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Abstract. This study presents the first compositional analysis of dust in snowpack from 2 

a typical Chinese industrial city, utilizing computer-controlled scanning electron 3 

microscope combined with K-means cluster analysis and manual experience. The dust 4 

is predominantly composed of kaolinite-like (36%), chlorite-like (19%), quartz-like 5 

(15%), illite-like (14%), hematite-like (5%), and clay-minerals-like (4%), with minor 6 

contributions from other components. It was also found that the size distribution and 7 

aspect ratio of the dust did not undergo significant changes during dry and wet 8 

deposition, but they exhibited great variability among the different mineral composition 9 

groups. Subsequently, these observed microphysical parameters were used to constrain 10 

the optical absorption of dust, and the results showed that under low (high) snow grain 11 

size scenarios, the albedo reductions caused by dust concentrations of 1, 10, and 100 12 

ppm in snow were 0.007 (0.022), 0.028 (0.084), and 0.099 (0.257), respectively. These 13 

results emphasize the importance of dust composition and size distribution 14 

characteristics in constraining snowpack light absorption and radiation processes. 15 
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1 Introduction 1 

Snow constitutes a crucial component of the terrestrial cryosphere, covering 2 

approximately 40% of the global land area, with a maximum extent of around 45 3 

million square kilometers (Hall et al., 1995; Lemke et al., 2007). It is predominantly 4 

found in polar and high-latitude regions, as well as mountainous areas at mid-to-low 5 

latitudes, exhibiting significant temporal and spatial variability due to seasonal changes 6 

(Tan et al., 2019; Thackeray et al., 2016; Zhu et al., 2021). Current research indicates 7 

that light-absorbing aerosols in the atmosphere (e.g. black carbon, brown carbon, and 8 

dust) are eventually deposited on various surfaces, including snow or glaciers through 9 

atmospheric diffusion, transport, and dry/wet deposition processes (Doherty et al., 2010; 10 

Gilardoni et al., 2022; Kuchiki et al., 2015). This alters the single optical properties of 11 

the snowfield, enhances the absorption of solar radiant energy, and reduces the albedo 12 

of the snow and ice surface, thereby accelerating snowmelt and altering the water cycle, 13 

and exerting a nuanced yet pivotal role in regional climate dynamics (Hadley and 14 

Kirchstetter, 2012; Hansen and Nazarenko, 2004; Kang et al., 2020; Skiles et al., 2018). 15 

Hence, it emerges as a critical determinant impacting both regional and global climate 16 

change. 17 

Extensive observational evidences highlighted significant reductions in the extent and 18 

duration of snow cover across the Northern Hemisphere, particularly notable in high-19 

latitude and mountainous regions due to global warming (Bormann et al., 2018; 20 

Derksen and Brown, 2012; Mote et al., 2018; Pulliainen et al., 2020; Zeng et al., 2018). 21 

Currently, the duration of Northern Hemisphere snow cover is decreasing by 22 
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approximately 5-6 days per decade (Dye, 2002), with Arctic June snow cover 1 

diminishing at a rate of 13.6% per decade (Derksen and Brown, 2012; Derksen et al., 2 

2017). Regions like the western Tibetan Plateau and Australia have experienced snow 3 

cover retreat rates ranging from 11% to 30% per decade (Bormann et al., 2012; 4 

Immerzeel et al., 2009), while the onset of snowmelt in the western United States has 5 

advanced by 6-26 days since the mid-1970s (Hall et al., 2015). Dust, a prevalent aerosol 6 

type in the Earth-atmosphere system, has garnered significant scientific attention due 7 

to its role in accelerating ice and snow melt (Bryant et al., 2013; Dong et al., 2020; 8 

Kaspari et al., 2015; Painter et al., 2012). Réveillet et al. (2022) reported an 8-12 day 9 

earlier average snowmelt in the French Alps and the Pyrenees due to dust presence 10 

during 1979-2018. Zhang et al. (2018) found that dust reduced snow albedo in the 11 

southern Tibetan Plateau by approximately 0.06 ± 0.004, equivalent to 30% of the 12 

albedo reduction caused by black carbon. Sarangi et al. (2020) further demonstrated 13 

dust's primary contribution to snow darkening above 4000 m altitude in the Tibetan 14 

Plateau, surpassing that of black carbon in influencing regional ice and snow melt. 15 

Whereas Xing et al. (2024) and Winton et al. (2024) also highlighted the remarkable 16 

contribution of dust events to the snow darkening of the Asian High Mountains and the 17 

Southern Alps, respectively. Moreover, Hao et al. (2023) projected a decrease in black 18 

carbon deposition on ice and snow under future emission scenarios, and anticipated that 19 

heightened dust emissions and deposition fluxes driven by climate change-induced land 20 

use changes (Neff et al., 2008), frequent wildfires (Yu and Ginoux, 2022), and increased 21 

drought (Huang et al., 2016). Consequently, dust's impact on ice and snow melt is 22 
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expected to intensify markedly. 1 

Previous studies have focused on investigating the concentration of dust in snow and 2 

its related radiative effects, neglecting the impact of the microphysical properties of 3 

dust on its optical absorption (Bryant et al., 2013; Reynolds et al., 2020; Xie et al., 4 

2018). In fact, the physical and chemical properties of mineral dust aerosols, including 5 

their particle size distribution (PSD), composition, mixing state, and shape, determine 6 

their optical properties (Chou et al., 2008; Colarco et al., 2014; Fountoulakis et al., 2024; 7 

Haapanala et al., 2012; Shi et al., 2022b). Dong et al. (2020) compared the volume-size 8 

distribution of dust deposition in ice and snow in western China and the Arctic, finding 9 

significant differences in the median particle size of dust, and showing that the particle 10 

size decreases with altitude in various remote regions except for the remote Arctic and 11 

Antarctic regions. Wang et al. (2023) used intelligent scanning electron microscopy to 12 

obtain typical PSD of dust in snow in Changchun. Additionally, related dust studies in 13 

the atmosphere have confirmed the complex variability of dust mineral composition. 14 

For example, in the case of dust aerosols from the Sahara Desert collected in Izana, 15 

Spain, in the summer of 2005, it was found that they were mainly composed of silicates 16 

(64%) and sulfates (14%), with small amounts of carbonaceous materials (9%), quartz 17 

(6%), calcium-rich particles (5%), hematite (1%), and soot (1%) (Kandler et al., 2007). 18 

In contrast, dust particles collected in Beijing, China, during an Asian dust storm were 19 

primarily composed of clay minerals (35.5wt%, by weight percentage), quartz 20 

(30.3wt%), and calcite (14.0wt%), followed by feldspar (8.7wt%), pyrite (1.0wt%), and 21 

hornblende (0.4wt%), along with noncrystalline materials (10.1wt%) (Shi et al., 2005). 22 
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Panta et al. (2023) conducted detailed field measurements using electron microscopy 1 

in the Sahara Desert of Morocco, reporting the statistical characteristics of the single-2 

particle composition, size, mixing state, and aspect ratio of newly emitted mineral dust. 3 

Kok et al. (2023) also highlight that dust-snow interactions generate a global annual-4 

mean radiative forcing of +0.013 W m⁻² (90% confidence interval: 0.007–0.03 W m⁻²), 5 

with large uncertainties primarily attributed to variations in dust-snow mixing state, 6 

particle size distribution, and chemical composition. To date, no studies have 7 

comprehensively analyzed the composition, size, and morphology of dust in snow or 8 

clarified the interrelationships among these characteristics. This lack of understanding 9 

significantly limits accurate assessments of the optical properties and radiative effects 10 

of dust in ice and snow (Flanner et al., 2021; He et al., 2024). 11 

Based on a field snow observation experiment conducted in Changchun, northeastern 12 

China, in November 2020, this study utilized intelligent scanning electron microscopy 13 

with an energy-dispersive X-ray analyzer to investigate in detail the composition, size, 14 

and morphological characteristics of dust during dry and wet deposition. These 15 

statistically significant parameters were subsequently used to constrain the complex 16 

refractive index and optical absorption inversion of dust, providing more accurate dust 17 

optical parameter inputs for snow radiative transfer models, and enhancing the accuracy 18 

of climate effect assessments of dust in snow. 19 

2 Methods 20 

2.1 Snow sample collection and analysis 21 
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Our previous study has detailed the snow field experiment conducted in Changchun 1 

(Wang et al., 2023). The sampling site is located at the meteorological station of Lvyuan 2 

District (43°88′N, 125°25′E), with no apparent sources of air pollution emissions in the 3 

visual range. During and after a heavy snowfall from November 19 to December 17, 4 

2020, we collected snow samples every two days, yielding a total of one fresh snowfall 5 

sample (wet deposition) and 15 aged surface snow samples (dry and wet deposition). 6 

This study selected five samples for measurement and analysis at intervals of 6-8 days, 7 

including one wet deposition sample (D1) and four dry/wet deposition samples (D7, 8 

D15, D23, and D29; "D" denotes days). Briefly, the selected snow samples were melted 9 

at room temperature, and an appropriate volume of the snow solution was taken based 10 

on the cleanliness of the snow sample (20 ml for D1 and 1 ml for the rest four samples). 11 

The solution was filtered through a polycarbonate membrane with a diameter of 25 mm 12 

and a pore size of 0.1 μm to separate the particles. The membrane was then transferred 13 

to a storage box and dried in a desiccator. Prior to analysis, a filter membrane 14 

approximately 0.5 cm² was cut and gold-plated. The samples were placed in the electron 15 

microscope sample chamber for vacuum processing, and data were collected and 16 

analyzed using the Environmental Particle Analysis Software (IntelliSEM-EPASTM) of 17 

the intelligent scanning electron microscope.  18 

The IntelliSEM-EPASTM system automatically scans multiple matrix areas within the 19 

field of view. By collecting backscattered signals from the scanning electron 20 

microscope (TESCAN Mira3) and comparing the image signal intensity with preset 21 

threshold levels, particles are detected. Upon detection, the system automatically 22 
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records the morphology images and positions of the particles on the polycarbonate 1 

membrane and utilizes two Bruker XFlash 6|60 energy dispersive spectroscopy (EDS) 2 

detectors to analyze the relative content of 24 chemical elements (C, O, Na, Mg, Al, Si, 3 

P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Se, and Pb) in the particles. 4 

This process rapidly generates high-definition images and energy spectrum data for 5 

each particle (thousands of particles per hour). Additionally, IntelliSEM-EPASTM 6 

provides detailed measurements of the maximum and minimum diameters, average 7 

diameter, particle projection area, roundness, and aspect ratio with the acquired particle 8 

SEM images based on a built-in image processing module (Zhao et al., 2022). 9 

Compared to manually operated scanning electron microscope experiments, the 10 

IntelliSEM-EPASTM system has the advantages of intelligent control and fast analysis 11 

speed, allowing for the acquisition of a large amount of environmental particle 12 

information in a short time, including detailed data on particle concentration levels, 13 

morphology characteristics, and component content across arbitrary size ranges, and 14 

were also comparable to the results from bulk analysis (Peters et al., 2016; Wagner and 15 

Casuccio, 2014). The elemental concentrations obtained by CCSEM show good 16 

consistency with bulk analysis results from atomic absorption (AA), bulk X-ray 17 

fluorescence (XRF), proton-induced X-ray emission (PIXE), and anion 18 

chromatography (IC) (Casuccio et al., 1983). Mamane et al. (2001) also showed that 19 

360 particles were sufficient to obtain representative results in CCSEM analysis of 20 

particle types and size distributions, based on comparisons of 360, 734, 1456, and 2819 21 

individual particles. Although CCSEM has a superior advantage in high efficiency for 22 



 

9 

 

measuring large quantities of particles, it encounters challenges with certain types of 1 

particles that have complex morphologies, such as soluble salts and soot (Peters et al., 2 

2016). CCSEM-induced errors may include particle overlap, contrast artifacts, sizing 3 

inaccuracies, and particle heterogeneity (Mamane et al., 2001). Consequently, manual 4 

error correction is typically performed prior to data processing. 5 

2.2 Dust microphysical properties derived from IntelliSEM-EPASTM 6 

Based on the IntelliSEM-EPASTM system, this study obtained the geometric 7 

information and energy spectrum data of about 4,000-5,000 particles in each sample, 8 

aiming to reveal the statistical characteristics of the microphysical properties of 9 

insoluble particles in snow. Specifically, according to Kandler et al. (2007), particles 10 

with a relative mass proportion of C and O elements exceeding 95% were roughly 11 

classified as carbonaceous particles. Then, for all remaining particles, the elemental 12 

index of each element other than C and O was calculated. Based on single-particle 13 

composition quantification, the elemental index of element X is defined as the atomic 14 

ratio of the concentration of the considered element to the sum of the concentrations of 15 

the quantified elements (Panta et al., 2023).  16 

|𝐗| =
𝑿

(𝑵𝒂+𝑴𝒈+𝑨𝒍+𝑺𝒊+𝑷+𝑺+𝑪𝒍+𝑲+𝑪𝒂+𝑻𝒊+𝑽+𝑪𝒓

+𝑴𝒏+𝑭𝒆+𝑪𝒐+𝑵𝒊+𝑪𝒖+𝒁𝒏+𝑺𝒏+𝑩𝒂+𝑷𝒃)

                          (1) 17 

The elemental symbol indicates the relative contribution measured for each particle (in 18 

atomic percent). Using the obtained elemental indices and combining K-Means 19 

clustering algorithms and manual experience, these non-carbonaceous particles were 20 

classified (Kandler et al., 2007; Panta et al., 2023; Zhao et al., 2022). The main principle 21 

of the K-means clustering algorithm is to use the k-means algorithm to classify particles 22 
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with similar chemical compositions into 30 types based on the elemental index of each 1 

element, and then, according to relevant research and manual experience classification 2 

principles of EDS spectra (Panta et al., 2023), classify the 30 types into 12 mineral 3 

phases by merging some similarly classified clusters, with particle categories named 4 

after their most common chemical composition, including quartz-like, hematite-like, 5 

rutile-like, kaolinite-like, chlorite-like, illite-like, hematite-like, clay-minerals-like etc. 6 

Figure S1 presents the percentage distribution of elemental indices (excluding C and O) 7 

for 12 categories of mineral particles. Specifically, hematite-like, quartz-like, rutile-like, 8 

apatite-like, and dolomite-like particles are predominantly characterized by Fe, Si, Ti, 9 

Ca, and Mg, respectively. Kaolinite-like particles are enriched in Al and Si, while clay 10 

mineral-like and Ca-rich silicate particles contain significant amounts of Al and Si, 11 

along with notable Ca content, with the latter exhibiting a higher Ca concentration. In 12 

contrast, illite-like, smectite-like, and chlorite-like particles, in addition to being 13 

enriched in Al and Si, also contain varying amounts of K, Mg, and Fe, respectively. 14 

Correspondingly, representative SEM images of particles are presented within each 15 

mineral category panel. 16 

The size distribution of different types of particles is described using a normal 17 

distribution, specifically expressed as (Flanner et al., 2021; Li et al., 2021): 18 

𝑛𝑟 =
𝑑𝑁

𝑑𝑟
= ∑  𝑛

𝑖=1
𝑁𝑖

√2𝜋𝑟ln⁡(𝜎𝑖)
exp {−

1

2
[
𝑙𝑛(𝑟)−𝑙𝑛(𝑟𝑖)

𝑙𝑛(𝜎𝑖)
]
2

}                (2)       19 

where 𝑁𝑖 is the total number of particles per unit volume in the i-th size mode, 𝑟𝑖 is 20 

the mean radius, and 𝜎𝑖  is the geometric standard deviation. These parameters can be 21 

fitted from the measured data. Similarly, the aspect ratio (AR) of particles is also 22 
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expressed as a normal distribution function (Panta et al., 2023): 1 

𝑛𝐴𝑅 =
𝑑𝑁

𝑑𝐴𝑅
= ∑  𝑛

𝑖=1
𝑁𝑖

√2𝜋𝐴𝑅ln⁡(𝜎𝑖)
exp {−

1

2
[
𝑙𝑛(𝐴𝑅)−𝑙𝑛(𝐴𝑅𝑖)

𝑙𝑛(𝜎𝑖)
]
2

}           (3) 2 

2.3 Dust light absorption and snow albedo calculation 3 

Based on the proportion of different mineral phases in the dust, the effective volume 4 

refractive index (meff) of mineral mixtures in snow aerosols was calculated using the 5 

effective medium approximation (EMA) method. Specifically, for binary mixtures, the 6 

effective complex refractive index under EMA-Bruggeman approximation can be 7 

written as (Kahnert, 2015): 8 

𝑚eff =9 

√1

4
[𝑚1

2(2 − 3𝑓) + 𝑚2
2(3𝑓 − 1)] + √[

1

16
[𝑚1

2(2 − 3𝑓) + 𝑚2
2(3𝑓 − 1)]2 +

1

2
𝑚1

2𝑚2
2]                                                                                                     10 

                                                       (4) 11 

where m1 is the complex refractive index of the background matrix, m2 is the complex 12 

refractive index of the inclusions, and f is the volume fraction of the inclusions. The 13 

effective complex refractive index for multicomponent mixtures can be obtained by 14 

repeating the above process. The refractive indices of different minerals used in this 15 

study were obtained from the spectral refractive index dataset of the main mineral 16 

components and chemical compositions provided by Zhang et al. (2024). For more 17 

detailed information about the dataset, refer to Zhang et al. (2024). Subsequently, using 18 

the effective complex refractive indices of dust constrained by observations, size 19 

distribution, and aspect ratio (AR) data, we calculated the mass absorption coefficient, 20 

single scattering albedo, and asymmetry factor of different types of dust particles using 21 
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the MOPSMAP program package (Gasteiger and Wiegner, 2018).The MOPSMAP 1 

model is a comprehensive aerosol optical property model combining T-matrix, Mie 2 

scattering theory, and geometric optics, widely used in calculating complex aerosol 3 

optical parameters (Kanngiesser and Kahnert, 2021; Shi et al., 2022b). 4 

The simulation of snow albedo was executed by our team's developed the Spectral 5 

Albedo Model for Dirty Snow (SAMDS) (Wang et al., 2017), which has been applied 6 

in many studies and is applicable to semi-infinite snow depth scenarios (Shi et al., 2021; 7 

Li et al., 2021). Its accuracy is also well validated, achieving an albedo accuracy of 8 

±0.02 compared to field spectroradiometer data (Wang et al., 2017). Specifically, the 9 

albedo of a snow-covered field containing dust under clear sky conditions can be 10 

expressed as: 11 

𝑅𝑑(𝜆) = exp⁡(−4√
8𝜋B𝑅𝑒𝑓𝑘(λ)

9𝜆(1−g)
+

2𝜌𝑖𝑐𝑒𝑅𝑒𝑓

9(1−g)
𝑀𝐴𝐶𝐷𝑢𝑠𝑡 ∙ 𝐶𝐷𝑢𝑠𝑡 ∙

3

7
(1 + 2 cos(𝑣0)))  12 

(5) 13 

where 𝜆 is the wavelength in μm; 𝑣0 is the solar zenith angle; 𝑘(λ) is the imaginary 14 

part of the complex refractive index of ice. 𝜌𝑖𝑐𝑒  and 𝑅𝑒𝑓 represent the density and 15 

effective radius of snow grains (in μm), respectively; g is the asymmetry factor of snow 16 

grains (weighted average of the scattering angle cosine); B is a factor related only to 17 

the shape of the snow grains. 𝑀𝐴𝐶𝐷𝑢𝑠𝑡 is the mass absorption coefficient of dust, and 18 

𝐶𝐷𝑢𝑠𝑡 is the concentration of dust particles in the snow. SAMDS uses 480 bands (0.2–19 

5.0 µm) to resolve spectral albedo. Here we used B = 1.27 and g = 0.89 to characterize 20 

spherical snow grains (Wang et al., 2017), SAMDS is also capable of simulating the 21 

albedo of non-spherical snow grains, and our previous work has explored the albedo 22 
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variation induced by snow grain shape (Shi et al., 2022a), which will not be reiterated 1 

here. Additionally, this study assumes dust-snow external mixing. However, it is worth 2 

noting that some studies have indicated that internal mixing can further enhance the 3 

dust-induced albedo reduction caused by 5%–30% (He et al., 2019; Shi et al., 2021). 4 

Therefore, this assumption may underestimate the impact of dust on albedo. 5 

3 Results 6 

3.1 The composition of dust in seasonal snow 7 

The composition of dust determines its complex refractive index, which is crucial for 8 

studying the radiative effects of dust (Reynolds et al., 2020; Lee et al., 2020). This study 9 

identified a total of 12 mineral components, including hematite-like, quartz-like, rutile-10 

like, clay-mineral-like, illite-like, kaolinite-like, smectite-like, chlorite-like, apatite-like, 11 

Ca-rich silicates, domolite-like, and others. However, it is important to handle this 12 

classification scheme with caution, as each particle may consist of different minerals, 13 

which may have variable or ambiguous compositions. Therefore, the groups used 14 

cannot uniquely identify minerals but rather indicate the most likely minerals matching 15 

the particle composition. This is reflected in the suffix "-like" used in the group naming 16 

scheme. Given the existence of other potential identification methods, each with its own 17 

advantages and limitations, the complete dataset generated and used in this study can 18 

be utilized for future research. Figure 1 (Figure S2) shows the number (mass) relative 19 

proportions of different mineral components in dry and wet deposition snow samples 20 

at different size resolutions, indicating significant trends observed among different 21 
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particle groups with changes in size categories. For all samples, kaolinite-like is the 1 

most abundant, present in all size ranges, with its abundance decreasing with increasing 2 

size. Quartz-like particles have nearly similar abundance in each size category 3 

(approximately 10%-20%), which is higher than the values reported by Panta et al. 4 

(2023) for dust from Morocco (approximately 5%). Similarly, clay-minerals-like are 5 

evenly distributed across each size category, accounting for about 4% of the relative 6 

abundance. Hematite-like exhibits similar relative abundances, but its contribution 7 

decreases with increasing particle size, and its strong light-absorbing properties have 8 

drawn widespread attention (Li et al., 2024; Zhang et al., 2015; Moteki et al., 2017). In 9 

contrast, chlorite-like's relative contribution increases with increasing size, with an 10 

average abundance of approximately 20%. It is noteworthy that the relative abundance 11 

of illite-like is higher in wet deposition samples than in dry deposition samples, possibly 12 

due to K-rich illite, considered one of the most effective ice nucleation sources found 13 

among different mineral components in dust (Atkinson et al., 2013; Harrison et al., 14 

2022). Additionally, the relative abundance of quartz-like in dry deposition samples is 15 

significantly lower than in wet deposition samples, which is closely related to the 16 

migration process of quartz-like particles in snow. Table S1 provides the relative 17 

proportions of different mineral components within the measured size range (0.2-10 18 

μm). Overall, dust in Changchun snow is primarily composed of kaolinite-like (36%), 19 

chlorite-like (19%), quartz-like (15%), illite-like (14%), hematite-like (5%), and clay-20 

minerals-like (4%) and other components. In comparison, Shi et al. (2005) reported 21 

mineralogical properties of Asian dust primarily consist of clay minerals (35.5wt%, by 22 
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weight percentage), quartz (30.3wt%), and calcite (14.0wt%), followed by feldspar 1 

(8.7wt%), pyrite (1.0wt%), and hornblende (0.4wt%). For the Middle East, Prakash et 2 

al. (2016) reported relative mass abundances of clay minerals ranging from 45% to 75%, 3 

plagioclase from 5% to 54%, and quartz from 0.1% to 10.2% as major components. 4 

Considering that industrial activities (e.g., coal combustion, urban construction, and 5 

road dust) emit quartz-rich particles, while long-range transport from arid regions (e.g., 6 

the Gobi Desert) contributes illite, which is consistent with the dust profile in Asia (Li 7 

et al., 2021). The anthropogenic contribution (e.g., hematite-like particles) aligns with 8 

the presence of nearby steel production facilities. Therefore, our results suggest that 9 

dust is likely a mixture of local and long-range sources. 10 

 11 

Figure 1. Size-resolved number abundance of different particle groups for D1 sample 12 

(a), D7 sample (b), D15 sample (c), D23 sample (d), D29 sample (e), and All samples 13 

(f). The numbers on top represent total particle counts in the given size bin.  14 



 

16 

 

3.2 Size distribution and aspect ratio of dust in seasonal snow 1 

Particle size is a key factor influencing the light-absorbing properties of dust, which has 2 

received widespread attention in field observations, numerical models, and satellite 3 

remote sensing (Castellanos et al., 2024; González-Flórez et al., 2023; Song et al., 4 

2022). Figure 2a illustrates the size distribution characteristics of dust particles 5 

collected from snow samples at different periods, indicating that the peak particle size 6 

of dust during dry deposition did not vary significantly. All samples exhibited similar 7 

size distributions, with geometric mean radii ranging from 0.35 to 0.37 µm and 8 

geometric standard deviations from 1.88 to 2.12, comparable to findings reported in 9 

other studies (Kok, 2011; Di Mauro et al., 2015; Kok et al., 2017). Interestingly, 10 

significant differences in size spectra were observed among different mineral 11 

components (Figure S3 and Table S2), considering only the cases where the fitted 12 

values passed significance tests. Chlorite-like particles exhibited the coarsest size 13 

spectrum (median radius = 1.32 µm), nearly double that of smectite-like particles (0.57 14 

µm), likely due to their tendency to aggregate during atmospheric transport (Formenti 15 

et al., 2014). Illite-like particles displayed the widest size range (0.38-0.59 µm) across 16 

different snow samples, possibly reflecting multiple source regions or differential 17 

atmospheric processing. The dominant kaolinite-like and quartz-like particles shared 18 

similar size distributions centered around 0.36 µm, consistent with their common origin 19 

in soil fragmentation (Kok, 2011), though kaolinite exhibited slightly less size 20 

variability. Together these components represented 51% of particles and primarily 21 

determined the overall dust size characteristics. Particularly noteworthy were hematite-22 
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like particles, which despite being the smallest at 0.29 µm characteristic of iron oxide 1 

condensation formation, disproportionately influenced radiative properties due to their 2 

exceptional light absorption (Formenti et al., 2014; Go et al., 2022).  3 

 4 

Figure 2. Relative abundances of (a) logarithmic dust size number distributions dN/ 5 

(dlogDp) and (b) logarithmic dust AR number distributions dN/ (dlogAR) for different 6 

snow samples. Dvg: particle diameter of dust in snow, rn: the number median radius, 7 

𝝈𝒈: the geometric standard deviation. 8 

Aspect ratio (AR) is another critical geometric parameter of dust particle that affects 9 

their light-absorbing properties (Botet and Rai, 2013; Haapanala et al., 2012; Huang et 10 
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al., 2023). Figure 2b describes the spectral distribution of aspect ratios of dust particles 1 

in dry and wet deposition samples. Similar to the size results, the aspect ratio of dust 2 

particles during dry and wet deposition did not show significant variations, with all 3 

samples displaying similar spectral distributions. The geometric mean values ranged 4 

from 1.28 to 1.31, with geometric standard deviations from 1.22 to 1.23. These results 5 

are slightly lower than those reported in atmospheric dust studies, such as 6 

measurements of dust from Morocco and Asia with AR values of 1.46 and 1.40, 7 

respectively (Kandler et al., 2009; Okada et al., 2001). During the Fennec campaign in 8 

central Sahara, a median AR of 1.3 was found (Rocha-Lima et al., 2018), and 9 

measurements of dust particles collected in the Sahara air layer and marine boundary 10 

layer during the AERosol Properties-Dust (AER-D) period showed median AR values 11 

of 1.30–1.44 for particles ranging from 0.5 to 5 µm and 1.30 for particles from 5 to 10 12 

µm, and 1.51 for particles from 10 to 40 µm (Ryder et al., 2018). Furthermore, we also 13 

explored the spectral characteristics of aspect ratios of different mineral components 14 

(Figure S4 and Table S3). Unlike the size distribution, although there are differences in 15 

aspect ratios among different components, the variation range is not large. Most mineral 16 

component groups have similar median AR values of 1.30, except for hematite and clay 17 

minerals, which have the lowest median AR of 1.27 and the highest median AR of 1.37, 18 

respectively. The AR of the same mineral component group shows no significant 19 

differences among different samples. Additionally, we found that AR is generally 20 

independent of particle size and type (Figure S5), consistent with the results of Panta et 21 

al. (2023). 22 
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3.3 Dust light absorption and its effects on snow albedo 1 

The refractive index of various mineral components exhibits significant variation. 2 

Figure S6 illustrates the complex refractive indices (both real and imaginary parts) of 3 

the eight principal mineral component groups identified in this study. The imaginary 4 

parts, indicative of absorption, vary by up to six orders of magnitude. Hematite shows 5 

the highest imaginary part of the complex refractive index, indicating the strongest 6 

light-absorbing properties, while quartz displays the smallest, indicating the weakest. 7 

The complex refractive indices of kaolinite, illite, chlorite, and smectite present 8 

relatively similar values, suggesting minimal variation in their light-absorbing 9 

properties. Based on the complex refractive index database of mineral component 10 

groups and combined with volume relative proportions under observational constraints, 11 

an effective medium approximation method is used to obtain the effective complex 12 

refractive index of dust in snow. Additionally, to assess the impact of different mineral 13 

component groups on the effective complex refractive index, we adjusted the initial 14 

volume proportions of hematite, kaolinite, chlorite, and illite by factors of 1.25, 1.50, 15 

1.75, and 2.0, respectively, while keeping the relative proportions of other components 16 

unchanged, and finally normalizing the proportions of all components. Figure 3 17 

illustrates the variation in the effective complex refractive index of dust with 18 

wavelength under these scenarios, focusing on the imaginary parts related to absorption. 19 

Overall, 𝑘dust is distributed within a narrow range (~0.001–0.01), gradually decreasing 20 

with increasing wavelength in the UV and VIS bands, and then stabilizing in the NIR 21 

band, comparable to values reported in other literature. Notably, an increase in the 22 
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relative proportion of hematite leads to a significant rise in 𝑘dust, especially in the visible 1 

spectrum. Conversely, increases in the relative proportions of kaolinite, chlorite, and 2 

illite cause a slight decrease in 𝑘dust, due to the reduced relative proportion of hematite 3 

after normalization.  4 

 5 

Figure 3. Complex spectral refractive indices of dust mixtures in scenarios with 6 

different composition group percentages. The solid and dashed lines in the diagram 7 

represent the imaginary and real parts, respectively. The default average volume 8 

fraction of each mineral group is 35.6% Kaolinite, 19.4% Chlorite, 15.2% Quartz, 14.6% 9 

Illite, 4.5% Hematite, 3.1% Smectite, and 1.1% Rutile. (a), (b), (c), and (d) represent 10 

the effects of changes in the proportion of hematite, kaolinite, chlorite, and illite, 11 

respectively.  12 

Furthermore, incorporating observed dust size distribution and AR spectra 13 
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characteristics, we calculated the mass absorption cross-section (MACdust), as shown in 1 

Figure 4. Similar to 𝑘dust, MACdust is distributed within a narrow range (~0–0.3 m²/g), 2 

gradually decreasing with increasing wavelength in the UV and VIS bands, and 3 

approaching stability (~0) at wavelengths greater than 1000 nm. An increased relative 4 

proportion of hematite enhances MACdust in the visible spectrum. For instance, 5 

doubling the relative proportion of hematite raises MACdust at 500 nm from 0.14 m²/g 6 

to 0.19 m²/g. However, changes in the relative proportions of kaolinite and chlorite have 7 

minimal effects on MACdust, consistent with the results for 𝑘dust. Additionally, an 8 

increase in 𝑅dust significantly reduces MACdust in the UV and VIS bands, weakening its 9 

spectral dependence. For example, when 𝑅dust is increased by factors of 1.25, 1.5, and 10 

2.0, MACdust at 300 nm decreases by 20% (0.20 m²/g), 33% (0.17 m²/g), and 48% (0.13 11 

m²/g), respectively, and at 500 nm, it decreases by 12% (0.12 m²/g), 21% (0.11 m²/g), 12 

and 34% (0.09 m²/g). Overall, the measured MACdust values (0–0.3 m²/g) show regional 13 

variations that reflect compositional differences: while comparable to Saharan dust 14 

(0.1–0.25 m²/g, Balkanski et al., 2007), they are significantly lower than Tibetan Plateau 15 

dust (0.3–0.5 m²/g, Li et al., 2021) and slightly higher than Colorado (San Juan 16 

Mountains) dust (0.05–0.15 m²/g, Skiles et al., 2017). This pattern correlates with 17 

hematite content, decreasing from 8–12% in Tibetan Plateau dust to 5% in our samples 18 

and just 2–3% in Greenland dust (Polashenski et al., 2015). The distinct quartz-rich 19 

signature in our samples (15% vs <5% in other regions) may reflect unique industrial 20 

emission sources in northeastern China. 21 
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 1 

Figure 4. Spectral variations in the dust mass absorption cross-sections (MACs) for 2 

different simulation scenario: (a) Hematite, (b) Kaolinite, (c) Chlorite, and (d) Size. 3 

Here the dust aspect ratio is fixed at 1.3. 4 

Figure 5a illustrates the impact of changes in the relative proportion of hematite on the 5 

spectral snow albedo, considering scenarios with low, medium, and high dust loads in 6 

snow, assuming a snow particle size of 500 µm (medium scenario). It can be observed 7 

that changes in spectral albedo due to variations in dust concentration and composition 8 

proportions generally occur in the visible light spectrum, while the near-infrared (NIR) 9 

spectrum is primarily influenced by the microphysical properties of snow particles 10 

themselves (Gardner and Sharp, 2010; He and Flanner, 2020), thus unaffected by dust 11 

concentration and composition proportions. Specifically, spectral albedo decreases in 12 

the UV and visible light (UV-Vis) bands with increasing dust concentration, with a 13 
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further decrease observed with rising proportions of hematite. Similar to Figure 5a, 1 

Figure 5b describes changes in spectral albedo of snow under different dust particle 2 

sizes, showing that increasing dust particle size can mitigate the decline in spectral 3 

albedo in the visible light spectrum, which is more pronounced in high dust load 4 

scenarios. For example, doubling the dust particle size increases the spectral albedo 5 

(300 nm) from 0.946, 0.840, and 576 to 0.961, 0.882, and 0.673 for dust concentrations 6 

of 1, 10, and 100 ppm in snow, respectively. Figures 5c and 5d respectively illustrate 7 

the effects of changes in the relative proportion of hematite and dust particle size on the 8 

reduction in snow albedo, considering three snow particle size scenarios. Specifically, 9 

the reduction in albedo increases with increasing dust concentration and snow particle 10 

size, further exacerbated by an increase in the proportion of hematite, especially in high 11 

dust concentration and snow particle size scenarios. Conversely, an increase in dust 12 

particle size reduces the reduction in albedo, and increases in dust concentration and 13 

snow particle size can further amplify this effect. For instance, in low (high) snow 14 

particle size scenarios, increasing the proportion of hematite increases the reduction in 15 

albedo caused by dust concentrations of 1, 10, and 100 ppm in snow from 0.007 (0.022), 16 

0.028 (0.084), and 0.099 (0.257) to 0.008 (0.026), 0.033 (0.098), and 0.115 (0.291). 17 

Conversely, increasing the dust particle size reduces the reduction in albedo caused by 18 

dust concentrations of 1, 10, and 100 ppm in snow to 0.005 (0.017), 0.022 (0.066), and 19 

0.081 (0.217). These results emphasize the complex effects of dust composition, 20 

particle size, concentration, and snow particle size on snow albedo. 21 
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 1 

Figure 5. (a) Spectral snow albedo in the wavelength range of 0.2–2.5 μm for different 2 

dust concentrations and hematite percentages, with assumed snow radii of 500μm. (b) 3 

Spectral snow albedo for different dust concentrations and sizes. (c) Broadband snow 4 

albedo reduction as a function of dust concentration for different hematite percentages 5 

and snow snow-grain radii (100, 500, and 1,000 μm). (d) Similar to (c), but hematite 6 

percentage is replaced with dust size. 7 

4 Summary and discussion 8 

This study employed CCSEM technology to quantitatively analyze insoluble 9 

particulate matter in snow in Changchun, ranging from 0.2 to 10 μm, and identified 12 10 

mineral component groups through K-means cluster analysis and empirical 11 

identification. The findings indicate that the dust in Changchun snow primarily 12 

comprises kaolinite-like (36%), chlorite-like (19%), quartz-like (15%), illite-like (14%), 13 
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hematite-like (5%), and clay-minerals-like (4%), with no significant changes in the 1 

proportions of different mineral components during dry deposition processes. In 2 

contrast, wet deposition samples contain higher proportions of illite and quartz, which 3 

may be attributed to illite as an effective source of ice nuclei and the dynamic migration 4 

of quartz in snow. The study also found that the size and aspect ratio (AR) of dust follow 5 

normal distribution characteristics, with geometric means and standard deviations of 6 

0.35–0.37 μm, 1.88–2.12 for size, and1.28–1.31, 1.22–1.23 for AR, respectively. 7 

Although there were no significant changes in the size and AR of dust during dry and 8 

wet deposition processes, significant variability was observed among different mineral 9 

component groups in terms of size and AR. Subsequently, based on statistically derived 10 

characteristics of dust components, size, and AR under observational constraints, we 11 

analyzed the light absorption characteristics of dust. The mass absorption cross-section 12 

(MACdust) was found to be distributed within a narrow range (~0–0.3 m²/g). An increase 13 

in the relative proportion of hematite was observed to increase MACdust, while an 14 

increase in dust particle size decreased MACdust by a specific percentage (10%–50%). 15 

Finally, the study discussed the complex effects of dust composition, particle size, 16 

concentration, and snow particle size on snow albedo. The results indicate that an 17 

increase in the relative proportion of hematite further enhances the reduction in snow 18 

albedo caused by dust, whereas an increase in dust particle size mitigates this reduction. 19 

Additionally, increases in dust concentration and snow particle size can further amplify 20 

these effects. 21 

Compared with bulk sample collection and other techniques, we emphasize that 22 
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CCSEM technology provides an innovative approach to detect the statistical 1 

characteristics of mineral composition, size distribution, and shape (AR) of dust in snow, 2 

significantly enhancing the accuracy of dust radiative forcing in model simulations. 3 

However, it is worth noting that although mineralogy provides strict definitions for 4 

mineral phases based on composition and crystal structure, atmospheric dust particles 5 

typically consist of heterogeneous mixtures. Currently, the scientific community lacks 6 

standardized protocols for classifying the mineralogical components of such complex 7 

particulate assemblages, making it difficult to compare dust composition reported in 8 

different literature, severely limiting research on dust chemical composition in different 9 

regions globally (Castellanos et al., 2024; Zhang et al., 2024). Therefore, we call for 10 

the establishment of strict criteria for distinguishing mineral components as soon as 11 

possible, which will also support high-spectral projects and space programs developed 12 

and implemented by international societies and aerospace institutions to enhance 13 

understanding of mineral composition in terrestrial dust source regions (Green et al., 14 

2020; Guanter et al., 2015). On the other hand, there is still a lack of understanding of 15 

the basic mineralogical and physical properties of dust particles, including key minerals 16 

such as hematite and goethite's spectral refractive indices. Measurements of hematite 17 

refractive indices currently vary widely, hindering attempts to calculate dust optical 18 

properties and forcing changes (Zhang et al., 2024). In addition, the irregular shapes of 19 

dust particles cannot be represented by simple mathematical models, and the lack of 20 

comprehensive and realistic shape models is a prominent issue in dust optical modeling, 21 

distinguishing it from other aerosol types (Huang et al., 2023; Ito et al., 2021). Overall, 22 
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the greatest limitation lies in the lack of detailed, region-specific, statistically 1 

representative information on the microphysical properties of base dust particles — size 2 

distribution, morphology, complex refractive index spectra, heterogeneity of internal 3 

structures, and resulting optical characteristics. 4 
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