Response to Reviewer

Dear reviewer,

We greatly appreciate the efforts made by you to improve the quality of our manuscript
(MS ID: egusphere-2025-1241). We have carefully reviewed and implemented all the
comments provided by you and made significant revisions to the manuscript to address
the concerns raised. In this response letter, your comments copied verbatim beneath are
in black italic font, the author responses are in normal font, revised text is in blue, and
line numbers refer to those in the Track Change manuscript.

Zhang and co-authors present a machine learning model for predicting reaction rate
constants of VOC-oxidant pairs using a Siamese neural network. The model is novel in
its design and application combination, especially in handling multiple atmospheric
oxidants. The results demonstrate good predictive performance alongside chemical
insight. The results also demonstrate varying performance on the test set depending on
which oxidant is considered. The model is tested on an additional external dataset, and
is used to make predictions of rate constants for compounds lacking measurements.
From my point of view, the manuscript is generally well-written and clearly structured.
However, methodological and interpretative aspects would benefit from clarification
to ensure reproducibility and help contextualize the findings. However, I happily
recommend it for publication subject to minor revision.

Response: Thank you for your thoughtful and constructive comments. We appreciate
your recognition of the significance and quality of our work. We have provided detailed
responses and made revisions addressing your comments.

General comments

1.1 understand that the major benefit of Vreact is the ability to predict reactivities for
multiple oxidants. Could the authors further clarify the motivation for using a Siamese
neural network over simpler alternative architechtures which also could provide
prediction for multiple oxidants (such as a one-hot encoding of oxidant identity). Given
that only four oxidants are included, it would be helpful to understand whether the
architecture was chosen for scalability, improved interpretability, or flexibility. Will
more oxidants be considered in the future?

Response: Thank you for the insightful comments. As you mentioned, simpler
architectures can indeed provide predictions for multiple oxidants simultaneously. We
chose the Siamese architecture for the following reasons:

1. Flexibility: The Siamese GNN architecture used in Vreact possesses the flexibility
inherent to deep learning, which simple one-hot encoding/machine learning models
lack. Because oxidants are treated as molecules rather than abstract categories, the
model can leverage structural similarities between known and novel oxidants to transfer
learned interaction patterns. This is particularly important in atmospheric chemistry,
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where newly identified or understudied oxidants may be structurally or electronically
related to those in the training set.

2. Interpretability: The pairwise design enables the extraction of interaction matrices
between atoms of VOCs and oxidants, which can be visualized and interpreted (Figure
4). This level of interpretability would not be possible in architectures where the oxidant
is reduced to a categorical token, and it provides mechanistic insights into reactive sites
and molecular interactions.

3. Scalability: The Siamese GNN architecture of Vreact enhances its scalability. For
simple one-hot encoding/machine learning models, designed descriptors/molecular
fingerprints are required for the research objects. However, there are numerous
reactions in the atmosphere with diverse mechanisms. Requiring a simple architecture
to be applicable to non-research objects will affect its interpretability and predictive
performance. Therefore, the scalability of a simple architecture is very limited. The
Siamese GNN used in Vreact does not rely on predefined descriptors/molecular
fingerprints but performs end-to-end modeling. This architecture grants Vreact the
ability to expand to other oxidants. Currently, we have only considered four oxidants
because these four are widely studied and have sufficient data, which facilitates
modeling. In the future, if higher-quality and more extensive datasets become available,
we will incorporate more oxidants and update the website in a timely manner.

In the main text, we further elaborate on the limitations of other methods and the
advantages of Vreact:

“Despite their utility, these models generally rely on predefined descriptors and are
typically limited to reactions with a single type of oxidant, which constrains the
scalability of the model.” (Line 76 in the revised manuscript)

“Extensions of MPNN, such as the communicative GraphRXN (Li et al., 2023) and
directed MPNN Chemprop (Heid et al., 2024), have shown promise in learning
reactivity across multiple reactants. They extract the interaction features of chemical
reactions in depth, rather than performing simple reactant concatenating. Yet, their
application has largely focused on synthesis or materials chemistry, not atmospheric
multiphase oxidation.” (Lines 88-89 in the revised manuscript)

“Compared to traditional and simple single-oxidant prediction models, Vreact shows
significantly improved performance, achieving higher accuracy, stronger
interpretability and wider scalability across multiple oxidants. Furthermore, based on
the flexibility of the DL architecture, the designed interaction module captures atomic-
level interaction patterns, providing mechanistic insights into VOC oxidation process
via interpretable interaction weight matrices.” (Lines 96-98 in the revised manuscript)

2.A brief discussion of quantum chemistry methods to compute these types of rate
constants is not mentioned in the background, but could help position this new method
in the broader context of rate constant prediction for atmospheric reactions.



Response: Thank you for the comment. We appreciate this suggestion and have now
added a concise overview of quantum-chemical (QC) approaches that are widely used
to estimate gas-phase rate constants for atmospheric reactions.

The new paragraph (see additions below) highlights both the strengths and limitations
of quantum chemistry (QC) methods. This context helps position Vreact as a
complementary, data-driven alternative that can deliver near-instant predictions for
thousands of VOC-oxidant pairs while retaining mechanistic interpretability.
“Traditionally, such predictions have determined either through experimental kinetic
modeling methods, (Basant and Gupta, 2018; Liu et al., 2021). which track reactant and
product concentrations using techniques such as chemical ionization mass spectrometry
(CIMS) and apply kinetic fitting to derive Arrhenius parameters (Logan, 1982; Wells et
al., 1996), or through computational methods based on high-level quantum chemical
calculations that simulate reaction pathways and energy barriers. However, these
methods are time-consuming and cover only a narrow subset of atmospheric VOCs.
“...anarrow subset of atmospheric VOCs. QC approaches combine ab initio or density-
functional theory calculations with transition-state theory (TST), canonical or
variational TST to obtain temperature-dependent rate constants (Canneaux et al., 2014;
Liu et al.,, 2021; Meana-Paneda et al., 2024). While QC methods offer detailed
mechanistic insight, their computational cost scales steeply with molecular size and
conformational complexity, limiting routine application to large numbers of VOCs.
However, traditional computational methods have shortcomings such as high
computational complexity and low efficiency. As a more scalable alternative, QSAR
model leverage molecular descriptors and statistical learning. and it has become one of
the important methods for evaluating reaction rate constants.” (Lines 64-70 in the
revised manuscript)

3.Methods and Table S1 suggest that stratified sampling was used to balance oxidant

classes across train/validation/test splits. Since the model operates on VOC—oxidant

pairs, it is now unclear whether the same VOC can appear in different splits with
different oxidants. If so, this could introduce information leakage. Please clarify
whether VOCs were kept disjoint across splits.

Response: We thank the reviewer for raising this important concern. In our study,

stratified sampling was performed on VOC-oxidant pairs, which means that the same

VOC may appear in different data splits when paired with different oxidants. In other

words, VOCs were not kept disjoint across splits.

We acknowledge the potential concern regarding information leakage. However, we

believe that the current design is appropriate for the following reasons:

1. Model design focus: Vreact is trained to model interactions between VOCs and
oxidants, not the VOCs alone. Each VOC-oxidant pair represents a distinct
chemical reaction, and the underlying mechanisms often vary substantially across
oxidants. Thus, each pair can be considered a unique input, and allowing the same
VOC to appear with different oxidants across splits does not constitute classical
data leakage.



2. Chemical diversity: Forcing the same VOC to appear only in one split (e.g.,
training only) would eliminate the number of VOC-oxidant combinations, reducing
the diversity and coverage of the training set for model learning.

3. Empirical performance: If leakage were present, it would likely result in inflated
test performance. However, as shown in our results, the model maintains strong
generalization and extrapolation performance, including on unseen VOCs and
external test sets, suggesting that overfitting due to repeated VOCs is not a concern.

To clarify this in the manuscript, we have added the following statement:

“Combinations of the same VOC with different oxidants may appear across the training,

validation, and internal test sets.” has been added to the main text. (Lines 112-113 in

the revised manuscript)

4.In Figure 3G, model performance on the external OH dataset is lower than for O,
which is the reverse of the trend observed in the internal test set. Could this difference
be a result of data quality, compound overlap, or target range?

Response: Thank you for this thoughtful comment. We agree that the inverse
performance trend observed between OH and Os in the internal versus external
(literature) test sets warrants further clarification.

We have carefully examined this discrepancy and found that it is primarily attributable
to differences in chemical space coverage, rather than data quality or compound
overlap alone. Specifically:

All external test sets are sourced from literatures and the data quality is reliable. Any
duplicate pairs between the training data and the literature test sets were removed prior
to evaluation.

The internal OH test set includes many VOCs with broad representation and strong
overlap with the training set, resulting in high performance. In contrast, the external
OH test set contains only 36 VOCs, many of which are sparsely distributed near the
periphery of the training data distribution (Fig. 3E). This leads to a moderate drop in R?
despite the model’s generally strong performance for OH.

For Os, however, the internal test set includes structurally atypical compounds that are
distant from dense the training data in latent space (Fig. 3F, right region), resulting in a
lower R2. The literature Os test set, by contrast, is more clustered and lies closer to the
training set in chemical space, allowing the model to achieve higher R* despite the small
sample size.

This difference is analyzed in the manuscript:

“Notably, Vreact shows opposite performance trends for OH and Os between the
internal and literature test set. To understand this, UMAP was applied to project
compounds from the training, internal, and literature test sets into a shared chemical
space. As shown in Fig. 3E, the internal OH test set overlaps well with the training data,
leading to consistently strong performance. In contrast, the literature OH set is sparse
and scattered near the dataset boundaries. Despite this, Vreact still achieves a high R?,
demonstrating good generalization. For Os (Fig. 3F), the internal test set lies farther
from the dense training distribution, contributing to lower R%. Meanwhile, the literature
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O:s set is better aligned with the training data, resulting in higher prediction accuracy.
For NOs (Fig. 3G), both internal and literature sets show similar distributions, and the
model achieves comparable R? values (~0.815). Although Vreact underperforms
slightly compared to the original single-oxidant model, retraining on the literature data
improves performance. This suggests that multi-oxidant training may introduce some
noise but does not significantly compromise prediction accuracy.” (Lines 275-291 in
the revised manuscript)

The previous Figure 3D-3F has been modified to Figure S2:
Figure S2. The chemical spatial distribution of VOCs in the OH, O3, and NO; datasets used in

this study and prior literatures.
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(E-G) The chemical spatial distribution of VOCs in the OH, O3, and NOs; datasets used in this study

and prior literatures.

5.Clustering was used to analyze molecular groups and their reactivity (Figures 2E,
3D-F), but details on how these embeddings and clusters were generated are not
provided in methods. It would be good with a brief description of how the morgan
fingerprint was constructed (which parameters) in the methods. Similarly, UMAP and
the SOM methods could be briefly described, along with any hyperparameters, in the
methods.

Response: Thank you for your rigorous suggestion. We agree that further clarification
of the clustering methodology is necessary and have added relevant descriptions to the
Methods section.

The Methods section now includes this information as follows::

“2.3 Clustering analysis



Morgan fingerprints (radius 2, 1024 bits, generated using RDKit) was used as the
molecular embeddings before clustering and visualization. To investigate VOC
structural diversity and reactivity trends, two methods were applied: the Self-
Organizing Map (SOM) (Kohonen, 2006) and the Uniform Manifold Approximation
and Projection (UMAP). The SOM algorithm clustered VOCs into 100 structural
groups (10x10 grid), using a sigma of 0.3 and learning rate of 0.5. The UMAP algorithm
projected the high-dimensional fingerprint space into 2D for visualization, with the
number of neighbors set to 50, minimum distance to 0.6, and metric as correlation.”
(Lines 150-155 in the revised manuscript)

Additionally, the original text describing SOM clustering in Fig. 2E was revised for
clarity:

“The SOM algorithm was used to explore the relationship between VOC structural
variation and logioki. Each grid in Fig. 2E represents a VOC cluster, and the color
gradient indicates reactivity (average logiok; values) for the corresponding oxidants. By
comparing logiok; values across clusters, oxidant-specific reactivity patterns can be
assessed.” (Lines 190-193 in the revised manuscript)

6.Finally, the manuscripts would benefit from an outlook contextualizing the model's
performance by identifying which applications the current accuracy supports and
which may require improvement. Relating how performance varies across different
oxidants and how this relates to the amount of available data could further emphasize
the paper's contribution to understanding data requirements for reliable model
accuracy for atmospheric applications.

Response: Thank you for the valuable suggestion. We have added a dedicated outlook
section in the revised manuscript to contextualize the model’s performance, discuss its
applicability across atmospheric chemistry tasks, and highlight the relationship between
accuracy and data availability. These revisions are incorporated into the Concluding
section (Lines 338-351) to clarify the model’s application scope and remaining
challenges.

“In response to growing concerns about atmospheric pollution and its impact on human
health and climate, this study introduces Vreact, a deep learning model designed to
predict oxidation rate constants for VOCs with multiple oxidants (OH, CI, NOs, Os).
Vreact demonstrates strong overall performance (MSE=0.299, R?=0.941 on internal test
data) and provides mechanistic insights by capturing atomic-level interaction patterns
through a Siamese MPNN framework. Its predictive accuracy varies by oxidant,
reflecting the availability and diversity of training data. The model achieves high
accuracy for OH (R?=0.929, n=1363) and Cl (R*=0.913, n=735), supporting robust
application in daytime oxidation modeling. In contrast, lower performance is observed
for NOs (R?=0.721, n=393) and Os (R?=0.584, n=311), pointing to challenges in
modeling oxidants with fewer data and more complex mechanisms. This underscores
the importance of expanding high-quality experimental datasets to improve
generalization, particularly for underrepresented oxidants and VOC classes.

Vreact supports high-throughput screening for emission inventories and atmospheric
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reactivity assessments. Its applications span VOC prioritization, emission control
planning, and kinetic mechanism development, offering actionable insights for
environmental policy and modeling. An interactive web  interface
(http://vreact.envwind.site:8001) (Fig. S3) enhances accessibility for researchers and
policymakers. Further improvements in NOs and Os predictions will expand its utility
in nighttime chemistry and secondary aerosol formation scenarios.”

Specific comments

1.Line 29: Add citations on data-driven methods applied to atmospheric chemistry.
Response: Thank you for your valuable feedback. We have added 4 citations on data-
driven methods applied to atmospheric chemistry in line 29.

“...Environmental challenges, particularly those associated with atmospheric chemistry
and climate change (Chen et al., 2024; Kubecka et al., 2023; Qiu et al., 2023; Zhao et
al., 2025),...”

Chen, X., Ma, W., Zheng, F., Wang, Z., Hua, C., Li, Y., Wu, J., Li, B., Jiang, J., Yan,
C., Petdja, T., Bianchi, F., Kerminen, V.-M., Worsnop, D. R., Liu, Y., Xia, M., and
Kulmala, M.: Identifying Driving Factors of Atmospheric N205 with Machine
Learning, Environ. Sci. Technol., 58, 11568-11577,
https://doi.org/10.1021/acs.est.4c00651, 2024.

Kubecka, J., Knattrup, Y., Engsvang, M., Jensen, A. B., Ayoubi, D., Wu, H.,
Christiansen, O., and Elm, J.: Current and future machine learning approaches for
modeling atmospheric cluster formation, Nat. Comput. Sci., 3, 495-503,
https://doi.org/10.1038/s43588-023-00435-0, 2023.

Qiu, Y., Feng, J., Zhang, Z., Zhao, X., Li, Z., Ma, Z., Liu, R., and Zhu, J.: Regional
aerosol forecasts based on deep learning and numerical weather prediction, npj Clim.
Atmos. Sci., 6, 71, https://doi.org/10.1038/s41612-023-00397-0, 2023.

Zhao, Y., Zheng, B., Saunois, M., Ciais, P., Hegglin, M. L., Lu, S., Li, Y., and Bousquet,
P.: Air pollution modulates trends and variability of the global methane budget, Nature,
642, 369-375, https://doi.org/10.1038/s41586-025-09004-z, 2025.

2.Line 45: “primarily” — “primary.”
Response: Thanks for your comment. The “primarily” has been replaced with “primary”.

3.Line 48: The phrase “with NOs radicals ” is repeated—I suggest to remove one
instance.

Response: Thanks for your valuable comment. The repeated phrase “with NOs radicals”
has been replaced.

4.Line 48: “the atmosphere’s self-cleaning capacity” is ambiguous, consider clarifying.
rephrasing or removing.

Response: Thank you for pointing out this problem in manuscript. The “...significantly
influencing the spatial and temporal variation of the atmosphere's self-cleaning capacity
and the formation of organic aerosols.” has been modified to “...significantly
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http://vreact.envwind.site:8001/

influencing the spatial and temporal variation of the formation of organic aerosols.”

5.Line 90: Typo— “and and”

Response: Thanks for your constructive suggestion. The repeated “and” has been
removed.

6.Line 149: “functional group” could be replaced with “molecular motif” when
referring to double bonds.

Response: Thank you for the suggestion. The “including 22 functional groups” has
been modified to “including 22 molecular motifs”. The “(B) Number of VOCs
containing each functional group” has been modified to “(B) Number of VOCs
containing each molecular motif”.

7.Line 191— It is mentioned in results that MSE is the metric that was used for
hyperparameter optimization. This information should also be included in the Methods
section for clarity.

Response: We are very sorry for our negligence. We have included the information you
mentioned in the Methods section for clarity. The “After identifying the optimal
hyperparameter combination (Table S3) on the validation set, and the best model was
saved” has been modified to “During hyperparameter optimization, the hyperparameter
combination that minimizes the Mean Squared Error (MSE) of the validation set was
selected as the optimal hyperparameter combination, and the best model was saved
(Table S3)”.

8.Improve resolution of Figures 1-5. Figure 5A would be clearer as a conventional bar
chart rather than a circular one for better being able to match bar height with y value.
Response: Thanks for you kindly comment. We have improved the resolution of
Figures 1-5 and modified Figure 5A into a conventional bar chart.
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Finally, we would like to thank you again for your great efforts on improving the quality
of this manuscript.

Thank you very much,
Yours sincerely,
Xian Liu



