

1 **Seismic anisotropy under Zagros foreland from SKS splitting observations**

2 **Khalil Motaghi¹, Ayoub Kaviani², Wathiq Abdulnaby³, Hanan Mahdi⁴, Haydar Al-Shukri⁴**

3 ¹Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731,
4 Iran

5 ²Institute of Geosciences, Goethe University, Frankfurt, Germany

6 ³Seismological Laboratory of University of Basrah (SLUB), Department of Geology, College of Science,
7 University of Basrah, Basrah, Iraq

8 ⁴University of Arkansas at Little Rock (UALR), Little Rock, Arkansas, US

9 **Correspondence:** Khalil Motaghi (khalil1024@yahoo.com)

10 **Abstract**

11 We present SK[K]S splitting measurements from 18 newly deployed seismic stations in the
12 foreland of the Zagros collision zone, providing new insights into asthenospheric flow and
13 lithospheric deformation associated with the Arabian-Eurasian continental collision. Our
14 results reveal two distinct fast-axis orientations: NE-SW in northern Iraq and NW-SE in the
15 Mesopotamian Plain and Persian Gulf. The NE-SW anisotropy in northern Iraq aligns with
16 fast-axis orientations observed in the Iranian-Anatolian Plateau and the azimuth of absolute
17 plate motion, indicating large-scale asthenospheric flow as the primary cause of anisotropy
18 across the northern Middle East. In contrast, the NW-SE-trending anisotropy in the
19 Mesopotamian Plain and Persian Gulf, characterized by smaller splitting times, is parallel to
20 the previously reported Pn anisotropy, suggesting a contribution from lithospheric mantle
21 anisotropy, likely preserved as a remnant of past rifting. The influence of asthenospheric flow
22 on the observed seismic anisotropy in this region appears minor. These findings demonstrate
23 a dual origin of seismic anisotropy in the Zagros foreland, where lithospheric fabric related to
24 Mesozoic rifting dominates in the Mesopotamian Plain, southwest of the Zagros lithosphere

25 keel, while asthenospheric flow governs the anisotropy in northern Iraq and surrounding
26 regions with thin lithosphere. This distinction refines models of mantle dynamics and
27 lithosphere-asthenosphere coupling in continental collision zones.

28 **Keywords:** Anisotropy, Zagros collision, Mesopotamia, Asthenospheric flow, SK[K]S

29

30 **1. Introduction**

31 Seismic anisotropy is a powerful tool for probing the dynamics of the Earth's mantle and
32 understanding the processes that drive plate tectonics (e.g., Park and Levin, 2002; Long and
33 Becker, 2010). It provides critical insights into deformation within the crust and upper mantle
34 and can reveal deep structural features, such as mantle flow, that are often inaccessible to
35 other geophysical methods (Silver and Chan, 1991).

36 This study focuses on the foreland region of the Zagros continental collision zone, a key
37 segment of the Arabia–Eurasia plate boundary. Here, we investigate the interaction between
38 asthenospheric mantle flow and the overlying continental lithosphere, particularly the
39 influence of the thick lithospheric root beneath the Zagros orogen (Priestley et al., 2012).
40 These interactions are shaped by large-scale plate motions and localized mantle dynamics,
41 including shear and normal tractions at the base of the lithosphere (Sandvol et al., 2003).
42 Despite the tectonic significance of the region, the Zagros foreland remains underexplored
43 due to limited seismic station coverage.

44 Teleseismic shear-wave splitting offers a sensitive method for detecting anisotropy within
45 both the lithospheric and asthenospheric mantle (Silver and Holt, 2002). In the broader
46 Middle East, SK[K]S splitting studies have revealed a consistent NE-oriented fast axis
47 beneath northern Iran and Anatolia, interpreted as reflecting asthenospheric flow aligned with

48 the absolute plate motion (APM) in a no-net-rotation frame (Paul et al., 2014; Arvin et al.,
49 2021; Kaviani et al., 2021). In contrast, the anisotropy pattern across the Zagros is more
50 complex, influenced by deformation of the thick Arabian lithosphere (Sadegh-Bagherabadi et
51 al., 2018b) and lateral variations in lithospheric thickness, which may deflect or suppress
52 asthenospheric flow (Kaviani et al., 2021).

53 Despite these advances, the foreland basin beneath eastern Iraq and the Persian Gulf remains
54 poorly characterized. This is largely due to logistical constraints: the partial overlap of the
55 region with the Persian Gulf limits onshore station coverage, and eastern Iraq has historically
56 lacked adequate seismic monitoring (Fig. 1). As a result, it has been difficult to resolve
57 whether anisotropy in this region reflects present-day mantle flow or inherited lithospheric
58 structure.

59 To address this gap, we analyze new data from 17 seismic stations in Iraq and one recently
60 deployed station on an island in the Persian Gulf. The Iraqi stations, installed as part of a
61 network enhancement initiative led by Lawrence Livermore National Laboratory, offer the
62 first opportunity to investigate anisotropic patterns across this under-sampled region. Using
63 shear-wave splitting analysis of SK[K]S phase, we assess the interaction between NE-
64 oriented asthenospheric flow and the Arabian lithospheric keel, focusing specifically on the
65 Zagros foreland.

66 We consider two main geodynamic scenarios for this interaction. In the first, the thick
67 lithospheric root beneath the Zagros may force the asthenospheric flow to deeper levels,
68 allowing it to continue beneath the orogen without significant lateral deflection. In the
69 second, the lithospheric keel acts as a barrier, redirecting mantle flow laterally toward areas
70 of thinner lithosphere in adjacent regions, such as northwest Iran, eastern Anatolia, or the
71 Makran subduction zone. In addition, we evaluate the possibility of fossil anisotropy, a

72 "frozen" lithospheric fabric inherited from Mesozoic rifting events during the earlier tectonic
73 evolution of the region as part of northern Gondwana.

74 A better understanding of seismic anisotropy beneath the Zagros foreland is critical for
75 distinguishing between these scenarios and for constraining the relative contributions of
76 lithospheric and asthenospheric anisotropy. This has broader implications for understanding
77 the mechanical coupling across the Arabia–Eurasia plate boundary, the dynamics of mantle
78 flow in convergent zones, and the preservation of tectonic fabrics within stable continental
79 lithosphere. The primary objectives of this study are: (1) To determine whether seismic
80 anisotropy in the Zagros foreland originates in the lithosphere or asthenosphere; (2) To assess
81 the possible deflection or suppression of mantle flow by the lithospheric keel beneath the
82 Zagros; and (3) To investigate whether the NW–SE anisotropy observed in the
83 Mesopotamian Plain reflects fossil fabric from Mesozoic rifting.

84

85 **2. Data and method**

86 The primary dataset used in this study originates from a regional seismic network that has
87 been operational in Iraq since 2014, established through a multi-institutional collaboration
88 (Abdulnaby et al., 2020; Fig. 1). Table 1 provides the station coordinates and the time
89 intervals during which data were accessible. Most stations were repositioned over time, with
90 data collection periods ranging from five months to nine years (Table 1). To enhance lateral
91 data coverage in the Zagros foreland, we also incorporated data from a newly established
92 seismic station situated on Khark Island in the Persian Gulf. This station is operated by the
93 International Institute of Earthquake Engineering and Seismology in Iran.

94 We extracted three-component waveforms from 342 teleseismic earthquakes with magnitudes
95 ≥ 6.0 from epicentral distances between 90° and 140° . A total of 3256 seismograms met these
96 criteria. Two splitting parameters, Φ (fast-axis anisotropy orientation) and δt (splitting time
97 between fast and slow polarizations), were estimated using the rotation-correlation method of
98 Bowman and Ando (1987). Before performing the splitting analysis, we visually examined
99 the waveforms to confirm low noise levels and to ensure that the SK[K]S phases were not
100 distorted by other teleseismic phases with similar arrival times. Band-pass filtering was
101 applied using visually selected cutoff periods, with low cutoff periods ranging from 5 to 10 s
102 and high cutoff periods ranging from 20 to 30 s.

103 We manually selected the analysis window around the theoretical SK[K]S onset, calculated
104 using the IASP91 standard velocity model (Kennett and Engdahl, 1991). The window length
105 was chosen to include at least one period of the clearly observable target phases. Final
106 splitting parameters were retained in the dataset after meeting the following quality criteria:
107 (1) a signal-to-noise ratio > 2 on the radial component within the analysis window, (2) a
108 minimum correlation coefficient > 0.90 between fast and slow components, (3) elliptical
109 particle motion before correction for anisotropy and nearly linear particle motion after, and
110 (4) at least a 50% reduction in transverse energy after anisotropy correction (for non-null
111 cases).

~~Although stricter thresholds (e.g., 70–80%) would enhance robustness, preliminary tests showed they significantly reduced the number of non-null results, especially at stations with lower signal quality. The 50% threshold was thus adopted as a compromise to balance spatial coverage and measurement reliability. A 50% threshold for T-component energy reduction was adopted based on the analysis of the energy reduction distribution (Figure S1b). Our analysis shows that although reductions of up to 95% are observed, most measurements cluster between 50% and 60% energy reduction. This pattern is expected in our case, as the observed delay times are relatively small. Furthermore, as shown in Figure~~

119 [S1a, the ratio of T-component to R-component energy is already relatively low for most](#)
120 [seismograms before correction. Therefore, considering the background noise, we do not](#)
121 [expect a substantial energy reduction after correction for anisotropy. The distribution of the](#)
122 [energy ratio between the corrected T-component and the R-component \(orange chart in](#)
123 [Figure S1a\) further confirms that relatively low amplitudes remain on the T-component after](#)
124 [correction. This also indicates linear R-T particle motions following the correction.](#)

125 Measurements with initial linear particle motion or splitting times < 0.5 s were classified as
126 null, indicating no detectable splitting. Uncertainties in fast axis orientation and splitting time
127 were estimated using the contour method, based on 95% confidence regions from the
128 normalized correlation surface. The standard deviation of splitting parameters within this
129 region was used as the uncertainty measure for each event.

130 To evaluate the robustness of our results, we reanalyzed a representative subset of events
131 using the minimum energy method. The results (Table S1, in supplementary material)
132 showed good agreement with those obtained from the rotation-correlation technique. Future
133 work incorporating full-matrix comparisons of all events using multiple methods is
134 warranted.

135 Figure 2 presents two examples of the splitting analysis, illustrating the energy on the original
136 transverse (SH) component and the elliptical particle motion of the horizontal components,
137 both indicative of shear wave splitting. Main criteria for reliable measurements include the
138 observation of linear particle motion and significant energy reduction on the SH component
139 following correction for anisotropy using the estimated splitting parameters. The final dataset
140 includes 155 reliable non-null measurements and 630 null measurements, as shown in
141 Figures 3 and 4. [The individual measurements are also provided in Table S2 of the](#)
142 [supplementary information.](#)

143

144 **3. Results**

145 Figure 3 shows the rose diagrams of both null and non-null measurements for 18 new stations
146 in the Zagros foreland. At stations AMR1, AMR2, BSR2, NSR1, NSR3, NSR4, ANB1, and
147 KIR1, the non-null measurements exhibit a consistent unimodal pattern (Fig. 3). Figure 4a
148 presents the rose diagrams for non-null splitting measurements at station locations, and
149 Figure 4b shows individual measurements (represented by red bars) projected to their
150 piercing points at a depth of 200 km, alongside measurements from previous studies (green
151 and orange bars). Projecting the individual measurements at depth (Fig. 4b) provides a clearer
152 view of the lateral distribution of anisotropy. The figure suggests that the varying fast axis
153 orientations observed at some stations may indicate lateral variations in the anisotropic
154 structure beneath the region.

155 The fast axis orientations across the study region can be categorized into two main patterns.
156 First, in southern Iraq and the Persian Gulf (latitude $< 32^{\circ}\text{N}$), the orientations are
157 predominantly NW-SE, sub-parallel to the Zagros orogeny and perpendicular to the APM
158 vector within the no-net-rotation reference frame (Kreemer et al., 2014; Fig. 1). This pattern
159 is observed at stations BSR1, BSR2, NSR1, NSR2, NSR4, AMR1, AMR2, SAM2, and
160 KUT1 and extends into the Persian Gulf at station KHRK, marking the offshore continuation
161 of the Zagros foreland basin. Second, in northern Iraq (latitude $> 33^{\circ}\text{N}$), the fast axis
162 orientations are primarily NE-SW, perpendicular to the Zagros orogeny and sub-parallel to
163 the APM vector, as observed at stations ANB1, ANB2, KIR1, SLY1, and DHK1. Station
164 KAR2, located near the boundary between these two regions, shows almost null SK[K]S
165 splitting, with 94 null measurements and 1 non-null measurement from a west back-azimuth
166 (Fig. 3 and Table 1). This suggests the presence of two dominant anisotropic features with
167 perpendicular orientations in the northern and southern sections of the study region.

168 An important question is why a large number of null measurements (630 out of 785) are
169 observed. Figure 5 addresses this by showing polar histograms of back-azimuths for null and
170 non-null measurements across the dataset. Two dominant directions are associated with nulls:
171 east and southwest ($\approx 210^\circ$). The southwestern azimuth coincides with the fast axis orientation
172 in northern Iraq and the slow axis in southern Iraq, suggesting that SK[K]S phases from this
173 direction are polarized along the symmetry axes of anisotropy, resulting in null splitting.
174 However, the most prominent direction for nulls is from the east.

175 Station-specific back-azimuth rose diagrams (Fig. 3, right panels) show that stations AMR2,
176 BSR2, NSR1, NSR4, KUT1, KAR2, and KHRK, all located in the Mesopotamian Plain and
177 Persian Gulf, exhibit a high concentration of nulls from the east. In contrast, stations in
178 northern Iraq (e.g., ANB1, ANB2, KIR1, and SLY1) do not show a similar eastern null
179 pattern. This systematic azimuthal dependence likely results from both the complex
180 lithospheric structure east of the Mesopotamian Plain, where it interacts with the Zagros, and
181 the global distribution of teleseismic sources. A significant number of SK[K]S phases arrive
182 from the east, where active subduction zones along the western Pacific margin fall within the
183 optimal epicentral distance range for splitting analysis. Non-null measurements, by contrast,
184 predominantly arrive from other directions, especially from the west, as seen in Figure 3.

185 Figure 6 maps the lateral variation of SK[K]S splitting times across the study area and
186 surrounding region, incorporating results from this study with those from previous studies.
187 The map is generated by resampling the splitting times at regularly spaced 1° grid points and
188 averaging them over the Fresnel zone around each point. The final map is then produced by
189 linearly interpolating between the grid points. The results show that splitting times beneath
190 the Zagros foreland are generally much smaller than those reported for the surrounding
191 regions, including the Inner Arabian Platform, the eastern Anatolian Plate, and the Zagros
192 collision zone (Paul et al., 2014; Qaysi et al., 2018; Kaviani et al., 2021).

193

194 **4. Discussion**

195 The most striking feature revealed by our SK[K]S splitting observations is the relatively
196 abrupt change in anisotropy patterns across the Zagros foreland in the northeastern portion of
197 the Arabian plate. Our results reveal two distinct anisotropy regimes: a uniform NE–SW fast
198 axis orientation in the northern Iraq, aligned with the APM vector and a uniform NW–SE
199 orientation, parallel to the Zagros orogen, across the Mesopotamian Plain and Persian Gulf.
200 These coherent patterns are in sharp contrast to the complex and spatially variable anisotropy
201 within the Zagros orogen. In the following, we integrate our results with those from
202 surrounding regions to resolve anisotropic patterns on a broader scale and interpret them in
203 terms of lithosphere–asthenosphere interaction and tectonic inheritance.

204

205 **4.1 Comparison with previous studies**

206 To investigate patterns of upper mantle seismic anisotropy, we combined our dataset with all
207 available SK[K]S measurements from the Middle East. This merging allows us to assess how
208 the results of this study align with or diverge from previous observations. Figure 7 presents
209 maps comparing our measurements with those from earlier studies in neighboring regions,
210 including the Iranian Plateau and eastern Anatolian Plateau (Kaviani et al., 2021),
211 northwestern Iran (Arvin et al., 2021), the northern Zagros (Sadeghi-Bagherabadi et al.,
212 2018a, 2018b), and the Inner Arabian Platform (Qaysi et al., 2018). In the left panels of
213 Figure 7, individual SK[K]S measurements are displayed, with red bars representing the new
214 measurements and blue bars indicating those from previous studies. Each measurement is

215 projected onto its ray-piercing point at depths of 100 km, 200 km, and 300 km, shown in
216 panels a, c, and e, respectively, to account for uncertainty in the depth of anisotropy.

217 Our results show a high degree of consistency with previous measurements, particularly in
218 southern Iraq and the Persian Gulf, where NW-SE-oriented fast axes are observed. Similarly,
219 in northern Iraq, the NE-SW-oriented fast axes align well with prior measurements in
220 northern Iraq and eastern Turkey (Kaviani et al., 2021). This agreement affirms that our
221 findings extend the observation of upper mantle anisotropy across the Zagros collision zone
222 and enhance understanding of mantle flow and deformation beneath this tectonically active
223 region.

224 To further visualize the azimuthal anisotropy patterns, we calculated vector averages of the
225 individual splitting parameters projected at respective depths and within the Fresnel zone of
226 SK[K]S waves, utilizing sensitivity kernels as calculated by Monteiller and Chevrot (2011).
227 The interpolated anisotropy fields, shown in the right panels of Figure 7, demonstrate that the
228 anisotropic patterns remain largely consistent across different depth levels. The observed
229 consistency in fast-axis orientations across depth projections suggests a dominantly single-
230 layer anisotropic structure.

231

232 **4.2 Uniform asthenospheric flow around the Arabian–Eurasian collision zone**

233 In the northern Arabian Plate and much of the Eurasian Plate, the fast axes of SK[K]S
234 splitting are consistently aligned with the APM direction of the Arabian Plate (Figs. 4 and 7).
235 These regions also exhibit relatively large splitting delay times (Fig. 6), suggesting a strong
236 and coherent anisotropic signal. The uniform pattern of fast axes over such a broad region
237 suggests a large-scale, viscous asthenosphere flow as the dominant mechanism beneath the

238 northern Middle East (Sandvol et al., 2003; Paul et al., 2014). This flow is aligned with the
239 APM direction and appears to be only weakly influenced by lithospheric heterogeneities.

240 This interpretation is supported by previous studies, which report similar trends in anisotropy
241 fast axis orientation and large splitting delay times across central Anatolia, eastern Turkey,
242 and beneath northwestern and northeastern Iran (Sandvol et al., 2003; Paul et al., 2014;
243 Kaviani et al., 2021; Arvin et al., 2021). In some locations, splitting observations vary with
244 back-azimuth, indicating contributions from multiple layers of anisotropy at different depths.
245 This vertical complexity suggests that distinct layers within the lithosphere–asthenosphere
246 system contribute different anisotropic signatures.

247 The asthenospheric origin of the observed SK[K]S anisotropy is further supported by
248 lithospheric thickness estimates from surface wave tomography (Priestley et al., 2012) and S
249 receiver function studies (Gök et al., 2007; Taghizadeh-Farahmand et al., 2010 and 2013;
250 Kind et al., 2015). These studies reveal a thin lithosphere beneath regions where the fast axis
251 orientations are coherently aligned with the APM. The lithospheric thickness ranges from
252 ~80 to 100 km beneath eastern Anatolia and the Bitlis suture zone (e.g., Kind et al., 2015),
253 northwestern Iran (e.g., Taghizadeh-Farahmand et al., 2010), and northeastern Iran (e.g.,
254 Taghizadeh-Farahmand et al., 2013). In some parts of the Anatolian Plate, the lithospheric
255 mantle is reportedly entirely absent (e.g., Gök et al., 2007).

256 It is noteworthy that the tectonics of northern Iraq and eastern Turkey are dominated by the
257 active convergence between the Arabian and Eurasian plates, accommodated by the westward
258 escape of Anatolia (Dewey et al., 1986; McClusky et al., 2000). Despite the complex and
259 ongoing deformation at this junction, the anisotropy patterns remain remarkably consistent
260 and unperturbed. This may confirm that the overlying lithosphere is not sufficiently thick to
261 significantly influence the underlying mantle flow. Alternatively, any lithospheric fabrics that

262 may be present could be aligned with the underlying mantle flow, resulting in a vertically
263 coherent anisotropic signal that is indistinguishable from asthenospheric anisotropy in
264 SK[K]S splitting data. The alignment between surface tectonic motions and the orientation of
265 asthenospheric flow further supports a strong coupling between the thin lithosphere and
266 underlying mantle, reinforcing the interpretation that asthenospheric flow is the dominant
267 driver of plate tectonics in this region.

268

269 **4.3 Lithospheric control and fossil anisotropy in the Zagros foreland**

270 In contrast to the uniform patterns observed farther north, the SKS splitting beneath the
271 Zagros collision zone and the Mesopotamian foreland displays a more complex and spatially
272 variable character. The fast axis orientations in this region are deflected around the Zagros
273 lithospheric keel and the Mesopotamian foreland, while the splitting delay times are smaller
274 than those in the surrounding areas. These patterns have been interpreted as resulting from
275 mantle flow deflection around the thick Zagros lithospheric root (e.g., Kaviani et al., 2021).

276 We interpret these patterns in the context of lithosphere-asthenosphere interaction and
277 propose that the cold, thick Arabian lithosphere beneath the Zagros foreland and Zagros
278 orogeny both disrupts mantle flow and inhibits the development of coherent anisotropic
279 fabrics within itself and in the underlying asthenosphere. This interpretation is supported by
280 the correlation between anisotropy orientations and lithospheric thickness contours (Fig. 8d),
281 and by thermal models indicating sub-Moho temperatures below 900°C (Priestley et al.,
282 2012), which limit olivine mobility and the formation of vertically coherent lattice-preferred
283 orientation in the lithosphere due to pure-shear deformation during the collision (Nicolas and
284 Christensen, 1987).

285 The relatively small splitting times beneath the Mesopotamian Plain support the idea that
286 anisotropy in this region is either weak or confined to a shallow layer. We suggest that the
287 source of anisotropy resides in the upper lithospheric mantle and reflects a fossil fabric as a
288 remnant of early Mesozoic rifting that affected the northeastern Arabian platform. This
289 interpretation is supported by two main lines of evidence: (1) A strong correlation between
290 the SK[K]S fast axis orientation and the Pn fast axis anisotropy orientation (Fig. 8c), which
291 represent subcrustal anisotropy, suggesting a shallow origin; (2) Small-scale lateral variations
292 in anisotropy directions beneath the Mesopotamian Plain, in contrast to the more uniform
293 patterns beneath the Inner Arabian platform and eastern Anatolia (see interpolated anisotropy
294 fields in Fig. 7).

295 Our findings suggest that the NW–SE fast-axis anisotropy within the lithosphere of the
296 Mesopotamian Plain likely originates from successive Mesozoic rifting events affecting the
297 northeastern Arabian platform. Evidence for diffuse rifting in the region comes from previous
298 geological and seismological studies (Mohammed, 2006; Numan, 1997, 2000; Jassim and
299 Göff, 2006; Abdulnaby et al., 2020). P receiver function analysis (Abdulnaby et al., 2020)
300 revealed a crustal root beneath the southeastern Mesopotamian Plain comparable in thickness
301 to that of the Zagros collision zone. Abdulnaby et al. (2020) attributed the mismatch between
302 large crustal thickness and low topography to successive rifting events, which promoted
303 vertical loading from up to 14 km of sediment accumulation in fault-bounded depocenters.
304 The Abu Jir-Euphrates fault, clearly imaged as a basement step in seismic lines (Mohammed,
305 2006), defines the southwest margin of the rift system (e.g., Fadhel and Al-Rahim, 2019).
306 Inherited from Triassic passive-margin extension, this fault system was reactivated during
307 Middle–Late Jurassic rifting, forming graben–horst structures (Numan, 1997, 2000).
308 Continuous subsidence since the Late Jurassic enabled the deposition of thick sedimentary
309 sequences within the Mesopotamian Plain (Jassim and Göff, 2006).

310 The lithosphere beneath the Mesopotamian Plain appears to have remained largely intact
311 despite the subsequent continental collision and deformation associated with the advancing
312 Zagros deformation front. The southwestward migration of the Zagros deformation front
313 (ZFF) overprinted the eastern boundary of the Mesopotamian graben through thrust faulting
314 and folding, producing opposing dips in the sedimentary cover. Abdulnaby et al. (2016a,
315 2016b) and Darweesh et al. (2017) proposed a southwestward dip of approximately 60° for
316 the eastern margin of the basin beneath the ZFF. Collectively, these findings support the
317 interpretation that the Mesopotamian Plain has been largely unaffected by deformation
318 associated with the Zagros orogeny. As a result, older tectonic processes, most notably
319 Mesozoic rifting, are the most plausible source of the preserved lithospheric mantle
320 anisotropy.

321 While this interpretation is supported by multiple lines of evidence, forward modeling of
322 shear-wave propagation through synthetic anisotropic structures will be critical to constrain
323 the symmetry and depth extent of the anisotropy in the Mesopotamian lithosphere. The high
324 occurrence of null measurements from the east may indicate a complex interaction between
325 the lithosphere and asthenosphere at the boundary between Mesopotamia and the Zagros. A
326 plausible explanation for these nulls is a two-layer anisotropic structure with orthogonal fast
327 orientations, where the opposing effects of each layer interfere destructively. Such a
328 configuration could result in the observed nulls for eastward-arriving waves across the
329 Mesopotamian plain.

330

331 **5. Conclusions**

332 This study provides new SK[K]S splitting measurements from 18 seismic stations in the
333 foreland of the Zagros collision zone, helping to fill a major gap in anisotropy coverage

334 across the Middle East. The dataset reveals two distinct anisotropy domains: a NE–SW fast-
335 axis orientation in northern Iraq, and a NW–SE orientation beneath the Mesopotamian Plain
336 and Persian Gulf. The NE–SW orientation aligns with the direction of absolute plate motion,
337 suggesting that large-scale asthenospheric flow, coupled with the overlying lithosphere,
338 governs anisotropy in northern Iraq and the broader northern Middle East. In contrast, the
339 NW–SE fast axis orientations and smaller splitting times beneath the Mesopotamian Plain
340 and Persian Gulf indicate a shallow lithospheric source, likely reflecting a fossil fabric from
341 Mesozoic rifting. The cold, thick Arabian lithosphere beneath the Zagros foreland further
342 disrupts mantle flow and suppresses the formation of coherent anisotropic fabrics, both
343 within itself and in the underlying asthenosphere. These findings highlight the joint control of
344 lithospheric structure and mantle dynamics on seismic anisotropy in a continental collision
345 zone. They emphasize the importance of inherited lithospheric fabrics, thermal structure, and
346 lithosphere–asthenosphere coupling in shaping observed anisotropic patterns.

347

348 **Acknowledgements**

349 We are grateful to the Lawrence Livermore National Laboratory (LLNL) for supporting the
350 installation of broadband seismic stations in Iraq. We also like to thank the University of
351 Arkansas, Little Rock, for partially supporting this research.

352 **Data availability**

353 Continuous data from 17 Iraqi stations used in this study are available through the
354 Incorporated Research Institutions for Seismology (IRIS). [Tables of individual shear-wave](#)
355 [splitting measurements can be found online at](#)
356 <https://data.mendeley.com/datasets/t7zgvdfwpm/1>

357 **Author contribution**

358 KM analyzed the data, prepared figures, interpreted the results, and wrote the initial draft of
359 the manuscript. AK developed the code, supervised the data analysis, prepared figures, and
360 revised the manuscript. WA conducted the field survey, collected raw data, provided the data,
361 and revised the manuscript. HM secured funding for data collection in Iraq and revised the
362 manuscript. HA secured funding for data collection in Iraq and revised the manuscript.

363 **Competing interests**

364 None of the authors has any competing interests.

365

366 **References**

367 Abdulnaby, W., Al-Mohmed, R., and Mahdi, M.: Seismicity and recent stress regime of
368 Diyala City, Iraq–Iran border, *Modeling Earth Systems and Environment*, 2, 1-8,
369 <https://doi.org/10.1007/s40808-016-0201-z>, 2016a.

370 Abdulnaby, W., Mahdi, M., Al-Mohmed, R., and Mahdi, H. H: Seismotectonic of Badra-
371 Amarah Fault, Iraq-Iran border, *IOSR Journal of Applied Geology and Geophysics*
372 (IOSR-JAGG), 4(3), 27-33, <https://doi.org/10.9790/0990-0403022733>, 2016b.

373 Abdulnaby, W., Motaghi, K., Shabanian, E., Mahdi, H., Al-Shukri, H., and Gök, R.: Crustal
374 structure of the Mesopotamian Plain, east of Iraq, *Tectonics*, 39(11), e2020TC006225,
375 <https://doi.org/10.1029/2020TC006225>, 2020.

376 Arvin, S., Sobouti, F., Priestley, K., Ghods, A., Motaghi, K., Tilmann, F., and Eken, T.:
377 Seismic anisotropy and mantle deformation in NW Iran inferred from splitting
378 measurements of SK(K)S and direct S phases, *Geophys. J. Int.*, 226(2), 1417-1431,
379 <https://doi.org/10.1093/gji/ggab181>, 2021.

380 Bowman, J. R., and Ando, M.: Shear-wave splitting in the upper-mantle wedge above the
381 Tonga subduction zone. *Geophys. J. Int.*, 88(1), 25-41, <https://doi.org/10.1111/j.1365-246X.1987.tb01367.x>, 1987.

383 Celli, N. L., Lebedev, S., Schaeffer, A. J., and Gaina, C.: African cratonic lithosphere carved
384 by mantle plumes, *Nature communications*, 11(1), 92, <https://doi.org/10.1038/s41467-019-13871-2>, 2020.

386 Darweesh, H. A., Obed, A. Z. M., and Albadran, B. N.: Structural study of basins
387 configuration in Mesopotamian area, International Journal of Engineering and Applied
388 Sciences, 4(9), 54-58, 2017.

389 Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Saroglu, F. A. M. C., and Şengör, A. M. C.:
390 Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young
391 collision zone, Geological Society, London, Special Publications, 19(1), 1-36,
392 <https://doi.org/10.1144/GSL.SP.1986.019.01.01>, 1986.

393 Fadhel, M. S., and Al-Rahim, A. M.: A new tectono sedimentary framework of the Jurassic
394 succession in the Merjan oil field, Central Iraq, Journal of Petroleum Exploration and
395 Production Technology, 9(4), 2591-2603, <https://doi.org/10.1007/s13202-019-00750-1>,
396 2019.

397 Fouad, S. F.: Tectonic evolution of the Mesopotamia Foredeep in Iraq, Iraqi Bulletin of
398 Geology and Mining, 6(2), 41–53, 2010a.

399 Fouad, S. F.: Tectonic map of Iraq, Scale 1: 1000 000 (3rd ed.), Baghdad, Iraq, Geological
400 Survey and Mineral Investigation (GEOSURV), 2010b.

401 Gök, R., Pasyanos, M. E., and Zor, E.: Lithospheric structure of the continent-continent
402 collision zone: eastern Turkey, Geophys. J. Int., 169(3), 1079-1088,
403 <https://doi.org/10.1111/j.1365-246X.2006.03288.x>, 2007.

404 Jassim, S. Z., and Göff, J. C.: Geology of Iraq. Dolin, Prague and Moravian Museum, Brno,
405 Czech Republic, p. 341, 2006.

406 Kaviani, A., Mahmoodabadi, M., Rümpker, G., Pilia, S., Tatar, M., Nilfouroushan, F., ... and
407 Ali, M. Y.: Mantle-flow diversion beneath the Iranian plateau induced by Zagros'
408 lithospheric keel, Scientific reports, 11(1), 2848, <https://doi.org/10.1038/s41598-021-81541-9>, 2021.

410 Kennett, B. L. N., and Engdahl, E. R.: Traveltimes for global earthquake location and phase
411 identification, Geophys. J. Int., 105(2), 429-465, doi.org/10.1111/j.1365-246X.1991.tb06724.x, 1991.

413 Kind, R., Eken, T., Tilmann, F., Sodoudi, F., Taymaz, T., Bulut, F., ... and Schneider, F.:
414 Thickness of the lithosphere beneath Turkey and surroundings from S-receiver
415 functions, Solid Earth, 6(3), 971-984, <https://doi.org/10.5194/se-6-971-2015>, 2015.

416 Kreemer, C., Blewitt, G. and Klein, E.C.: A geodetic plate motion and Global Strain Rate
417 Model, Geochem., Geophys., Geosyst., 15(10), 3849–3889,
418 <https://doi.org/10.1002/2014GC005407>, 2014.

419 Long, M. D., and Becker, T. W.: Mantle dynamics and seismic anisotropy, Earth and
420 Planetary Science Letters, 297(3-4), 341-354, <https://doi.org/10.1016/j.epsl.2010.06.036>,
421 2010.

422 Lü, Y., Ni, S., Chen, L., and Chen, Q. F.: Pn tomography with Moho depth correction from
423 eastern Europe to western China, J. Geophys. Res.: Solid Earth, 122(2), 1284-1301,
424 <https://doi.org/10.1002/2016JB013052>, 2017.

425 Mcclusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., ... and Veis,
426 G.: Global Positioning System constraints on plate kinematics and dynamics in the

427 eastern Mediterranean and Caucasus, *J. Geophys. Res.: Solid Earth*, 105(B3), 5695-
428 5719, <https://doi.org/10.1029/1999JB900351>, 2000.

429 Mohammed, S. A.: Megaseismic section across the northeastern slope of the Arabian Plate,
430 Iraq, *GeoArabia*, 11(4), 77-90, <https://doi.org/10.2113/geoarabia110477>, 2006.

431 Monteiller, V., and Chevrot, S.: High-resolution imaging of the deep anisotropic structure of
432 the San Andreas Fault system beneath southern California, *Geophys. J. Int.*, 186, 418-
433 446, <https://doi.org/10.1111/j.1365-246X.2011.05082.x>, 2011.

434 Nicolas, A., and Christensen, N. I.: Formation of anisotropy in upper mantle peridotites- A
435 review. *Composition, structure and dynamics of the lithosphere-asthenosphere system*,
436 16, 111-123, <https://doi.org/10.1029/GD016p0111>, 1987.

437 NOAA National Centers for Environmental Information: ETOPO 2022 15 Arc-Second
438 Global Relief Model, NOAA National Centers for Environmental Information, 2022.

439 Numan, N. M. S.: A plate tectonic scenario for the phanerozoic succession in Iraq, *J. Geol.*
440 *Soc. Iraq*, 30(2), 85-110, 1997.

441 Numan, N. M. S.: Major cretaceous tectonic events in Iraq, *Rafidain Journal of Science*,
442 11(3), 32-52, 2000.

443 Park, J., and Levin, V.: Seismic anisotropy: tracing plate dynamics in the mantle, *Science*,
444 296(5567), 485-489, <https://doi.org/10.1126/science.1067319>, 2002.

445 Paul, A., Karabulut, H., Mutlu, A. K., and Salaün, G.: A comprehensive and densely sampled
446 map of shear-wave azimuthal anisotropy in the Aegean-Anatolia region, *Earth and*
447 *Planetary Science Letters*, 389, 14-22, <https://doi.org/10.1016/j.epsl.2013.12.019>, 2014.

448 Priestley, K., McKenzie, D., Barron, J., Tatar, M., and Debayle, E.: The Zagros core:
449 Deformation of the continental lithospheric mantle. *Geochemistry, Geophysics,*
450 *Geosystems*, 13(11), <https://doi.org/10.1029/2012GC004435>, 2012.

451 Priestley, K., and McKenzie, D.: The relationship between shear wave velocity, temperature,
452 attenuation and viscosity in the shallow part of the mantle, *Earth and Planetary Science*
453 *Letters*, 381, 78-91, <https://doi.org/10.1016/j.epsl.2013.08.022>, 2013.

454 Qaysi, S., Liu, K. H., and Gao, S. S.: A database of shear-wave splitting measurements for
455 the Arabian Plate. *Seismological Research Letters*, 89(6), 2294-2298,
456 <https://doi.org/10.1785/0220180144>, 2018.

457 Sadeghi-Bagherabadi, A., Margheriti, L., Aoudia, A., and Sobouti, F.: Seismic anisotropy and
458 its geodynamic implications in Iran, the easternmost part of the Tethyan Belt, *Tectonics*,
459 37(12), 4377-4395, <https://doi.org/10.1029/2018TC005209>, 2018a.

460 Sadeghi-Bagherabadi, A., Sobouti, F., Ghods, A., Motaghi, K., Talebian, M., Chen, L., ... and
461 He, Y.: Upper mantle anisotropy and deformation beneath the major thrust-and-fold
462 belts of Zagros and Alborz and the Iranian Plateau, *Geophys. J. Int.*, 214(3), 1913-1918,
463 <https://doi.org/10.1093/gji/ggy233>, 2018b.

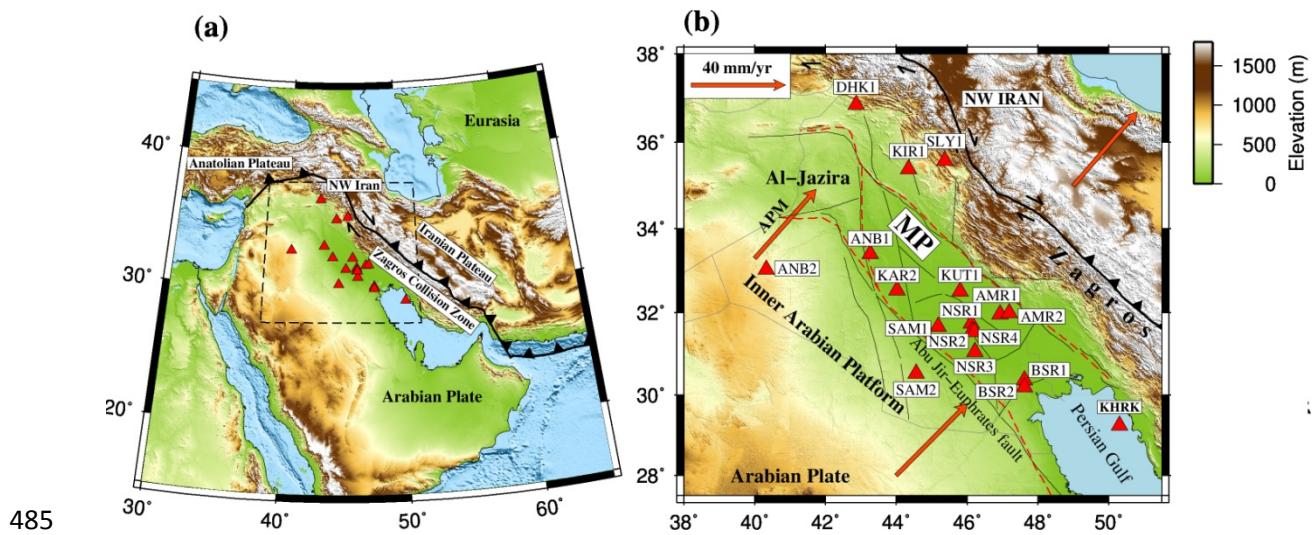
464 Sandvol, E., Turkelli, N., Zor, E., Gök, R., Bekler, T., Gurbuz, C., ... and Barazangi, M.:
465 Shear wave splitting in a young continent-continent collision: An example from eastern

466 Turkey, *Geophysical Research Letters*, 30(24), <https://doi.org/10.1029/2003GL017390>,
467 2003.

468 Silver, P. G., and Chan, W. W.: Shear wave splitting and subcontinental mantle deformation,
469 *J. Geophys. Res.: Solid Earth*, 96(B10), 16429-16454,
470 <https://doi.org/10.1029/91JB00899>, 1991.

471 Silver, P. G., and Holt, W. E.: The mantle flow field beneath western North America,
472 *Science*, 295(5557), 1054-1057, <https://doi.org/10.1126/science.1066878>, 2002.

473 Sissakian, V., Shihab, A. T., Al-Ansari, N., and Knutsson, S.: New tectonic finding and its
474 implications on locating Oilfields in parts of the Gulf region, *Journal of Earth Sciences*
475 and *Geotechnical Engineering*, 7(3), 51-75, 2017.

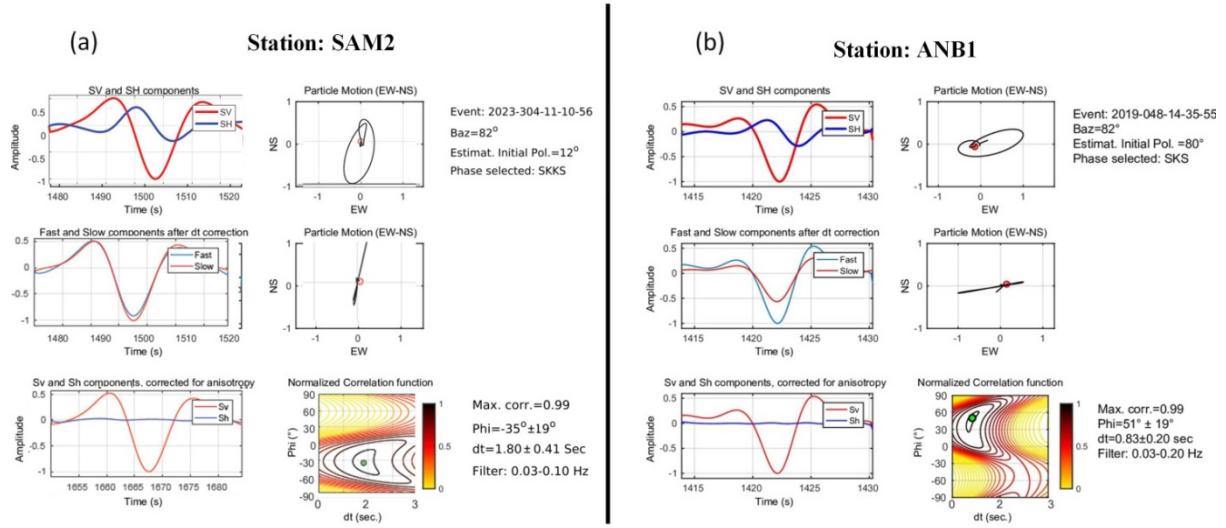

476 Taghizadeh-Farahmand, F., Sodoudi, F., Afsari, N., and Ghassemi, M. R.: Lithospheric
477 structure of NW Iran from P and S receiver functions. *J. Seismology*, 14, 823-836,
478 <https://doi.org/10.1007/s10950-010-9199-2>, 2010.

479 Taghizadeh-Farahmand, F., Sodoudi, F., Afsari, N., and Mohammadi, N.: A detailed receiver
480 function image of the lithosphere beneath the Kopeh-Dagh (Northeast Iran). *J.*
481 *Seismology*, 17, 1207-1221, <https://doi.org/10.1007/s10950-013-9388-x>, 2013.

482

483

484 **Figure 1**

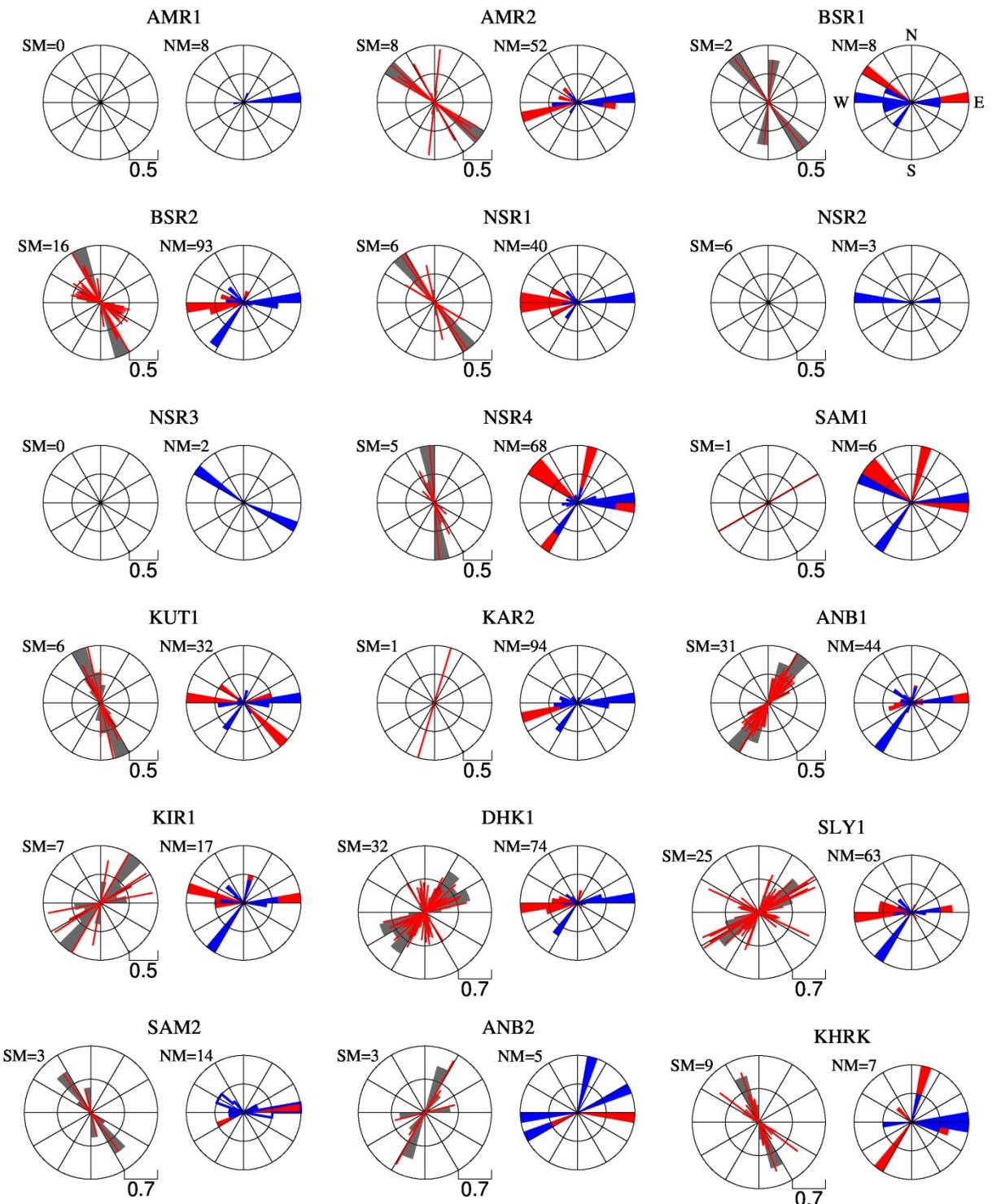

485

486

487 **Figure 1:** (a) Topographic Map of the Middle East. The triangles indicate the locations of 18
 488 seismic stations within the study area. The solid line marks the Bitlis-Zagros suture boundary.
 489 The dashed-line rectangle outlines the boundaries of the map displayed in panel (b). (b)
 490 Topographic Map of Mesopotamian Foredeep, situated in the foreland of the Zagros collision
 491 zone. The red dashed line indicates the tectonic division of Iraq as proposed by Fouad
 492 (2010a, 2010b) and Sissakian et al. (2017), separating the Inner Arabian Platform from the
 493 Outer Arabian Platform, which includes the Mesopotamian Foredeep, Al-Jazira, and Zagros
 494 collision zone. Arrows represent the absolute plate motion (APM) vectors from Kreemer et
 495 al. (2014). Thin black lines mark the location of basement faults within the Zagros Foreland
 496 Basin. Topographic and bathymetric data were obtained from the ETOPO1 global relief
 497 model (NOAA NCEI, 2022).

498

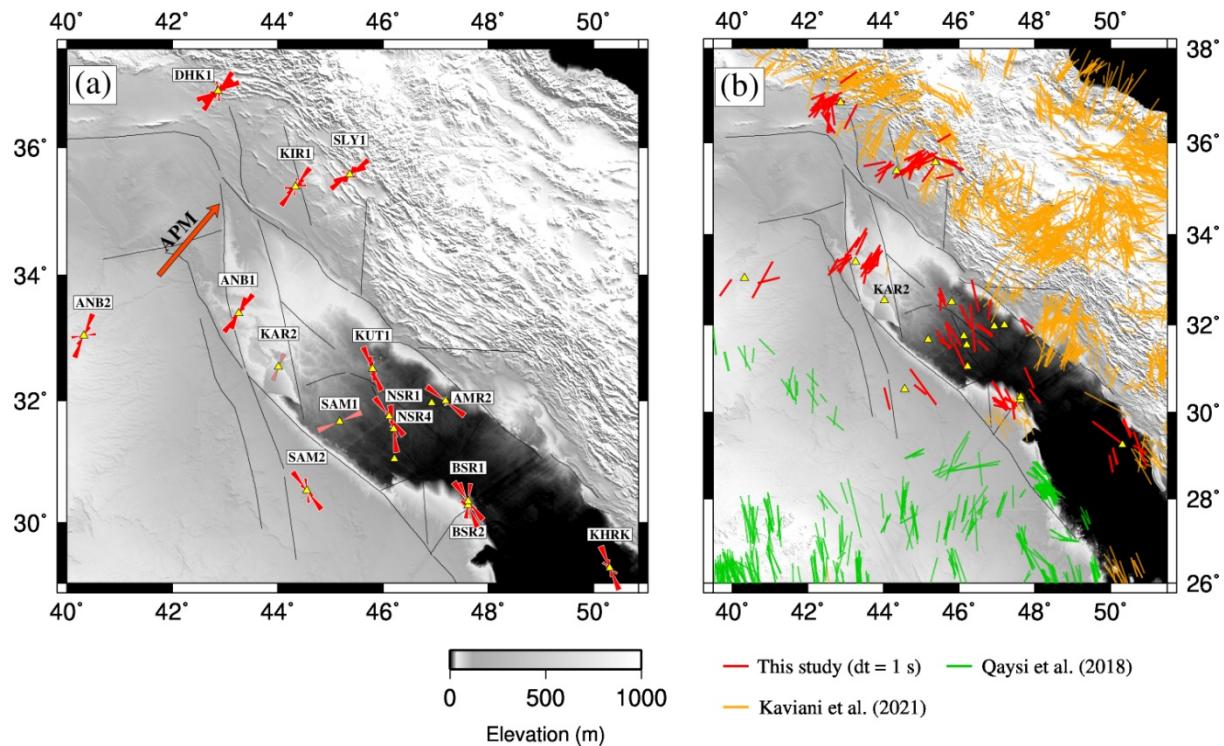
499 **Figure 2**



500

501 **Figure 2:** Examples of shear-wave splitting measurements using the rotation-correlation
 502 method. The locations of the two stations can be inferred from Figure 1b. (a) Single-event
 503 measurement at station SAM2. Data have been filtered to retain periods between 10 and 30 s.
 504 Information about the event is provided in the top right corner. The left panels, from top to
 505 bottom, display the original radial (red) and transverse (blue) seismograms, corrected fast
 506 (blue) and slow (red) components, and corrected radial (red) and transverse (blue)
 507 components, respectively. The right panels, from top to bottom, show the initial particle
 508 motion, the corrected particle motion, and the contour plot of the normalized correlation
 509 function with the optimal splitting parameter indicated by a green circle. The obtained
 510 splitting parameters are written in the bottom right corner. (b) Similar to (a) but for station
 511 ANB1.

512

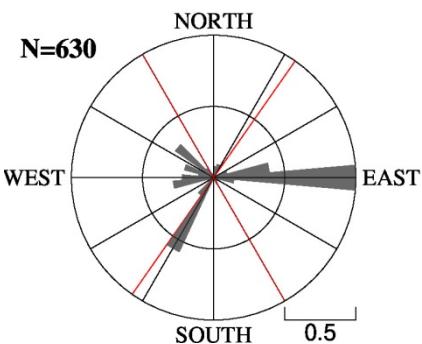

513 **Figure 3**

514
515 **Figure 3:** Rose plots of splitting measurements for stations used in this study. For each sta-
516 tion, non-null measurements are shown on the left-hand side plot as red bars oriented in the
517 fast direction with length proportional to the lag time. Gray wedges represent histograms of
518 individual measurements, binned in 15° sectors. Rose diagram of the initial polarization di-

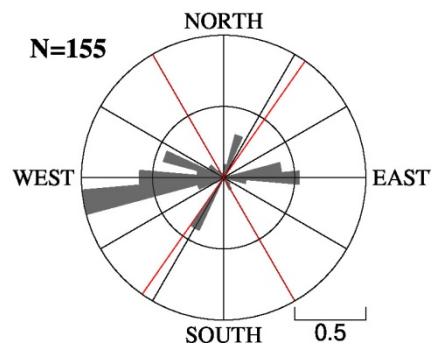
519 rections of null and non-null measurements are respectively shown as blue and red wedges on
520 the right-hand side plots. Station locations are shown in Figure 1. NM: number of null mea-
521 surements; SM: number of splitting measurements.

522

523 **Figure 4**


524

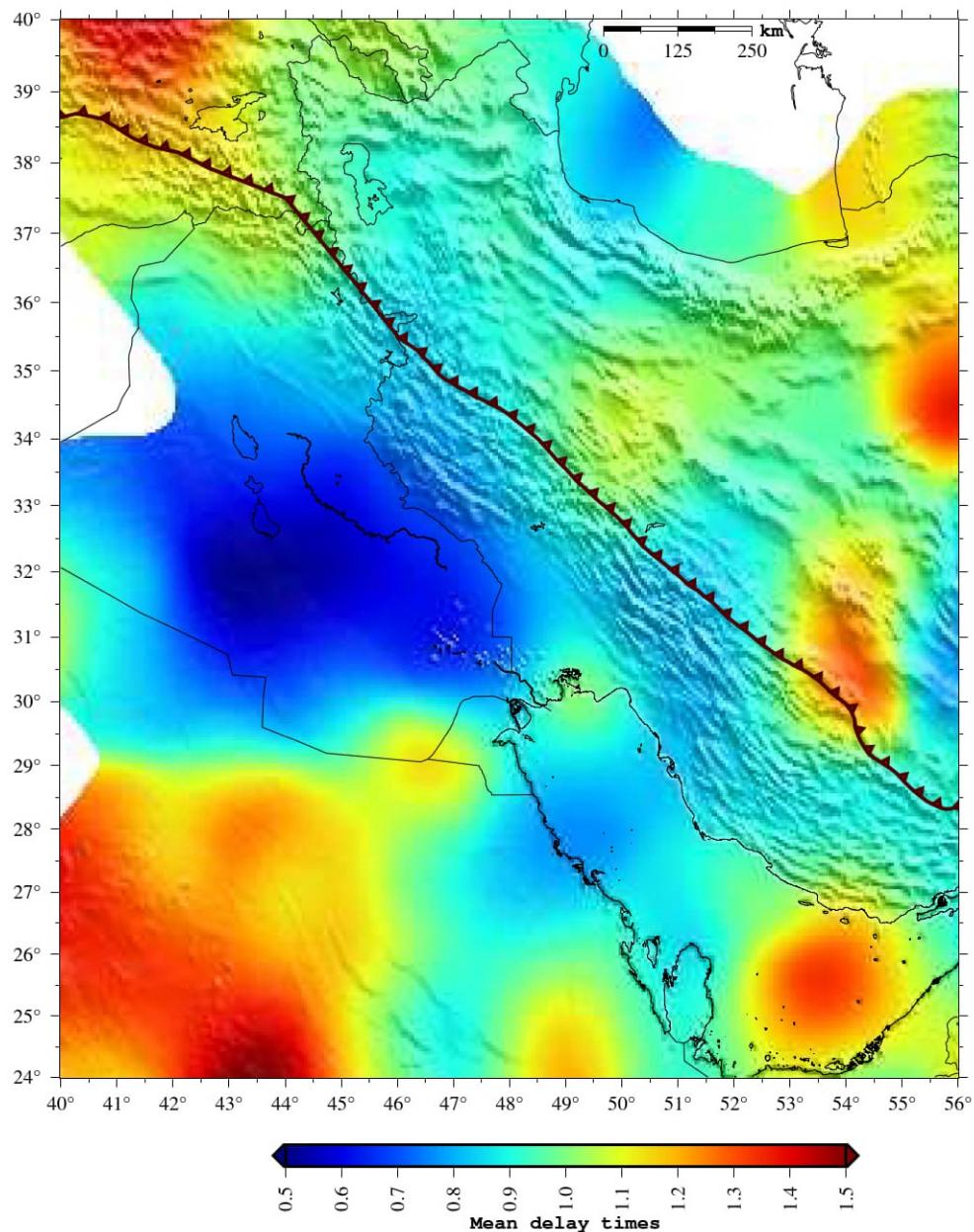
525 **Figure 4:** (a) Rose plot for non-null splitting measurements at seismic station locations
 526 (triangles). Measurements for stations SAM2 and KAR2 are shown in pink, as each has only
 527 one non-null observation. Arrow represent absolute plate motion (APM) vector from
 528 Kreemer et al. (2014). (b) Individual fast-axis orientations from this study (red bars) and
 529 previous studies by Qaysi et al. (2018) and Kaviani et al. (2021), projected onto the ray-
 530 piercing points at a depth of 200 km. Topographic and bathymetric data were obtained from
 531 the ETOPO1 global relief model (NOAA NCEI, 2022).


532

533 **Figure 5**

(a) Null Measurements

(b) Non-null Measurements

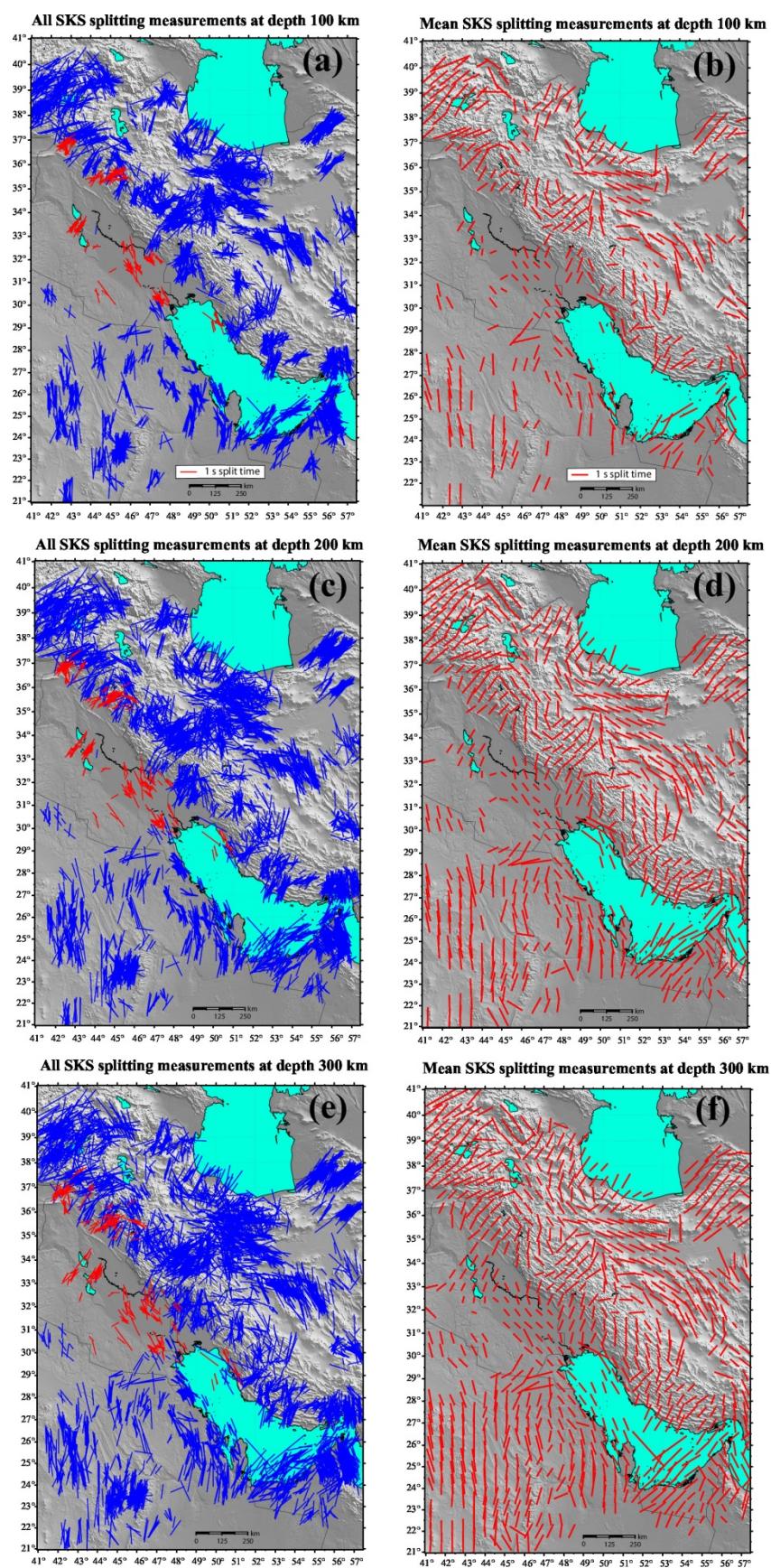

534

535 **Figure 5:** Rose plots of back-azimuths for (a) null and (b) non-null measurements, binned in
536 10° sectors. Red lines indicate the fast axis orientations of anisotropy in northern and south-
537 ern Iraq. N denotes the number of measurements used to plot the rose diagrams.

538

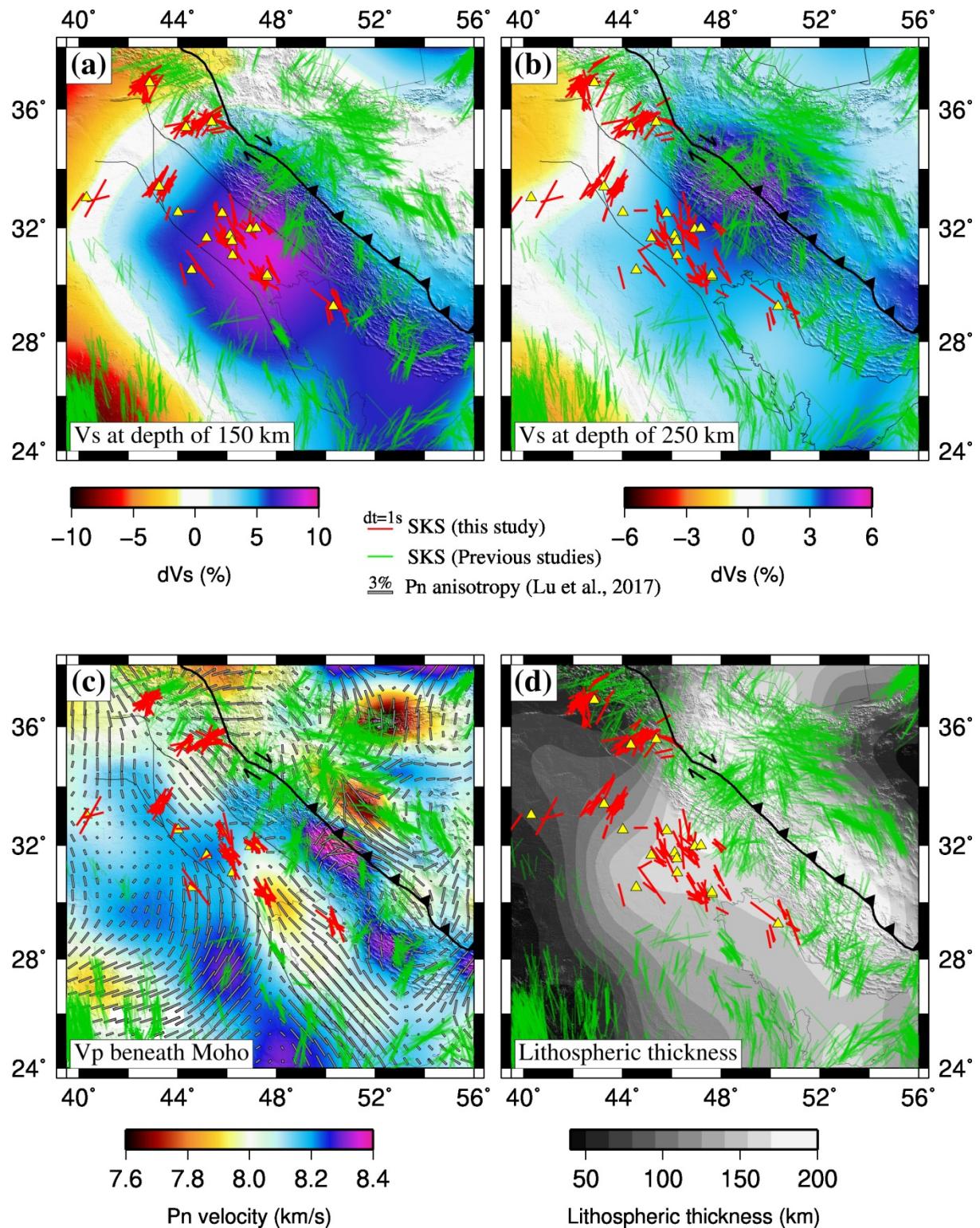
539

540 **Figure 6**


541

542 **Figure 6:** Spatial distribution of SKS splitting times across the Zagros foredeep and
543 surrounding regions, based on data from this study and previous works. The map is generated
544 by resampling the splitting times at regularly spaced 1° grid points, averaging over the
545 Fresnel zone around each point, and linearly interpolating between the grid points.

546


547 **Figure 7**

548

549

550 **Figure 7:** Anisotropic fast axis orientations from the current study (depicted by red bars in
551 the left panels) combined with prior measurements (represented by blue bars) from Kaviani et
552 al. (2021), Arvin et al. (2021), Sadeghi-Bagherabadi et al. (2018a and 2018b), and Qaysi et
553 al. (2018). The left panels illustrate the fast axis orientations projected onto the ray-piercing
554 point at depths of (a) 100 km, (c) 200 km, and (e) 300 km. The right panels display
555 interpolated anisotropy fields at depths of (b) 100 km, (d) 200 km, and (f) 300 km. Elevation
556 data were derived from ETOPO1 (NOAA NCEI, 2022).

557 **Figure 8**

558

559 **Figure 8:** (a) Shear-wave velocity (Vs) map at a depth of 150 km from regional full-
 560 waveforms tomography by Celli et al. (2020). Colored bars represent individual fast-axis
 561 orientations from this study and previous studies, projected onto ray-piercing points at a

562 depth of 150 km. Thin black lines mark the borders of Mesopotamian Foredeep and Al-Jazira
 563 (Sissakian et al., 2017). (b) Same as (a), but at a depth of 250 km. (c) Pn velocity map with
 564 fast-axis anisotropy orientations (gray bars) from Lü et al. (2017), overlaid with individual
 565 fast-axis orientation measurements projected to a depth of 75 km. (d) Lithospheric thickness
 566 map from Priestley and McKenzie (2013), with colored bars representing the individual fast-
 567 axis orientations projected onto ray-piercing points at a depth of 250 km. Elevation data were
 568 derived from ETOPO1 (NOAA NCEI, 2022).

569

570

571 **Table 1.** Summary of the used stations in this study and their splitting parameters. The table
 572 shows the station location, the circular mean of the fast axis orientation ($\bar{\varphi}$), the mean
 573 splitting time ($\bar{\delta t}$), the number of splitting measurements (SM), and the number of null
 574 measurements (NM). Stations with bimodal fast axis orientations are marked with an asterisk
 575 (*).

Station	Latitude	Longitude	Begin date (YYYY/MM)	End date (YYYY/MM)	$\bar{\varphi}$ (o)	$\bar{\delta t}$ (s)	SM	NM
AMR1	31.9590	46.9286	2015/03	2015/10	-	-	0	8
AMR2	31.9899	47.1902	2015/11	2022/08	$-42^\circ \pm 21^\circ$	0.65 ± 0.12	8	52
ANB1	33.401	43.2576	2018/10	present	$32^\circ \pm 10^\circ$	0.76 ± 0.19	31	44
ANB2	33.0375	40.320	2023/06	present	$42^\circ \pm 20^\circ$	1.15 ± 0.51	3	5
BSR1*	30.3581	47.6153	2014/08	2015/08	$-19^\circ \pm 22^\circ$	0.61 ± 0.13	2	8
BSR2	30.2927	47.6191	2015/09	present	$-43^\circ \pm 20^\circ$	0.70 ± 0.21	16	93
DHK1*	36.8606	42.8665	2014/01	present	$38^\circ \pm 30^\circ$	0.81 ± 0.20	32	74
KAR2	32.5398	44.0224	2017/01	2023/02	$17^\circ \pm 28^\circ$	0.52 ± 0.62	1	94
KIR1	35.388	44.3419	2018/09	2021/08	$44^\circ \pm 23^\circ$	0.74 ± 0.20	7	17
KHRK	29.2543	50.3133	2021/04	present	$-29^\circ \pm 16^\circ$	0.86 ± 0.36	9	7
KUT1	32.509	45.797	2021/11	2023/02	$-19^\circ \pm 10^\circ$	0.87 ± 0.26	6	32
NSR1	31.7416	46.1151	2014/08	2017/09	$-35^\circ \pm 13^\circ$	0.69 ± 0.21	6	40
NSR2	31.5550	46.1374	2014/07	2014/09	-	-	0	3
NSR3	31.0514	46.2199	2014/07	2014/11	-	-	0	2
NSR4	31.540	46.202	2017/10	present	$-16^\circ \pm 13^\circ$	1.02 ± 0.61	5	68
SAM1	31.661	45.183	2020/12	2021/11	$60^\circ \pm 37^\circ$	0.51 ± 0.77	1	6
SAM2	30.5295	44.5587	2023/03	present	$-33^\circ \pm 13^\circ$	1.12 ± 0.62	3	14
SLY1	35.5784	45.3667	2015/09	present	$38^\circ \pm 47^\circ$	0.98 ± 0.44	25	63

576