We would like to extend our sincere appreciation for the reviewer’s time and dedication
in reviewing our manuscript. We thank the reviewer for the positive remarks and for
thoughtful and constructive comments. In the following response, reviewer comments
are indicated in black and our responses are indicated in blue italic font.

Reviewer 1

The paper by Sjursen et al. introduces the Mass Balance Machine (MBM), a machine
learning-based model build on XGBoost, to improve seasonal and annual glacier mass
balance predictions across Norway. Using ~4000 in-situ seasonal and annual point
measurements from 32 glaciers between 1962 and 2021, the authors demonstrate that
the model can generalize well across unmonitored glaciers with diverse climatic
settings. MBM outperforms traditional temperature-index glacier evolution models
(GloGEM, OGGM, and PyGEM) particularly in predicting seasonal mass balance,
reducing RMSE by up to 46% (winter) and 25% (summer). The model performance is
robust across multiple spatial and temporal scales, showing strong potential for
enhancing hydrological predictions and climate impact assessments in glacierized
regions.

I think the MBM is a very promising addition to the traditional glacier evolution models.
However, at first instance after reading the manuscript | was questioning to what extent
the comparison between MBM and the other models is fair because they are based on
different datasets (glaciological versus geodetic) that exhibit very different
characteristics. See for instance the recent papers by the GlaMBIE team (2025) and
Dussaillant (preprint) who compare and combine different mass balance data

sources. It seems obvious that when comparing to data of type A (which model A is
trained with) model A outperforms model B (which is calibrated with data of type B). |
was wondering to what extent the authors are comparing models instead of differences
between datasets.

Nevertheless, | believe that the fact that the MBM can be trained with the glaciological
data and still predict mass balances for unseen glaciers is its key advantage compared
to traditional models. | would recommend the authors to emphasize this more and not
jump to “straight-forward” conclusions too fast (such as: the MBM is better at seasonal
predictions. Yes, itis, butitis also the only model that has seen seasonal data). In
addition, | would like to see more support for the selection of features and feature
importance.

The manuscript is very well written, and the language is of a high standard. Occasionally,
the readability is somewhat reduced by excessive sentence length and accumulation of
complex terminology. This particularly applies to the introduction, see an example
below. The analysis is well described, and the figures are of high quality.



Allin all, | deem the manuscript fit for publication after a major revision. The suggested
changes require minimal additional analyses and some textual considerations. Please
consider the more detailed list of suggestions below.

We have carefully considered the comments and made several improvements to the
manuscript in accordance with the suggestions. Here, we provide a reply to the general
comments and summarize the main changes in the revised manuscript. Below, we
provide a point-by-point response to the each of the specific comments.

The reviewer highlights that the key advantage of MBM is that it can be trained on
glaciological data and therefore can predict mass balance on unmonitored glaciers. This
is our view as well. Our intention is to highlight that this capability, which temperature-
index approaches are currently lacking at large scales, is exactly what MBM can offer
(e.g. in the abstract we highlight the potential of ML to learn relationships that are
transferable in space and time, MBMs ability to generalize from sparse data to unseen
test glaciers, i.e. unmonitored glaciers). Our conclusion does not suggest that
temperature-index approaches cannot perform as well or better than MBM on specific
glaciers ifthey are calibrated using the same data as MBM. Our analysis focuses on the
specific application of large-scale (i.e. regional modelling) where glacier evolution
models based on temperature-index approaches, that rely on glacier-specific
calibration, do not have this option (since most glaciers are unmonitored). In this setting,
our results clearly show that MBM outperforms the other models on seasonal
predictions, precisely because it does not rely on glacier-specific data and therefore has
the ability to leverage the seasonal data. Regarding the fairness of the comparison, we
believe that it is fair that the models are compared according to their capabilities on the
specific application, i.e. their ability to predict mass balance on unmonitored glaciers in
a large-scale context. This includes their advantages and limitations with respect to their
ability to leverage existing data, as explained above.

We thank the reviewer for pointing out that our reasoning was not clear. We have
simplified the language in the abstract and introduction, considering the provided
comments to highlight the context of the comparison. In addition, we have amended
several formulations throughout the text to clarify our reasoning and address the
concerns that have been raised in the general and specific comments. Please consider
the suggested excerpts below:

Abstract:

Abstract. Glacier evolution models based on temperature-index approaches are commonly used to assess hydrological impacts

of glacier changes. However, i
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current model calibration frameworks cannot efficiently transfer information from sparse high-resolution observations —Hsitine
across glaciers. This limits their ability to resolve seasonal mass changes on unmonitored glaciers in large-scale applications.




Introduction:

In recent years, the use of machine learning (ML) to model glacier mass balance has emerged as a promising approach to
address some of the limitations of temperature-index approaches (Steiner et al., 2005; Bolibar et al., 2020, 2022; Anilkumar
et al., 2023: Guidicelli et al., 2023; Diaconu and Gottschling, 2024; van der Meer et al., 2025). ML models generalise patterns

60 from training data and apply them to make accurate inferences on new, independent data Ml-—smedels can thus utilise mass
balance-observationsfrom-differentglaciersto-They can thus learn statistical relationships between mass balance components
and topographical and meteorological variables that are transferable across space and time, including to unsurveyed glaciers

75 balance to assess precipitation biases in climate reanalysis products (Guidicelli et al_, 2023). Generalising from seasonal and

annual point mass balance measurements preserts-afropporkH Hprere e prattemtemperresohitte astrbarnee

o

estimates-offers the potential to provide high temporal resolution distributed mass balance predictions on unmonitored glaciers,

ultimately enhaneing-the-aeenrsey-of-improving runoff predictions from glacierised caichments. Moreover, the advantages and

80 would clarify how ML-based mass balance models could serve as a useful and complementary tool to enhance the accuracy of
glacier mass balance predictions.

85 This study aims to evaluate the ability of an ML model to generalise spatio-temporal information across glaciers using
seasonal and annual point mass balance measurements, with the goal of providing accurate, high-resolution predictions of
a data-driven mass balance model based on eXtreme Gradient Boosting (XGBoost: Chen and Guestrin, 2016), capable of re-
constructing surface mass balance up to a point scale and monthly temporal resolution for independent glaciers with diverse
90 configurations and climatic settings across Norway. Herein, we demonstrate how MBM can incorporate observations at dif-
ferent temporal scales (seasonal and annual) in training and be customised to generate predictions at an even finer (monthly)
temporal resolution. To assess the potential of MBM to improve glacier mass balance estimates on unmonitored glaciers, we
compare its performance with state-of-the-art large-scale glacier evolution models that rely on temperature index approaches
95 Evolution Model (GloGEM: Huss and Hock, 2015), the Open Global Glacier Model (OGGM: Maussion et al., 2019) and the
Python Glacier Evolution Model (PyGEM: Rounce et al., 2023). Modelled mass balances are compared to observations at




Discussion:

430
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The ability of MBM to reconstruct winter and summer mass balance on independent glaciers highlights its-advantasein

3 ge: 3 the test glaciers cannot be
considered independent in the same respect as for MBM (each test glacier is individually calibrated). Meanwhile, for MBM, the
test glaciers serve as independent performance measures across all spatio-temporal scales. Consequently, MBM's performance
solely reflects its capacity to generalise to unmonitored glaciers across varying conditions.

Given the-ealibration-of-that the glacier evolution models calibrate parameters for each test glaciers with decadal geodetic
mass balance rates from Hugonnet et al. (2021), it is unsurprising that their correspondence to these observations is better than
MBM (Fig. 10), which : e : ionsH HHHE

since elevation-change rates from Hugonnet et al. (2021) have been found to be substantially lower than those from repeat

has not employed data from any of these glaciers. However,

airborne laser scanning (LiDAR) surveys in Norway (two glaciers, one of which is Austdalsbreen: Fig. 10h; Andreassen et al.,
2023). The quality of these geodetic observations, therefore, likely varies between glaciers. For example, for Trollbergdalsbreen
(Fig. 10d) MBM shows good performance on point mass balance (Fig. D2d), suggesting that the discrepancy between models

may be due to a positive bias in geodetic mass balance from Hugonnet et al. (2021). On the other hand, for Svartisheibreen

hydrological applications, especially in glacierised catchments where seasonal observations for glacier-specific calibration of
other models are lacking. Another promising application of MBM is to generate distributed mass balance predictions as input

approaches present novel tools for reconciling mass balance estimates from the growing archive of glacier observations, since

their flexibility allows for integration of datasets at different spatio-temporal scales in training. We have demonstrated one such

data as well as growing observational resources from satellite remote sensing to enhance glacier mass balance estimates. In
light of our findings, we argue that ML models have significant unexplored potential in glacier mass balance modelling that

warrants further investigation.




Conclusion:

The predictions of MBM were compared to established large-scale glacier evolution models GloGEM. OGGM and PyGEM
applied at a regional scale and using current state of the art calibration frameworks. Whie-medelsshowed-similarperformanee
ofraffta-massbatanee-MBM was superior in predicting seasonal mass balance both at point and glacier-wide scales. This

560 success can be attributed to MBM's ability to effectively transfer information from relatively sparse seasonal point mass balance

situ observations.

In addition to textual changes, we have added a new appendix with analysis of feature
importance (Appendix C), as suggested by the reviewer. This includes additional figures
(Figs. C1 and C2) using different methods to assess feature importance and discussion
of the findings. In addition, we have expanded on our reasoning behind feature selection,
as requested by the reviewer. Please see our detailed responses below to each of the
specific comments and suggested changes.

Again, we would like to express our gratitude to the reviewer for their time and valuable
feedback. We believe the suggested changes have significantly improved the
manuscript.

Abstract

L9: To assess the advantage MBM'’s generalization capabilities, --> To assess the
advantage of MBM'’s generalization capabilities,

Done.
1. Introduction

L39-42: Despite significant efforts ... unmonitored glaciers. This is one such example of
a rather long and complex sentence that reduces readability.

We have amended the formulations at the end of this paragraph and the beginning of the
next paragraph to increase readability:



(around 0.02% of the worlds glaciers; WGMS, 2023). The scarcity of glacier-specific observations has historically posed a ma-

models (DEMs) over decadal time scales (e.g. Dussaillant et al., 2019; Shean et al., 2020; Hugonnet et al_, 2021). Most large-

L67: the fact that point mass balance measurements from glaciological surveys consist
of stake measurements hasn’t been introduced yet. It is a minor detail, but rewording
“each individual stake” to e.g. “each individual mass balance stake” would improve
clarity.

This is introduced already on line 35.

L72: The term ‘generalising’ has been used throughout the manuscript but at this point it
was unclear to me what you mean by “Generalising from seasonal and annual point
mass balance measurements”. | now understand that you refer to the generalisation of
distributed measurements on different glaciers (spatially), but here the emphasize
seems to be on the seasonal versus annual time scales.

We refer to both spatial and temporal generalisation. We introduce this concept on L56-
60, but our formulation was perhaps unclear. We have amended the formulation on L56-
60 to improve readability and highlight that we refer to both space and time: “ML models
generalise patterns from training data and apply them to make accurate inferences on
new, independent data. They can thus learn statistical relationships between mass
balance components and topographical and meteorological variables that are
transferable across space and time, including to unsurveyed glaciers and years (e.g.
Guidiciellietal., 2023).” On L72, the reference to spatial generalization was implicit in
our use of “generalizing from .. point” and “high spatio-temporal resolution”. However,
we have amended the sentence to clarify that we mean generalization both in space and
time: “Generalising from seasonal and annual point mass balance measurements offers
the potential to provide high temporal resolution distributed mass balance predictions
on unmonitored glaciers, ultimately improving runoff predictions from glacierised
catchments.”

2. Mass balance dataset and study area

L94: To reduce potential confusion regarding the numbers 4170 vs 3910/3929/3751, you
may change “4170 stake locations” to “4170 unique stake locations”.

We agree that this is confusing and thank the reviewer for highlighting this since it is
important information. The number 4170 refers to unique combinations of stake



locations and years. We think the best term to use is “4170 stakes”, but specify what we
mean by the term by amending the formulation as follows:

etal., 2024), to train MBM. The dataset contains measurements at 4170 stake-toeationsstakes (unique combinations of locations
100 and years) on 32 individual glaciers on the Norwegian mainland (3082/1088 stake-leeations-siakes on 22/10 glaciers in south-
ern/northern Norway: Fig. 1)end-includes—, Each of the 4170 stakes has between one and three readings (annual. summer

and/or winter), totalling 3910 annual, 3929 summer and 3751 winter point mass balance measurements (esvesing-over the

We have amended this throughout the manuscript, referring to stakes and point
measurements rather than stake locations.

3. The Mass Balance Machine (MBM)

L116: including the design of an independent test dataset.
Done.

3.2 Model targets and features

Feature selection, collinearity, and feature importance: | support your choice of
refraining from using climate derivates such as snow depth and snow cover, but | still
wonder how you came to this exact choice of climate features. Sensible and latent heat
fluxes also depend on other meteorological variables, such as temperature and
humidity. Why didn’t you for instance use humidity directly? Have you assessed the
collinearity within your feature space? | suggest to either include a collinearity
assessment in your paper (appendix) or include a statement that this is not relevant or
negligible depending on your findings. What made you decide to use net thermal
radiation but downward solar radiation? Considering variables like the albedo makes
sense based on physical relevance, but how meaningfulis the albedo at the 9 km
resolution of ERA5-land? In addition, | suspect many point measurements to be inside a
single ERA5-land grid cell causing nearest neighbor interpolation to result in non-unique
features.

Since you haven’t assessed feature importance in your study (or at least not presented
in this manuscript), | suggest including more information on your reasoning and

considerations in the selection of climate features. To my knowledge, XGBoost returns
feature importance of variables, and it would be feasible to include this analysis in the

paper.

The selection of features attempts to find a middle ground between including relevant
variables for accumulation and melt, while keeping the number of variables low enough
such that the results are explainable in terms of the main components of the energy
balance and the meteorological variables that are considered the main drivers of mass
balance variability in Norway (temperature and precipitation). Some collinearity
between the meteorological variables is inevitable, for example temperature with



sensible and latent heat fluxes, skyview factor with slope. In our experience, including
additional features did not significantly affect the model performance (possibly due to
collinearity). For example, using u- and v-components of the wind speed did not improve
the model. We do not expectinclusion of humidity to do so either, especially when
already including heat fluxes and precipitation (which we also expect is strongly
correlated with this variable).

We modified the explanation (first paragraph of Appendix A2) behind the selection of
features as follows:

Our choice of meteorological features is based on

f=}

. precipitation and temperature for modelling accumulation). We

considered the main drivers of mass balance in Norwa
intentionally refrained from using high-level variables that are derived from meteorological conditions, such as snow depth,
snow cover and snow melt. The reason behind this is that many meteorological variables in ERA5-Land are highly correlated
and mask the underlying meteorological drivers. For example, snow depth and snow melt are highly correlated with total pre-
cipitation and 2 m air temperature, respectively. We found that sueh-variables-mask-the-underlying-meteorologieal-drivers—As
a-ihustration—when including snow depth as a feature, the-total precipitation becomes redundant, although it is an impor-

tant driver of the evolution of the snow pack. We-In addition, we did not see a noticeable difference in performance when

using a larger set of derived variables andtherefere--or additional meteorological variables (such as wind speed components).

Therefore, we opted not to use them both for clarity and simplicity.

The addition of a feature importance analysis is an excellent addition and we thank the
reviewer for suggesting this. We added a new appendix (Appendix C: Feature
importance) with a discussion of feature importance based on different methods,
including two new figures showing overall feature importance in terms of weight and gain
on the trained model, and monthly permutation feature importance on the test dataset.
The analysis provides additional insights into the importance of different monthly
features in seasonal and annual predictions, and we believe that many of the findings
support the current assessment of MBM’s capabilities. We suggest the following
additional Appendix C2, including Figures C1 and C2:




Appendix C: Feature importance

We performed a feature importance analysis on MBM to investigate the importance of different variables on MBM's perfor-
mance. Since feature importance is complex to interpret and is not adequately represented by any single metric, we based our
assessment on different metrics. We calculated weight and gain scores, which represent the total number of times a feature is
used in splitting the data in a node and the average improvement in model performance (sum of loss change for each split)
in splits where a feature is used, respectively. To complement this analysis, we computed monthly permutation importance
for each feature. This involves consecutively permuting (shuffling) the values of each feature, breaking the relationship be-
tween the feature and prediction, and assessing the resulting change in model performance. For a given feature and month, the
performance change thus represents the effect of feature permutation on the seasonal and annual predictions.

Temperature is overall the most frequently used feature in the trained model (12m; Fig. Cla). It also scores highest in terms
of gain, followed by elevation difference and downward surface solar radiation {elev_diff and ssrd, respectively: Fig. Clb).
The importance of temperature according to the weight and gain scores is not surprising given that both accumulation and melt
are strongly influenced by this variable. The combination of lower gain but relatively similar weight of the remaining features
may suggest that these are generally used at lower levels of the tree structures, e.g. to distinguish between smaller variability
in mass balance for points on the same glacier.

Considering monthly permutation feature importance, elevation difference is an important feature in all months (Fig. C2).
In mid-winter (Dec—Mar) total precipitalion is the most important feature (tp; Fig. C21 and a—c) and also relatively impor-
tant compared to other meteorological variables in the transition months April, October and November (Fig. C2d, j and k,
respectively). This aligns with the fact that solid precipitation is the main contribution to accumulation on glaciers in Norway.
In addition, precipitation is likely a key variable in explaining the substantial differences in winter mass balance rates across
climatic regions in Norway.

Temperature is the main influence on model performance in the summer season (May—Sep; Fig. C2e—i). In addition, down-
ward solar radiation and forecast albedo are important in May and June (Fig. C2e and f, respectively), which is consistent with
the onset of snowmelt and subsequent changes in albedo. Although albedo is coarsely resolved, it may provide larger-scale geo-
graphical information about changes in snow cover, which may be why it is also considered somewhat important in mid-winter
months. The transition months April and October show less clear importance between meteorological variables (Fig. C2d and
j. respectively ). This may be because the timing of transitions between seasons varies with latitude, e.g. glaciers in northern
Norway may receive a fair amount of snow in April and October.

We caution against placing too much emphasis on the specific details of the feature importance analysis. For example,
when assessing permutation importance, correlated features (i.e. skyview factor and slope) may appear to be less important
since, even if one feature is permuted, the model can rely on a second correlated feature. However, the main findings of the
feature importance analysis presented here are consistent across metrics and physically meaningful with respect 1o the main

meteorological drivers of mass balance on Norwegian glaciers.
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Figure C1. Feature importance on trained model in terms of (a) weight and (b) gain (t2m: 2 m air temperature, sshf: surface sensible heat

flux, slhf: surface latent heat flux, ssrd: downward surface solar radiation, fal: forecast albedo, sir: net surface thermal radiation, tp: total

precipitation, elev_diff: elevation difference between climate model and stake, svf: skyview factor). Weight represents the total number of

times a feature is used to split the data, summed over all trees. Gain represents the average improvement in model performance (sum of loss

change for each split over all trees) in splits which use the given feature. Shaded grey, white and blue background indicates meteorological

features, topographical features and elevation difference feature, respectively.
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Figure C2. Monthly permutation feature importance on the test dataset (12m: 2 m air temperature, sshf: surface sensible heat flux, slhf:

surface latent heat flux, ssrd: downward surface solar radiation, fal: forecast albedo, str: net surface thermal radiation, tp: total precipitation,

elev_diff: elevation difference between climate model and stake, svf: skyview factor). Each feature is permuted on a monthly basis and the

resulting change in model performance is computed with respect to the seasonal and annual targets. Shaded grey, white and blue background

indicates meteorological features, topographical features and elevation difference feature, respectively.




Itis true that many point measurements are within a single ERA5-Land cell, such that
features are in many cases non-unique on the same glacier and month. This is where the
elevation difference feature and topographical features become important. These are
unique to the given stake location and helps the model to reconstruct mass balance in a
sub-climate model resolution. With regards to the albedo, we agree that a resolution of
9km is too coarse to resolve variations in albedo on the glacier. However, we included
albedo since it may provide information about snow cover conditions on larger
geographical scales (i.e. fresh or wet snow). In our opinion, this is supported by the
feature importance analysis (importance of albedo in winter months and transition
seasons). When including the albedo as a feature we believe it is more physically
accurate to combine this with downward solar radiation instead of net solar radiation.

L163-166: It is unclear to me how your model learns to predict monthly variability in
mass balance. How can you be sure that the monthly predictions make sense? Since
there is never any overlap in your seasonal mass balance measurements,

couldn’t equifinality still play a role?

The model learns monthly variability by considering the monthly meteorological data to
make predicting monthly mass balance predictions, which are aggregated and
evaluated on the seasonal and annual time scales (Fig. 4). In a sense, this is similar to
how temperature-index models make monthly predictions and are calibrated: they are
provided monthly meteorological data and predictions are aggregated to the temporal
resolution of the observations before they are compared. We agree that there is certainly
a chance that equifinality plays some role in MBM, in terms of monthly predictions
compensating each other on the seasonal time scale. For example, we would expect
that if flexible dates were used to define summer and winter seasons (instead of the 1
May and 1 October limits that were used in the study), the distributions of monthly mass
balances would shift somewhat, but still produce the similar seasonal results. The
advantage of MBM is that it can utilize the seasonal data to reduce equifinality (i.e.
compensating effects of melt and accumulation is reduced compared to using annal or
multi-year mass balance). Unfortunately, we do not have data at the monthly time scale
to validate predictions of any of the models. Lacking such data, the intention behind our
monthly comparison is to benchmark monthly predictions across models (L239-241). In
our opinion, the similarity between the monthly distributions in Fig. 9 is strong evidence
that they do make sense. In addition, we believe the newly added feature importance
analysis in Appendix C provides support for the physical basis of the monthly
predictions.

3.3 Model training and testing

While in L191-192 you state that “The performance evaluation of MBM on the test
dataset thus reflects the model’s ability to predict mass balance on glaciers without
mass balance observations”, you did make sure that the distribution of both targets and



features in the train versus test dataset are similar. Is this fair? It is no surprise to me that
your model can predict the mass balance on unseen glaciers ‘as long as they exist in the
same distribution...’ In reality, you cannot be sure that the target of an unseen glacier fits
into the distribution of targets in your training dataset, you could only know this for the
features.

It is true that we cannot know that the distribution of targets in the dataset reflects the
distribution of mass balance for all Norwegian glaciers over the time period. As
emphasized in the manuscript, the goalis to design MBM such that it can predict mass
balance on all glaciers in Norway. The underlying assumption here is that the dataset
(features and targets) reflect the true distribution of glaciers in Norway (data is
identically distributed). As we have argued in the manuscript, the spatiotemporal
coverage of the dataset used in the study provide a solid representation of the glacier
population in Norway. Ensuring that the distribution of the training and test datasets are
similar is not unfair, but reflects that each of these datasets are assumed to be drawn
from this (unknown) true distribution. This is a common assumption in machine learning
(together with data independence discussed in the manuscript it forms the independent
and identically distributed (i.i.d.) assumption) and is why the test performance can be
seen as reflecting the model’s ability to generalize.

L215-216: If | understood correctly, the location of the stake measurements is not
constant throughout the years (since you mention 4170 stake locations, but only up to
200 annual mass balance measurements per year). | assume that this reflects the
displacement of a stake due to glacier flow? This usually being only a small
displacement, | do not expect the topographic features to vary greatly through time.
Therefore, by splitting the data in the 5-fold cross validation only based on time, | expect
this to reduce the apparent importance of the topographic features. Have you
considered this? Would this affect the hyperparameter tuning?

Our use of the term “stake locations” was confusing and we have specified it to
combinations of stake locations and years (please see comment on L94). Stakes are
usually redrilled in approximately the same location and the new location is measured
using GPS. We would expect a small displacement of the stake over the year, but this
should be well within the resolution of the DEM we use to extract the topographical
features (90 m) such that these do not vary greatly for a stake in the same approximate
location. We do not believe that splitting the data for cross-validation based on time has
a significant impact on the importance of the topographical features. The topographical
features are intended to determine the mass balance on a sub-climate model scale and
theirimportance will depend on their effect on the model in combination with the
meteorological features. We tested several ways of splitting the data for cross validation
(including splits on years and random splitting) and did not find that this had a
substantial impact on the best hyperparameter combination. In addition, the final



model (using best hyperparameters) is retrained on the full training dataset, such that
the final feature importance is determined in this training.

L231: how is the R2 metric computed? Why are you comparing four different metrics but
not the MSE that was used in cross-validation?

The R? metric is also called the coefficient of determination and is computed as:
B 2y — 97

iy =¥
Where y; are observed values, y; are predicted values and y is the mean of

observations. The R? is a measure of the portion of the variance of the data that is
explained by the model.

R*=1

Training the model to minimize the MSE is essentially the same as minimizing the RMSE
(the RMSE is just the square-root of the MSE, the squared difference observations and
predictions are minimized in both cases). We provide RMSE instead of MSE as one of the
four metrics used to evaluate and compare the models because is easier to interpret
since it has the same units as the predictions (in this case, m w.e.). Overall, the four
metrics provide complementary information about the fit of the models: bias, explained
variance and errors (with RMSE giving more weight to outlier errors than MAE).

4. Mass balance model comparison

L247: Unclear what “these glaciers” refers to: the whole test dataset, 11 of the 14
glaciers or the three glaciers referred to in brackets.

This is a good point and we have now specified that we are referring to the test glaciers.

L252-1253: is the spatial resolution in table 2 the width/height of the elevation bands? |
suggest referring to this more explicitly. From what | understand, GloGEM and OGGM
use a fixed vertical spacing (elevation) while PyGEM uses a horizontal spacing
(distance).

We agree that this is important to clarify and have added footnotes to Table 2 explaining
the difference.

| am wondering to what extent the resolution of these elevation bands can explain the
differences in performance of the different models. How does the point elevation at the
mass balance stakes compare to eg the average elevation of the model elevation
bands? For instance, if for whatever reason or by coincidence the stakes are typically
located at the higher end of the elevation bands, this would explain the model
underestimating the mass balance.

We agree that the different spatial resolution of the models may affect the results
somewhat, but we do not believe that this is the main explanation of the difference



between the models. We would mainly expect this to influence the point mass balance
comparison (Fig. 6). However, since the overall differences in model performances in the
glacier-wide comparison (Fig. 7) are similar to those of the point mass balance
comparison, we do not expect the difference in vertical resolution to be a major
contributor to these differences. In addition, the vertical resolution of GloGEM and
OGGM are relatively high, such that the elevation differences would amountto +/- 5 to
15 meters (see for example first histogram below of vertical distance to nearest bin
centers for test points using GIoGEM bin centers), which we consider to be too small to
have any major influence on the mass balance. Since PyGEM uses horizontal distances
along a flowline, the vertical resolution will be higher in flat areas and coarser in steep
areas on the glacier, such that we would expect that these effects may be more
influential in steeper parts of the glacier. However, since point mass balance
measurements are mainly performed on flatter areas due to accessibility, this likely
does not have a major impact on the point mass balance comparison here. We also
checked the vertical distance between point measurements at different elevations with
respectto 100m bins used in Fig. 7 (second histogram below and example plot for
Langfjordjokelen). There is a slightly higher frequency of points at +40 m elevation, but
the bulk of the distribution is around 0 to -20m elevation. Our analysis did not show any
strong evidence of these differences influencing the comparison. For example, at 850 m
elevation, point measurements are generally at 30-40m higher elevation than bin
centers, but nevertheless match quite well with all models (Fig. 7a).
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Table 2: Include Tcorr in the list of parameters for GlLOGEM and include the
annotation © there. In caption: ¢ only included if no match is found with other parameters
within predefined bounds.

Done.

5.2 Model comparison on different spatio-temporal scales

L297-300: This sentence is confusing and the word ‘glacier-wide’ is often repeated.
Glacier-wide mass balances are compared on different time scales. You evaluate
glacier-wide predictions using seasonal and annual glacier-wide observations from
glaciological records AND you evaluate decadal predictions using glacier-wide
glaciological and geodetic observations. Reword to:



“Glacier-wide mass balances are compared in Sect. 5.2.3 on monthly to decadal time
scales. We evaluate seasonal and annual predictions using observations from
glaciological records (Kjollmoen et al., 2024), and decadal predictions using
glaciological and geodetic (Andreassen et al., 2016, 2020; Hugonnet et al., 2021)
observations.”

Done. We agree that this improves clarity and thank the reviewer for the suggestion.
Figure 6: measured --> observed point mass balance

Changed wording in the caption from “measured” to “observed” to align with the axis
labels.

L330-331: In contrast to the glacier evolution models who exhibit too linear gradients, it
seems that the MBM can predict unlikely variability in the gradients. See for instance the
knickpoints at higher elevation in Figure 7a and c. These do not seem to correspond to
the observations (there is no data point at this elevation). Can you explain the
occurrence of such knickpoints?

Here, we assume that the reviewer refers to the knickpoints on predicted annual and
winter mass balance at the highest elevations in Fig. 7a and on predicted annual and
summer mass balance in Fig. 7c. We expect these to be artefacts of the model due to
coarsely resolved climate data and the lack of measurements (training data) at higher
elevations on many glaciers (similar to what can be seen on Tunsbergdalsbreen in Fig.
11). Such artefacts may be mitigated by higher resolution climate data or extracting
climate data from a single ERA5-Land cell (instead of using all cells that cover the
glacier), such as described in Section 6.2.1. However, not all such knickpoints are
unlikely. For example, for annual and winter mass balance at the highest elevation in Fig.
7¢, point measurements indicate reductions in annual and winter mass balance that the
models are not able to predict and that are perhaps the result of redistribution of snow
by wind at higher elevations.

Figure 7: the almost vertical lines in 7f demonstrate the equifinality issue with the glacier
evolution models being calibrated with glacier-wide 20-year average geodetic data and
no way of knowing whether there is a shallow or steep mass balance gradient.

We agree with this observation and believe that this illustrates the advantage of MBM
being able to use sparse point mass balance data on different glaciers, compared to
temperature-index approaches, which are dependent on calibration to observational
data at the scale of individual glaciers (for which 20-year average geodetic data is
currently the option). Please see our reply to comment on L414 and reply to general
comments.

L371-372: This is a fair point, but the opposite is also true. The predictions by MBM
correspond better to the glaciological observations because they are trained using this



data. Even though you test the model on unseen glaciers, you still train the model using
data with similar variability, while the glacier evolution models are calibrated with a 20-
year average and will never learn the interannual variability. This could be emphasized
more.

The specific formulation on L371-372 refers to the rigorousness of the comparison of
model performances on this specific dataset, not the underlying explanations for why
performance of the models differ on different spatiotemporal scales. The performance
comparison on the 20-year geodetic data is not very rigorous for the glacier evolution
models since the same data was used to calibrate these models (could be viewed as
showing MBM'’s performance on its training data), as opposed to being an independent
dataset for MBM. We included a more rigorous comparison at decadal time scales in Fig.
C4, where the dataset is independent in space and time for MBM and independent in
time for the glacier evolution models. Thus, we do not agree that the opposite is true with
respect to MBM since it is always compared on independent data. However, we realize
that this was not clear and thank the reviewer for pointing that out. We have
reformulated the sentence on L371-372 and sentences in Section 6.1.2 that refer to the
same, please see excerpts below.

However, we agree that MBM is better at reconstructing seasonal and annual mass
balance because it has been trained using this data, while the glacier evolution models
have not (and cannot use this effectively in large-scale modelling). Please see our reply
to comment on L414 and reply to general comments.

In general, glacier evolution models show a better correspondence with decadal geodetic mass balance rates from satellite-
derived DEMs (Hugonnet et al., 2021), which is unsurprising given that these-ebservationsare-usedinr-medelealibrationcach

430 The glacier evolution models, on the other hand, do not currently use sparse in situ data in their calibration. On annual mass
28 g Y the test glaciers cannot be

considered independent in the same respect as for MBM (each test glacier is individually calibrated). Meanwhile, for MBM, the
435 test glaciers serve as independent performance measures across all spatio-temporal scales. Consequently, MBM’s performance

solely reflects its capacity to generalise to unmonitored glaciers across varying conditions.

MBM (Fig. 10), which se-obs ;
440 weapproach-thiseomparison-eantioustycaution should be taken in interpreting results of this comparison for specific glaciers.

since elevation-change rates from Hugonnet et al. (2021) have been found to be substantially lower than those from repeat

airborne laser scanning (LiDAR) surveys in Norway (two glaciers, one of which is Austdalsbreen: Fig. 10h: Andreassen et al.,
2023). The quality of these geodetic observations, therefore, likely varies between glaciers. For example, for Trollbergdalsbreen

(Fig. 10d) MBM shows good performance on point mass balance (Fig. D2d), suggesting that the discrepancy between models

445 may be due to a positive bias in geodetic mass balance from Hugonnet et al. (2021). On the other hand, for Svartisheibreen




L373-375: Please consider the uncertainties of the geodetic data. | suspect the over- or
underestimation of the models to still be within the 95% confidence bound of the
geodetic data.

We are unsure if this comment refers to inclusion of uncertainty estimates in the Figs. 10
and C4, or if our consideration of over- or underestimation with respect to the
uncertainty bounds in Fig. 10 is vague. Since uncertainty in the geodetic mass balance
from Hugonnet et al. (2021) and geodetic mass balance from NVE (reported 1-sigma
uncertainties for both datasets) is already shown in Figs. 10 and C4, we assume the
comment refers to the latter. The specific examples of over- or underestimation
mentioned here are cases where MBMs predictions are outside the 1-sigma
uncertainties for both decades in Fig. 10. We have now specified this in the text by
amending the formulation as follows:

Specifically, MBM overestimates geodetic mass balance for Bondhusbrea, M@sevassbrea and Blomstglskardsbreen (Fig. 10i, k
and 1, respectively) and underestimates for Langfjordjgkelen and Trollbergdalsbreen (Fig. 10a and d, respectively) when com-

Discussion

L394: How can you be sure that MBM effectively downscales the meteorological data
instead of relying on the high-resolution topographic features? Is there any way to
support this statement? A feature importance analysis may have provided more insights
in this. Alternatively, although this is most probably not within the scope of this
manuscript, one could have compared the performance of MBM with coarse
meteorological data + elevation difference to already downscaled meteorological data.
Oryou could have explicitly learned the MBM to downscale climate data using some
high-resolution climate variable as additional target. It may have been that elevation
difference “appears” to be important because it is one of the few variables that are
actually unique for each stake location. Without any support, | question whether you
can make the statement that MBM effectively downscales. Especially with regards to
Figure 11.

The newly added feature importance analysis (Appendix C) shows that elevation
difference is an important feature, which we would expect since it is the main variable
that relates the climate data to the resolution of the point measurements. If the
downscaling was done manually, the elevation difference between the climate model
and point location would also be very important. Hence, itis It natural that this variable
is frequently used in MBM and considered important. Monthly temperature and
precipitation are the mostimportant variables in the winter and summer months,
respectively (Fig. C2), in addition to elevation difference. We think this indicates that it is
implicitly used to downscale these variables to the higher-resolution grid. However, we



agree that the statement we made is perhaps too strong, so we moderated our
statements in Section 6.1.1. as follows:

400  MBM-effeetively- The performance of MBM on point mass balance and the apparent importance of the elevation difference

The key to this ability lies in using the elevation difference between the stake and the climate model as a feature (Fig. 3) which

enables MBM to effectively map the relationship between climate and elevation.

We agree that an interesting avenue for future development of MBM is to compare its
performance for different resolution climate data. Similar work is already ongoing in
applications to other regions in Europe and we expect MBM to benefit from using higher-
resolution meteorological data. We suggest this in Section 6.2.1, but have now specified
that higher-resolution meteorological data can clarify the downscaling-capabilities of
MBM:

465  yariables from the DEM, specifically a steep, south-west facing wall that borders the glacier tongue. The issues outlined here
option would be to train MBM using higher-resolution meteorological data, which may also elucidate MBM's downscaling
capabilities. Regardless of these challenges, ¥ s—our results show that MBM excels in reconstructing local winter mass

470 winter-mass-batanee-(Figs. 6 and 7). This suggests, in line with other findings (Guidicelli et al., 2023), that ML models are

valuable tools to assess spatio-temporal biases in precipitation estimates in mountain regions.

L414: | think itis important to distinguish between and not confuse two different assets
of your model: 1) it can predict mass balances for unmonitored glaciers while the glacier
evolution models need calibration data for every single glacier, and 2) it is trained with
seasonal and annual data while the glacier evolution models were only provided on
single 20-year average value. | think the first point is the big advantage of the MBM and
this should be highlighted more, while the second pointis an artifact of the first.
Because regular models need data for every glacier it cannot be calibrated with the
higher temporal resolution data because this is only available for a limited number of
glaciers.

We do not completely agree with this reasoning. The reason that MBM can predict
seasonal mass balance for unmonitored glaciers is specifically because it can be
trained on seasonal data. For the type of application/ regional modelling of a large set of
glaciers with sparse in situ measurements: 1) machine learning models can learn
relationships from data and do not require data specific to a given glacier to learn
relationships between climate and mass balance on that glacier, while the glacier
evolution models need calibration data specific to the given glacier to learn these



relationships. 2) Machine learning models can therefore be trained using sparse, in situ
data (e.g. point mass balance in this case), while the glacier evolution models rely on
datasets available for all glaciers (it is true that for the glaciers with glaciological data,
the glacier evolution model could be calibrated to these specific glaciers, but that option
does not exist for the vast majority of “unmonitored” glaciers). 3) Since MBM is able to
use the seasonal data it can improve seasonal predictions compared to the glacier
evolution models, which cannot use this data effectively.

To clarify our reasoning we have made several updates to the text throughout the
manuscript (please see our reply to the general comments), in addition to the following
changes in the section related to this specific comment:

The ability of MBM to reconstruct winter and summer mass balance on independent glaciers highlights #is-advantagse-in
to derive relationships that can be transferred to unmonitored glaciers. On annual mass balance —hewever—the models show
similar performance—With-respect-to-this, likely because all models are informed by annual or multi-annual mass balance

independent performance measures on across all spatio-temporal scales. Consequently, MBM’s performance solely reflects its

capacity to generalise to unmonitored glaciers across varying conditions.

L451-453: It is unclear what you mean. How does the steep terrain influencing the
tongue affect the more negative mass balance for steep and south-facing slopes?

We thank the reviewer for pointing out that this explanation was not clear. The steep
terrain around the glacier tongue influences the calculation of slope and aspect from the
DEM, such that the border of the tongue is seemingly steep and southwest-facing (while
in reality it is flatter and more southeast-facing (like the remainder of the tongue). These
artefacts in the topographical features influence MBM’s predictions (which are likely too
negative here). We have changed the formulation in order to clarify this explanation:

can resolve smaller-scale variations. Artefacts in the topographical datameay—therefore —influence predictionsforexample:

L463: In my opinion, it is not necessary a bad thing to assess the capability of your
model in ‘extrapolating’ to adjacent glaciers. It would be interesting to include a little
more of your findings regarding the ability to extrapolate in relation to the distance away
from the nearest ‘seen’ glacier.

We thank the reviewer for suggesting this interesting analysis that we had not performed.
We compared the performance of MBM on the test glaciers to the distance between



each test glacier and the nearest training glaciers. The first figure below shows all the
test glaciers, while the second figure excludes the two glaciers in northern Norway that
have large distances to the nearest glacier. Interestingly, the analysis does not show any
correlation between the distance to the nearest training glacier and test glacier
performance (which is also what we aim for since spatially correlated errors would
suggest that our test glaciers are not independent). This is for example also illustrated by
comparing Figs. D2 i-l (test glaciers in the Folgefonna region). Of these glaciers, the
glacierin Fig. D2i shows the worst performance, but is the closest to a training glacier
(around 4 km), while the other glaciers (Figs. Dj-l) show better performance but are up to
12 km away from the nearest training glacier). We think this analysis suggests that model
performance on the test glaciers is more closely related to how well the trained model
captures the relationship between mass balance and meteorological and topographical
features in different regions of the feature space.

Based on this finding, we included the following in Section 6.2.2.:

485 likely extends beyond the ice divide. However, the current configuration is necessary to both train MBM and evaluate its
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We thank the reviewer, Brian Kyanjo, for the effort in assessing our manuscript and for
the positive feedback and suggestions for improvement. We have considered the
feedback carefully and made several changes to the manuscript in accordance with the
comments provided. The main improvement is the addition of a feature importance
analysis in Appendix C (including two new figures, Fig. C1 and C2), where we consider
and discuss feature importance based on different metrics. In addition, we have made
several updates to the text in relation to the specific comments. Please see our detailed
responses below to each of the specific comments. In the following response, reviewer
comments are indicated in black and our responses are indicated in blue italic font.

Reviewer 2:
Overall Assessment

The paper “egusphere-2025-1206” (https://doi.org/10.5194/egusphere-2025-1206)
presents the Mass Balance Machine (MBM), a machine learning model for predicting
glacier surface mass balance, trained on a robust dataset of 4,201 point mass balance
measurements from 32 Norwegian glaciers (1962-2021) using the XGBoost algorithm.
This work is a significant advancement in glaciology, offering high-resolution predictions
that outperform traditional models like GloGEM, OGGM, and PyGEM, particularly for
seasonal mass balances. Its potential for applications in climate change research and
water resource management is substantial. However, minor refinements in data
resolution, model transparency, and uncertainty analysis, along with clarifications in
Appendix A, could elevate its impact. Below, | provide a detailed review of the paper’s
strengths, areas for improvement, and a focused analysis of Appendix A, including
specific corrections and broader recommendations.

Strengths of the Paper

1. Robust Dataset: The dataset, sourced from the Norwegian Water Resources and
Energy Directorate (NVE) database, spans nearly six decades and includes 4,201 point
mass balance measurements across 32 glaciers. The thorough cleaning process,
detailed in Appendix A, ensures reliability by addressing missing coordinates and
outliers, resulting in 3,910 annual, 3,929 summer, and 3,751 winter measurements.

2. Effective Methodology: The use of XGBoost is well-suited for capturing complex
relationships between weather, terrain, and glacier mass balance. The independent
glacier-based train-test split enhances the model’s generalizability, making results
trustworthy.

3. Superior Performance: MBM demonstrates lower RMSE and bias compared to
established models, particularly for seasonal predictions. This is evident in figures like
Fig. 6 and Table D1, which effectively support the text.



4. Practical Applications: The model’s high-resolution predictions at point and monthly
scales are valuable for water resource planning and glacier flow modeling in a warming
climate.

Areas for Improvement

1. Data Resolution: The ERA5-Land data (9 km resolution) may be too coarse for smaller
glaciers. Exploring higher-resolution datasets or downscaling techniques could improve
local accuracy.

We agree that the resolution of ERA5-Land is coarse compared to the size of the glaciers
in the dataset. Our intention with using a globally available dataset is that the model can
easily be adapted to other regions. In addition, ERA5-Land is relatively high resolution
compared to other globally available datasets. Some higher-resolution climate datasets
exist for Norway (e.g. the NORA datasets), but these do not cover the entire time period
of the mass balance measurements. However, in terms of resolution, we believe that
MBM can, at least to some degree, implicitly downscale the meteorological data to the
elevation of the point measurements by using the elevation difference feature to
distinguish between points within the same ERA5-Land cell. This is evidenced by MBM’s
performance on such data (Figs. 5 and 6) and supported by the newly added feature
importance analysis. We have elaborated on this in Section 6.1.1:

coarse meteorological data to the point scale. In addition to the spatio-temporal transfer of mass balance information across

glaciers, MBM’s apparent downscaling capacity is crucial for generating accurate high-resolution predictions. For instance,

— - ~MBM’s strong performance in reconstructing winter

405 mass balance at the stake level (Fig. 5a and b)shews-its-abihity-te-downseale-these-variables-, together with a high importance

precipitation locally. The k

The key to this ability lies in using the elevation difference between the stake and the climate model as a feature (Fig. 3) which

enables MBM to effectively map the relationship between climate and elevation.

It would be interesting to compare the performance of the model on other climate
datasets and different resolutions, and we expect that the performance of both MBM
and the other models to increase with increasing climate data resolution. We mentioned
the use of higher-resolution meteorological data already in Section 6.2.7 as an option
that may improve MBM'’s predictions (and limit reliance on high-resolution topographical
features). We consider this to be out of the scope of the current study, but have
elaborated some more in Section 6.2.1:



balance, which indicates implicit downscaling and bias correction of meteorological variables exeel-inreconstructinglocal

e e e ey

470 winter-mass-balanee-(Figs. 6 and 7). This suggests, in line with other findings (Guidicelli et al., 2023), that ML models are

valuable tools to assess spatio-temporal biases in precipitation estimates in mountain regions.

2. Model Transparency: XGBoost’s complexity warrants feature importance analysis or
partial dependence plots to clarify key drivers of predictions, enhancing interpretability.

We added a new appendix (Appendix C: Feature importance, please see additions
below) with a discussion of feature importance based on different methods, including
two new figures showing overall feature importance in terms of weight and gain on the
trained model, and monthly permutation feature importance on the test dataset. The
analysis provides additional insights into the importance of different monthly features in
seasonal and annual predictions, and we believe that many of the findings support the
current assessment of MBM'’s capabilities.



Appendix C: Feature importance

We performed a feature importance analysis on MBM to investigate the importance of different variables on MBM's perfor-
mance. Since feature importance is complex to interpret and is not adequately represented by any single metric, we based our
assessment on different metrics. We calculated weight and gain scores, which represent the total number of times a feature is
used in splitting the data in a node and the average improvement in model performance (sum of loss change for each split)
in splits where a feature is used, respectively. To complement this analysis, we computed monthly permutation importance
for each feature. This involves consecutively permuting (shuffling) the values of each feature, breaking the relationship be-
tween the feature and prediction, and assessing the resulting change in model performance. For a given feature and month, the
performance change thus represents the effect of feature permutation on the seasonal and annual predictions.

Temperature is overall the most frequently used feature in the trained model (12m; Fig. Cla). It also scores highest in terms
of gain, followed by elevation difference and downward surface solar radiation {elev_diff and ssrd, respectively: Fig. Clb).
The importance of temperature according to the weight and gain scores is not surprising given that both accumulation and melt
are strongly influenced by this variable. The combination of lower gain but relatively similar weight of the remaining features
may suggest that these are generally used at lower levels of the tree structures, e.g. to distinguish between smaller variability
in mass balance for points on the same glacier.

Considering monthly permutation feature importance, elevation difference is an important feature in all months (Fig. C2).
In mid-winter (Dec—Mar) total precipitalion is the most important feature (tp; Fig. C21 and a—c) and also relatively impor-
tant compared to other meteorological variables in the transition months April, October and November (Fig. C2d, j and k,
respectively). This aligns with the fact that solid precipitation is the main contribution to accumulation on glaciers in Norway.
In addition, precipitation is likely a key variable in explaining the substantial differences in winter mass balance rates across
climatic regions in Norway.

Temperature is the main influence on model performance in the summer season (May—Sep; Fig. C2e—i). In addition, down-
ward solar radiation and forecast albedo are important in May and June (Fig. C2e and f, respectively), which is consistent with
the onset of snowmelt and subsequent changes in albedo. Although albedo is coarsely resolved, it may provide larger-scale geo-
graphical information about changes in snow cover, which may be why it is also considered somewhat important in mid-winter
months. The transition months April and October show less clear importance between meteorological variables (Fig. C2d and
j. respectively ). This may be because the timing of transitions between seasons varies with latitude, e.g. glaciers in northern
Norway may receive a fair amount of snow in April and October.

We caution against placing too much emphasis on the specific details of the feature importance analysis. For example,
when assessing permutation importance, correlated features (i.e. skyview factor and slope) may appear to be less important
since, even if one feature is permuted, the model can rely on a second correlated feature. However, the main findings of the
feature importance analysis presented here are consistent across metrics and physically meaningful with respect 1o the main

meteorological drivers of mass balance on Norwegian glaciers.
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features, topographical features and elevation difference feature, respectively.
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3. Uncertainty Quantification: While measurement uncertainties (0.08-0.26 m w.e. a—1)
are noted, theirimpact on model outputs is unclear. A sensitivity analysis would
strengthen confidence in predictions.

Measurement uncertainties are noted in Appendix A to underline our confidence in the
quality of the dataset. Since these uncertainties are relatively small, we do not expect
them to have a major impact on model results or the conclusions in this study. However,
using other datasets that may be afflicted with substantial uncertainties, such as
geodetic mass balance based on remote sensing, considering uncertainty in
observations could be increasingly important (e.g., using uncertainty-aware learning;
Diaconu et al. (2024)). We added a comment on this in Section 6.3.2:

for the reliability of the data by weighing the observations in the loss function according to their confidence levels or using

530 reconciled estimates of glacier mass balance across multiple observational datasets.

4. Global Applicability: Testing MBM in diverse regions like the Alps or Himalayas would
broaden its relevance. A discussion of transferability challenges would be valuable.

We agree that testing MBM in other regions would clarify its potential and limitations. We
partly discuss the transferability challenges already on L500-503. Since MBM is
specifically trained for Norwegian glaciers in the current study, we do not expect it to
perform equally well in other regions where conditions differ. We thus expect the
transferability of the current application of MBM (trained on Norwegian glaciers) to be
limited. We would expect that for larger regions, it would be preferable to retrain MBM
using additional data. However, in applications it would be interesting to investigate the
limits of the models transferability to clarify how it can be expected to perform in regions
with limited data. We consider this to be out of the scope of the current study, but
ongoing research using MBM is aimed at addressing this particular issue. We have added
the following to expand on this discussion and highlight needs for future research:

period. However, since the model is trained on meteorological conditions specific to Norway and designed for interpolation

520 situ observations are not readily available for many regions, the diversity of spatio-temporal analogues and extent of MBM’s

generalisation capabilities on larger scales remain to be investigated.

5. Future Directions: The mention of remote sensing data is promising but vague.
Specifying datasets (e.g., satellite-derived albedo or surface temperature) would clarify
future enhancements.

Here, we are referring to mass balance observations from other sources, such as
satellite-derived geodetic mass balance. We have amended the sentence to specify this.
We already provide a specific example on line 509-511, but have now also added
references to additional datasets: “On the other hand, the purely data-driven nature of



ML approaches makes them uniquely suited to take advantage of the increasing
availability of remote sensing-based mass balance datasets (e.g., Belartet. al (2017),
Pelto et al. (2019), Hugonnet et al. (2021), Falaschi et al. (2023)).” Please see references
at the bottom of the document.

6. Presentation Polish: Minor typos and awkward sentences, particularly in Appendix A,
need correction. Additionally, Fig. 10 requires clearer labels for improved readability.

Please see our response to the comments on Appendix A below. We have checked the
labels in Fig. 10, but are not sure how these need to be clarified and have thus not made
any changes to these.

Detailed Review of Appendix A

Appendix A details the data quality and cleaning processes for the MBM dataset, critical
for establishing its reliability. It describes the handling of 4,201 point mass balance
measurements from the NVE database (accessed 12 October 2022), including the
removal of erroneous entries and verification of stake locations. Below, | identify specific
typos and awkward sentences with approximate line numbers (based on sequential
sentence or paragraph counting) and provide broader recommendations to enhance
clarity.

Identified Typos and Awkward Sentences

1. Line 570: “The total contribution of such uncertainties have been quantified
0.080.26 mw.e. a-1...”
¢ Issue: Subject-verb agreement error; “have” should be “has” for the singular
subject “The total contribution.”
e Suggestion: Revise to “The total contribution of such uncertainties has been
quantified as 0.08-0.26 m w.e. a—1 for five glaciers in our dataset.”
Done.

2. Line 575: “Prior to training MBM, we performed a thorough cleaning and quality
check... including removal of erroneous values and points with missing location,
and a quality check of stake locations.”
¢ Issue: Redundant use of “quality check.”

* Suggestion: Streamline to “Prior to training MBM, we performed thorough
cleaning and quality checks on the raw point mass balance dataset (4,201
entries, NVE database, accessed 12 October 2022), removing erroneous values,
points with missing locations, and verifying stake location accuracy.”

We removed the redundant “quality check” and revised the sentence according
to point 1 under “Additional recommendations for Appendix A”. Please see our
reply to this comment.



3. Line 578: “Approximate locations are based on the approximate position and
elevation of a given stake ID...”
e Issue: Repetition of “approximate” is awkward.
e Suggestion: Revise to “Approximate locations are derived from the estimated
position and elevation of a given stake ID, whereas exact locations use GPS-
measured position and elevation at the time of measurement.”
We revised the sentence to: “The approximate location is based on the estimated
position and elevation of a given stake ID, whereas the exact location is the actual
position and elevation of the stake at the time of measurement (e.g. measured
using GPS).”

4. Line 581:“Seven and 23 entries that were missing both exact and approximate
elevation or geographical coordinates, respectively, were removed...”
¢ Issue: Ambiguous phrasing regarding elevation and coordinates.
e Suggestion: Clarify to “Seven entries missing both exact and approximate
elevations and 23 entries missing both exact and approximate geographical
coordinates were removed from the training dataset.”
We thank the reviewer for the suggestion and have amended the sentence
accordingly.

5. Line 585: “The mean * standard deviation of the absolute difference between the
exact and approximate coordinates and elevations is 166 + 498 mand 24 71 m,
respectively.”
¢ Issue: Dense phrasing combines measurements, reducing clarity.

e Suggestion: Splitto “The mean = standard deviation of the absolute difference
between exact and approximate coordinates is 166 £ 498 m, while for elevations,
itis24+71m.”

We thank the reviewer for the suggestion and have amended the sentence
accordingly.

6. Line 589: “For stake locations where both summer, winter and annual mass
balance measurements were available...”
¢ Issue: List lacks an Oxford comma for clarity.
e Suggestion: Revise to “For stake locations where summer, winter, and annual
mass balance measurements were all available for a given year...”
Done.

Additional Recommendations for Appendix A

1. Improve Transitions: The shift from uncertainties to data cleaning is abrupt. Add a
bridging sentence, e.g., “Ensuring dataset quality is crucial for MBM’s accuracy,
leading to the following cleaning procedures.”



To improve the transition, we modified the original sentence to: “To ensure the quality of
MBM's training data, we performed a thorough cleaning and quality check of the raw
point mass balance dataset (4201 entries, NVE database accessed on 12 October 2022)
prior to training MBM. This consisted of removing erroneous values and points with
missing locations, and verifying stake locations.”

2. Define Technical Terms: Define “point mass balance” (e.g., “measurements of mass
change at specific glacier locations”) in a footnote or glossary for accessibility.

This is defined in the introduction (line 35) and we do not find it necessary to introduce
the term again here. No changes were made.

3. Clarify Data Sources: Specify that NVE is the Norwegian Water Resources and Energy
Directorate to aid international readers.

This is defined on line 93. We find it unnecessary to repeat again in the appendix. No
changes were made.

4. Quantify Cleaning Impact: State the total entries removed, e.g., “After cleaning, the
dataset was reduced from 4,201 to 4,170 stake locations (99.3% retained).”

The number of entries after cleaning is already summarized on L592. No changes were
made.

5. Explain Coordinate Conversion: Justify the UTM to latitude/longitude conversion, e.g.,
“This conversion ensured compatibility with MBM’s input requirements.”

We amended the sentence to: “Finally, we converted geographical coordinates from
UTM to latitude and longitude format for compatibility with the feature datasets.”

6. Justify Erroneous Values: Explain the removal of the 9.99 m w.e. measurement, e.g.,
“This value was unrealistically high for typical regional winter mass balances.”

We amended the sentence to: “One measurement with erroneous winter mass balance
(unrealistically high; 9.99~m~w.e.) was removed.”

7. Quantify Corrections: If available, note the number of rounding error corrections, e.g.,
“In [X] instances, annual mass balances were corrected by summing summer and
winter components.”

We included the number of corrections and magnitudes of rounding errors in the
following sentence: “For stake locations where both summer, winter, and annual mass
balance measurements were available for a given year, we corrected for rounding errors
where these were present by replacing annual mass balance values by the sum of
seasonal values (magnitudes between 0.01-0.03 m w.e.; 255 instances).”



Conclusion

The “egusphere-2025-1206” paper is a compelling contribution to glaciology, with MBM
offering high-resolution, accurate predictions for glacier mass balance. Its robust
dataset, effective methodology, and practical applications make it a valuable tool. Minor
revisions, including addressing typos in Appendix A, improving data resolution, and
enhancing model transparency, will further strengthen its impact. Appendix A effectively
supports the dataset’s reliability but can be polished with clearer transitions, defined
terms, and quantified impacts. These changes require minimal effort but will
significantly enhance the paper’s clarity and global relevance.

Recommendations
¢ Accept with Minor Revisions.
* Specific Actions:

e Correct the six typos and awkward sentences in Appendix A as suggested.

e Explore higher-resolution weather data or downscaling for smaller glaciers.

e Add feature importance or partial dependence plots for model transparency.

e Conduct a sensitivity analysis to quantify uncertainty impacts.

e Discusstesting MBM in other regions for global applicability.

e Specify remote sensing datasets (e.g., albedo, surface temperature) for future
work.

e Add a transitional sentence in Appendix A between uncertainties and cleaning.

e Define “point mass balance” in a footnote or glossary.

e Clarify NVE as the Norwegian Water Resources and Energy Directorate.

e Quantify total entries removed during cleaning (e.g., 4,201 to 4,170).

e Justify UTM to latitude/longitude conversion and the 9.99 m w.e. removal.

e Note the number of rounding error corrections, if available.

e Improve Fig. 10 labels for clarity.

e Include missing DOIs or URLs in the reference section.

Please see our replies above to the overall assessment and to each of the comments.
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