency. As a more scalable alternative, QSAR 

model leverage molecular descriptors and statistical learning. and it has become one of 

the important methods for evaluating reaction rate constants.” (Lines 64-70 in the 

revised manuscript) 

 

3.Methods and Table S1 suggest that stratified sampling was used to balance oxidant 

classes across train/validation/test splits. Since the model operates on VOC–oxidant 

pairs, it is now unclear whether the same VOC can appear in different splits with 

different oxidants. If so, this could introduce information leakage. Please clarify 

whether VOCs were kept disjoint across splits. 

Response: We thank the reviewer for raising this important concern. In our study, 

stratified sampling was performed on VOC–oxidant pairs, which means that the same 

VOC may appear in different data splits when paired with different oxidants. In other 

words, VOCs were not kept disjoint across splits. 

We acknowledge the potential concern regarding information leakage. However, we 

believe that the current design is appropriate for the following reasons: 

1. Model design focus: Vreact is trained to model interactions between VOCs and 

oxidants, not the VOCs alone. Each VOC-oxidant pair represents a distinct 

chemical reaction, and the underlying mechanisms often vary substantially across 

oxidants. Thus, each pair can be considered a unique input, and allowing the same 

VOC to appear with different oxidants across splits does not constitute classical 

data leakage. 

2. Chemical diversity: Forcing the same VOC to appear only in one split (e.g., 

training only) would eliminate the number of VOC-oxidant combinations, reducing 

the diversity and coverage of the training set for model learning. 

3. Empirical performance: If leakage were present, it would likely result in inflated 

test performance. However, as shown in our results, the model maintains strong 

generalization and extrapolation performance, including on unseen VOCs and 

external test sets, suggesting that overfitting due to repeated VOCs is not a concern. 

To clarify this in the manuscript, we have added the following statement: 

“Combinations of the same VOC with different oxidants may appear across the training, 

validation, and internal test sets.” has been added to the main text. (Lines 112-113 in 

the revised manuscript) 

 

4.In Figure 3G, model performance on the external OH dataset is lower than for O₃, 

which is the reverse of the trend observed in the internal test set. Could this difference 

be a result of data quality, compound overlap, or target range? 
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Response: Thank you for this thoughtful comment. We agree that the inverse 

performance trend observed between OH and O₃ in the internal versus external 

(literature) test sets warrants further clarification. 

We have carefully examined this discrepancy and found that it is primarily attributable 

to differences in chemical space coverage, rather than data quality or compound 

overlap alone. Specifically: 

All external test sets are sourced from literatures and the data quality is reliable. Any 

duplicate pairs between the training data and the literature test sets were removed prior 

to evaluation.  

The internal OH test set includes many VOCs with broad representation and strong 

overlap with the training set, resulting in high performance. In contrast, the external 

OH test set contains only 36 VOCs, many of which are sparsely distributed near the 

periphery of the training data distribution (Fig. 3E). This leads to a moderate drop in R² 

despite the model’s generally strong performance for OH. 

For O₃, however, the internal test set includes structurally atypical compounds that are 

distant from dense the training data in latent space (Fig. 3F, right region), resulting in a 

lower R². The literature O₃ test set, by contrast, is more clustered and lies closer to the 

training set in chemical space, allowing the model to achieve higher R² despite the small 

sample size. 

This difference is analyzed in the manuscript:  

“Notably, Vreact shows opposite performance trends for OH and O₃ between the 

internal and literature test set. To understand this, UMAP was applied to project 

compounds from the training, internal, and literature test sets into a shared chemical 

space. As shown in Fig. 3E, the internal OH test set overlaps well with the training data, 

leading to consistently strong performance. In contrast, the literature OH set is sparse 

and scattered near the dataset boundaries. Despite this, Vreact still achieves a high R², 

demonstrating good generalization. For O₃ (Fig. 3F), the internal test set lies farther 

from the dense training distribution, contributing to lower R². Meanwhile, the literature 

O₃ set is better aligned with the training data, resulting in higher prediction accuracy. 

For NO₃ (Fig. 3G), both internal and literature sets show similar distributions, and the 

model achieves comparable R² values (~0.815). Although Vreact underperforms 

slightly compared to the original single-oxidant model, retraining on the literature data 

improves performance. This suggests that multi-oxidant training may introduce some 

noise but does not significantly compromise prediction accuracy.” (Lines 275-291 in 

the revised manuscript) 

 

The previous Figure 3D-3F has been modified to Figure S2: 

Figure S2. The chemical spatial distribution of VOCs in the OH, O3, and NO3 datasets used in 

this study and prior literatures.  
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Figure 3D-3F has been modified to Figure 3E-3G: 

 

(E-G) The chemical spatial distribution of VOCs in the OH, O3, and NO3 datasets used in this study 

and prior literatures. 

 

5.Clustering was used to analyze molecular groups and their reactivity (Figures 2E, 

3D–F), but details on how these embeddings and clusters were generated are not 

provided in methods. It would be good with a brief description of how the morgan 

fingerprint was constructed (which parameters) in the methods. Similarly, UMAP and 

the SOM methods could be briefly described, along with any hyperparameters, in the 

methods. 

Response: Thank you for your rigorous suggestion. We agree that further clarification 

of the clustering methodology is necessary and have added relevant descriptions to the 

Methods section. 

The Methods section now includes this information as follows:： 

“2.3 Clustering analysis 

Morgan fingerprints (radius 2, 1024 bits, generated using RDKit) was used as the 

molecular embeddings before clustering and visualization. To investigate VOC 

structural diversity and reactivity trends, two methods were applied: the Self-

Organizing Map (SOM) (Kohonen, 2006) and the Uniform Manifold Approximation 

and Projection (UMAP). The SOM algorithm clustered VOCs into 100 structural 

groups (10×10 grid), using a sigma of 0.3 and learning rate of 0.5. The UMAP algorithm 

projected the high-dimensional fingerprint space into 2D for visualization, with the 

number of neighbors set to 50, minimum distance to 0.6, and metric as correlation.” 

(Lines 150-155 in the revised manuscript) 

Additionally, the original text describing SOM clustering in Fig. 2E was revised for 

clarity: 

“The SOM algorithm was used to explore the relationship between VOC structural 
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variation and log10ki. Each grid in Fig. 2E represents a VOC cluster, and the color 

gradient indicates reactivity (average log10ki values) for the corresponding oxidants. By 

comparing log10ki values across clusters, oxidant-specific reactivity patterns can be 

assessed.” (Lines 190-193 in the revised manuscript) 

 

6.Finally, the manuscripts would benefit from an outlook contextualizing the model's 

performance by identifying which applications the current accuracy supports and 

which may require improvement. Relating how performance varies across different 

oxidants and how this relates to the amount of available data could further emphasize 

the paper's contribution to understanding data requirements for reliable model 

accuracy for atmospheric applications. 

Response: Thank you for the valuable suggestion. We have added a dedicated outlook 

section in the revised manuscript to contextualize the model’s performance, discuss its 

applicability across atmospheric chemistry tasks, and highlight the relationship between 

accuracy and data availability. These revisions are incorporated into the Concluding 

section (Lines 338-351) to clarify the model’s application scope and remaining 

challenges. 

“In response to growing concerns about atmospheric pollution and its impact on human 

health and climate, this study introduces Vreact, a deep learning model designed to 

predict oxidation rate constants for VOCs with multiple oxidants (OH, Cl, NO₃, O₃). 

Vreact demonstrates strong overall performance (MSE=0.299, R2=0.941 on internal test 

data) and provides mechanistic insights by capturing atomic-level interaction patterns 

through a Siamese MPNN framework. Its predictive accuracy varies by oxidant, 

reflecting the availability and diversity of training data. The model achieves high 

accuracy for OH (R2=0.929, n=1363) and Cl (R2=0.913, n=735), supporting robust 

application in daytime oxidation modeling. In contrast, lower performance is observed 

for NO₃ (R2=0.721, n=393) and O₃ (R2=0.584, n=311), pointing to challenges in 

modeling oxidants with fewer data and more complex mechanisms. This underscores 

the importance of expanding high-quality experimental datasets to improve 

generalization, particularly for underrepresented oxidants and VOC classes. 

Vreact supports high-throughput screening for emission inventories and atmospheric 

reactivity assessments. Its applications span VOC prioritization, emission control 

planning, and kinetic mechanism development, offering actionable insights for 

environmental policy and modeling. An interactive web interface 

(http://vreact.envwind.site:8001) (Fig. S3) enhances accessibility for researchers and 

policymakers. Further improvements in NO₃ and O₃ predictions will expand its utility 

in nighttime chemistry and secondary aerosol formation scenarios.”  

 

Specific comments 

1.Line 29: Add citations on data-driven methods applied to atmospheric chemistry. 

Response: Thank you for your valuable feedback. We have added 4 citations on data-

driven methods applied to atmospheric chemistry in line 29. 

“…Environmental challenges, particularly those associated with atmospheric chemistry 

and climate change (Chen et al., 2024; Kubečka et al., 2023; Qiu et al., 2023; Zhao et 

http://vreact.envwind.site:8001/
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al., 2025),…” 

Chen, X., Ma, W., Zheng, F., Wang, Z., Hua, C., Li, Y., Wu, J., Li, B., Jiang, J., Yan, 

C., Petäjä, T., Bianchi, F., Kerminen, V.-M., Worsnop, D. R., Liu, Y., Xia, M., and 

Kulmala, M.: Identifying Driving Factors of Atmospheric N2O5 with Machine 

Learning, Environ. Sci. Technol., 58, 11568–11577, 

https://doi.org/10.1021/acs.est.4c00651, 2024. 

Kubečka, J., Knattrup, Y., Engsvang, M., Jensen, A. B., Ayoubi, D., Wu, H., 

Christiansen, O., and Elm, J.: Current and future machine learning approaches for 

modeling atmospheric cluster formation, Nat. Comput. Sci., 3, 495–503, 

https://doi.org/10.1038/s43588-023-00435-0, 2023. 

Qiu, Y., Feng, J., Zhang, Z., Zhao, X., Li, Z., Ma, Z., Liu, R., and Zhu, J.: Regional 

aerosol forecasts based on deep learning and numerical weather prediction, npj Clim. 

Atmos. Sci., 6, 71, https://doi.org/10.1038/s41612-023-00397-0, 2023. 

Zhao, Y., Zheng, B., Saunois, M., Ciais, P., Hegglin, M. I., Lu, S., Li, Y., and Bousquet, 

P.: Air pollution modulates trends and variability of the global methane budget, Nature, 

642, 369–375, https://doi.org/10.1038/s41586-025-09004-z, 2025. 

 

2.Line 45: “primarily” → “primary.” 

Response: Thanks for your comment. The “primarily” has been replaced with “primary”. 

 

3.Line 48: The phrase “with NO₃ radicals” is repeated—I suggest to remove one 

instance. 

Response: Thanks for your valuable comment. The repeated phrase “with NO₃ radicals”

has been replaced. 

 

4.Line 48: “the atmosphere’s self-cleaning capacity” is ambiguous; consider clarifying. 

rephrasing or removing. 

Response: Thank you for pointing out this problem in manuscript. The “…significantly 

influencing the spatial and temporal variation of the atmosphere's self-cleaning capacity 

and the formation of organic aerosols.” has been modified to “…significantly 

influencing the spatial and temporal variation of the formation of organic aerosols.” 

 

5.Line 90: Typo— “and and” 

Response: Thanks for your constructive suggestion. The repeated “and” has been 

removed. 

6.Line 149: “functional group” could be replaced with “molecular motif” when 

referring to double bonds.  

Response: Thank you for the suggestion. The “including 22 functional groups” has 

been modified to “including 22 molecular motifs”. The “(B) Number of VOCs 

containing each functional group” has been modified to “(B) Number of VOCs 

containing each molecular motif”. 

 

7.Line 191– It is mentioned in results that MSE is the metric that was used for 

hyperparameter optimization. This information should also be included in the Methods 
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section for clarity. 

Response: We are very sorry for our negligence. We have included the information you 

mentioned in the Methods section for clarity. The “After identifying the optimal 

hyperparameter combination (Table S3) on the validation set, and the best model was 

saved” has been modified to “During hyperparameter optimization, the hyperparameter 

combination that minimizes the Mean Squared Error (MSE) of the validation set was 

selected as the optimal hyperparameter combination, and the best model was saved 

(Table S3)”.  

 

8.Improve resolution of Figures 1–5. Figure 5A would be clearer as a conventional bar 

chart rather than a circular one for better being able to match bar height with y value. 

Response: Thanks for you kindly comment. We have improved the resolution of 

Figures 1-5 and modified Figure 5A into a conventional bar chart. 

 

 

Finally, we would like to thank you again for your great efforts on improving the quality 

of this manuscript. 

 

Thank you all, 

Yours sincerely, 

Xian Liu 

 


