Overview

The authors present an interesting study on the intensification of various extreme weather events from recent years. The analysis is interesting, although I would say not especially novel or ground-breaking considering previous work in this area particularly from the group of one of the authors. The novel aspect is the impact on airport operations, which is interesting, however I do question the direct role or systematic impact of these cyclones in recent years. A lot of the impact of the cyclones is down to the location of their track and this is unlikely to be a systematic increase either in the recent historical period or as the climate continues to warm. Therefore, I question if the airport impact and perceived increase is an actual increase or more just internal/natural variability? This is my only major comments that I would like the authors to address and discuss in this study. My other minor comments are detailed below.

- 1. L38 some references to support these statements would be good
- 2. L75/76 are these events that you have chosen actually high impact events representative of the current climate, or are they big outliers of the present day distribution? It would be good to illustrate how the actual events compare to the analogues that you are showing. Are they more intense/weaker? How does the wind speeds compare?
- 3. Table 1 can you be more quantitative with the values in this table. Simply stating "several" or "few" flights diverted is not especially evidential.
- 4. L93 why did you choose not to go back to 1940 with ERA5 for your analysis? Surely this would help you find more analogues and prove your case even further?
- 5. L105 what is this proxy? You need to introduce this metric
- 6. L189-190 it appears in fig. 2 that the strongest winds are weaker in the present day storms could the authors also comment on this please as it somewhat disagrees with the "higher intensity" message trying to be communicated
- 7. L199 the more "extensive regions" of strong winds is in agreement with findings of windstorm footprints being larger in a warmer climate (see recent papers by Dolores-Tesillos et al., 2022 (https://doi.org/10.5194/wcd-3-429-2022) and Priestley et al., 2024 (https://doi.org/10.1002/qj.4849)) and should be discussed.
- 8. L219-220 there is some disagreement as the SLP centre appears deeper in Figure A2. Please discuss this and ensure that the stages of the timeline that you say are consistent are actually consistent.
- 9. L246 storm Poly occurs in the Summer and yet here you discuss the winter. Are the analogues you have created for a different season as if so I would say this is not comparable. In Figure S6 you have JJAS, so please make sure there is a consistency (I imagine this is just a mis-naming in the main text) and that this is resolved
- 10. L260/261 As the above comment, please check the seasons and months being quoted as I again assume you mean DJFM?
- 11. L277/278 this widespread increase is not as apparent (or not that strong) in Figure 6 so please make this clear
- 12. L303/304 you state the SLP is shallower in the text so this is not consistent with the increased intensity you quote here. Please be specific about what features you are referring to.
- 13. L322-324 This argument I have difficulty with. There is still internal variability in the different states of the large-scale modes that could be causing this variation. The risk

in the same NAO state can vary quite substantially. A good focus of this work needs to be on the fact that there is lots of internal variability, and even though these storms are getting more intense, the changes in track or location are likely to be as much of a contributor to change in risk as global warming.