
We would like to extend our sincere appreciation for the reviewer’s time and dedication 
in reviewing our manuscript. We thank the reviewer for the positive remarks and for 
thoughtful and constructive comments. In the following response, reviewer comments 
are indicated in black and our responses are indicated in blue italic font.  

 

Reviewer 1 

The paper by Sjursen et al. introduces the Mass Balance Machine (MBM), a machine 
learning-based model build on XGBoost, to improve seasonal and annual glacier mass 
balance predictions across Norway. Using ~4000 in-situ seasonal and annual point 
measurements from 32 glaciers between 1962 and 2021, the authors demonstrate that 
the model can generalize well across unmonitored glaciers with diverse climatic 
settings. MBM outperforms traditional temperature-index glacier evolution models 
(GloGEM, OGGM, and PyGEM) particularly in predicting seasonal mass balance, 
reducing RMSE by up to 46% (winter) and 25% (summer). The model performance is 
robust across multiple spatial and temporal scales, showing strong potential for 
enhancing hydrological predictions and climate impact assessments in glacierized 
regions. 

I think the MBM is a very promising addition to the traditional glacier evolution models. 
However, at first instance after reading the manuscript I was questioning to what extent 
the comparison between MBM and the other models is fair because they are based on 
different datasets (glaciological versus geodetic) that exhibit very different 
characteristics. See for instance the recent papers by the GlaMBIE team (2025) and 
Dussaillant (preprint) who compare and combine different mass balance data 
sources.  It seems obvious that when comparing to data of type A (which model A is 
trained with) model A outperforms model B (which is calibrated with data of type B). I 
was wondering to what extent the authors are comparing models instead of differences 
between datasets. 

Nevertheless, I believe that the fact that the MBM can be trained with the glaciological 
data and still predict mass balances for unseen glaciers is its key advantage compared 
to traditional models. I would recommend the authors to emphasize this more and not 
jump to “straight-forward” conclusions too fast (such as:  the MBM is better at seasonal 
predictions. Yes, it is, but it is also the only model that has seen seasonal data). In 
addition, I would like to see more support for the selection of features and feature 
importance. 

The manuscript is very well written, and the language is of a high standard. Occasionally, 
the readability is somewhat reduced by excessive sentence length and accumulation of 
complex terminology. This particularly applies to the introduction, see an example 
below. The analysis is well described, and the figures are of high quality. 



All in all, I deem the manuscript fit for publication after a major revision. The suggested 
changes require minimal additional analyses and some textual considerations. Please 
consider the more detailed list of suggestions below. 

We have carefully considered the comments and made several improvements to the 
manuscript in accordance with the suggestions. Here, we provide a reply to the general 
comments and summarize the main changes in the revised manuscript. Below, we 
provide a point-by-point response to the each of the specific comments. 

The reviewer highlights that the key advantage of MBM is that it can be trained on 
glaciological data and therefore can predict mass balance on unmonitored glaciers. This 
is our view as well. Our intention is to highlight that this capability, which temperature-
index approaches are currently lacking at large scales,  is exactly what MBM can offer 
(e.g. in the abstract we highlight the potential of ML to learn relationships that are 
transferable in space and time, MBMs ability to generalize from sparse data to unseen 
test glaciers, i.e. unmonitored glaciers). Our conclusion does not suggest that 
temperature-index approaches cannot perform as well or better than MBM on specific 
glaciers if they are calibrated using the same data as MBM. Our analysis focuses on the 
specific application of large-scale (i.e. regional modelling) where glacier evolution 
models based on temperature-index approaches, that rely on glacier-specific 
calibration, do not have this option (since most glaciers are unmonitored). In this setting, 
our results clearly show that MBM outperforms the other models on seasonal 
predictions, precisely because it does not rely on glacier-specific data and therefore has 
the ability to leverage the seasonal data. Regarding the fairness of the comparison, we 
believe that it is fair that the models are compared according to their capabilities on the 
specific application, i.e. their ability to predict mass balance on unmonitored glaciers in 
a large-scale context. This includes their advantages and limitations with respect to their 
ability to leverage existing data, as explained above. 

We thank the reviewer for pointing out that our reasoning was not clear.  We have 
simplified the language in the abstract and introduction, considering the provided 
comments to highlight the context of the comparison. In addition, we have amended 
several formulations throughout the text to clarify our reasoning and address the 
concerns that have been raised in the general and specific comments. Please consider 
the suggested excerpts below:  

Abstract: 

 



 

Introduction: 

 

 

 
  



Discussion: 

 

 

 

 

 

 

 

 



Conclusion: 

 

In addition to textual changes, we have added a new appendix with analysis of feature 
importance (Appendix C), as suggested by the reviewer. This includes additional figures 
(Figs. C1 and C2) using different methods to assess feature importance and discussion 
of the findings. In addition, we have expanded on our reasoning behind feature selection, 
as requested by the reviewer. Please see our detailed responses below to each of the 
specific comments and suggested changes.  

Again, we would like to express our gratitude to the reviewer for their time and valuable 
feedback. We believe the suggested changes have significantly improved the 
manuscript. 

 
Abstract 

L9: To assess the advantage MBM’s generalization capabilities, --> To assess the 
advantage of MBM’s generalization capabilities, 

Done.  

1. Introduction 

L39-42: Despite significant efforts … unmonitored glaciers. This is one such example of 
a rather long and complex sentence that reduces readability. 

We have amended the formulations at the end of this paragraph and the beginning of the 
next paragraph to increase readability:  



 

L67: the fact that point mass balance measurements from glaciological surveys consist 
of stake measurements hasn’t been introduced yet. It is a minor detail, but rewording 
“each individual stake” to e.g. “each individual mass balance stake” would improve 
clarity. 

This is introduced already on line 35. 

L72: The term ‘generalising’ has been used throughout the manuscript but at this point it 
was unclear to me what you mean by “Generalising from seasonal and annual point 
mass balance measurements”. I now understand that you refer to the generalisation of 
distributed measurements on different glaciers (spatially), but here the emphasize 
seems to be on the seasonal versus annual time scales. 

We refer to both spatial and temporal generalisation. We introduce this concept on L56-
60, but our formulation was perhaps unclear. We have amended the formulation on L56-
60 to improve readability and highlight that we refer to both space and time: “ML models 
generalise patterns from training data and apply them to make accurate inferences on 
new, independent data. They can thus learn statistical relationships between mass 
balance components and topographical and meteorological variables that are 
transferable across space and time, including to unsurveyed glaciers and years (e.g. 
Guidicielli et al., 2023).” On L72, the reference to spatial generalization was implicit in 
our use of “generalizing from .. point” and “high spatio-temporal resolution”. However, 
we have amended the sentence to clarify that we mean generalization both in space and 
time: “Generalising from seasonal and annual point mass balance measurements offers 
the potential to provide high temporal resolution distributed mass balance predictions 
on unmonitored glaciers, ultimately improving runoff predictions from glacierised 
catchments.” 

2. Mass balance dataset and study area 

L94: To reduce potential confusion regarding the numbers 4170 vs 3910/3929/3751, you 
may change “4170 stake locations” to “4170 unique stake locations”. 

We agree that this is confusing and thank the reviewer for highlighting this since it is 
important information. The number 4170 refers to unique combinations of stake 



locations and years. We think the best term to use is “4170 stakes”, but specify what we 
mean by the term by amending the formulation as follows:  

 

We have amended this throughout the manuscript, referring to stakes and point 
measurements rather than stake locations.  

 3. The Mass Balance Machine (MBM) 

L116: including the design of an independent test dataset. 

Done. 

3.2 Model targets and features 

Feature selection, collinearity, and feature importance: I support your choice of 
refraining from using climate derivates such as snow depth and snow cover, but I still 
wonder how you came to this exact choice of climate features. Sensible and latent heat 
fluxes also depend on other meteorological variables, such as temperature and 
humidity. Why didn’t you for instance use humidity directly? Have you assessed the 
collinearity within your feature space? I suggest to either include a collinearity 
assessment in your paper (appendix) or include a statement that this is not relevant or 
negligible depending on your findings. What made you decide to use net thermal 
radiation but downward solar radiation? Considering variables like the albedo makes 
sense based on physical relevance, but how meaningful is the albedo at the 9 km 
resolution of ERA5-land? In addition, I suspect many point measurements to be inside a 
single ERA5-land grid cell causing nearest neighbor interpolation to result in non-unique 
features. 

Since you haven’t assessed feature importance in your study (or at least not presented 
in this manuscript), I suggest including more information on your reasoning and 
considerations in the selection of climate features. To my knowledge, XGBoost returns 
feature importance of variables, and it would be feasible to include this analysis in the 
paper. 

The selection of features attempts to find a middle ground between including relevant 
variables for accumulation and melt, while keeping the number of variables low enough 
such that the results are explainable in terms of the main components of the energy 
balance and the meteorological variables that are considered the main drivers of mass 
balance variability in Norway (temperature and precipitation). Some collinearity 
between the meteorological variables is inevitable, for example temperature with 



sensible and latent heat fluxes, skyview factor with slope. In our experience, including 
additional features did not significantly affect the model performance (possibly due to 
collinearity). For example, using u- and v-components of the wind speed did not improve 
the model. We do not expect inclusion of humidity to do so either, especially when 
already including heat fluxes and precipitation (which we also expect is strongly 
correlated with this variable).  

We modified the explanation (first paragraph of Appendix A2) behind the selection of 
features as follows:  

 

The addition of a feature importance analysis is an excellent addition and we thank the 
reviewer for suggesting this. We added a new appendix (Appendix C: Feature 
importance) with a discussion of feature importance based on different methods, 
including two new figures showing overall feature importance in terms of weight and gain 
on the trained model, and monthly permutation feature importance on the test dataset. 
The analysis provides additional insights into the importance of different monthly 
features in seasonal and annual predictions, and we believe that many of the findings 
support the current assessment of MBM’s capabilities. We suggest the following 
additional Appendix C2, including Figures C1 and C2: 



 



 

 



It is true that many point measurements are within a single ERA5-Land cell, such that 
features are in many cases non-unique on the same glacier and month. This is where the 
elevation difference feature and topographical features become important. These are 
unique to the given stake location and helps the model to reconstruct mass balance in a 
sub-climate model resolution. With regards to the albedo, we agree that a resolution of 
9km is too coarse to resolve variations in albedo on the glacier. However, we included 
albedo since it may provide information about snow cover conditions on larger 
geographical scales (i.e. fresh or wet snow). In our opinion, this is supported by the 
feature importance analysis (importance of albedo in winter months and transition 
seasons). When including the albedo as a feature we believe it is more physically 
accurate to combine this with downward solar radiation instead of net solar radiation.  

L163-166: It is unclear to me how your model learns to predict monthly variability in 
mass balance. How can you be sure that the monthly predictions make sense? Since 
there is never any overlap in your seasonal mass balance measurements, 
couldn’t equifinality still play a role? 

The model learns monthly variability by considering the monthly meteorological data to 
make predicting monthly mass balance predictions, which are aggregated and 
evaluated on the seasonal and annual time scales (Fig. 4). In a sense, this is similar to 
how temperature-index models make monthly predictions and are calibrated: they are 
provided monthly meteorological data and predictions are aggregated to the temporal 
resolution of the observations before they are compared. We agree that there is certainly 
a chance that equifinality plays some role in MBM, in terms of monthly predictions 
compensating each other on the seasonal time scale. For example, we would expect 
that if flexible dates were used to define summer and winter seasons (instead of the 1 
May and 1 October limits that were used in the study), the distributions of monthly mass 
balances would shift somewhat, but still produce the similar seasonal results. The 
advantage of MBM is that it can utilize the seasonal data to reduce equifinality (i.e. 
compensating effects of melt and accumulation is reduced compared to using annal or 
multi-year mass balance). Unfortunately, we do not have data at the monthly time scale 
to validate predictions of any of the models. Lacking such data, the intention behind our 
monthly comparison is to benchmark monthly predictions across models (L239-241). In 
our opinion, the similarity between the monthly distributions in Fig. 9 is strong evidence 
that they do make sense. In addition, we believe the newly added feature importance 
analysis in Appendix C provides support for the physical basis of the monthly 
predictions.  

3.3 Model training and testing 

While in L191-192 you state that “The performance evaluation of MBM on the test 
dataset thus reflects the model’s ability to predict mass balance on glaciers without 
mass balance observations”, you did make sure that the distribution of both targets and 



features in the train versus test dataset are similar. Is this fair? It is no surprise to me that 
your model can predict the mass balance on unseen glaciers ‘as long as they exist in the 
same distribution…’ In reality, you cannot be sure that the target of an unseen glacier fits 
into the distribution of targets in your training dataset, you could only know this for the 
features. 

It is true that we cannot know that the distribution of targets in the dataset reflects the 
distribution of mass balance for all Norwegian glaciers over the time period. As 
emphasized in the manuscript, the goal is to design MBM such that it can predict mass 
balance on all glaciers in Norway. The underlying assumption here is that the dataset 
(features and targets) reflect the true distribution of glaciers in Norway (data is 
identically distributed). As we have argued in the manuscript, the spatiotemporal 
coverage of the dataset used in the study provide a solid representation of the glacier 
population in Norway. Ensuring that the distribution of the training and test datasets are 
similar is not unfair, but reflects that each of these datasets are assumed to be drawn 
from this (unknown) true distribution. This is a common assumption in machine learning 
(together with data independence discussed in the manuscript it forms the independent 
and identically distributed (i.i.d.) assumption) and is why the test performance can be 
seen as reflecting the model’s ability to generalize.   

L215-216: If I understood correctly, the location of the stake measurements is not 
constant throughout the years (since you mention 4170 stake locations, but only up to 
200 annual mass balance measurements per year). I assume that this reflects the 
displacement of a stake due to glacier flow? This usually being only a small 
displacement, I do not expect the topographic features to vary greatly through time. 
Therefore, by splitting the data in the 5-fold cross validation only based on time, I expect 
this to reduce the apparent importance of the topographic features. Have you 
considered this? Would this affect the hyperparameter tuning? 

Our use of the term “stake locations” was confusing and we have specified it to 
combinations of stake locations and years (please see comment on L94). Stakes are 
usually redrilled in approximately the same location and the new location is measured 
using GPS. We would expect a small displacement of the stake over the year, but this 
should be well within the resolution of the DEM we use to extract the topographical 
features (90 m) such that these do not vary greatly for a stake in the same approximate 
location. We do not believe that splitting the data for cross-validation based on time has 
a significant impact on the importance of the topographical features. The topographical 
features are intended to determine the mass balance on a sub-climate model scale and 
their importance will depend on their effect on the model in combination with the 
meteorological features. We tested several ways of splitting the data for cross validation 
(including splits on years and random splitting) and did not find that this had a 
substantial impact on the best hyperparameter combination. In addition, the final 



model (using best hyperparameters) is retrained on the full training dataset, such that 
the final feature importance is determined in this training.  

L231: how is the R2 metric computed? Why are you comparing four different metrics but 
not the MSE that was used in cross-validation? 

The R2 metric is also called the coefficient of determination and is computed as: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑖

∑ (𝑦𝑖 − 𝑦̅)2𝑖
, 

Where 𝑦𝑖 are observed values,  𝑦̂𝑖 are predicted values and 𝑦̅ is the mean of 
observations. The R2 is a measure of the portion of the variance of the data that is 
explained by the model. 

Training the model to minimize the MSE is essentially the same as minimizing the RMSE 
(the RMSE is just the square-root of the MSE, the squared difference observations and  
predictions are minimized in both cases). We provide RMSE instead of MSE as one of the 
four metrics used to evaluate and compare the models because is easier to interpret 
since it has the same units as the predictions (in this case, m w.e.). Overall, the four 
metrics provide complementary information about the fit of the models: bias, explained 
variance and errors (with RMSE giving more weight to outlier errors than MAE).  

4. Mass balance model comparison 

L247: Unclear what “these glaciers” refers to: the whole test dataset, 11 of the 14 
glaciers or the three glaciers referred to in brackets. 

This is a good point and we have now specified that we are referring to the test glaciers.  

L252-L253: is the spatial resolution in table 2 the width/height of the elevation bands? I 
suggest referring to this more explicitly. From what I understand, GloGEM and OGGM 
use a fixed vertical spacing (elevation) while PyGEM uses a horizontal spacing 
(distance). 

We agree that this is important to clarify and have added footnotes to Table 2 explaining 
the difference.  

I am wondering to what extent the resolution of these elevation bands can explain the 
differences in performance of the different models. How does the point elevation at the 
mass balance stakes compare to eg the average elevation of the model elevation 
bands? For instance, if for whatever reason or by coincidence the stakes are typically 
located at the higher end of the elevation bands, this would explain the model 
underestimating the mass balance. 

We agree that the different spatial resolution of the models may affect the results 
somewhat, but we do not believe that this is the main explanation of the difference 



between the models. We would mainly expect this to influence the point mass balance 
comparison (Fig. 6). However, since the overall differences in model performances in the 
glacier-wide comparison (Fig. 7) are similar to those of the point mass balance 
comparison, we do not expect the difference in vertical resolution to be a major 
contributor to these differences. In addition, the vertical resolution of GloGEM and 
OGGM are relatively high, such that the elevation differences would amount to +/- 5 to 
15 meters (see for example first histogram below of vertical distance to nearest bin 
centers for test points using GloGEM bin centers), which we consider to be too small to 
have any major influence on the mass balance. Since PyGEM uses horizontal distances 
along a flowline, the vertical resolution will be higher in flat areas and coarser in steep 
areas on the glacier, such that we would expect that these effects may be more 
influential in steeper parts of the glacier. However, since point mass balance 
measurements are mainly performed on flatter areas due to accessibility, this likely 
does not have a major impact on the point mass balance comparison here. We also 
checked the vertical distance between point measurements at different elevations with 
respect to 100m bins used in Fig. 7 (second histogram below and example plot for 
Langfjordjøkelen). There is a slightly higher frequency of points at +40 m elevation, but 
the bulk of the distribution is around 0 to -20m elevation. Our analysis did not show any 
strong evidence of these differences influencing the comparison. For example, at 850 m 
elevation, point measurements are generally at 30-40m higher elevation than bin 
centers, but nevertheless match quite well with all models (Fig. 7a). 

   

Table 2: Include Tcorr in the list of parameters for GloGEM and include the 
annotation e there. In caption: e only included if no match is found with other parameters 
within predefined bounds. 

Done. 

 

5.2 Model comparison on different spatio-temporal scales 

L297-300: This sentence is confusing and the word ‘glacier-wide’ is often repeated. 
Glacier-wide mass balances are compared on different time scales. You evaluate 
glacier-wide predictions using seasonal and annual glacier-wide observations from 
glaciological records AND you evaluate decadal predictions using glacier-wide 
glaciological and geodetic observations. Reword to: 



“Glacier-wide mass balances are compared in Sect. 5.2.3 on monthly to decadal time 
scales. We evaluate seasonal and annual predictions using observations from 
glaciological records (Kjollmoen et al., 2024), and decadal predictions using 
glaciological and geodetic (Andreassen et al., 2016, 2020; Hugonnet et al., 2021) 
observations.” 

Done. We agree that this improves clarity and thank the reviewer for the suggestion.  

Figure 6: measured --> observed point mass balance 

Changed wording in the caption from “measured” to “observed” to align with the axis 
labels. 

L330-331: In contrast to the glacier evolution models who exhibit too linear gradients, it 
seems that the MBM can predict unlikely variability in the gradients. See for instance the 
knickpoints at higher elevation in Figure 7a and c. These do not seem to correspond to 
the observations (there is no data point at this elevation). Can you explain the 
occurrence of such knickpoints? 

Here, we assume that the reviewer refers to the knickpoints on predicted annual and 
winter mass balance at the highest elevations in Fig. 7a and on predicted annual and 
summer mass balance in Fig. 7c. We expect these to be artefacts of the model due to 
coarsely resolved climate data and the lack of measurements (training data) at higher 
elevations on many glaciers (similar to what can be seen on Tunsbergdalsbreen in Fig. 
11). Such artefacts may be mitigated by higher resolution climate data or extracting 
climate data from a single ERA5-Land cell (instead of using all cells that cover the 
glacier), such as described in Section 6.2.1. However, not all such knickpoints are 
unlikely. For example, for annual and winter mass balance at the highest elevation in Fig. 
7c, point measurements indicate reductions in annual and winter mass balance that the 
models are not able to predict and that are perhaps the result of redistribution of snow 
by wind at higher elevations.  

Figure 7: the almost vertical lines in 7f demonstrate the equifinality issue with the glacier 
evolution models being calibrated with glacier-wide 20-year average geodetic data and 
no way of knowing whether there is a shallow or steep mass balance gradient. 

We agree with this observation and believe that this illustrates the advantage of MBM 
being able to use sparse point mass balance data on different glaciers, compared to 
temperature-index approaches, which are dependent on calibration to observational 
data at the scale of individual glaciers (for which 20-year average geodetic data is 
currently the option). Please see our reply to comment on L414 and reply to general 
comments.  

L371-372: This is a fair point, but the opposite is also true. The predictions by MBM 
correspond better to the glaciological observations because they are trained using this 



data. Even though you test the model on unseen glaciers, you still train the model using 
data with similar variability, while the glacier evolution models are calibrated with a 20-
year average and will never learn the interannual variability. This could be emphasized 
more. 

The specific formulation on L371-372 refers to the rigorousness of the comparison of 
model performances on this specific dataset, not the underlying explanations for why 
performance of the models differ on different spatiotemporal scales. The performance 
comparison on the 20-year geodetic data  is not very rigorous for the glacier evolution 
models since the same data was used to calibrate these models (could be viewed as 
showing MBM’s performance on its training data), as opposed to being an independent 
dataset for MBM. We included a more rigorous comparison at decadal time scales in Fig. 
C4, where the dataset is independent in space and time for MBM and independent in 
time for the glacier evolution models. Thus, we do not agree that the opposite is true with 
respect to MBM since it is always compared on independent data.  However, we realize 
that this was not clear and thank the reviewer for pointing that out. We have 
reformulated the sentence on L371-372 and sentences in  Section 6.1.2 that refer to the 
same, please see excerpts below.   

However, we agree that MBM is better at reconstructing seasonal and annual mass 
balance because it has been trained using this data, while the glacier evolution models 
have not (and cannot use this effectively in large-scale modelling). Please see our reply 
to comment on L414 and reply to general comments. 

 

 



L373-375: Please consider the uncertainties of the geodetic data. I suspect the over- or 
underestimation of the models to still be within the 95% confidence bound of the 
geodetic data. 

We are unsure if this comment refers to inclusion of uncertainty estimates in the Figs. 10 
and C4, or if our consideration of over- or underestimation with respect to the 
uncertainty bounds in Fig. 10 is vague. Since uncertainty in the geodetic mass balance 
from Hugonnet et al. (2021) and geodetic mass balance from NVE (reported 1-sigma 
uncertainties for both datasets) is already shown in Figs. 10 and C4, we assume the 
comment refers to the latter. The specific examples of over- or underestimation 
mentioned here are cases where MBMs predictions are outside the 1-sigma 
uncertainties for both decades in Fig. 10. We have now specified this in the text by 
amending the formulation as follows:  

 

 

Discussion 

L394: How can you be sure that MBM effectively downscales the meteorological data 
instead of relying on the high-resolution topographic features? Is there any way to 
support this statement? A feature importance analysis may have provided more insights 
in this. Alternatively, although this is most probably not within the scope of this 
manuscript, one could have compared the performance of MBM with coarse 
meteorological data + elevation difference to already downscaled meteorological data. 
Or you could have explicitly learned the MBM to downscale climate data using some 
high-resolution climate variable as additional target. It may have been that elevation 
difference “appears” to be important because it is one of the few variables that are 
actually unique for each stake location. Without any support, I question whether you 
can make the statement that MBM effectively downscales. Especially with regards to 
Figure 11. 

The newly added feature importance analysis (Appendix C) shows that elevation 
difference is an important feature, which we would expect since it is the main variable 
that relates the climate data to the resolution of the point measurements. If the 
downscaling was done manually, the elevation difference between the climate model 
and point location would also be very important. Hence, it is It natural that this variable 
is frequently used in MBM and considered important. Monthly temperature and 
precipitation are the most important variables in the winter and summer months, 
respectively (Fig. C2), in addition to elevation difference. We think this indicates that it is 
implicitly used to downscale these variables to the higher-resolution grid. However, we 



agree that the statement we made is perhaps too strong, so we moderated our 
statements in Section 6.1.1. as follows: 

 

We agree that an interesting avenue for future development of MBM is to compare its 
performance for different resolution climate data. Similar work is already ongoing in 
applications to other regions in Europe and we expect MBM to benefit from using higher-
resolution meteorological data. We suggest this in Section 6.2.1, but have now specified 
that higher-resolution meteorological data can clarify the downscaling-capabilities of 
MBM:    

 

L414: I think it is important to distinguish between and not confuse two different assets 
of your model: 1) it can predict mass balances for unmonitored glaciers while the glacier 
evolution models need calibration data for every single glacier, and 2) it is trained with 
seasonal and annual data while the glacier evolution models were only provided on 
single 20-year average value. I think the first point is the big advantage of the MBM and 
this should be highlighted more, while the second point is an artifact of the first. 
Because regular models need data for every glacier it cannot be calibrated with the 
higher temporal resolution data because this is only available for a limited number of 
glaciers. 

We do not completely agree with this reasoning. The reason that MBM can predict 
seasonal mass balance for unmonitored glaciers is specifically because it can be 
trained on seasonal data. For the type of application/ regional modelling of a large set of 
glaciers with sparse in situ measurements: 1) machine learning models can learn 
relationships from data and do not require data specific to a given glacier to learn 
relationships between climate and mass balance on that glacier, while the glacier 
evolution models need calibration data specific to the given glacier to learn these 



relationships. 2) Machine learning models can therefore be trained using sparse, in situ 
data (e.g. point mass balance in this case), while the glacier evolution models rely on 
datasets available for all glaciers (it is true that for the glaciers with glaciological data, 
the glacier evolution model could be calibrated to these specific glaciers, but that option 
does not exist for the vast majority of “unmonitored” glaciers). 3) Since MBM is able to 
use the seasonal data it can improve seasonal predictions compared to the glacier 
evolution models, which cannot use this data effectively.  

To clarify our reasoning we have made several updates to the text throughout the 
manuscript (please see our reply to the general comments), in addition to the following 
changes in the section related to this specific comment:  

 

L451-453: It is unclear what you mean. How does the steep terrain influencing the 
tongue affect the more negative mass balance for steep and south-facing slopes? 

We thank the reviewer for pointing out that this explanation was not clear. The steep 
terrain around the glacier tongue influences the calculation of slope and aspect from the 
DEM, such that the border of the tongue is seemingly steep and southwest-facing (while 
in reality it is flatter and more southeast-facing (like the remainder of the tongue). These 
artefacts in the topographical features influence MBM’s predictions (which are likely too 
negative here). We have changed the formulation in order to clarify this explanation:  

 

L463: In my opinion, it is not necessary a bad thing to assess the capability of your 
model in ‘extrapolating’ to adjacent glaciers. It would be interesting to include a little 
more of your findings regarding the ability to extrapolate in relation to the distance away 
from the nearest ‘seen’ glacier. 

We thank the reviewer for suggesting this interesting analysis that we had not performed. 
We compared the performance of MBM on the test glaciers to the distance between 



each test glacier and the nearest training glaciers. The first figure below shows all the 
test glaciers, while the second figure excludes the two glaciers in northern Norway that 
have large distances to the nearest glacier. Interestingly, the analysis does not show any 
correlation between the distance to the nearest training glacier and test glacier 
performance (which is also what we aim for since spatially correlated errors would 
suggest that our test glaciers are not independent). This is for example also illustrated by 
comparing Figs. D2 i-l (test glaciers in the Folgefonna region). Of these glaciers, the 
glacier in Fig. D2i shows the worst performance, but is the closest to a training glacier 
(around 4 km), while the other glaciers (Figs. Dj-l) show better performance but are up to 
12 km away from the nearest training glacier). We think this analysis suggests that model 
performance on the test glaciers is more closely related to how well the trained model 
captures the relationship between mass balance and meteorological and topographical 
features in different regions of the feature space.  

Based on this finding, we included the following  in Section 6.2.2.:  

 

  

 

  



We thank the reviewer, Brian Kyanjo, for the effort in assessing our manuscript and for 
the positive feedback and suggestions for improvement. We have considered the 
feedback carefully and made several changes to the manuscript in accordance with the 
comments provided. The main improvement is the addition of a feature importance 
analysis in Appendix C (including two new figures, Fig. C1 and C2), where we consider 
and discuss feature importance based on different metrics. In addition, we have made 
several updates to the text in relation to the specific comments. Please see our detailed 
responses below to each of the specific comments. In the following response, reviewer 
comments are indicated in black and our responses are indicated in blue italic font. 

 

Reviewer 2: 

Overall Assessment  

The paper “egusphere-2025-1206” (https://doi.org/10.5194/egusphere-2025-1206) 
presents the Mass Balance Machine (MBM), a machine learning model for predicting 
glacier surface mass balance, trained on a robust dataset of 4,201 point mass balance 
measurements from 32 Norwegian glaciers (1962–2021) using the XGBoost algorithm. 
This work is a significant advancement in glaciology, offering high-resolution predictions 
that outperform traditional models like GloGEM, OGGM, and PyGEM, particularly for 
seasonal mass balances. Its potential for applications in climate change research and 
water resource management is substantial. However, minor refinements in data 
resolution, model transparency, and uncertainty analysis, along with clarifications in 
Appendix A, could elevate its impact. Below, I provide a detailed review of the paper’s 
strengths, areas for improvement, and a focused analysis of Appendix A, including 
specific corrections and broader recommendations.  

Strengths of the Paper  

1. Robust Dataset: The dataset, sourced from the Norwegian Water Resources and 
Energy Directorate (NVE) database, spans nearly six decades and includes 4,201 point 
mass balance measurements across 32 glaciers. The thorough cleaning process, 
detailed in Appendix A, ensures reliability by addressing missing coordinates and 
outliers, resulting in 3,910 annual, 3,929 summer, and 3,751 winter measurements.  

2. Effective Methodology: The use of XGBoost is well-suited for capturing complex 
relationships between weather, terrain, and glacier mass balance. The independent 
glacier-based train-test split enhances the model’s generalizability, making results 
trustworthy.  

3. Superior Performance: MBM demonstrates lower RMSE and bias compared to 
established models, particularly for seasonal predictions. This is evident in figures like 
Fig. 6 and Table D1, which effectively support the text.  



4. Practical Applications: The model’s high-resolution predictions at point and monthly 
scales are valuable for water resource planning and glacier flow modeling in a warming 
climate.  

 

Areas for Improvement  

1. Data Resolution: The ERA5-Land data (9 km resolution) may be too coarse for smaller 
glaciers. Exploring higher-resolution datasets or downscaling techniques could improve 
local accuracy.  

We agree that the resolution of ERA5-Land is coarse compared to the size of the glaciers 
in the dataset. Our intention with using a globally available dataset is that the model can 
easily be adapted to other regions. In addition, ERA5-Land is relatively high resolution 
compared to other globally available datasets. Some higher-resolution climate datasets 
exist for Norway (e.g. the NORA datasets), but these do not cover the entire time period 
of the mass balance measurements. However, in terms of resolution, we believe that 
MBM can, at least to some degree, implicitly downscale the meteorological data to the 
elevation of the point measurements by using the elevation difference feature to 
distinguish between points within the same ERA5-Land cell. This is evidenced by MBM’s 
performance on such data (Figs. 5 and 6) and supported by the newly added feature 
importance analysis. We have elaborated on this in Section 6.1.1: 

 

It would be interesting to compare the performance of the model on other climate 
datasets and different resolutions, and we expect that the performance of both MBM 
and the other models to increase with increasing climate data resolution. We mentioned 
the use of higher-resolution meteorological data already in Section 6.2.1 as an option 
that may improve MBM’s predictions (and limit reliance on high-resolution topographical 
features). We consider this to be out of the scope of the current study, but have 
elaborated some more in Section 6.2.1: 



 

2. Model Transparency: XGBoost’s complexity warrants feature importance analysis or 
partial dependence plots to clarify key drivers of predictions, enhancing interpretability.  

We added a new appendix (Appendix C: Feature importance, please see additions 
below) with a discussion of feature importance based on different methods, including 
two new figures showing overall feature importance in terms of weight and gain on the 
trained model, and monthly permutation feature importance on the test dataset. The 
analysis provides additional insights into the importance of different monthly features in 
seasonal and annual predictions, and we believe that many of the findings support the 
current assessment of MBM’s capabilities.  



 



 

 



3. Uncertainty Quantification: While measurement uncertainties (0.08–0.26 m w.e. a−1) 
are noted, their impact on model outputs is unclear. A sensitivity analysis would 
strengthen confidence in predictions.  

Measurement uncertainties are noted in Appendix A to underline our confidence in the 
quality of the dataset. Since these uncertainties are relatively small, we do not expect 
them to have a major impact on model results or the conclusions in this study. However, 
using other datasets that may be afflicted with substantial uncertainties, such as 
geodetic mass balance based on remote sensing, considering uncertainty in 
observations could be increasingly important (e.g., using uncertainty-aware learning; 
Diaconu et al. (2024)). We added a comment on this in Section 6.3.2: 

 

4. Global Applicability: Testing MBM in diverse regions like the Alps or Himalayas would 
broaden its relevance. A discussion of transferability challenges would be valuable.  

We agree that testing MBM in other regions would clarify its potential and limitations. We 
partly discuss the transferability challenges already on L500-503. Since MBM is 
specifically trained for Norwegian glaciers in the current study, we do not expect it to 
perform equally well in other regions where conditions differ. We thus expect the 
transferability of the current application of MBM (trained on Norwegian glaciers) to be 
limited. We would expect that for larger regions, it would be preferable to retrain MBM 
using additional data. However, in applications it would be interesting to investigate the 
limits of the models transferability to clarify how it can be expected to perform in regions 
with limited data. We consider this to be out of the scope of the current study, but 
ongoing research using MBM is aimed at addressing this particular issue. We have added 
the following to expand on this discussion and highlight needs for future research: 

 

5. Future Directions: The mention of remote sensing data is promising but vague. 
Specifying datasets (e.g., satellite-derived albedo or surface temperature) would clarify 
future enhancements.  

Here, we are referring to mass balance observations from other sources, such as 
satellite-derived geodetic mass balance. We have amended the sentence to specify this. 
We already provide a specific example on line 509-511, but have now also added 
references to additional datasets: “On the other hand, the purely data-driven nature of 



ML approaches makes them uniquely suited to take advantage of the increasing 
availability of remote sensing-based mass balance datasets (e.g., Belart et. al (2017), 
Pelto et al. (2019), Hugonnet et al. (2021), Falaschi et al. (2023)).” Please see references 
at the bottom of the document. 

6. Presentation Polish: Minor typos and awkward sentences, particularly in Appendix A, 
need correction. Additionally, Fig. 10 requires clearer labels for improved readability.  

Please see our response to the comments on Appendix A below. We have checked the 
labels in Fig. 10, but are not sure how these need to be clarified and have thus not made 
any changes to these. 

Detailed Review of Appendix A  

Appendix A details the data quality and cleaning processes for the MBM dataset, critical 
for establishing its reliability. It describes the handling of 4,201 point mass balance 
measurements from the NVE database (accessed 12 October 2022), including the 
removal of erroneous entries and verification of stake locations. Below, I identify specific 
typos and awkward sentences with approximate line numbers (based on sequential 
sentence or paragraph counting) and provide broader recommendations to enhance 
clarity.  

Identified Typos and Awkward Sentences  

1. Line 570: “The total contribution of such uncertainties have been quantified 
0.080.26 m w.e. a−1...”  
• Issue: Subject-verb agreement error; “have” should be “has” for the singular 
subject “The total contribution.”  
• Suggestion: Revise to “The total contribution of such uncertainties has been 
quantified as 0.08–0.26 m w.e. a−1 for five glaciers in our dataset.”  
Done. 
 

2. Line 575: “Prior to training MBM, we performed a thorough cleaning and quality 
check... including removal of erroneous values and points with missing location, 
and a quality check of stake locations.”  
• Issue: Redundant use of “quality check.”  
• Suggestion: Streamline to “Prior to training MBM, we performed thorough 
cleaning and quality checks on the raw point mass balance dataset (4,201 
entries, NVE database, accessed 12 October 2022), removing erroneous values, 
points with missing locations, and verifying stake location accuracy.”  
We removed the redundant “quality check” and revised the sentence according 
to point 1 under “Additional recommendations for Appendix A”. Please see our 
reply to this comment. 
 



3. Line 578: “Approximate locations are based on the approximate position and 
elevation of a given stake ID...”  
• Issue: Repetition of “approximate” is awkward.  
• Suggestion: Revise to “Approximate locations are derived from the estimated 
position and elevation of a given stake ID, whereas exact locations use GPS-
measured position and elevation at the time of measurement.”  
We revised the sentence to: “The approximate location is based on the estimated 
position and elevation of a given stake ID, whereas the exact location is the actual 
position and elevation of the stake at the time of measurement (e.g. measured 
using GPS).” 
 

4. Line 581: “Seven and 23 entries that were missing both exact and approximate 
elevation or geographical coordinates, respectively, were removed...”  
• Issue: Ambiguous phrasing regarding elevation and coordinates.  
• Suggestion: Clarify to “Seven entries missing both exact and approximate 
elevations and 23 entries missing both exact and approximate geographical 
coordinates were removed from the training dataset.”  
We thank the reviewer for the suggestion and have amended the sentence 
accordingly. 
 

5. Line 585: “The mean ± standard deviation of the absolute difference between the 
exact and approximate coordinates and elevations is 166 ± 498 m and 24 ± 71 m, 
respectively.”  
• Issue: Dense phrasing combines measurements, reducing clarity.  
• Suggestion: Split to “The mean ± standard deviation of the absolute difference 
between exact and approximate coordinates is 166 ± 498 m, while for elevations, 
it is 24 ± 71 m.”  
We thank the reviewer for the suggestion and have amended the sentence 
accordingly. 
 

6. Line 589: “For stake locations where both summer, winter and annual mass 
balance measurements were available...”  
• Issue: List lacks an Oxford comma for clarity.  
• Suggestion: Revise to “For stake locations where summer, winter, and annual 
mass balance measurements were all available for a given year...”  
Done. 

Additional Recommendations for Appendix A  

1. Improve Transitions: The shift from uncertainties to data cleaning is abrupt. Add a 
bridging sentence, e.g., “Ensuring dataset quality is crucial for MBM’s accuracy, 
leading to the following cleaning procedures.”  



To improve the transition, we modified the original sentence to: “To ensure the quality of 
MBM's training data, we performed a thorough cleaning and quality check of the raw 
point mass balance dataset (4201 entries, NVE database accessed on 12 October 2022) 
prior to training MBM. This consisted of removing erroneous values and points with 
missing locations, and verifying stake locations.” 

2. Define Technical Terms: Define “point mass balance” (e.g., “measurements of mass 
change at specific glacier locations”) in a footnote or glossary for accessibility.  

This is defined in the introduction (line 35) and we do not find it necessary to introduce 
the term again here. No changes were made. 

3. Clarify Data Sources: Specify that NVE is the Norwegian Water Resources and Energy 
Directorate to aid international readers.  

This is defined on line 93. We find it unnecessary to repeat again in the appendix. No 
changes were made. 

4. Quantify Cleaning Impact: State the total entries removed, e.g., “After cleaning, the 
dataset was reduced from 4,201 to 4,170 stake locations (99.3% retained).”  

The number of entries after cleaning is already summarized on L592. No changes were 
made.  

5. Explain Coordinate Conversion: Justify the UTM to latitude/longitude conversion, e.g., 
“This conversion ensured compatibility with MBM’s input requirements.”  

We amended the sentence to: “Finally, we converted geographical coordinates from 
UTM to latitude and longitude format for compatibility with the feature datasets.” 

6. Justify Erroneous Values: Explain the removal of the 9.99 m w.e. measurement, e.g., 
“This value was unrealistically high for typical regional winter mass balances.”   

We amended the sentence to: “One measurement with erroneous winter mass balance 
(unrealistically high; 9.99~m~w.e.) was removed.” 

7. Quantify Corrections: If available, note the number of rounding error corrections, e.g., 
“In [X] instances, annual mass balances were corrected by summing summer and 
winter components.”  

We included the number of corrections and magnitudes of rounding errors in the 
following sentence: “For stake locations where both summer, winter, and annual mass 
balance measurements were available for a given year, we corrected for rounding errors 
where these were present by replacing annual mass balance values by the sum of 
seasonal values (magnitudes between 0.01–0.03 m w.e.; 255 instances).” 

 



Conclusion  

The “egusphere-2025-1206” paper is a compelling contribution to glaciology, with MBM 
offering high-resolution, accurate predictions for glacier mass balance. Its robust 
dataset, effective methodology, and practical applications make it a valuable tool. Minor 
revisions, including addressing typos in Appendix A, improving data resolution, and 
enhancing model transparency, will further strengthen its impact. Appendix A effectively 
supports the dataset’s reliability but can be polished with clearer transitions, defined 
terms, and quantified impacts. These changes require minimal effort but will 
significantly enhance the paper’s clarity and global relevance.  

Recommendations  

• Accept with Minor Revisions.  

• Specific Actions: 

• Correct the six typos and awkward sentences in Appendix A as suggested. 
• Explore higher-resolution weather data or downscaling for smaller glaciers. 
• Add feature importance or partial dependence plots for model transparency. 
• Conduct a sensitivity analysis to quantify uncertainty impacts. 
• Discuss testing MBM in other regions for global applicability. 
• Specify remote sensing datasets (e.g., albedo, surface temperature) for future 

work. 
• Add a transitional sentence in Appendix A between uncertainties and cleaning. 
• Define “point mass balance” in a footnote or glossary. 
• Clarify NVE as the Norwegian Water Resources and Energy Directorate. 
• Quantify total entries removed during cleaning (e.g., 4,201 to 4,170). 
• Justify UTM to latitude/longitude conversion and the 9.99 m w.e. removal. 
• Note the number of rounding error corrections, if available. 
• Improve Fig. 10 labels for clarity. 
• Include missing DOIs or URLs in the reference section. 

Please see our replies above to the overall assessment and to each of the comments. 
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