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Abstract 15 
 16 
 In the following paper, we investigate nonlinear Rossby-Khantadze waves, by taking 17 
into account inhomogeneity in the geomagnetic field and angular velocity – due to Earth’s 18 
differential rotation. Considering the system to be weakly nonlinear, we make use of 19 
perturbation theory to derive a new (2+1)–D generalized form of Boussineq equation. We 20 
evaluate the obtained equation by using the qualitative theory of ordinary differential equations 21 
(ODEs), and bifurcation theory of dynamical systems. The obtained numerical results show 22 
that the aforementioned solutions of the traveling waves correspond to Rossby-Khantadze 23 
solitons. 24 
 25 
Keywords: Generalized Boussinesq model equation; nonlinear Rossby-Khantadze waves; 26 
nonlinearity; sheared zonal flow; traveling wave solutions; dynamical analysis 27 
 28 

1. Introduction 29 
 30 
          Numerous investigations conducted by ground-based and satellite observations gives 31 
proof of the presence of zonal flows in various regions of the terrestrial atmosphere (Pedlosky, 32 
1987). This is based on the fact of the non-uniform heating caused by the sun in the Earth’s 33 
atmospheric regions. These ultra-low frequency (ULF) perturbations in ionosphere E and F 34 
regions occur due to the sheared flow with nonhomogeneous velocities along the meridians 35 
(Shukla et al., 2003; Onishchenko et al. 2004; Satoh, 2004; Kaladze et al., 2007; Kaladze et 36 
al., 2008). The effects of sheared flow on the properties of linear and non-linear waves in the 37 
ionosphere and under suitable conditions they give rise various nonlinear structures like zonal 38 
flows (ZFs), vortices, and solitons etc. 39 
          Sheared Rossby waves have gained much attention due to their prominent role in the 40 
global atmospheric circulation.  Such slow long-period planetary waves have phase velocities 41 
~ 1–100 m/s, which is around the velocity of the ionospheric (local) winds. Their frequency is 42 
in the order of 10−4−10−6 s−1 at middle latitudes, whereas the period is at 2 h to 14 days. Besides 43 
the slow Rossby waves, fast perturbations also exist in the moderate-latitude ionosphere, which 44 
are created by the latitudinal inhomogeneity of the Earth’magnetic field and the Hall effect. 45 
The first theoretical evidence of such large-scale EM perturbations in the ionospheric E- and 46 
F-regions was made by Khantadze (Khantadze, 1986, 1999, and 2001), and in this work, he 47 
differentiated between fast and slow large-scale EM planetary waves. Consequently, fast EM 48 
planetary waves were named Khantadze modes, and these waves were observed by Soyuz and 49 
Proton rockets (Burmaka et al., 2006) at the middle latitude and by the world network of 50 
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ionospheric and magnetic observations (Sharadze et al., 1988; Sharadze, 1991; Alperovich and 51 
Fedorov, 2007). Detailed analysis of such planetary EM waves was carried out by Kaladze et 52 
al., (2003, 2004) and Khantadze et al., (2010).   53 
          The spatial inhomogeneity along the meridians, of both the ambient magnetic field and 54 
the Coriolis force parameter generates coupled modes called the Rossby-Khantadze (RK) 55 
waves (see e.g., Kaladze et al., 2011). The existence of sheared RK electromagnetic vortices 56 
in the E region of Earth’s ionosphere is studied thoroughly by Kaladze et al. (Kaladze et al., 57 
2011; 2012; 2013a, 2013b; 2014). In those works, the authors have not only shown the self-58 
organization of coupled RK waves into dipolar solitary vortices, but also predicted the 59 
generation of magnetic field in the system due to the aforementioned waves. More recently, 60 
different nonlinear processes having relevance to the generation of zonal flows (sheared) by 61 
Rossby waves are considered. The key factor for the generation of zonal flows in short-62 
wavelength Rossby waves is Reynold’s stress (Shukla et al., 2003 and Onishchenko et al. 63 
2004). Rossby waves causes the generation of zonal flows in E layer of ionosphere (Kaladze 64 
et al., 2007). Such nonlinear Rossby wave structures splits into various parts, and this splitting 65 
is dependent on zonal flow’s energy (Kaladze et al., 2008). Along with the analytical side, 66 
numerical work on RK waves with sheared zonal flows in the E layer of the ionosphere is 67 
worked out as well (Futatani et al., 2013; 2015). In these works, breaking of vortices is studied, 68 
where the energy is transferred from sheared flow into these multiple pieces (daughter waves). 69 
It is worth noting that equatorially propagating Rossby solitary waves by sheared flows have 70 
been predicted and discussed (Qiang et al., 2001) and their presence was confirmed through 71 
observations by Freja and Viking satellites (Bostrom, 1992; Lindqvist et al., 1994; Dovner et 72 
al. 1994; Qiang et al., 2001). In Jian et al., (2009)’s work, the authors studied the nonlinear 73 
propagation of sheared Rossby waves in stratified neutral fluids and obtained modified 74 
Korteweg-de Vries (MKdV) equation, which is characterised by a cubic nonlinearity. Kahlon 75 
et al., (2024), investigated the MKdV equation with cubic nonlinearity for Rossby-Khantadze 76 
nonlinear waves.  77 
          Zonal flow’s generation in the ionosphere’s E region by Rossby-Khantadze waves 78 
having magnetic field is also shown (Kaladze et al., 2012, Kahlon and Kaladze, 2015), where 79 
it has been predicted that there exists a possibility of the magnetic field generation, at the 80 
strength of 10!	𝑛𝑇. Kaladze et al., (2019) studied the nonlinear interaction of magnetized 81 
Rossby waves with inclusion of zonal flows in the Earth’s ionospheric E-layer, in which MKdV 82 
solitons were obtained. The possibility of planetary Rossby wave’s existence in the dynamo E-83 
area of weakly ionised ionosphere was predicted by Forbes, (1996). It was also shown that the 84 
theoretical work corresponds with the experimental interpretations. Much later, Vukcevic and 85 
Popovic, (2020) investigated the possibility of soliton formation at different latitudes in 86 
ionosphere. Direct observed data of satellites of such soliton structures from Earth’s surface 87 
are discussed. 88 
 In the context of shallow water waves and in plasmas, several researchers have 89 
extended the KdV and MKdV equations to higher dimensions, in order to obtain realistically 90 
accurate results. Kadomstev-Petviashvilli (KP) equation and Zakharov-Kuznetsov (ZK) 91 
equation have gained much attention over the years (Vukcevic et al., 2020, Kadomstev et al., 92 
1970, Groves et al., 2008, Infeld et al., 2000 and Zakharov et al., 1974). Both of these equations 93 
are (2+1) – dimensional in nature and are very useful in plasma models (as one can get almost 94 
complete information by taking parallel and perpendicular dimension into account). While 95 
modelling shallow water waves, Johnson (1996) investigated a (2+1) – dimensional 96 
Boussinesq equation for gravitational surface waves. Making use of the surface wave theory, 97 
Mitsotakis (2009) investigated the Boussinesq equation and simulated the propagation of such 98 
waves. In the context of geophysics, many authors (Gottwald, 2003, Yang et al., 2016, Yang 99 
et al., 2018, Zhang et al., 2017a, Zhang et al., 2017b) have investigated ZK equation by 100 
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considering nonlinear Rossby waves from the quasi-geostropic potential vorticity equation. 101 
Although, the Boussinesq equation in the study of the nonlinear Rossby-Khantadze waves is 102 
not reported so far. 103 

It is very useful to find exact solutions of nonlinear partial differential equations. 104 
Several techniques have recently been used to find such solutions, including but not limited to 105 
the method of trigonometric series (Ma and Fuchssteiner, 1996), the method of tan(ϕ(ξ)/2)-106 
expansion (Manafian and Aghdaini, 2016), sine-cosine method (Wazwaz, 2005), Wronskian 107 
method (Ma and You, 2005), separation of variables approach (Lin and Zhang, 2007), Septic 108 
B-spline method (El-Danaf, 2008), the transformative functional rational method (Ma and Lee, 109 
2009), the symmetry algebric method (Ma and Chen, 2009), the homotopy perturbation method 110 
(Ganji et al., 2009), the modified method of mapping and the extended mapping method (Zhang 111 
et al., 2010), qualitative theory of the bifurcation method and dynamical systems (Zhang et al., 112 
2011), the multiple exp-function method (Ma and Zhu, 2012), the modified (G’/G)- method of 113 
expansion (Miao and Zhang, 2011), the modified trigonometric function series method (Zhang 114 
et al, 2011) infinite series method and Jacobi elliptic functional method (Zhang et al., 2012, 115 
Tasbozan et al., 2016), RBF approximation method (Uddin, 2014) (G′ /G−1/G)-expansion 116 
method (Zhang et al., 2014), Hirota bilinear method (Lü et al., 2016a, Ma et al., 1996, 2016, 117 
Lü and Ma, 2016b), lattice Boltzmann method (Wang and Yan, 2016) to name a few.  118 

In the present work, for the partially ionized and conducting ionospheric E plasma we 119 
consider the stream-function and evolution of geomagnetic field for electromagnetic Rossby-120 
Khantadze (RK) waves, which provides novelty to this work. In Sec. 2, we set the system of 121 
initial equations. In Se. 3, by using the reductive perturbation technique we obtain the linear 122 
dispersion equation from the lowest order of 𝜀. In Sec. 4, we derive the Boussinesq equation 123 
for Rossby-Khantadze nonlinear waves from our considered set of equations. In Sec. 5, we 124 
study the dynamical analysis of the Boussinesq equation and get its exact traveling solitary 125 
solutions. In second last section, discussions are presented in Sec. 6. The summary and 126 
conclusion are made in Sec. 7. 127 

 128 
2. Mathematical Preliminaries 129 

 130 
 We start by considering a weakly ionised system, as is characteristic to ionospheric 131 
plasmas. Here ions, electrons and neutral particles are embedded in a nonhomogeneous 132 
geomagnetic field, 𝑩"(𝑦) = ,0, 𝐵"#(𝑦), 𝐵"$(𝑦)/, and the angular velocity is taken into 133 
consideration as, 𝛀(𝑦) = ,0, Ω"#(𝑦), Ω"$(𝑦)/. We consider the 2D incompressible motion i.e., 134 

𝐯 = (𝑢, v, 0), which represents the velocity of the neutral gas where 𝑢 = − %&
%#

 , v = %&
%'

  and 135 
ψ(𝑥, 𝑦, 𝑡) is the stream function. 136 

We make use of a slab geometry with zonally x, latitudinally y, and locally vertical 137 
direction along z axis. Furthermore, the behavior of the nonlinear Rossby-Khantadze sheared 138 
electromagnetic waves is expressed by the 2D system of equations (e.g., Kaladze et al., 2011, 139 
Kaladze et al., 2014, Song et al. 2009; Liü et al. 2019) as given below: 140 

 141 

8
%∆&
%)

+ β %&
%'
+ J(𝜓, ∆𝜓) − *

+!,
𝛽-

%.
%'
= −𝜇	Δ𝜓 + 𝑄		,																(1a)

%.
%)
+ J(𝜓, ℎ) + 𝛽-

%&
%'
+ 𝑐-

%.
%'
= 0	,																																														(1b)

                              142 

 143 
Here in the equation (1a) we consider vorticity as, 𝜁$ = 𝒆$ ∙ ∇ × 𝐯 = Δ𝜓 = ∇/𝜓 = (𝜕'/ +144 
𝜕#/)	𝜓, from momentum equation of single fluid where 𝛽 = %0

%#
= /%1!"

%#
 is the latitudinally 145 

inhomogenous angular velocity with 𝑓 = 𝑓" + 𝛽(𝑦)𝑦. Here, 𝑓" = 2Ω"$ = 2Ω" sin𝜙". While 146 
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the parameter 𝑐- = 𝛽-/𝑒𝑛𝜇" with  𝛽- =
%2!"
%#

, being the nonhomogeneity in the geo-magnetic 147 

field,	𝑛 is charged particles’s number density, 𝐽(𝑎, 𝑏) = %3
%'
	%4
%#
	− %3

%#
	%4
%'

   is the Jacobian. 148 
Equation (1b) shows the z-component of perturbed magnetic field. Note that lesser contribution 149 
of charged particles (in comparison of neutrals) plays their role (Kaladze, et al. 2013a, 2013b) 150 
in the inductive current.  151 
 152 

To solve the set of equation (1), we use the boundary condition 153 
 154 

%&
%'
W
#5##

=	 %&
%'
W
#5#$

= 	0 ,                                                  (2) 155 

 156 
representing the flow along the meridional directions, as explained by Pedlosky (1987) and 157 
Satoh (2004). 158 
 159 

By introducing the following dimensionless parameters, we can express Eq. (1) in 160 

dimensionless form  161 

(x, y) = 𝐿∘(𝑥∗, 𝑦∗),      𝜓 = 𝐿"𝑈"	𝜓∗,  t	= 9∘
:∘
𝑡∗ ,	𝛽 = :!

9!$
𝛽∗ , 	𝜇 = 	:!

9!
𝜇∗ , Q =  :!

$

9!$
 𝑄∗       (3)                          162 

Here asterisk denotes the dimensional variables, which are further dropped in the equation 163 

below. Here  𝐿" is the zonally length; H is a vertically length and 𝑈"	 is the velocity. Finally, 164 

Eq. (1) takes the form 165 

 166 

8
%∆&
%)

+ β %&
%'
+ J(𝜓, ∆𝜓) − *

+!,
𝛽-

%.
%'
= −𝜇	Δ𝜓 + 𝑄		,

%.
%)
+ J(𝜓, ℎ) + 𝛽-

%&
%'
+ 𝑐-

%.
%'
= 0	,

																																(4) 167 

 168 

with the following  boundary conditions 169 
%&
%'
W
"
 =  %&

%'
W
*
 = 0  .                                                         (5) 170 

3. Perturbation and weakly nonlinear approach  171 

In this section, to investigate the non-linear Boussinesq equation describing the solitary 172 

Rossby-Khantadze waves. Here we make use of multiple scale and asymptotic expansion 173 

approach. 174 

           The expression  175 

𝜓 = 𝜓	Z (𝑦) + 𝜓;(𝑥, 𝑦, 𝑡),                            (6) 176 

describes the stream function with  𝜓[ = −∫ [𝑢[#
" 	(𝑠) − 𝑐"]	𝑑𝑠 representing the background 177 

stream function where 𝑐" is a constant,  𝑢[(y) refers to background flow, and 𝜓; is the 178 

disturbance in stream function. While the perturbed magnetic field is:                                                          179 
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ℎ = 𝜀ℎ;,                 (7) 180 

Thus, the set of equation (4) can be expressed as 181 

 182 

⎩
⎪
⎨

⎪
⎧
%
%)
+ (𝑢[ − 𝑐")			

%
%	)
)		∆ 𝜓; + 𝑝(y) %&

&	
%)
	+ J(𝜓;, ∆𝜓;) −	 <'

+!	,
%.&

%'
				= 		−𝜇∆/𝜓;

%.&

%)
+ 𝜀J(𝜓;, ℎ;) + (𝑈(𝑦) − 𝑐")

%.&

%'
+ 𝛽-

%&&

%'
+ 𝑐-

%.&

%'
= 0.

  (8) 183 

where 𝑝(𝑦) = 	 (𝛽(𝑦)𝑦 − 𝑢[;); .  184 

By applying the multiple scale approach we find the following stretched coordinates, 185 
 𝑋 = 𝜀(* /)⁄ 𝑥,      𝑌 = 𝜀(𝑦 − 𝑐*𝑡)        𝑇 = 𝜀	𝑡 ,           (9) 186 

in the comoving frame of reference the differential operator can be expressed in the following 187 
manner  188 

%
%'
= 𝜀(* /)⁄ %

%@
 ,     %

%#
= %

%#
+ 𝜀 %

%A
  , %

%)
	= 𝜀 %

%B
−	𝑐*	𝜀

%
%A

 .                         (10) 189 
The perturbed stream function and perturbed magnetic fields are expanded as 190 

k𝜓
; 	= 𝜀𝜓* + 𝜀(! /)⁄ 𝜓/ + 𝜀/𝜓! +⋯ ,
ℎ; 	= 𝜀ℎ* + 𝜀(! /)⁄ ℎ/ + 𝜀/ℎ! +⋯ .

                                            (11) 191 

Using (9), (10) and (11) into equation (7) we get from the lowest order i.e. 𝑂(𝜀! /⁄ ): 192 

																

⎩
⎨

⎧(𝑢[ − 𝑐")
%
%@
	n%

$&#
%#$

o + 𝑝(𝑦) %&#
%@

− <'
+!,

	 %
%@
(ℎ*) = 		0,

(𝑢[ − 𝑐" + 𝑐-)
%.#
%@
	+ 	𝛽-

%
%@
(𝜓*) = 		0,                             (12) 193 

Next order  𝑂(𝜀/) gives 194 

 195 

8
(𝑢[ − 𝑐")

%
%@
	n%

$&$
%#$

o + 𝑝(𝑦) %&$
%@

= − <'
+!,

	 %
%@
(ℎ*) − n

%
%B
− 𝑐* 	

%
%A
o	%

$&#
%#$

,

n %
%B
− 𝑐* 	

%
%A
o ℎ* + (𝑢[ − 𝑐" + 𝑐-)	

%.$
%@

+ 𝛽-	
%&$
%@

     (13) 196 

From the second set of equation (13), we get 197 
%.$
%@

=	 C<'	
DECF!GF'

%&$
%@

− *
(DECF!GF')

n %
%B
− 𝑐* 	

%
%A
o ℎ*				     (14) 198 

 199 

Next order  𝑂(𝜀H//) gives 200 

⎩
⎪⎪
⎨

⎪⎪
⎧(𝑢[ − 𝑐")

𝜕
𝜕𝑋
	p
𝜕/𝜓/
𝜕𝑦/

q + 𝑝(𝑦)
𝜕𝜓!
𝜕𝑋

−
𝛽-
𝜇"𝜌

	
𝜕ℎ!
𝜕𝑋

= −(𝑢[ − 𝑐")
𝜕!𝜓*
𝜕𝑋!

− 2(𝑢[ − 𝑐")
𝜕!𝜓*
𝜕𝑋𝜕𝑌𝜕𝑦

		

− s
𝜕
𝜕𝑇

− 𝑐* 	
𝜕
𝜕𝑌t

𝜕/&$
𝜕𝑦/

		−
𝜕𝜓*
𝜕𝑋

	
𝜕!𝜓*
𝜕𝑦!

			+ 	
𝜕𝜓*
𝜕𝑦

��
𝜕𝑋

	p
𝜕/𝜓*
𝜕𝑦/

q	,

s
𝜕
𝜕𝑇 − 𝑐*

𝜕
𝜕𝑌t ℎ/ 			+ 𝛽-

𝜕𝜓!
𝜕𝑋 = 	 (	𝑢[ − 𝑐" + 𝑐- 	)

𝜕ℎ!
𝜕𝑋 +

𝜕𝜓*
𝜕𝑋

𝜕ℎ*
𝜕𝑌 −	

𝜕𝜓*
𝜕𝑌

𝜕ℎ*
𝜕𝑋 	.

 201 
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(15) 202 

 Eq. (15b) gives 203 

 204 

  %.)
%@

= −n %
%B
− 𝑐* 	

%
%A
o ℎ/ 			+ 𝛽-

%&)
%@
	+ (	𝑢[ − 𝑐" + 𝑐- 	) 	+

%&#
%@

%.#
%A
−	%&#

%A
%.#
%@

          (16) 205 

 206 

Assume that Eq. (12) has the solution 207 

𝜓* = 𝐴(𝑋, 𝑌, 𝑇)	𝜑*(𝑦),                                                 (17) 208 

 209 

Thus, from Eqs. (12) and (20) we get the following linear dispersion relation 210 

	𝜑*;;				+   J(#)
(DE		CF!)

𝜑*(y) + <'
$

+!	,			
*

(DE		CF!)(DECF!GF')
𝜑* = 0,                  (18) 211 

and from the boundary condition given by Eq. (5) we get 212 

𝜑*(0) 	= 𝜑*	(1) 				= 0 .                                         (19) 213 

 214 

The obtained Eq. (18) is the Rayleigh-Kuo equation describing the Rossby-Khantadze waves. 215 

By solving Eq. (12) simultaneously and the coefficients are locally constant and 𝑈(𝑦) = 𝑐𝑜𝑛𝑠𝑡., 216 

we get the following dispersion equation 217 

xpK
L+
− 𝑈(𝑦)q 𝑘M/ + 𝑝(𝑦)z n

K
L+
− 𝑈(𝑦) − 𝑐-o − 𝛼	 = 0,  ,                      (20) 218 

where 𝑘M/= 𝑘'/+𝑘#/ and 𝛼	 =
<,
$

+!,
 . Eq. (20) describes the dispersion equation of sheared Rossby-219 

Khantadze waves. In the absence of 𝛼 we get two solutions, one independent solution of 220 

Rossby waves and the second one for Khantadze waves. 221 

By introducing the dimensionless variables K
L+N

⇒ vJ and L-
$N
3
	⇒ 𝑘M/ 	(with d = 4

OP+!
, a = /1!

Q
  222 

and 𝑏 = /4./
Q

  )  then we rewrite the dispersion relation  (20) 223 

vJ	 	= −𝑈	 +
*
/L-$

 cos𝜆" n−𝑘M/ − 1 ± �(1 − 𝑘M/)/ + 𝑘MR𝛼"o.                      (21) 224 

Here 𝛼" =
4OP
3J

= '
|F'|<

. For the E-ionosphere layer, the parameters have the following 𝐵OT ≅	 225 

0.5× 10CRT, 2Ω" ≅ 10CR 	U3N
V

, P
W
~10CX- 10CY, 𝜌  = (10CZ -10CX) kg𝑚C!, the parameter 𝛼" = 226 

(10C/ − 1) (Kaladze et al., 2011). 227 
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Fig. 1, represents the phase velocity vJ	 of the obtained coupled Rossby-Khantadze 228 

waves is plotted with wave number 𝑘M  by varying 𝛼". Red curve vJ*	is for “+” and blue vJ/	 229 

is for “–” signs before the radicand in Eq. (21). 230 

          231 
 𝑎)	𝛼" = 0      𝑏)		𝛼" = 0.01  232 

 233 

 234 

      235 
  𝑐)			𝛼" = 0.1                                                       𝑑)			𝛼" = 1  236 

 237 
e) 𝛼" = 2 238 
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Fig.1 Normalized phase velocity vs normalized wave of coupled Rossby-Khantadze waves 239 

for 𝜆" = 𝜋/4 is shown . 240 

4 Derivation for the nonlinear Boussinesq Equation  241 

                   In this section, by taking into account the separation of variables techniques we 242 

will derive the nonlinear Boussinesq Equation describing the solitary nonlinear structures. 243 

          Further, we assume that Eq. (13) has the solution 244 

𝜓/ 		= 				𝜓/* 		+ 				𝜓//	,                                                        (22) 245 

with 246 

𝜓/*  = 𝐵*(𝑋, 𝑌, 𝑇)	𝜑/*(𝑦) ,     𝜓//  =  𝐵/(𝑋, 𝑌, 𝑇) 𝜑//(𝑦),                  (23) 247 

 248 

By using the separation of variables approach and using Eq. (22) and (23) in Eq. (13) we obtain 249 

 250 

(𝑢[ − 𝑐")
%-$
%@
	𝜑//;; + n𝑝(𝑦) +	

<'
$

+!	,(	F'GDECF!)
	o %-$

%@
= 𝑐*

%[
%#
	𝜑*;; −

\F#
(	F'GDECF!)$

	%[
%A
𝜑*	     (24) 251 

Put    252 
%-#
%@

  =  %[
%B
	,            and               %-$

%@
  = %[

%A
 .            (25) 253 

From Eq. (24) we get  254 

𝜑/*;; + 𝑞(𝑦)𝜑/* = − ]#&&

D	ECF0	
+ 𝛾𝜑*									                  (26) 255 

𝜑/*(0) 	= 𝜑/*	(1) 				= 0.          (27) 256 

with 𝑞(𝑦) and 𝛾   are given by 𝑞(𝑦) =
𝑝(𝑦) + <'

$

+!	,			
. *
(DE		CF!)(DCF!GF')

(𝑢[ − 𝑐^)
� ; 	𝛾 =257 

<'
$

+!	,			
*

(DE		CF!)(DECF!GF')$
	. 258 

And 259 

𝜑//;; + 𝑞(𝑦)𝜑// =	
F#]#&&

D	ECF0	
	− 𝑐*𝛾*𝜑*	,							               (28) 260 

The boundary conditions are given by 261 

𝜑//(0) 	= 𝜑//	(1) 				= 0 .                                             (29) 262 

From Eqs. (26) and (28) we have 263 

𝜑// = −𝑐*	𝜑/*                                                       (30) 264 

In order to arrive at the evolution equation, we use Eqs. (20), (25) and (26) and substitute into 265 

Eq. (15) 266 

 267 
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(𝑢[ − 𝑐") %
%@
n%

$_)
%#$

o + 𝑝(𝑦) %_)
%@

= 𝐹,               (31) 268 

where 269 

   𝐹 = −𝜑/*;;
%$-#
%B%@

− 	𝜑//;;
%$-$
%B%@

+ 𝑐*𝜑/*;;
%$-#
%A%@

+ 𝑐*𝜑/*;;
%$-$
%A%@

(1+ \
(	F'GDECF!)$

− (𝑢[ − 𝑐")𝜑*
%1[
%@1

−270 

2(𝑢[ − 𝑐")𝜑*
%)[
%@$A

− (𝜑*𝜑*;;; − 𝜑*;𝜑*;;)2A%$[
%@$

+ \
(	F'GDECF!))

( %
$

%B$
−2𝑐*

%$

%B%A
+𝑐*/

%$

%A$
)A𝜑*   271 

(32) 272 

 273 

Eq. (31) is the evolution equation for Ψ! and we obtain its solution by multiplying by 𝜑*(𝑦) 274 

and then integrating over 𝑦 to get 275 

 276 

∫ ]#(#)
DECF!

*
" - [- 𝜑/*;;

%$-#
%B%@

 -𝜑//;;
%$-$
%B%@

 +𝑐*𝜑/*;;
%$-#
%A%@

 +𝑐*𝜑/*;;
%$-$
%A%@

(1+ \
(	F'GDECF!)$

    - (𝑢[ − 𝑐")𝜑*
%1[
%@1

 -277 

2((𝑢[ − 𝑐")𝜑*
%)[
%@$A

  - ( 𝜑*𝜑*;;;  -𝜑*;𝜑*;;) 2A%$[
%@$

 + \
(	F'GDECF!))

( %
$

%B$
 -2𝑐*

%$

%B%A
+𝑐*/

%$

%A$
)A𝜑*] dy     278 

(33) 279 

𝐼*
%$-#
%@%B

+𝐼/
%$-$
%@%B

-𝑐*𝐼*
%$-#
%@%A

 -𝑐*𝐼/
%$-$
%@%A

+𝐼!
%1[
%@1

+𝐼R
%)[

%@$%A	
+	𝐼HA%$[

%@$
+ 𝐼Y (  %

$[
%B$

 -2𝑐*
%$[
%B%A

+𝑐*/
%$[
��A$

 = 0  280 

(34) 281 

 where the coefficients are: 282 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝐼* = �

𝑞(𝑦)𝜑*
𝑢[ − 𝑐"

*

"
p𝜑/*	 − p1 + 	

𝛾(𝑢[ − 𝑐")
𝑞(𝑦)

q
𝜑*

𝑢[ − 𝑐"
q s1 + 	

𝛼
(	𝑐- + 𝑢[ − 𝑐")/

	t 𝑑𝑦	;

𝐼/ = �
𝑞(𝑦)	𝜑*
𝑢[ − 𝑐"

*

"
p𝜑// + p1 +

𝛾(𝑢[ − 𝑐")
𝑞 	q 	

𝜑*(#)
𝑢[ − 𝑐"

q 	 s1 + 	
𝛼

(	𝑐- + 𝑢[ − 𝑐")/
	t 𝑑𝑦;

𝐼/−𝑐*𝐼* = 2𝑐*�
𝑞(𝑦)𝜑*/

(𝑢[ − 𝑐")/
*

"
	(1 +

𝛾(𝑢[ − 𝑐")
𝑞

s1 + 	
𝛼

(	𝑢[ − 𝑐"	G		𝑐-)/
	t 𝑑𝑦;

𝐼! = −� 𝜑*/
*

"
𝑑𝑦	;

𝐼R = −2� 𝜑*
*

"
𝜑*;𝑑𝑦	;

	𝐼H = �
𝜑*		! 𝑞;

𝑢[ − 𝑐"
	𝑑𝑦

*

"
;

𝐼Y 	= � 	
*

"
p
𝜕/𝐴
𝜕𝑇/

	− 2𝑐*
𝜕/𝐴

��𝑇𝜕𝑌
+ 𝑐*/

𝜕/𝐴
𝜕𝑌/

)q	.						
				
	

 283 

 (35) 284 

Noting that 285 
%$-#
%@%B

= %$[
%B$

	;  %
$-$

%@%B
 = %

$[
%A%B

      as    %-#
%@

= %[
%B

 ;      %-$
%@

= %[
%A

                 (36) 286 

By using (36) in Eq. (34) we obtain 287 

%$[
%B$

+ n(`$C/F#`2CF#`#
`#G`2

	o %$[
%A%B

− n`2F#
$CF#`$
`#G`2

o %
$[
%A$

+ s `)
`#G`2!

t %
1[

%@1
+ n 	`3

`#G`2
o𝐴 %$[

%@$
 =0 (37) 288 

Rewriting Eq. (37) as  289 
%$[
%B$

+ 𝑎*
%$[
%B%A

+ 𝑎/
%$[
%A$

+ 𝑎!
%1[
%@1

+ 𝑎R
%$([$)
%@$

= 0.                      (38) 290 

where 291 

	𝑎*= (`$C/F#`2CF#`#)
`#G`2

         	𝑎/ = − F#`$	
`#

,        	𝑎! =
`)
`#

  ,   𝑎R =
`3
/`#

 .         (39) 292 

This equation describes the evolution of spatial-temporal amplitude 𝐴(𝑋, 𝑌, 𝑇) of Rossby-293 

Khantadze waves. When  𝐼/ = 2𝑐*𝐼Y − 𝑐*𝐼*  gives  𝑎* = 0, our equation (38) reduces to the 294 

standard Boussinesq equation ((2+1) – dimensional). Otherwise, equation (38) is the general 295 

form of Boussinesq equation (i.e. 𝑎* =	0). 296 

 297 

5. Dynamical Analysis for the New Boussinesq equation  298 
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        In order to solve the generalized Boussinesq equation, we follow the methodology 299 

developed by Kaladze et al., (2013b) and later make use of methods of dynamical analysis to 300 

get extended information about the solution of the equation, and to obtain its trajectories and 301 

fixed points in phase space. 302 

          We use the following co-moving frame A = ∅(𝜉) with 𝜉 = 𝑚𝑋	 + 	𝑛𝑌	 + 	𝑙𝑇	 to turn Eq. 303 

(39) into an ordinary differential equation. Then after integrating it once over 𝜉 gives us, 304 

           305 

𝑎!𝑚R∅;;+ (𝑙/+ 𝑎*𝑙𝑛 +𝑎/𝑛/)∅′ + 𝑎R𝑚R ∅/  = g     (40) 306 

with g as the constant of integration. 307 

We can now express Eq. (40) as a set of two first order autonomous equations as  308 

⎩
⎪
⎨

⎪
⎧ N∅

Nb
= 𝑦	;

N#
Nb
= C31c$∅$Cd	e$G	3#eP	G	3$P$f∅			G	g					

3)c1	
.
                                    (41) 309 

From (40) we express the Hamiltonian of the system as 310 

H(∅, 𝑦	)  = *
/
𝑦/ − 31c

$∅)

!3)c1 − e
$G	3#eP	G	3$P$

/3)c1	
∅/ + 	g					

3)c1 ∅ = ℎ ,      (42) 311 

where ℎ is a constant value. 312 

In order to get the fixed points of our system, we suppose nN#
Nb
o
∅#
= 0 where 	∅* is the fixed 313 

point. Such that, 314 

𝑎R𝑚/∅*/ + (	𝑙/ +	𝑎*𝑙𝑛	 +	𝑎/𝑛/)∅* 		− 	𝑔 = 0.                                (43) 315 

Eq. (43) is a quadratic equation and has two roots, which are given below 316 

 317 

	∅*= C(e
$G	3#eP	G	3$P$)$		C	√∆

/31c$ 	,                                                              (44) 318 

and 319 

 320 

									∅/= C(e
$G	3#eP	G	3$P$)$G√∆

/31c$  .                                                             (45) 321 

where 322 

                           													∆= (𝑙/ +	𝑎*𝑙𝑛	 +	𝑎/𝑛/)/ + 4𝑎R𝑚/𝑔.                                          (46) 323 

Let 𝑔" =   |𝑓(𝜙i) + 𝑔|, then 𝑔" is the extremum values of 𝑓(𝜙) + 𝑔. 324 

Suppose (𝜙i , 0) (where 𝑖= 1, 2) be one of the singular points of the system of equation, then 325 

from our system, the characteristic values  326 
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𝜆/(𝜙i , 0) = 0
&(j4)
3)31

 . 327 

Based on the qualitative theory for the dynamical system we know that [44] 328 

(i)  If 	0
&(j5)
3)

  < 0 then (𝜙i, o) is a center point  329 

(i)  If 0
&(j5)
3)

  > 0 then (𝜙i, o) is a saddle point  330 

(ii)  If  𝑓;(𝜙i) =0  then  (𝜙i 	,0) is degenerate saddle point 331 

Thus, above analysis provides the bifurcations phase portraits of equation (42). 332 

5. Solution for the Boussinesq equation 333 

In this part, based on this dynamical theory, we will deduce the traveling wave solution to 334 

equation (42) by considering g= 0. 335 

The equation (41) reduce to the system as follows 336 

⎩
⎪
⎨

⎪
⎧ N∅

Nb
= 𝑦	,

N#
Nb
=	C31c

$∅$Cd	e$G	3#eP	G	3$P$f	∅		
3)c1	

.
                                        (47) 337 

It is expected that equation (41) has a homoclinic orbits Γ* (which corresponds to a solitary 338 

wave profile). 339 

In  𝜙 – y plane,  Γ* is given as 340 

                     	𝑦/ = /31	c
$

!3)c1 𝜙! −  (e
$G3#e	P	G3$	P$)

3)c1	
𝜙/,                                       (48) 341 

with   𝜙"  = 3(	𝑙/ +	𝑎*𝑙𝑛	 +	𝑎/𝑛/) 2𝑎R𝑚R⁄ .                                                    342 

Equations (47) and (48) give 343 

 344 

±�
*

$61
)6)7$j)C	

(9$:6#9	;	:6$	;$)
6)71 j$

   d𝜙				 = 𝑑𝜉,	                             (49) 345 

Here we suppose that 𝜙(0) =  𝜙^ and integrate (49) along homoclinic orbits 	Γ* , we get 346 

 347 

∫ NV

k $61
)6)	7$	V)C

(9$:6#9	;	:6$	;$)
6)71 	V$

j0
j = ∫ 𝑑𝑠,									𝜉 < 0^

b                            (50) 348 

 and 349 

∫ NV

k $61
)6)	7$	V)C

<9$:6#9	;	:6$	;$=
6)71 	V$

j0
j = ∫ 𝑑𝑠,											𝜉 > 0^

b                         (51) 350 

Eqs. (50) and (51) give 351 
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𝜙 = C!	(e$G3#e	P	G3$	P$)
31c$[*	CFmV.(nb)]

	,                                                              (52) 352 

 353 

𝜙 = C!	(e$G3#e	P	G3$	P$)
31c$[*GFmV.(nb)]

 ,                                                                (53) 354 

 where 𝜂 = �(e$G3#e	P	G3$	P$)
31c1  . 355 

 From (52) and (53) along with transformation A = 𝜙 (𝜉) , 𝜉 = 𝑚	𝑋	 + 	𝑛	𝑌	 + 	𝑙	𝑇	  we get 356 

the solution of solitary wave, 357 

 358 

𝑢*	(𝑋, 𝑌, 𝑇) = 	
C!	(e$G3#e	P	G3$	P$)

31c$	p*	C	FmV.kC<9
$:6#9	;	:6$	;$=

6)71 	qr

	.                            (54) 359 

 360 

and  361 

𝑢/	(𝑋, 𝑌, 𝑇) = C!(e$G3#e	P	G3$	P$)

31c$	p*	G	FmV.kC	<9
$:6#9	;	:6$	;$=

6)71 	qr

	.                               (55) 362 

 363 
Fig. 2 the solutions (54) are plotted for the parameters 𝑌 = 0 ; 𝑚 = 𝑛 = 1;	𝑎* = 𝑎/ =364 

0.01;	𝑎! = −0.01;	𝑎R = 10. 365 

 366 
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 367 
Fig. 3 the solutions (55) are plotted for the parameters 𝑌 = 0 ; 𝑚 = 𝑛 = 1;	𝑎* = 𝑎/ =368 

0.01;	𝑎! = −0.01;	𝑎R = 10. 369 

It is shown from the obtained solutions that the considered Rossby-Khantadze waves are 370 

solitary in nature. 371 

6. Discussion 372 
 373 
           In this paper, investigation of large-scale Rossby-Khantadze nonlinear waves by 374 
incorporating sheared zonal flows in the ionospheric plasma found in the E-layer, is presented. 375 
The spatially nonhomogeneous Earth’s angular velocity with the background magnetic field 376 
are taken. The spatial inhomogeneity in the magnetic field allows the coupling of Rossby and 377 
Khantadze waves named Rossby-Khantadze waves. 378 

In this work, we considered a system of equations for Boussinesq model equation from 379 
the initial set of equations namely, momentum equation, continuity equation and Maxwell 380 
equation. This provides the nonlinear interaction of considered Rossby-Khantadze waves. By 381 
taking the curl of momentum equation, we obtain the vorticity equation which is the first 382 
system of equation. We obtain the equation of magnetic induction by using the Maxwell’s 383 
equation, by taking the parameters of the E layer of ionosphere into account. The system of 384 
equations explains how Rossby-Khantadze nonlinear waves propagate in considered sheared 385 
zonal flow ionospheric E region. In earlier work, the authors take into account Rossby waves 386 
while here we take coupled Rossby and Khantadze waves. For the linear consideration, the 387 
linear dispersion relation of the fast (Khantadze) and slow (Rossby) electromagnetic (EM) 388 
wave in the ionospheric E - region is analyzed with two modes of frequency ω1 and ω2. The 389 
numerical work of obtained frequencies is shown. The phase velocities depending on wave 390 
number is shown in Figs. 1 - 5 (with red color describes ω1 while blue ones to ω2). For small 391 
wave vector, ω1 approaches to the finite value, while for the ω2 becomes − ∞. For small 𝛼", 392 
strong coupling is shown between two modes. With increasing 𝛼" the Rossby modes 393 
approaches to the positive values, ergo at 𝛼"= 1, it approaches to zero and for the values 𝛼" > 394 
1, its phase velocity approaches to positive value, while the waves with ω2 are always 395 
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propagating along the latitudinally westward direction. For large wave vector, both modes lose 396 
their dispersing property.  397 

In order to investigate the nonlinear behavior of coupled RKWs we use multiple scale 398 
analysis and asymptotic expansion, to derive nonlinear Boussinesq equation with spatially 399 
dependent coefficients.  By using the method of multiple scale and hence considering finite 400 
amplitude perturbations, we obtain a new Boussinesq ((2+1) dimensional) equation. We have 401 
also presented the qualitative description of dynamical systems. Thus, based on the ideas of 402 
this work, we cannot only obtain the exact traveling wave solutions in the future research, but 403 
can also do the stability analysis, and determine the parameters at which the onset of chaos 404 
takes place. Furthermore, this can help us to understand not only the solitary profiles, but also 405 
the nonlinear periodic wave solutions associated to the Boussinesq equation. 406 
By taking lowest order O (𝜀3/2) of Eq. (7) we get an eigen-value Eq. (21). This order, however, 407 
does not bring information about the amplitude of the Rossby-Khantadze waves. Thenceforth 408 
we use the next order, O (𝜀2) of Eq. (7) and obtain non-singular solutions. The obtained 409 
equation still doesn’t provide information about the wave amplitude. Therefore, we need to go 410 
to the next order. 411 

The next order of Eq. (7) provides a longitudinal dispersion effect, which competes 412 
with a weak nonlinear effect. This explains that if the perturbation problem has an effective 413 
solution, then the secular term 𝐹 must be satisfied from Eq. (34), otherwise the wave's 414 
amplitude would be infinite and have no significance in practice. By doing some mathematical 415 
steps, from next order we get the nonlinear Boussinesq equation (41). By considering g=0, we 416 
also investigate the dynamical analysis and have done a fixed points analysis analytically. We 417 
also obtain the travelling solitary structures shown in Figs. 2-3. The obtained results might be 418 
helpful for understanding the data which is obtained by satellites orbiting the earth’s ionosphere 419 
region.  420 
  421 

The considered sheared RK waves give insights on large-scale processes and are 422 
observed mainly during magnetic storms as well as sub-storms, artificial explosions, 423 
earthquakes, etc. Hence, for the future experimental work, the theoretical findings of Rossby-424 
Khantadze electromagnetic type oscillations will provide valuable information. 425 

 426 
7. Summary and Conclusion 427 

This study has explored the nonlinear dynamics of Rossby-Khantadze waves in weakly ionized 428 
ionospheric plasma, particularly emphasizing the presence of sheared zonal flows. By deriving 429 
the boussinesq equation, which incorporates nonlinearity, we have established a robust 430 
framework for analyzing the propagation characteristics of Rossby-Khantadze waves 431 
across the E-layer of the ionosphere. 432 
The use of the multiple scale analysis and asymptotic expansion has led to the identification of 433 
solitary wave solutions that exhibit significant variations influenced by different parameter 434 
values.  Overall, the findings of this research not only enhance our understanding of wave 435 
phenomena in the ionosphere but also have broader implications for various plasma 436 
environments, including those found in space and laboratory settings.  437 

 438 
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