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Abstract. Initialized climate predictions are routinely carried out at many global institutions that predict the climate up to
next ten years. In this study we present 30 year long initialized climate predictions and hindcasts consisting of 10 ensemble
members. We assess the skill of the predictions of surface air temperature on decadal and multidecadal timescales. For the
10 year average hindcasts, we find that there is limited added value from initialization beyond the first decade over a few
regions , no added value from initialization was found for the third decade (i.e. forecast years 21-29). The
ensemble spread in the initialized predictions grows larger with the forecast time owever, the initialized predictions do
not necessarily converge towards the uninitialized climate projections within a few years and even decades after
initialization. There is in particular a long-term weakening of the Atlantic Meridional Overturning Circulation (AMOC) after
initialization that does not recover within the 30 years of the simulations, remaining substantially lower compared to the
AMOC in the uninitialized historical simulations. The lower AMOC mean conditions also result in different surface
temperature anomalies over northern and southern high latitude regions with cooler temperature in the northern hemisphere
and warmer in the southern hemisphere in the later forecast years as compared to the first forecast year. The temperature
differences are due to less transport of heat to the northern hemisphere in the later forecast years. These multi-decadal
predictions therefore highlight important issues with current prediction systems, resulting in long-term drift into climate

states inconsistent with the climate simulated by the historical simulations.

1 Introduction

Global and regional climate is changing due to anthropogenic emissions of greenhouse gases, atmospheric aerosols and
internal climate variability (Chung and Soden, 2017; Bonfils et al., 2020; Chiang et al., 2021; IPCC, 2023). The ongoing
increase in global temperature is causing devastating effects on life, ecosystems and important infrastructures requiring

appropriate adaptation strategies to minimize the potential future effects (Gampe et al., 2021; Naumann et al., 2021; Brullo
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et al., 2024). Accurate and reliable information about the near-term (10 to 30 years) future climate could underpin such
adaptation efforts, obtained either from historical and projection simulations (hereafter also referred to as
“uninitialized projections”, as these simulations are not started from observational climate states) or from initialized decadal
climate predictions. The long-term uninitialized projection simulations experience various types of uncertainties including
the modeled forced response, assumptions about expected future conditions, and internal climate variability (e.g. Lehner et
al., 2020). In particular for the near-term regional climate projections, internal climate variability can be the largest source of
uncertainty (Hawkins and Sutton, 2009; Lehner et al., 2020) since these model simulations are started from different climate

states during the preindustrial time.

The initialized decadal climate predictions are aimed at aligning the phase and amplitude of variability between numerical
simulations and observations (e.g. Meehl et al., 2021), and initialization has been shown to correct forced model responses,
by starting the simulations from observationally-constrained climatic states (Smith et al., 2007; Keenlyside et al., 2008;
Doblas-Reyes et al., 2013). For the most recent version of the Coupled Model Intercomparison Project phase 6 (CMIP6),
such model simulations were typically initialized every year and forecasts were made up to 10 years after initialization (Boer
et al., 2016). On multi-annual and decadal timescales, the initialized climate predictions have shown skill in predicting
climate over global regions (Smith et al., 2019, 2020; Delgado-Torres et al., 2022). In particular for near-surface air
temperature predictions, the initialized predictions have also shown added value from initialization over the uninitialized

projection simulations on multi-annual timescales in some regions (e.g. Smith et al., 2019; Delgado-Torres et al., 2022).

Initialized climate predictions are computationally expensive to run and therefore most prediction systems only forecast up
to 10 years after initialization (Boer et al., 2016). Some recent studies have suggested that there is enhanced skill beyond 10
years from internal climate variability. This has been found, for example, by combining information from decadal
predictions and longer-term uninitialized projections (Befort et al. 2022) and constraining patterns of sea surface temperature
anomalies elimnate—variabiity-in large ensembles of the uninitialized projection simulations (Mahmood et al., 2021, 2022;
Donat et al., 2024). Mahmood et al. (2022) demonstrated added skill over forcing alone for 20-year constrained projections.
Similarly, Donat et al. (2024) found enhanced climate predictability up to 20 years when constraining climate variability in
large multi-model ensembles from CMIP6, basing the constraints on either observations or decadal predictions. While
initialized predictions beyond 20 years were considered during the Coupled Model Intercomparison Project phase 5
(CMIP5), these simulations were restricted to only three start dates (Meehl and Tang, 2012), which did not allow for robust
estimates of skill over such longer forecast horizons. Diisterhus and Brune (2023) recently produced initialized predictions
out to 20 years with model , and concluded that the information from initialization may not
necessarily be lost even up to 20 years after initialization, resulting in skillful predictions of surface air temperature beyond

10 forecast years over a few regions. Recent work by Deser et al. (2025) with idealised experiments_further suggestsshewed
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that the-initialized internal variability caneewld constrain surface climate variability for multiple decades, highlighting the

potential for extended predictability when key modes of variability are properly captured.

Motivated by the prospect of multi-decadal predictability from model initialization and with the aim to understand the model

dependence in a previous study (Diisterhus and Brune, 2023)results, in this study we performed a set of initialized climate

predictions with the EC-Earth3 model with a forecast horizon of 30 years. These predictions build on and extend decadal
predictions produced with the same model (Bilbao et al. 2021). These experiments allow us to further study climate
predictability on multi-decadal time scales, and more generally to assess initialized climate predictions and uninitialized
projections as complementary sources of climate information for near-term climate change estimates beyond the next

decade.

The primary goal of the current study is to introduce the initialized 30-year long predictions, which were performed with a
state-of-the art forecast system and involve a large number of hindcasts, considering together the forecast range, number of
initialization years and number of members per forecast. Additionally, we address several specific research questions related
to the scientific relevance of the multi-decadal predictions, from whether the initialized predictions can be skillful in
predicting surface temperature beyond 10 years after initialization, whether and when the spread in initialized predictions
and the uninitialized projection simulations converge and if the drift in Atlantic Meridional Overturning Circulation

(AMOC) continues after the first decade of forecasts which was discussed in Bilbao et al. (2021).

2 Data and Methods

We performed a new set of multidecadal climate predictions with the Barcelona Supercomputing Center (BSC)’s decadal
prediction system (Bilbao et al., 2021), which uses the CMIP6 version of the EC-Earth3 climate model (Doscher et al.,
2022). This hindcast consists of a 10-member ensemble of 30-year predictions initialized on the first of November of every

5th year starting from 1960 to 2020 (i.e a total of 13 start dates predicting 30 years)._Since the simulations start from

November, the final forecast vear (i.e. the 30" prediction year) finishes inexterds+tp—+te October and therefore only 29 full

years are available for analysis.

This new hindcast uses the initial conditions from the current operational BSC decadal prediction system, which have been

updated with respect to those from Bilbao et al. (2021)Fhis-new-systerruses-updated-initial-conditionsforall-compenents
with-respeetto-the-systempresented-in-Bilbao-et-ak{(2021H):. The new system uses interpolated initial conditions from the
ERAS atmospheric ferthe-atmesphere-the ERASreanalysis ERAS-(Hersbach et al., 2020; Soci et al., 2024) isused, and fer

the-ocean and sea ice the-initial conditions esfre-from a 5-member NEMO3.6-LIM3 simulation forced with historical ERAS

surface fluxes that assimilates ORA-S5 (Zuo et al., 2019) ocean temperature and salinity at the surface using a standard

3
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a Newtonian relaxation term is also applied to assimilate three-dimensional EN4 (Good et al., 2013) temperature and salinity
fields. For this, a relaxation timescale that increases monotonically with depth is used, which takes approximate values of 30
days at the subsurface, 700 at 1000m and 3300 at 5000m. The spread in the 10-member ensemble was generated by adding a
small (i.e. on the order of 10 K) perturbation to the 3-dimensional atmospheric air temperature, combined with the five

ocean and sea ice initial conditions.

While decadal predictions have been provided with annual initializations as a contribution to CMIP6 and to
the WMO Lead Centre for Annual to Decadal Prediction (Hermanson et al., 2022), the new multi-decadal predictions
presented in this study are initialized at reduced frequency (every fifth year) primarily for computational cost reasons. Given
the high auto-correlation of the time series when predicting decadal to multi-decadal averages, this somewhat reduced
initialization frequency does not affect the degrees of freedom for skill evaluation. linitializing only every five years, as
opposed to every year, may however lead to missing potential windows of opportunity when the predictability is enhanced in
relation to specific initial climate states (e.g. Liu et al. 2023) and to a certain level of aliasing (Garcia-Serrano and Doblas-

Reyes, 2012).

For reference and to evaluate added value (and possibly deteriorating effects) from initialization, we also use in this study a
10 member ensemble of CMIP6 historical and scenario simulations performed using the EC-Earth3 model. Both the transient
climate simulations and initialized predictions use observed forcings up to the year 2014 and afterwards the
estimates of forcings based on the SSP2-45 emissions scenario

(O’Neill et al, 2016).

For skill evaluation, all model simulations were converted to a uniform five-degree grid. The skill of the predictions is
evaluated based on anomaly correlation coefficient (ACC) and the residual correlations following Smith et al. (2019). The
ACC assesses the common variability (both from internal and forced origin) between the observations and the simulations.
The residual correlations indicate added value from initialization and are computed by correlating the residuals obtained after
removing an estimate of the forced signal from predictions and observation using the ensemble mean of the historical
simulations (Smith et al., 2019). We evaluate here the skill of the mean predictions for 10, 20 and 2936 years after
initialization. Specifically, we focus on averages of forecast years 1 to 10 (FY1-10), 11 to 20 (FY11-20), 21-29 (FY-21-29),
1 to 20 (FY1-20) and 11 to 29 (FY11-29). -The observed surface temperature data used for evaluating the skill is from
HadCRUT4.6 (Morice et al. 2012). The sea temperature observations used were obtained from the Met Office Hadley

Center’s sea ice and sea surface temperature data (HadISST1.1; Rayner et al., 2003)



127  Evaluation of the initialized predictions is performed in anomaly space, with anomalies calculated based on forecast-time
128  dependent climatologies to minimize the impacts related to the climate drift inherent in these systems (Meehl et al., 2014).
129  We note that anomalies computed for initialized predictions with a reduced number of start dates (as it is the case in the
130  current study) are subject to uncertainties given the small sample used for computing the climatologies. Here we compute
131  anomalies for each forecast month based on their respective climatologies from the seven start dates (every fifth start date
132 | from 1960 to 1990). The observed and historical simulation climatologies are computed for the same temporal periodby
133 | matehing-time-used to define thefer hindcast climatology. The statistical significance of the correlations and temperature

134 | differences is estimated by using a two tailed student’s t-test.
135
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137 \ Figure 1. ACC (left column) and residual correlation (right column) of the near-surface air temperature hindcasts for different
138 forecast horizons. The first three rows show ACC and residual correlations for 10 year mean hindcasts while the last two rows are
139  for 20 year mean hindcasts. Stippling indicate regions where ACC and residual correlations are not statistically significant at 95%
140 | confidence level bagd i
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3 Results
3.1 Evaluating the skill of the initialized predictions

We first evaluate the skill of the initialized multi-decadal prediction system in predicting surface air temperature anomalies
for different forecast periods (Fig.tre 1). The initialized predictions are generally skillful in simulating observed surface air
temperature anomalies over most regions globally. For the first decade (i.e. FY1-10), the ACC over the Atlantic, Indian and
parts of the Pacific ocean and manysest land areas {exeept-Seuth-Ameriea)-is positive and statistically significant suggesting
overall good correspondence with observations. These results are generally consistent with the ACC values computed from

an updated version of the previous decadal hindcast system (Bilbao et al., 2021) that was initialized every year (Figure Sla

and S1b), in supplementary material)_and using every 5" start-date (Figure S1c and S1d). When subsampling the system to
useing every 5" start-date (Figure S1c and S1d) frem-the-previeus-prediction-system-the ACC losses significance in several
regions in which also the new 30 year prediction system has no significant ACC. These results suggest that while overall
patterns of skill remain similar in reduced initializations compared to annual initializations, however, there may be sampling
uncertainties induced by the reduced number of initializations. —suggesting-that-aredueced-sample-size{due-to-initializing by
every-fifth-year)-deesnotstronghyaffectthe-skil-of the-predietion-system— For the second and the third decades (i.e. FY11-

20 and FY21-29) the correlations between predictions and observations are generally higher than 0.7 over most regions of

the globe. Over the eastern Pacific, however, the skill of the initialized predictions degrades after the first decade. We note
that some of the differences in ACC between the three decadal forecasts are related to the fact that their evaluation periods

are different (i.e. 1961-20200 for FY1-10, 1971-20120 for FY11-20 and 19871-201928 for FY21-29). Using the common

analysis period (i.e. 1981-2020) for the three decadal mean predictions show ACC skill over similar regions in all three

forecast periods with relatively more significant regions in the Atlantic ocean for the first decade (Fig. S2, in supplementary
material). We note here that using the common_analysis period for skill assessment also introduces uncertainties since

different initializations are used for different forecasts. -The multi-decadal forecast times (i.e. FY1-20 and FY11-29) show

high correlations with the observations over the globe especially for FY1-20.

Since the ACC for temperature is strongly influenced by the model response to forcings such as e.g. the increase in GHG
forcings, we use residual correlations following Smith et al. (2019) to evaluate the added value from initialization. We find
here that the added value from initialization is largest in the first ten-year average hindcasts (i.e. FY1-10), but a few regions
show added value for the second forecast decade (i.e. FY11-20). For the FY1-10 we find significant added value over the

Atlantic ocean and parts of the Pacific and over land regions including northwest Canada,are central USA, the Middle East

and northern Australia. For the second decade, the added value from initialization is found only over a few regions in the

Pacific ocean. The residual correlations are generally not statistically significant over global land areas for FY11-20. For the
third forecast decade (i.e. FY21-29), almost no added value from initialization is found in any of the three main ocean basins,

suggesting that the information from initialization is lost over time especially after the first decade of the forecasts. When
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using a common analysis period (i.e. 1981-2020), the added value even for the first decade (i.e. FY1-10) is also limited to

parts of the Atlantic ocean, Eastern USA and southern Indian ocean (Fig. S2) indicating sampling uncertainties due to using

different forecast analysis periods. The multi-decadal forecast times show added value from initialization for FY1-20 while a

widespread detrimental value is found for FY11-29. For FY1-20 most of the added value is in similar regions as the added
value for the first decade although parts of tropical regions in the Pacific and Indian oceans seem to show significant added

value only in 20-year mean predictions.

3.2 Time series analysis of the initialized predictions and the uninitialized projection simulations

To understand how the 30-year predictions compare with the corresponding (uninitialized) historical/scenario simulations,
we evaluate here the time evolution of their regionally averaged sea surface temperature (SST). For this we focus on two
regions of well-known multidecadal variability such as the Subpolar North Atlantic (SPNA: 45°N-60°N, 50°W-20°W) and
the northeast Pacific (NEP: 40°N-55°N, 140°W-122°W). Previous studies have shown that the decadal predictions can be
highly skillful in forecasting temperature over SPNA region_(e.g. Yeager et al., 2018; Delgado et al., 2022). This is also a

region strongly influenced by forecast drifts associated with the Atlantic Meridional Overturning Circulation (AMOC) in
initialized predictions. initialized decadal prediction systems have also shown skill in predicting climate over NEP region

(e.g. Kataoka et al., 2020; Choi and Son, 2022+).

As expected from small differences in the initial conditions, the spread in the initialized predictions is small at the beginning

and grows over the course of the simulations (Fig. 2). In the SPNA region, the SSTs tend to drift towards a lower (i.e. cooler)

mean state a few years after initialization resulting in larger biases (Fig. 2). Interestingly, while the mean SSTs for both the
initialized predictions and uninitialized projections are close to each other at the beginning of the predictions, however, the
drift in initialized predictions leads to a different mean state after ~10-15 years which is completely outside the ensemble
spread of the uninitialized projection simulations. We also note that the spread tends to be narrower at the end of the
forecasts than for the uninitialized projection ensemble, in particular for the earlier start dates (i.e. 1960 to 1995). For the
NEP region, the mean SSTs in the initialized predictions follow the observations closely at all forecast years while the
uninitialized projection simulations tend to be biased high (i.e. warmer than observations and predictions) (Fig. 3). The
ensemble spread in the predictions is generally similar to the spread in uninitialized projections for this region (Fig. 3).

Compared to the SPNA region, the predictions do not show a strong drift after initialization for the NEP region.

The SST anomalies show that the initialized and uninitialized ensemble spreads overlap (Fig. S32 and S43). The
corresponding plots also nicely illustrate that the ensemble spread for the SPNA region is generally smaller in the initialized
predictions compared to the uninitialized projections while similar for the NEP region (Fig. S32 and S43). Due to the non-

stationary drift in individual prediction simulations (i.e., the different start dates in Fig. 2), the temperature anomalies for the

8



207 \ SPNA region tend to be higher than the projection ensemble in the most recent initializations (cf Figs. 2 and S 32). For the
208 NEP region, which is not strongly affected by the drift, the temperature anomalies remain similar for all start dates (Fig.
209 ‘ S43). All these results suggest that the climate information from different experiments (i.e. initialized predictions and the
210  uninitialized projections) of the same model may not converge even after several years of predictions, depending on the
211 ‘ region;-asit-was-assumed-in-the past.
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218 \ Figure 2. Comparison of mean SST time series in SPNA in initialized predictions (in pink) and the uninitialized projections (in
219  blue). The colored polygons show spread in 10 ensemble members ( i.e. based on minimum and maximum values of the 10
220  members). Observations are shown by the black lines. The monthly mean time series were smoothed using a 36 months running
221  average. The yellow lines (right y-axis) represent spread ratios between initialized and uninitialized ensembles.
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| 3.32 AMOC

The AMOC is one of the main drivers of decadal-to-centennial variability in the Atlantic Ocean and it is thought to be
strongly predictable due to its slowly evolving modulations (e.g. Zhang et al., 2019). Previous studies have shown that, even

though decadal prediction systems exhibit various AMOC errors associated with initialization shocks and model drift

(Polkova et al., 2023), the effects of initialization on the AMOC can persist for longer than the length of the predictions,

which are typlcally of 10 years (e.g., Bilbao et al., 2021). Fuﬁhefmefe—umeeeﬁ{—smdy—Bﬂs{eﬂﬁs—&ﬁd—Bﬂme—@G%)m%

We analyse the AMOC at 45°N, defined here as the overturning streamfunction value at 45°N and at 1000 m depth. The EC-
Earth3 model produces a shutdown in Labrador Sea convection (and associated AMOC slowdown) also in some of the
historical runs (Bilbao et al., 2021). We compare the predictions to the EC-Earth3 historical simulations run by BSC as part
of CMIP6 simulations (a total of 15 members) for which we define two ensembles formed by members with (12 out of 15)
and without (3 out of 15) deep ocean convection in the Labrador Sea region. These differences in historical simulations
originate from the AMOC multi-centennial variability in the EC-Earth3 pre-industrial simulations (Meccia et al., 2023), from

which the initial states are taken to initialize these runs.

Figure 4a shows that the 30-year predictions start from the reconstruction and then follow a similar evolution of the AMOC
at 45°N (AMOCA45) across all start-dates. This evolution is characterized by an initial strengthening in the first 2-3 years,
followed by a rapid weakening, stabilizing at around 14 Sv within the first 25 forecast years, as shown by the climatological
values (Fig. 4b). Comparing AMOC45 in the 30-year predictions with the current decadal prediction system shows that the

climatology is well constrained, despite the different sampling of initial statesever—with—initialisations—every—5-years. By
contrast, the comparison withWhen-ecomparing-with-AMOE45-in- the previous forecast system shows differences in the
AMOC45 during—we-find-that-the-updated-initial-conditions—affeet_the first few years, since the reconstruction used in that
system produces a stronger AMOC45. Another difference is thatHeweves; the drift in the current system is rather consistent
across start dates, which did not occur eensistent-with-the-drift-ef-the-post-2000-start-dates-in the previous system (see Figure
6c in Bilbao et al., 2021), for which there was a different behavior pre and post-2000-indieating-that-the-drift-does-net-vary
as—it—did—in—the—previeus—systers . Despite the updated initial conditions, the current system also suffers from the same
initialization problem ofs-as the previous system (described in detail in Bilbao et al., 2021) where theand AsBilbas—etal:
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years;-model drift causes a progressive increase in Labrador Sea density stratification that ends up suppressing the mixed

layer depth and weakening the AMOC. This effect persists beyond the first decade in these new predictions with updated

initial conditions, and the AMOC does not recover within the 30 forecast years_to the historical mean state. We note that this

systematic_shutdown of convection in the forecasts is an artefact from initialization, as oSbservational records inef the

Labrador Sea show instead_intermittent deep-convection events, closely tied to interannual-to—decadal variability in the

North Atlantic Oscillation, whose positive phase enhances winter mixed-layer deepening (Yashayaev & Loder, 2016).

Consistent with Bilbao et al. (2021), the predictions tend to drift towards a state closer to the historical simulations with
suppressed convection in the Labrador Sea (purple), in contrast with those members that exhibit convection (green).
However, the longer predictions also reveal that the decadal forecasts stabilize at an even weaker AMOC state (i.e. ~14 Sv)
which is lower than the historical mean AMOC (and lower even than the mean of those historical runs with suppressed
Labrador sea convection). Therefore, in contrast to previous expectations (i.e. based on 10 year predictions), we find here
that the AMOCA45 does not converge to the state in the historical simulations. This conclusion supports the previous findings
of Diisterhus and Brune (2023) in their 20-year predictions in which the AMOC in initialized predictions tends to drift

towards much lower values than the historical simulations albeit using a different climate model.

15



280

281

a) AMOC 45N b) AMOC 45N Climatology

o _| o _| — DP_30Yrs — Hist
o o — DP — Hist_noconv
— DP_OMd
o _| o _|
- -
> >
n o _| n o |
- -
< <
- Ll
o | N ]
- Ll
T T T T T T T T T T T
1960 1980 2000 2020 2040 0 5 10 15 20 25 30
Time (Yr) Forecast Time (Yr)
a) AMOC 45N b) AMOC 45N Climatology
S A o — DP — Hist
o S = DP_30Yrs — Hist_noconv
o _| © |
> >
W © _| xﬂ? ©o _|
< | <
o _ o T~
T T T T | T T T T T T T
1960 1980 2000 2020 2040 0 5 10 15 20 25 30
Time (Yr) Forecast Time (Yr)

282 \ Figure 4. (a) Evolution of the AMOC at 45N in the 30 year prediction ensemble mean (blue to red every five start dates), the
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historical+projection ensembles with and without Labrador sea convection (green and purple, respectively) and the ocean
reconstruction used to generate the initial conditions (black). (b) The climatological values as a function of forecast time. DP and
DP_30yrs in b represent decadal and the muliti-decadal (i.e. 30 year long) prediction systems respectively, bothrespeetively both_of
which use the same updated initial conditions. DP_OIld represents the previous decadal prediction system from Bilbao et al. (2021)

We find that surface temperature responses during the course of the simulations are strongly influenced by the prominent
drift in the AMOC. The climatological mean surface air temperature differences between the later forecast years compared to
the first forecast year (Fig. 5a-d) are negative in the northern hemisphere while positive in the southern hemisphere, a pattern
that is consistent with the reduced northward heat transport that follows an AMOC weakening. These bipolar temperature
differences persist until decades after initialization and are consistent with the AMOC drift towards lower mean state. The
temperature differences between forecast year 29 and 19 (Fig. 5e) are relatively small and symmetrical in both hemispheres,

consistent with the stabilization of AMOC after the first two decades of initialization. The interhemispheric asymmetrical
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responses of surface air temperature due to AMOC decline has been found in previous studies (e.g. Orihuela-Pinto et al.,
2022).

(a) FY9 - FY1 (b) FY19 - FY1 (c) FY29 - FY1
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Figure 5. Differences in mean near-surface air temperature between different forecast years of the initialized predictions. Stippling
indicates regions where the differences are not statistically significant at 95% confidence level.
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4 Summary and discussion

The initialized climate predictions are designed to synchronize the model variability with that of observations and thus can
provide potentially more skillful climate information for the next few decades than the forced-only climate projections. Most
of the current initialized climate prediction systems generally forecast up to ten years after initialization (e.g. Boer et al.,
2016). Here we performed a new set of multidecadal climate predictions with the BSC’s decadal prediction system using
updated initial conditions. Ten-member ensembles of 30-year long hindcasts and predictions were performed using the EC-

Earth3 model by initializing every fifth year starting from 1960 to 2020.

The evaluation of the multidecadal predictions suggest that the predictions are skillful for the different forecast periods
considered (up to 30 years), however the added value from initialization was primarily found for the first 10 year average
forecasts after which very limited added value from initialization is found. In particular for the third decade (i.e. FY21-29)
we did not find added value from initialization over the uninitialized projection simulations, and identify even some
detrimental effects associated with long-term model drift after initialization. Similar issues pointing to long-term drift in
AMOC were found in a previous study which presented 20-year initialized hindcasts with a different decadal prediction
system based on the MPI-ESM climate model (Diisterhus and Brune, 2023). While the skill evaluations are subject to large
uncertainties related to the limited sample size relative to the forecast times, an important result of this 30-year prediction
experiment is the indication of long-term model drift into a different climate state characterised by weakened AMOC, that

does not recover within the 30 years of the simulations.

As a consequence of this long-term drift the initialized predictions and the uninitialized projections may not necessarily
provide consistent information for near-term climate change estimates. Also the ensemble spreads for the two types of
simulations are non-stationary (especially for the SPNA region, Figure 2) and generally smaller in initialized predictions
than the uninitialized projections. Besides the inconsistent near-term climate estimates from the initialized and uninitialized
simulations, these results also imply that caution must be taken when combining climate information from these two types of
model simulations. For example, these inconsistencies will challenge approaches to concatenate data from decadal

predictions and climate projections (Befort et al., 2022).

Similar to the findings by Bilbao et al. (2021), we find that the climate predictions do not converge to the model attractor
characterized by the historical ensemble, a deviation that is particularly evident for the AMOC. Indeed, the AMOC drifts in
the first ~22 forecast years and then tends to stabilize at ~14 Sv which is lower than the mean AMOC state in non-initialized
simulations. A similarly lower AMOC mean state in initialized predictions compared to historical simulations was also
found by Diisterhus and Brune (2023) using a different climate model. This suggests that both models can experience

different stable AMOC states, with initialization from observations playing a pivotal role to move from one state to the other.
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The progression in the AMOC drift is found to have a strong influence on the predicted global surface air temperature
anomaly pattern. The climatological mean temperatures in later forecast years compared to the first forecast year, tend to be
cooler in the northern hemisphere and warmer in the southern hemisphere, as expected in response to an AMOC weakening,

in line with results in idealized experiments enforcing an AMOC shutdown (Orihuela-Pinto et al. 2022).

One side effect of long prediction time horizons and using multiple ensemble members is the need for large amounts of
computational resources for running simulations, post-processing data and the storage space requirement. Due to these
reasons, the current prediction system was only initialized every fifth year which makes it challenging for computing
anomalies and also evaluating the skill of the predictions. Alternative approaches for providing climate information on 10 to
20 year mean timescales have been developed which require a fraction of computational costs as compared to the state-of-
the-art initialized climate predictions. These alternative approaches make use of existing climate simulations and constrain
them according to the similarity of their SST variability patterns with observations at a given initialization time. The climate
predictions based on these variability-constrained projections (e.g. Mahmood et al., 2022; Donat et al., 2024) even show
higher and more widespread added skill, compared to the initialized predictions presented in this study, for both 10 and 20

year mean predictions. The skill in these constrained projections suggests that the decadal and multi-decadal predictability of

climate might be higher than what is achieved with the new initialised prediction using EC-Earth3. This warrants further in-

depth comparison of the different modelling and the constraining approaches in predicting climate over multidecadal

timescales, ideally in a multi-model context.

While our results show very limited added predictive skill from initialization beyond the first decade, they highlight
important issues often affecting initialized prediction systems. The model drift following an initialization shock can cause
the model to adjust into a different climate state compared to uninitialized simulations for an extended time period. Our
results show that even after 30 years there is no sign of convergence between the initialized and uninitialized climate
simulations. This highlights important challenges in the use of initialized predictions for estimates of near-term climate
changes, that should be taken into account in the further development of both the climate models and the initialization

approaches.
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