
Supplementary S1: List of symbols 

 

Paths: 

NAT: Denotes any variable calculated with the National driven path method (based on country-level 

data and extrapolations, mainly used for near-term results). 

IAMatt: Denotes any variable calculated with the IAMatt path method, based on regional IAMs data 

(serving as an attractor for long-term results). 

Output: Consolidated path (output of the downscaling tool) calculated as a linear combination of NAT 

and IAMatt paths, depending on the time of convergence tc. Denotes any variable calculated as 

a linear combination of the NAT and IAMatt paths (methods). 

Convergence Parameters: 

ϕ: Time dependent Weights, based on a time of convergence tc 

γ: Variable utilized to calculate ϕ weights, normally coincides with time ( γ =  t ).  

  

 Sets: 5 

t: Time 

t0: Base year 

tc: Time of convergence (depending on variables and the scenario to be downscaled) 

c: Country 

R: Regional from Integrated Assessment Models (unless specified otherwise) 

s: Sector (e.g. Industry), where capital S means the total (sum across sectors) 

e: Energy Carrier (e.g. Electricity), where capital E means the total (sum across energy carriers) 

f Fuel (e.g. “Coal”), where capital F means the total (sum across all fuels) 

f w/CCS: Fuel with CCS (Carbon Capture Sequestration and Storage), if applicable. Example Coal with 

CCS 

f wo/CCS: Fuel without CCS. Example Coal without CCS 

i: Criteria for downscaling the electricity sector in the NAT path 

 

 

 



Log-Log model parameters: 

EI: Energy Intensities, defined as the specific variable under consideration (e.g. Final Energy), 

divided by its respective MAIN sector 

MAIN: the denominator of the energy intensity EI (depending on the specific variable under 

consideration). Please see table 2 for a full list. 

α: Intercept of the linearized log-log model  

β: Slope of the linearized log-log model 

Logistic model parameters 10 

L: Carrying capacity (upper bound of the logistic curve)  

X: GDP per capita 

X0: The GDP per capita value associated with the inflection point of the curve  

k: Steepness (logistic growth rate) of the curve 

Socioeconomic variables: 

GDP: Gross Domestic Product in PPP (Purchasing Power Parity) 

POP: Population 

Energy Variables: 

  EN: Generic energy variables (including all the Final, Secondary, Primary energy variables), for any path 

(IAMatt or NAT) 

FEN: Final Energy variables, for any path 

SEN: Secondary Energy variables, for any path 

PEN: Primary Energy variables, for any path 

Structure Adjustments: 

𝐹𝐸𝑁:̂  Final energy variables, after introducing consistency at the sectorial level (so that the sum of all sub-

sectors matches the total in each country) 

𝑆𝐸𝑁:̂ Secondary energy variables, after introducing consistency at the sectorial level (so that the sum of all 

sub-sectors matches the total in each country) 

 



Secondary Energy variables - specific for the NAT path 15 

 SENnat: “Secondary Energy” variables, calculated with the “NAT path” method 

ELnat: “Secondary Energy|Electricity” variables, calculated with the “NAT path” method 

ELInat: “Secondary Energy|Electricity” variables, calculated with the “NAT path” method, using specific set of 

criteria “i” 

histratio: Country level data divided by the regional data, using historical data at the base year t0 

GOV: Projected governance indicators based on Andrijevic et al 2020 

GW: Projected installed capacities of fossil fuels based on remaining technical lifetime, calculated from the 

PLATTS database 

MC: Projected electricity generation from renewables, based on supply cost curves, calculations based on 

Gernaat et al 2021 

Emissions variables: 

𝐶𝑂2𝐸𝑁:̂  Energy related CO2 emissions, calculated as the emissions factors multiplied by the energy mix 

(before harmonization to match regional IAMs results) 

𝐶𝑂2𝐸𝑁: Energy related CO2 emissions, after harmonization with regional IAMs results 

ICO2: Industrial Processes emissions 

σ: Standard deviation of direct land use emissions by country c, for the 2010-2020 time period, using the 

average of 3 Bookkeeping Models for the “LULUCF” net category (Grassi et al 2021). 

LU: Land Use results, calculated as the sum of direct land use emissions (LUD) and indirect land use 

emissions (LUI)  

LUD: Direct land use emissions by country c (R indicates regional results from IAMs) 

LUI: Indirect land use emissions by country c.  

NOTE the “R” index indicates regional results from the IMAGE/LPJmL model (Grassi et al. 2021), and 

not from IAMs (because IAMs normally do not provide results for indirect land use emissions). 

𝑛𝑜𝑛𝐶𝑂2̂: Downscaled non-CO2 emissions by country c, before harmonization 

𝑛𝑜𝑛𝐶𝑂2: Downscaled non-CO2 emissions by country c, after regional harmonization with IAMs results 

Gbau: Projected non-CO2 emissions by country c from the GAINS model. 

NOTE: the “R” index denotes is the sum of country level results within the region) in the BAU scenario 

Gstab: Projected non-CO2 emissions by country c from the GAINS model. 



NOTE: the “R” index denotes is the sum of country level results within the region in the maximum 

abatement potential (stabilization) scenario 

GHG Greenhouse Gas Emissions (Kyoto Gases) 

BECCS Carbon Sequestration from Biomass with CCS (Carbon Capture and Storage) 

EF Emission factors 

Country-level emissions targets: 

GHG*: Emission targets 

GAP: Emissions Gap 

ENGAP Energy gap (emissions gap divided by average emission factor) 

avemifactor Average emissions factor of fossil fuels 

Sensitivity analysis: 

IAMatt*: Alternative IAMatt path  

Γ: A generic variable used to calculate time-dependent weights ϕ  

Integral Minimization (see supplementary information): 

ω: A time-dependent weight, representing the relative size of each country within the region 

h: Final energy variable at the country level. This value is utilized to calculate the relative weight of each 

country within the region, in the integral minimization approach.  

o: Harmonized final energy using an integral minimization approach 

δ: Cumulative difference between the harmonized (h) and the output (o) in the integral minimization 

approach 

Convergence based on the quality of historical data (see supplementary information): 20 

Maxtc: Time of convergence based on the quality of historical data (see supplementary information) 

ρ: Weights based on the timing of convergence “maxtc”  

 

  



Supplementary S2: Final Energy   

S2.1 Final Energy from Hydrogen 

To downscale “Final Energy|Hydrogen” (e=H2) we use a different approach compared to the one described in section 2.1. 25 

Since hydrogen is a relatively new technology there is lack of historical data. Therefore, it is not possible to estimate a 

relationship between hydrogen and income per capita based on historical data.  

Indirect electrification with hydrogen can complement direct electrification for the sectors in which direct electrification is 

hard to achieve (Ueckerdt et al., 2021)). Therefore, we assume that hydrogen will be used by end-use sectors at a rate 

proportional to the use of electricity. To do so, we calculate a regional benchmark defined as hydrogen divided by electricity 30 

demand (from IAMs), for both NAT and IAMatt paths. The hydrogen results (FEN t,c,e=H2) will be different across the two 

paths, as electricity demand (FENt,c,e=EL) is different. 
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S2.2: Final Energy from Heat 35 

For the IAMatt path, we downscale “Final Energy|Heat” (e=H) by using the same approach described for hydrogen, as shown 

in the equation below: 

 

 

(S2) 

 

For the NAT path, we use the base-year historical data (t=t0) to allocate heat at the country level, as shown in the equation 

below: 40 
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These preliminary results are denoted by a “wide hat” to indicate that they are not yet aligned with regional IAMs results. 

Then, we standardise these results so that the sum across countries is equal to one, and then scale them by the regional IAMs 45 

data (FENt,R,e=H), as shown in the equation below: 
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S2.3: An integral minimization approach to align the sum across countries with regional IAMs results 

A simple way to harmonize the results is to scale up or down the results using a proportional method, as we do for the “IAMatt” 50 

path. For example, if the sum of country-level results is 10% higher than the regional data, all countries can be shifted upwards 

by the same percentage.  

In the “NAT” path we downscale final energy results by considering historical trends in relation to GDP per capita. In this 

context using a proportional method, will break consistency with historical trends in all countries. Therefore, in this section 

we present a method to harmonize the results with regional IAMs data, while minimizing the discrepancy between the 55 

“unharmonized” (in line with historical trends) and harmonized projections (in line with regional IAMs results). We refer to 

this approach as “integral minimization” as the aim is to minimize the integral between the harmonized and unharmonized 

energy intensity projections, over GDP per capita. A simple way to achieve this goal is to distinguish countries based on their 

size, so that the big countries will make the most of the adjustments required to match regional IAMs results. In this manner, 

the small countries will preserve their own trajectories without deviating too much from historical trends. 60 

To illustrate the methodology, we consider a single IAM region encompassing fours countries. These countries are divided 

into two groups (big and small):  

- Small countries: country1, country 2,  

- Big countries: country2 and country3  

The first country is the smallest in the region and has a strong historical trend relationship (e.g. a high- R-squared and a long 65 

historical time series). The last country is the biggest country in the region. In the table below, we assume that the regional 

IAMs data is equal to 11, whereas the sum of current (unharmonized) results across countries is equal to 10: 

  

Countries 
c (country 
index) 

u 
(unharmonized) 

h  
(harmonized) 

 ω (weights) δ o (output) 

Country1 1 1 1.1 0.1 0 1 

Country2 2 2 2.2 0.22 0.1 2.02 

Country3 3 3 3.3 0.43 0.28 3.12 



Country4 4 4 4.4 1 0.46 4.86 

Sum  10 11   11 

 

Table S1: Regional harmonization for a region comprising 4 countries, with γ=100%. 70 

 

As a first step, we apply a simple (proportional) harmonization as shown in column “h”. This column can be calculated by 

multiplying all countries by 11/10=1.1. This proportional harmonization serves as a reference. Next, we develop an alternative 

method that considers the robustness of historical trends into the harmonization process. This alternative method should allow 

small countries with strong historical trends (e.g. characterized by high R-squared and long-time series) to follow these 75 

patterns. The main rational for this is that small countries do not significantly affect the regional balance, as their contribution 

is minor compared to the entire region. In contrast, larger countries should bear most of the adjustments, as they have the 

greatest impact on the regional data. To achieve this goal, we calculate a weight (ω) representing the relative size of each 

country within the region, as defined in the equation below: 

 80 

 

 

(S5) 

 

 

The weight ω increases as we move from smaller to bigger countries and approaches 1 for the last country in the region. The 

same formula can be simplified as follows: 

 85 

 

 

(S6) 

 

At this point, each country follows a linear combination of harmonized (h) and unharmonized (u) results, by using (γ) as a 

weighting factor, along with a residual amount (δ) multiplied by the weights (ω): 

 

 

 

(S7) 

 90 

 



 

The residual amount (δ) represents the cumulative difference between the harmonized (h) and the output (o) of all preceding 

countries. 

 

 

(S8) 

 95 

This means that if γ =0, each country will follow a simple harmonization approach (column “o” will coincide with column 

“h”) and “δ” remains zero throughout. However, for any γ≠0, each country will deviate from the “reference” harmonization, 

creating a residual (δ) that is absorbed by the remaining larger countries.  

As a result, the sequence of countries affects the final outcomes. For instance, if we swap country 3 and 4 (and keep δ=100%), 

the results will change as follows: 100 

 

Countries 
c (country 
index) 

u 
(unharmonized) 

h 
(harmonized) 

 ω (weights) δ o (output) 

Country1 1.00 1.00 1.10 0.10 0.00 1.00 

Country2 2.00 2.00 2.20 0.22 0.10 2.02 

Country4 4.00 4.00 4.40 0.57 0.28 4.16 

Country3 3.00 3.00 3.30 1.00 0.52 3.82 

Sum  10 11    

Table S2: Regional harmonization, with γ=100% and a difference sequence of countries (country1, country2, country4, country3). 

 

At this stage, we calculate the energy intensities associated with the output (o) and the unharmonized (u) results. We then 

identify an optimal list of larger countries by minimizing the absolute difference between the energy intensities linked to “u” 105 

and “o”, measured over GDP per capita. This difference, calculated as an integral over GDP per capita, is weighted using the 

R-squared value from the historical regression. In this way, countries with stronger historical trends have a greater influence 

on the objective function being minimized. 

Another “lever” that can be used to minimize the integral is the γ parameter. The graph below shows how varying γ impact the 

results across countries: 110 

 



 

Figure S1: Results associated with a range of 𝜸 values across countries. 

 

Therefore, we find the optimal γ value that minimizes the objective function (sum of integral values across all countries), as 115 

illustrated in the graph below: 

 

 

Figure S2: Integral value associated with the correction rate value 𝜸. The purple line represents the optimal 𝜸 associated to the 

lowest integral value, whereas the blue line represents a simple harmonization approach (𝜸 = 𝟎) and its (higher) integral value. 120 

 



S2.4: Final energy – Convergence based on the quality of historical data   

In order to provide realistic results at the country-level, historical data should be interpreted and combined with regional IAMs 

results. For example, historical data show that the energy intensity usually increases in the very early stages of 

industrializations and then declines as GDP per capita increases (this pattern is known as “the hill of energy intensities” (GEA, 125 

2012)). As a result, if we run a linearized log-log regression using the entire historical time series (including when the energy 

intensity is increasing), we might find a relatively weak relationship. At the same time, our estimates might incorporate 

dynamics that characterize early development stages, and therefore may not represent well expected future developments. To 

avoid this problem, the algorithm should be able to select the most appropriate starting date of the time series (for example by 

eliminating data before the “hill” in the energy intensity). This can be achieved by selecting the optimal “starting point” of the 130 

historical time series that will span until the most recent data. In the DSCAL algorithm, this selection process is done by 

maximizing the r-squared of the regression, multiplied by the number of observations available in the “selected” historical 

data. This means that the number of historical observations can be reduced by half only if the r squared of the regression will 

(at least) double. In other words, the algorithm tries to find a relationship that is as long and as stable as possible.  

  135 

However, it is also important to evaluate historical data in the context of IAMs results. IAMs scenarios or SSPs storylines 

usually envisage increasing GDP per capita over time, whereas historical data show that in 16 countries GDP per capita has 

declined during the period 1980-2010 (including for example Saudi Arabia, Brunei, Haiti, Venezuela, Zimbabwe etc.).  

In such cases, relying solely on historical trends may lead to artifacts, as future income per capita growth could differ 

significantly from past developments. To address this issue, we introduce an additional data point for countries with declining 140 

GDP per capita. This data point, refer to the future energy intensity expected in 2100, based on the IAMatt path. 

By doing so, we combine the historical data information (until the most recent available year) with the energy intensity results 

(based on regional IAMatt path) in 2100. This process aims to reconcile historical (NAT) trends to the long-term (IAMatt) 

path when historical data deviates from expected patterns.   

In a similar manner, we introduce some degree of convergence when the quality of historical trend is poor. For instance, some 145 

countries have relatively short historical time series, while others have experienced significant structural breaks, such as the 

Former Soviet Union countries in the 1990s. In such cases, reliable historical estimates are hard to obtain. To overcome these 

problems, we assume that the degree of convergence is tied to the robustness of the historical data. We assume a slower 

convergence “max_tc” for historical estimates with a relatively high number of observations and high r-squared, as shows in 

the graph below:  150 

  

  
  
  



155 
Figure S3: Timing of convergence (“Maxtc”) as a function of the R-squared multiplied by the number of observations. We assume 

a convergence in 2040 if r-squared lower or equal than 7.5 (e.g., 25 observations with an r-squared of 0.3) and linearly increases up 

to 2200 (e.g., 36 observations with and an r-squared equal to 1).  

 
 160 

Moreover, the quality of historical data can be also evaluated by comparing the slope of the NAT path (based on historical 

trends) to that of the “IAMatt” path (based on future IAMs scenarios). If the slopes have opposite signs, it suggests that 

historical trends deviate significantly from the developments anticipated in future scenarios. Should this happen, we assume a 

faster convergence to the IAMatt path, with “maxtc” equal to 2040. Otherwise, we apply a time of convergence “maxtc” as 

shown in the table above. 165 

Finally, we compute the weights based on “maxtc” and the slope of the historical trend regression, using the equation below. 

   

 

 

(S9) 

 

The β in the equation above refers to the slope of historical trends. A negative slope leads to a linear function as shown in 

figure S4.  A slope greater than 1 means that weights will decline at a faster rate, hence leading to a faster convergence to the 170 

IAMatt. This prevents unreasonably high growth rates in the energy intensities. 

 



 

Figure S4: Weights over time as according to different β, assuming maxtc=2200. 

 175 

 

Finally, we recalculate the “NAT” path using ρ as weights:  

 

 

 

(S10) 

 

 180 

 
  



Supplementary S3: Sensitivity analysis  

S3.1Parametrization index of final energy variables   

This section shows the parametrization index of the sensitivity analysis of final energy data.  185 

The table shows the index of the parallel coordinate graph (Figure 5.1, panel b) when varying the Functional form (FUNC): 

 

Table S3 Index of parallel coordinate graph of figure 5.1, panel b 

INDEX FUNC TC 

0 log-log 2150 

1 s-curve 2150 
 

The table shows the index of the parallel coordinate graph (Figure 5.2, panel b) when varying the Functional form (FUNC) 190 

and the time of convergence (TC): 

 
Table S4 Index of parallel coordinate graph of figure 5.2, panel b 

INDEX FUNC TC 

0 log-log 2100 

1 log-log 2150 

2 log-log 2200 

3 s-curve 2100 

4 s-curve 2150 

5 s-curve 2200 
 

The table shows the index of the parallel coordinate graph (Figure 5.3, panel b) when varying the Functional form (FUNC), 195 

the time of convergence (TC) as well as alternative “IAMatt” paths, with the three associated dimensions: 

- Time of convergence (TC*) 

- The variable used (VARIABLE), either GDP (per capita) or time 

- And whether a linear or log-scale is employed (SCALE) 

 200 

When the default IAMatt is used, all these three dimensions are reported as “default”: 

 

Table S5 Index of parallel coordinate graph of figure 5.3, panel b 

INDEX FUNC TC TC* VARIABLE Scale 

0 log-log 2100 2050 GDP  linear 

1 log-log 2100 2100 GDP  linear 

2 log-log 2100 2050 GDP  log-scale 



3 log-log 2100 2100 GDP  log-scale 

4 log-log 2100 2050 time log-scale 

5 log-log 2100 2100 time log-scale 

6 log-log 2100 2050 time linear 

7 log-log 2100 2100 time linear 

8 log-log 2100 default default default 

9 log-log 2150 2050 GDP  linear 

10 log-log 2150 2100 GDP  linear 

11 log-log 2150 2050 GDP  log-scale 

12 log-log 2150 2100 GDP  log-scale 

13 log-log 2150 2050 time log-scale 

14 log-log 2150 2100 time log-scale 

15 log-log 2150 2050 time linear 

16 log-log 2150 2100 time linear 

17 log-log 2150 default default default 

18 log-log 2200 2050 GDP  linear 

19 log-log 2200 2100 GDP  linear 

20 log-log 2200 2050 GDP  log-scale 

21 log-log 2200 2100 GDP  log-scale 

22 log-log 2200 2050 time log-scale 

23 log-log 2200 2100 time log-scale 

24 log-log 2200 2050 time linear 

25 log-log 2200 2100 time linear 

26 log-log 2200 default default default 

27 s-curve 2100 2050 GDP  linear 

28 s-curve 2100 2100 GDP  linear 

29 s-curve 2100 2050 GDP  log-scale 

30 s-curve 2100 2100 GDP  log-scale 

31 s-curve 2100 2050 time log-scale 

32 s-curve 2100 2100 time log-scale 

33 s-curve 2100 2050 time linear 

34 s-curve 2100 2100 time linear 

35 s-curve 2100 default default default 

36 s-curve 2150 2050 GDP  linear 

37 s-curve 2150 2100 GDP  linear 

38 s-curve 2150 2050 GDP  log-scale 

39 s-curve 2150 2100 GDP  log-scale 



40 s-curve 2150 2050 time log-scale 

41 s-curve 2150 2100 time log-scale 

42 s-curve 2150 2050 time linear 

43 s-curve 2150 2100 time linear 

44 s-curve 2150 default default default 

45 s-curve 2200 2050 GDP  linear 

46 s-curve 2200 2100 GDP  linear 

47 s-curve 2200 2050 GDP  log-scale 

48 s-curve 2200 2100 GDP  log-scale 

49 s-curve 2200 2050 time log-scale 

50 s-curve 2200 2100 time log-scale 

51 s-curve 2200 2050 time linear 

52 s-curve 2200 2100 time linear 

53 s-curve 2200 default default default 

 
 205 

  



S3.2: Sensitivity analysis – Electricity  

This section shows the sensitivity analysis in the “composite” path for fuels with small uncertainty range (oil, nuclear, hydro, 

biomass and geothermal): 

 210 

 

Figure S5 Uncertainty range in the electricity mix in Australia (AUS) and Japan (JPN) in 2030, downscaled from the MESSAGE 

current policy scenario, under the “composite” path. The graph shows the uncertainty arising from different components including: 

i) criteria “weights” (n=37), ii) “demand” projections (n=18), iii) “convergence” (n=51). 215 

 



The graphs below show how the different criteria weights affect the downscaling of secondary energy electricity results, in the 

Pacific OECD region of MESSAGE. The graphs show results for each fuel in 2030 in a current policy scenario, under the 

“NAT” and “COMPOSITE” paths. Please note that in each downscaling run, the sum of weights (x axis in the graph) across 

all criteria (e.g. in the case of solar: cots curve, base year share, and governance criteria) always adds up to one. 220 

 
The different criteria are: 

- historical data: “DF_BASE_YEAR_SHARE” 

- stranded assets: “DF_GW_ALL_FUELS” 

- governance “DF_GOV” 225 

- supply cost curves: “DF_COST_CRITERIA” 

 
The default criteria used in the NGFS 2023 project are outlined in table 5. 

 
 230 

Figure S6– Electricity generation from solar 



 
  

 

Figure S7– Electricity generation from wind 235 

 
  



 
Figure S8– Electricity generation from hydro 
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Figure S9– Electricity generation from oil 



 
Figure S10– Electricity generation from coal 



 
Figure S11– Electricity generation from gas 245 



 
Figure S12– Electricity generation from nuclear 



 
Figure S13– Electricity generation from geothermal energy 
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Figure S14– Electricity generation from biomass 

 

 


