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Abstract. Previous research has shown that (1) treelines are shifting upward in elevation on high mountain peaks worldwide,1

and (2) the rate of the upward shift appears to have increased markedly in recent decades, at least in a few cases that have been2

studied in detail. Because treeline elevational shift is a process manifested over broad scales of space and time, a particular3

challenge has been that of obtaining a broad-enough view of patterns of treeline shift to permit inferences about geographic4

and environmental patterns. What is more, intensive studies of treelines have been concentrated in North Temperate regions,5

such that little information is available about treeline shift patterns at lower latitudes. We attempted to address this challenge by6

analyzing long time series of vegetation indices derived from Landsat imagery obtained and prepared via Google Earth Engine7

from the 1980s to the present. We sampled vegetation indices at points spaced every 100 m along 100 km transects radiating8

out in eight directions from 115 high peaks across western North America (Canada to Central America), which means that we9

are sampling approximately every second or third pixel in the corresponding Landsat images. Considerable data preparation10

was necessary, including ending transects <2 km into closed forest, identifying current treelines via reference to Google Earth11

imagery, and consideration only of up to <1 km above treeline. Patterns that emerged were—as is well known—that treelines are12

generally higher at lower latitudes, but—previously unknown—that the magnitude of treeline shifts is nonrandomly distributed13

with respect to latitude, longitude, and their interaction. This analysis, via a broad-scale view of treeline shifts over almost 4014

years and a geographic span of more than 40° of latitude, demonstrates that climate change effects and consequent treeline15

shifts are most dramatic in tropical regions where few or no detailed treeline studies have been and are being conducted.16
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1 Introduction19

The upper elevational limits of forests in mountain systems represent a fascinating and dramatic manifestation of distributional20

limitation at the species and community levels. Treeline phenomena have seen extensive analysis and discussion in the eco-21

logical literature: they are an important manifestation of the geographic ecology of ecosystems, and likely reflect important22

climate-related controls (Kullman, 1998). Numerous studies have been developed that aim to understand factors driving the23

location and possible shifts in treelines, with the general conclusion that treelines are determined by complex suites of fac-24

tors (Cudlín et al., 2017; Körner, 1998; Holtmeier and Broll, 2005; Irl et al., 2016; Grafius et al., 2012; Kienle et al., 2023).25

Whereas some researchers have concluded that treeline position can be distilled down to simple rules regarding seasonal26

mean ground temperatures (Körner and Paulsen, 2004), others have argued that treeline drivers are considerably more multi-27

dimensional and complex (Paulsen and Körner, 2014; Zhao et al., 2015). In this study, we adopt Körner’s( 2012) definition28

of elevational treeline, i.e., the uppermost elevation on a mountain slope at which upright woody plants (trees >2m tall) can29

maintain self-sustaining populations. Above that limit, insufficient warmth (a too short or too cold growing season) prohibits30

the regular recruitment and survival of true tree forms, even if isolated, krummholz-like individuals occur sporadically.31

Clearly, considerable complexity is involved in any attempt to characterize treeline phenomena. However, dendroecological32

approaches offer the useful possibility of obtaining establishment ages on an individual-tree basis across broad stands of trees33

at or near treelines (Elliott, 2011). When treelines change, a key challenge is that of considering treeline shifts (i.e., elevational34

advance upward with warming climate) versus densification (i.e., sparse forest or scattered trees near treeline filling in with35

more trees, regardless of whether the treeline changes or not) (Shi et al., 2022). Finally, treeline is a highly scale-dependent36

phenomenon, such that all of its qualities vary in importance and effect at different spatial extents and resolutions (Holtmeier37

and Broll, 2017).38

From early in discussions about the possibility that global climates would warm with increasing greenhouse gas concentra-39

tions (LaMarche et al., 1984; Grace et al., 2002), the expectation has been that treelines would advance up mountain slopes40

as climatic controls relax at extreme elevations. Empirical evidence has been mixed, however, with some studies documenting41

what appears to be very rapid treeline advance (Peterson et al., 2022), and others finding no evidence of overall tendency to42

change (Beloiu et al., 2022). One broad analysis found that treeline advance was faster in subarctic regions than in temperate43

regions (Lu et al., 2021), and another found that treelines experiencing stronger winter warming and with diffuse treeline forms44

were more likely to advance (He et al., 2023).45

Nonetheless, most of these previous broad-scale analyses of patterns of treeline advance in the face of warming climates46

have been based on datasets with strong inherent biases and significant gaps. That is, in largest part, treeline studies have been47

conducted in the North Temperate zone: examples of such biased analyses are many (Shi et al., 2022; Zhao et al., 2015; Körner,48

1998; Lu et al., 2021). A few analyses have achieved a somewhat better balance of representation of treelines in the Tropics49

and in the Southern Hemisphere (He et al., 2023; Hansson et al., 2023; Kienle et al., 2023). The concern, of course, is that50

such information gaps and biases in what information is available may blind researchers and their analyses to very real and51

important patterns in the global occurrence of the phenomenon of treeline advance.52
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Here, we address these important knowledge gaps about treeline dynamics in the face of warming climates globally over the53

past several decades. We assess the null hypothesis that magnitude of alpine treeline shifts is not related to a series of geographic54

features, such as latitude, longitude, and distance to coast. Specifically, to be able to assess treeline shifts on a continent-wide55

basis, we use a long time series of remote-sensing data to seek patterns in the magnitude of alpine treeline shifts across 115 high56

peaks in western North America, from Central America to southern Canada. We use vegetation index trends along transects57

radiating out from each peak in eight cardinal and sub-cardinal directions; the vegetation index approach has the advantage of58

“seeing” vegetative mass generally, in effect integrating over both treeline advance and densification of sparse, near-treeline59

forests (Feuillet et al., 2020). Of course, these broad-scale analyses are not a substitute for more detailed, field-based analyses,60

nor should vegetation-index-based assessments replace more fine-grained inspections of the actual geometry of treelines. The61

result is a novel dataset from which we have derived several intriguing insights about geographic patterns in the magnitude of62

treeline elevational shifts.63

2 Methods64

2.1 Mountain peak characterization65

Our aim was to characterize temporal changes in vegetation mass on a set of mountains that covered western North America.66

To that end, we chose to follow a comprehensive summary of high mountains worldwide (Maizlish, 2007), which is based on67

an effort to identify all mountains worldwide with at least a 1500 m prominence; the authors of that compendium (called the68

Ultras Project) researched all summits on Earth that meet this criterion, finding 1524 such peaks. From that worldwide dataset,69

we extracted the 354 mountain peaks located in North America (Panama to Canada). We used the coordinates of each peak70

in the peaks dataset as a centerpoint, and plotted eight transects in each of the cardinal and sub-cardinal directions extending71

out from that centerpoint; points were plotted and distances measured in meters using the WGS84 Special Mercator for Web72

Applications (EPSG:3857) projection to assure consistent distances among sampling stations. Transects were each initially73

100km long, with sampling stations every 100m, so each transect included 1000 sampling stations.74

We excluded from analysis all mountains that were forested to the peak, or that showed signs of anthropogenic modification75

at or around the peak upon visual inspection of the region in Google Earth. We also excluded peaks for which treelines were76

not associated clearly with the upper slopes of the peak, but rather were lower, extending just a bit up the valley walls and77

thus likely represent latitudinal treelines as opposed to altitudinal treelines; such low treelines were particularly common in78

central and northern Canada and Alaska, such that all of the far northern peaks were excluded. Given that, in eastern North79

America, only one peak (Mt. Washington, in New Hampshire) met our criteria, to avoid including a genuine spatial outlier in80

our analyses, we omitted that peak from analysis, thus focusing our analyses on the high peaks of western North America. At81

the end of this process, from 354 peaks in the initial database, we had 119 peaks remaining as a basis for our analyses (Figure82

1).83
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Figure 1. The 119 high mountain peaks analyzed in this study. Triangles represent individual mountain peaks used in our analysis. The ’X’

symbol is Mt. Washington, which was removed from the dataset prior to analysis. This map was constructed using QGIS ver 3.38.2. The

ESRI physical basemap was used to create the map.
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In © Google Earth Engine, we overlaid the transect sampling points on imagery from Landsat for the period 1984–2017, and84

associated the values of the normalized difference vegetation index (NDVI) with each sampling point in the transect dataset.85

For this analysis, we focused on early (1984–1988) and late (2013–2017) time periods within the timespan of the Landsat86

dataset to create a before-and-after contrast. We used NDVI data from the annual Landsat collection (Landsat/LT5\_L1T\87

_ANNUAL\_NDVI, Landsat/LE7\_L1T\_ANNUAL\_NDVI, and Landsat/LE8\_L1T\_ANNUAL\_NDVI) in © ©88

Google Earth Engine. We used the pre-processed LANDSAT\_LT5\_L1T\_ANNUAL\_NDVI collection, which provides89

annual NDVI composites derived from Level-1 terrain-corrected Landsat 5 reflectance images (including cloud masking and90

quality assurance; unfortunately, this collection is now deprecated in GEE). To ensure full transparency, our scripts for repro-91

ducing the NDVI computation from the original Landsat reflectance data are publicly available on Github (see below). Detailed92

information about the original dataset can be found in the Earth Engine Data Catalogue (USGS, 2017); calibration procedures93

and validation methods for this collection are described by Chander et al. 2009. We generated a composite for each year from94

the available Landsat images, and extracted NDVI values for each year via a mean reducer. We then inspected each transect of95

each peak individually by overlaying the point data on the Google Satellite fine-resolution data product, using the GIS capa-96

bilities of QGIS (version 3.2). Similarly, we extracted elevation at each sampling station within each transect using the NASA97

Shuttle Radar Topography Mission 30m resolution Digital Elevation Model in © Google Earth Engine (Farr et al., 2007).98

A key step was that of choosing the sampling station along each transect that corresponded to treeline, as follows. Descending99

from each peak along each transect, via reference to the © Google Satellite data layer in QGIS, we identified the sampling100

station that most closely approximated the upper elevational limit of forest. That is, we ignored single, isolated trees, but rather101

identified the elevation at which forest became continuous, albeit in some cases still sparse. For this sampling station, we set102

the field TreesBegin in the data table characterizing peaks to 1.103

2.2 Data refinement104

Values of NDVI and elevation were assigned to each sampling station via GIS overlay (“extract value to point”) operations.105

All subsequent data preparation was done in R (version 4.4.1) and QGIS (version 3.38.2). We cleaned the data that had been106

exported from Google Earth Engine by removing any missing values. We averaged the yearly NDVI values over the two time107

periods (1984–1988 and 2013–2017) to provide “before and after” comparisons that would be more immune to measurement108

error or other sources of year-to-year variation.109

Our next goal was to calculate regression equations for individual mountains, slopes, and time periods, characterizing the110

negative-sloped relationship between elevation and NDVI. To this end, we transformed the data into a hierarchical nested list111

of lists; the dataset included 120 mountain peaks, each of which had 1-8 transects. Each transect had the two averaged year112

groups of NDVI data, for a total of 1848 distinct combinations of peak, transect, and year group; some transects were removed113

entirely based on the criteria listed above (Section 2.1). In our analyses, we included only NDVI measurements from stations114

that were in relatively close proximity to treeline. That is, we included at least the last 10 stations. If twice the number of115

stations after the manually identified treeline to the transect edge (i.e., the furthest measured station downslope) plus one (to116

explicitly account for the station representing treeline itself) exceeded 10, we used this greater number of stations instead.117
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When the latter calculation was greater than 10, this resulted in an equal number of points above and below treeline. This118

approach ensured that we captured sufficient data from both sides of the treeline, and minimized the effect of terrain variability119

from sources such as small bare peaks, increasing the probability of detecting true relationships.120

We modeled the NDVI-elevation relationships with NDVI as the response variable and elevation as the predictor variable to121

find the best type of regression equation and, ultimately, the best approximation to the true relationship between these variables122

(Figure 2; see below). These models allowed us to associate NDVI and treeline elevation for calculation of our final response123

variables: change in elevation and change in NDVI. We calculated three types of regressions on each data frame (linear,124

reciprocal-linear, and reciprocal-quadratic) to assess which model shape best describes the NDVI-elevation relationship. The125

three models were compared via the Akaike Information Criterion (AIC; Akaike 2011) for each peak, transect, and time period.126

As all 1848 of these NDVI elevation relationships were best described by a linear model, we retained only linear regression127

equations for subsequent analyses. We excluded transects for which the regression equation was not statistically significant or128

for which the regression slope was positive; we used α = 0.05 as the threshold for statistical significance in all regressions.129

These latter criteria removed 688 of 1848 transects, leaving 1160 transects for analysis. Finally, since our goal was to create130

temporal comparisons between the two time periods, we also removed any transects for which regressions for either time period131

did not meet the criteria outlined above; this filter removed another 202 transects from analysis. The final dataset thus included132

958 transects on 115 peaks.133
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Figure 2. Map showing continentwide patterns of regression slopes relating NDVI to elevation for each peak, averaged across the 1-8

transects available for each peak, for the 2013–2017 time period. Yellow circles represent a positive slope (excluded from final analysis), and

blue circles represent a negative slope. The size of the circles coincide with the magnitude of the absolute value of each slope calculation.

The ’X’ symbol is Mt. Washington, which was removed from the dataset prior to analysis. This map was constructed using QGIS ver 3.38.2.

ESRI physical basemap was used to create the map.
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The goal in these analyses was to calculate change in treeline elevation for use as a response variable in continent-wide134

models. Alpine treeline position represents a bioclimatic threshold: trees cannot form self-sustaining closed canopy stands135

above it because low temperatures and a short growing season limit carbon assimilation and wood formation (Körner, 2012;136

Holtmeier, 2009). In turn, shifts in treeline elevation over time serve as a direct indicator of how local thermal regimes and137

associated growing-season lengths are changing on the landscape (Körner, 2012; Holtmeier and Broll, 2005). By modeling138

change in treeline elevation, we capture how climate warming and other environmental drivers are pushing the arboreal “limit”139

upslope. To this end, we inserted the elevations at our manually selected treeline position into the 2013–2017 NDVI linear140

regression equations to calculate the NDVI values associated with present day treeline. We then inserted that calculated NDVI141

value into the 1984–1988 regression equations to obtain an estimate of treeline elevation (i.e., we sought the elevation with142

the same 1984–1988 NDVI value as present-day treeline on that slope of that mountain; Figure 3). Finally, we subtracted143

1984–1988 treeline elevation values from the 2013–2017 treeline elevation values to estimate the change in treeline elevation144

over the broad temporal span of this study.145
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Figure 3. Example of a high mountain (Cerro de la Malinche, Tlaxcala, Mexico) and inferences deriving from it regarding position of treeline

through time. Top panel: View of the mountain in Google Earth, with eight transects radiating out from the peak in cardinal and subcardinal

directions. White dots indicate stations at which NDVI values were sampled; purple stars indicate the position of treeline identified visually.

Bottom panel: dark red points and lines show the NDVI-elevation relationship in the 1980s; blue points and lines show the same relationship

in the 2010s. In one example (northward transect), the elevation of treeline observed for 2013–2017 (3960 m) was used to identify a treeline

NDVI threshold (0.3135), which was in turn used to identify a likely elevation (3448 m) of the same NDVI level for 1980s conditions.

Background of top panel is from Google Earth©.
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We also calculated a second, simpler response variable, which was simply change in NDVI at the 2013–2017 treeline. In146

high-elevation contexts, an upward trend in NDVI within elevation bands at the present day treeline signals increased tree147

recruitment, shrub encroachment, or earlier green-up (Harsch et al., 2009; Rupp and Starfield, 2001). Thus, by computing the148

change in NDVI over our study period, we capture a functional or “greenness” dimension of treeline dynamics that comple-149

ments the structural dimension (change in elevation). In other words, even before trees form closed canopies, small shrubs or150

seedlings may begin to photosynthesize more vigorously, which will manifeset as an increase in NDVI. To this end, we inserted151

the manually located 2017 treeline elevation into the two regression equations for that mountain and slope. This resulted in152

NDVI values at a particular elevation (i.e., recent treeline) for 2013–2017 and 1984–1988 for each peak and direction. We153

subtracted the 1984–1988 values from the 2013–2017 values to obtain the change in treeline NDVI. A more positive value for154

change in NDVI indicates an increase in NDVI between 2013–2017 and 1984–1988.155

Finally, we assembled a suite of independent variables that may be of interest as possible drivers of variation in rates of156

treeline shift. We included (1) the number of stations in the transect below treeline (as a potential confounding factor), (2)157

cardinal direction of the transect, (3) latitude, and (4) longitude, all of which were derived from the original data about each158

transect and peak in the analysis. We also calculated (5) the distance to the closest coastline (in meters), based on the coastline159

corresponding to official maritime boundaries (Flanders Marine Institute, 2012). We built a raster file that contained the distance160

to the closest coastline for each pixel (1.53km resolution). We added these distance values to the data table for the transect161

sampling points using the point sampling tool in QGIS.162

2.2.1 Model selection163

To understand which of the above independent variables likely drive(s) variation in rate of treeline elevational shifts, we used164

an iterative stepwise model selection process. We selected the model that best describes western North American geographic165

treeline elevational shift patterns using AIC. We explored two statistical models to ensure that the final model would best166

explain geographic variation in treeline dynamics. First, we built 18 linear mixed models, each of which contained a random167

effect of ‘Peak ID’ to account for variability in local landscape characteristics. Second, we constructed 18 spatial mixed models168

using the R package ‘spaMM’ in which we specified Matèrn random effects to account for spatial autocorrelation by capturing169

spatially structured variation in treeline elevation that is not explained by the fixed effects (Rousset and Ferdy, 2014). All of170

these models were fitted using restricted maximum likelihood.171

For the first two model sets (total 32 models), the response variable was the change in treeline elevation between the two172

time periods. We produced a second array of models, parallel to the first, in which we used change in treeline NDVI as the173

response variable. All other model characteristics were the same as for the models based on change in treeline elevation.174

For all of the models described above, the fixed effects were different combinations of the independent variables: distance to175

coast, number of stations after treeline, cardinal direction of slope, latitude, and longitude, as well as the interaction between176

latitude and longitude. The models ranged in complexity, but we constrained the analysis to always include latitude and longi-177

tude. We compared all 32 models in an AIC table, as the response variable was constant and all models were fit by REML. We178

assessed significance by checking whether or not the 95% confidence interval of each fixed effect overlapped zero (Browne,179
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Figure 4. Panel (a) diagrams the steps taken to (1) characterize mountains, (2) clean the data in preparation for analysis, and (3) select

models. In panel (b), the hierarchical structure of our dataset is conceptually illustrated.

1979). We considered results for which confidence intervals did not overlap zero to be significant. Our dataset construction and180

analysis steps are summarized in a diagram for clarity (Figure 4).181
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3 Results182

3.1 Generalities about Treelines183

Treeline locations were non-random in a number of ways. On average, across all mountain peaks in our analyses, treeline184

was located at 2433 m. However, treeline position varied systematically, in that a significant relationship existed between185

treeline and latitude: tropical treelines averaged 3177 m, whereas temperate-zone treelines were lower, at 2244 m. As such,186

all subsequent analyses in this study needed to be conditioned on the geographic complexity underlying the phenomenon of187

treeline.188

3.2 Change in Treeline Elevation189

Treelines have been changing, even over the relatively short, 30-40-year timespan of this study. Indeed, treeline shifts among190

the western North American peaks in this study had a mean overall shift of 20.2 m upslope. The distribution of change values191

ranged from 165 m downslope to 127 m upslope.192

For the multivariate models relating change in treeline elevation to environmental drivers, we calculated the best-fit models193

for the linear mixed models and spatial mixed models using AIC and the coefficient of determination (R2). We calculated the194

Marginal and ConditionalR2 values for linear mixed models and a Pseudo−R2 value for the spatial mixed models. The195

best linear mixed model included number of stations after treeline, direction of transect moving away from the peak, latitude,196

longitude, and the interaction between latitude and longitude as fixed effects, with mountain peak name as a random intercept197

(Table A1). From our candidate set of spatial mixed models, the best fit included only latitude as a fixed effect, with a Matèrn198

random effect structure (Table A2). When comparing all models and the two best fitting models from the linear and spatial199

analyses, the spatial mixed model was best overall (Tables A3 & 1).200

Model Type Terms AIC Delta AIC Weight

Spatial Latitude 6.9 0.000 1.0

Linear # Stations After Treeline + Direction + Latitude * Longitude 6.9 2.0 3.8

Table 1. AIC table comparing the best linear mixed model and the best spatial mixed model from their respective comparisons, which had

change in treeline elevation as the response variable. There were 2 models in this comparison.

The best spatial mixed model, which was also the best model overall, showed that change in treeline was not significantly201

related to the only fixed effect, latitude (Pseudo−R2 = 0.4512). This model was fit using a Gaussian random effect with a202

Matèrn correlation structure. The smoothness parameter (ν) was estimated at 0.398, indicating a moderate degree of spatial203

continuity in treeline elevation changes. The range parameter (ρ) was 0.00466, suggesting that spatial correlation between ob-204

servations declines sharply over very short distances. The variance of the spatial random effect (λ) was estimated at 3,651,000,205

highlighting substantial spatial variation in the data. The residual variance (ϕ) was 64,159, representing variability unexplained206

after accounting for spatial effects (Table 2).207
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Term Estimate SE Lower 95% CI Upper 95% CI

Intercept 2.6 × 103 2.0 × 103 −5.1 × 103 9.9 × 103

Latitude −5.1 × 101 3.1 × 101 −1.3 × 102 1.0 × 101

Random intercept (variance) 3.7 × 106

Random intercept (std. dev.) 1.9 × 103

Residual (variance) 6.4 × 104

Residual (std. dev.) 2.5 × 102

Table 2. Model summary of the top spatial mixed model. Fixed and random effect outputs are shown. The response variable for this model

was the change in treeline elevation. Significance would be denoted by bold text and was assessed by observing whether or not the confidence

interval overlapped zero, but this model found no significant relationships.
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The less optimal best linear mixed model can be explored as well. It showed a significant relationship between change in208

treeline and latitude, longitude, and the interaction between latitude and longitude (ConditionalR2 = 0.6887, MarginalR2 =209

0.2815). Change in treeline elevation was significantly higher at lower latitudes (β = -100.6, 95% CI = [-155.1, -46.29], Table210

3; Figure 5a). The relationship between change in treeline elevation and the interaction between latitude and longitude was211

also significantly negative (β = -0.8418, 95% CI = [-1.345, -0.3413], Table 3): as longitude increases (eastward), effects of212

latitude on treeline shift become more negative, suggesting a complex spatial relationship between these geographic variables213

and treeline dynamics. Longitude alone also had a significant positive relationship with change in treeline elevation (β = 36.21,214

95% CI = [13.00, 59.52], 3; Figure 5b). This result indicates that mountain treelines further east in North America (farther215

from the Pacific Coast) have more drastic temporal changes in their treeline elevations compared to the more western mountain216

treelines in our study.217

Term Estimate SE Lower 95% CI Upper 95% CI

Intercept 4.2× 103 1.1× 103 2.0× 103 6.4× 103

# Stations After Treeline 6.3 × 10−1 1.4 −2.1 3.4

Direction (North) 1.9 × 101 5.3 × 101 −8.3 × 101 1.2 × 102

Direction (Northeast) −5.0 5.1 × 101 −1.0 × 102 9.5 × 101

Direction (Northwest) 6.4 × 101 4.9 × 101 −3.1 × 101 1.6 × 102

Direction (South) 7.5 × 101 4.8 × 101 −1.9 × 101 1.7 × 102

Direction (Southeast) 3.3 × 101 5.0 × 101 −6.6 × 101 1.3 × 102

Direction (Southwest) 4.7 × 101 5.0 × 101 −4.9 × 101 1.4 × 102

Direction (West) 5.1 × 101 5.0 × 101 −4.5 × 101 1.5 × 102

Latitude −1.0× 102 2.8× 101 −1.6× 102 −4.6× 101

Longitude 3.6× 101 1.2× 101 1.3× 101 6.0× 101

Latitude × Longitude −8.4× 10−1 2.6× 10−1 −1.3 −3.4× 10−1

Random intercept (variance) 9.0 × 104

Random intercept (std. dev.) 3.0 × 102

Residual (variance) 6.9 × 104

Residual (std. dev.) 2.6 × 102

Table 3. Model summary of the top linear mixed model. Fixed and random effect outputs are shown. The response variable for this model

was change in treeline elevation. Significance is denoted by bold text, and was assessed by observing whether or not the confidence interval

overlapped zero.
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Figure 5. Summary of univariate relationships between treeline elevational shifts and latitude and longitude. Panel (a) shows latitude on the

x-axis, while panel (b) shows longitude on the x-axis. Regression lines for both panels are denoted in black. Note that the interaction term

between these two independent variables is also statistically significant.
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3.3 Change in Treeline NDVI218

As with the previous response variable, we fit a series of linear mixed models and spatial mixed models with a Màtern random219

effect structure for change in treeline NDVI as a response variable, and compared the resulting models via AIC, both individu-220

ally and in totality. The top linear mixed model (MarginalR2 = 0.3300, ConditionalR2 = 0.7349) and the top spatial mixed221

model had only latitude as predictor variables when compared only to models of their respective type (Tables A4 & A5). The222

best-fitting model when comparing all linear and spatial mixed models and when comparing the top models from the spatial223

mixed model and linear mixed model AIC tables was the spatial mixed model with the fixed effect of latitude (Pseudo−R2224

= 0.6067; Tables A6 & 4).225

Model Type Terms AIC Delta AIC Weight

Spatial Latitude −1.5 0.00 1.0

Linear Latitude −1.5 1.5 5.3

Table 4. AIC table comparing the best linear mixed model and the best spatial mixed model from their respective comparisons, which had

change in treeline NDVI as the response variable. Two models were featured in this comparison.

The best-fit linear mixed model revealed that change in treeline NDVI was significantly related only to latitude (β = -226

0.003303, 95% CI = [-0.004121, -0.002484], Table 5, Figure 6). The negative slope of this relationship indicates that change227

in NDVI is greater at lower latitudes, indicating more treeline greenness in the Tropics and Subtropics in more recent years.228

Term Estimate SE Lower 95% CI Upper 95% CI

Intercept 1.2× 10−1 1.9× 10−2 8.6× 10−2 1.6× 10−1

Latitude −3.3× 10−3 4.2× 10−4 −4.1× 10−3 −2.5× 10−3

Random intercept (variance) 3.7

Random intercept (variance) 2.4 × 10−3

Random intercept (std. dev.) 4.9 × 10−2

Residual (variance) 1.5 × 10−3

Residual (std. dev.) 3.9 × 10−2

Table 5. Model summary of the top linear mixed model. Fixed and random effect outputs are shown. The response variable for this model

was change in treeline NDVI. Significance is denoted by bold text, and was assessed by observing whether or not the confidence interval

overlapped zero.
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Among the set of spatial mixed models, the top model concurred with the top linear mixed model. Latitude was again229

significantly negatively related to change in treeline NDVI (β = -0.003852, 95% CI = [-0.005047, -0.002705], Table 6, Figure230

6); no other variables had significant effects. The negative slope underlines the linkage between lower latitudes and more231

intense treeline movement. This model was the best performing overall out of all models tested that had change in NDVI as232

the response variable. The smoothness parameter (ν) was estimated at 0.259, indicating moderate spatial continuity in the data.233

The range parameter (ρ) was 1.006, suggesting that spatial correlation between observations diminishes rapidly over very short234

distances. The variance of the spatial random effect (λ) was estimated at 0.00298, reflecting residual spatial variability in the235

data. The residual variance (ϕ) was estimated at 0.00107, representing the remaining variability not explained by the spatial236

random effect (Table 6).237

Term Estimate SE T-Value Lower 95% CI Upper 95% CI

Intercept 1.4× 10−1 2.4× 10−2 5.7 9.1× 10−2 1.9× 10−1

Latitude −3.9× 10−3 5.8× 10−4 −6.6 −5.0× 10−3 −2.7× 10−3

Random intercept (variance) 3.0 × 10−3

Random intercept (std. dev.) 5.5 × 10−2

Residual (variance) 1.1 × 10−3

Residual (std. dev.) 3.3 × 10−2

Table 6. Model summary of the top spatial mixed model. Fixed and random effect outputs are shown. The response variable for this model

was change in treeline NDVI. Significance is denoted by bold text, and was assessed by observing whether or not the confidence interval

overlapped zero.
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Figure 6. Summary of the univariate relationship between NDVI at manually identified 2017 treeline elevations. Change in NDVI, on the

y-axis, represents 2017 NDVI - 1984 NDVI. Latitude, which was significant in the models with change in treeline NDVI as the response

variable, is shown on the x-axis. The regression line from the linear model of change in treeline NDVI versus latitude is denoted by the black

line.
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4 Discussion238

4.1 Overview239

This study represents a first broad-scope view of spatial patterns of temporal shifts in treeline elevation across a major world240

region. In that sense, it is novel, but our insights have been limited by a number of data-related challenges: e.g., the necessity241

of eliminating the northernmost set of high peaks because treelines were not uniquely associated with individual peaks, as242

well as the removal of a number of peaks from consideration owing to positive slopes in regression models relating NDVI to243

elevation. These complications point out the nascent nature of this endeavor, and the need for quite a bit more exploration and244

experimentation.245

Our results underlined some previous results, such as treelines occurring at higher elevations in the Tropics and Subtropics,246

and at lower elevations at higher latitudes (Körner, 1998). This broad pattern makes sense, of course, if one thinks of the247

conditions present at the highest elevations—they are at the extremes of what is survivable for upright trees (Körner, 2021).248

If treeline is set at least in part by hard physiological limits, and given global climate patterns and how they vary with latitude249

(Peterson et al., 2016), then high-latitude treelines would necessarily be lower in elevation.250

More importantly and more novel, however, our results show clear associations between magnitude of treeline shift and251

latitude, such that tropical treelines have shifted upward faster than higher-latitude treelines in recent decades (Jiménez-García252

et al., 2021). Such an effect has not been appreciated or reported previously, at least to our knowledge, but may relate to the253

greater physiological flexibility that may characterize tropical treelines: that is, high-latitude treelines may be fixed in elevation254

by hard physiological limits related to freeze tolerance (Körner, 2021). This focus of treeline mobility in the tropical zone,255

unfortunately, coincides with significant knowledge gaps, given that the great majority of detailed studies of treelines and their256

dynamics has been conducted on peaks at higher latitudes (Shi et al., 2022; Zhao et al., 2015; Körner, 1998; Lu et al., 2021).257

Our results were suggestive of further effects, related to longitude and perhaps distance to coastlines; proximity to ocean has258

been underlined in past studies as important in determining treeline elevations at least (Hansson et al., 2023). That is, although259

we included a variable summarizing geographic distance to coastline, it did not have any significant effect in the best models.260

Rather, in some of the models that ranked among the best, effects of longitude were indeed substantial. We suspect that this261

lack of clear effect of distance to coastlines may be related to the relatively minor representation of peaks close to coastlines in262

our dataset.263

4.2 Limitations264

The deepest concern regarding the analyses presented herein is, of course, the relatively short time span covered by the Landsat265

imagery, with our analyses spanning just a bit more than three decades. This time span is, of course, what is available from266

remote-sensing data streams, as Landsat is among the deepest-time remote-sensing data sources available anywhere. Even our267

relatively short time span of Landsat data, however, does cross the use of multiple sensors to produce the imagery, which may268

introduce noise into the results that we present herein (Vogelmann et al., 2016). The only remedy to this concern about time269
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span is therefore to appeal to other data sources, such as aerial or ground-based photos (Jiménez-García et al., 2021; Peterson270

et al., 2022).271

This study covered an impressive expanse in western North America, from 9.4°N in Costa Rica north to 54.1°N in south-272

western Canada, and from the shores of the Pacific Ocean to the Front Range of the Rocky Mountains in Colorado. However,273

this geographic span includes relatively fewer high mountain peaks in Mexico and Central America, at least compared with274

the northern peaks in the study; a further possible limitation of our work stems from the broad latitudinal gaps in northern275

Mexico. Finally, our inability to associate specific treelines with specific high peaks north of southernmost Canada meant that276

the highest-latitude peaks could not be included in the study. Some of these concerns can be remedied by broadening the area277

of study and analysis still further, perhaps globally, but the latter concern will remain complicated, as very high latitude peaks278

tend to be mostly above treeline, such that we do not see a way to create a peak-based analysis of those regions.279

Finally, a concern could be that of anthropogenic effects that are not related to climate. That is, although we eliminated from280

consideration any peaks that had human activities visible at the peak or near treeline (e.g., agricultural activities), we could not281

control for changing practices of fire control, for example. In this sense, if fire control has been implemented or has become282

more effective over the past few decades, that—unrelated to climate—could elevate NDVI owing to reduced fire-based removal283

of vegetation. We hope that the broad variety of peaks included in this study will avoid any confounding effects of this concern.284

4.3 Conclusions and Next Steps285

The results of this study point rather dramatically to the crucial importance of a major knowledge gap regarding high-elevation286

vegetation dynamics. That is, the bias of treeline studies away from tropical regions and towards temperate-zone and boreal-287

zone regions coincides—unfortunately—with the most dramatic regions of treeline elevational shifts. As we have pointed out288

in previous contributions (Jiménez-García et al., 2021), treelines in the Tropics and their dynamics remain little-documented289

and poorly characterized.290

At the same time, the results of this study and others (Peterson et al., 2022; Singh et al., 2012) indicate that remote-sensing291

data streams are both relevant and informative, and have as a result been incorporated into many treeline studies (Garbarino292

et al., 2023). Although the detail available in on-the-ground studies cannot be achieved, significant insight can indeed be gained293

from satellite-based observations and data streams, particularly when multiple data streams are integrated (Garbarino et al.,294

2023). As such, we are in the process of extending this approach globally and using more-diverse remote sensing data streams,295

in the hope of garnering additional useful insights into patterns of treeline change worldwide, and into processes that drive296

treeline change phenomena.297

Code and data availability. All data and code are available on a public Github repository found at the following URL:298

https://github.com/jocori/GeographicTreelinePatterns.git299
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Cudlín, P., Klopčič, M., Tognetti, R., Máliš, F., Alados, C. L., Bebi, P., Grunewald, K., Zhiyanski, M., Andonowski, V., Porta,321

N. L., Bratanova-Doncheva, S., Kachaunova, E., Edwards-Jonášová, M., Ninot, J. M., Rigling, A., Hofgaard, A., Hlásny, T.,322

Skalák, P., and Wielgolaski, F. E.: Drivers of treeline shift in different European mountains, Climate Research, 73, 135–150,323

https://doi.org/https://doi.org/10.3354/cr01465, 2017.324

Elliott, G. P.: Influences of 20th-century warming at the upper tree line contingent on local-scale interactions: evidence from a latitudinal325

gradient in the Rocky Mountains, USA, Global Ecology and Biogeography, 20, 46–57, https://doi.org/https://doi.org/10.1111/j.1466-326

8238.2010.00588.x, 2011.327

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer,328

S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Reviews of329

Geophysics, 45, https://doi.org/https://doi.org/10.1029/2005RG000183, 2007.330

Feuillet, T., Birre, D., Milian, J., Godard, V., Clauzel, C., and Serrano-Notivoli, R.: Spatial dynamics of alpine tree lines under global warm-331

ing: What explains the mismatch between tree densification and elevational upward shifts at the tree line ecotone, Journal of Biogeography,332

47, 1056–1068, https://doi.org/https://doi.org/10.1111/jbi.13779, 2020.333

Flanders Marine Institute: Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11,334

https://doi.org/https://doi.org/10.14284/386, 2012.335

Garbarino, M., Morresi, D., Anselmetto, N., and Weisberg, P. J.: Treeline remote sensing: from tracking treeline shifts336

to multi-dimensional monitoring of ecotonal change, Remote Sensing in Ecology and Conservation, 9, 729–742,337

https://doi.org/https://doi.org/10.1002/rse2.351, 2023.338

Grace, J., Berninger, F., and Nagy, L.: Impacts of climate change on the tree line, Annals of Botany, 90, 537–544,339

https://doi.org/https://doi.org/10.1093/aob/mcf222, 2002.340

Grafius, D., Malanson, G., and DJ, W.: Secondary controls of alpine treeline elevations in the western USA, Physical Geography, 33, 146–341

164, https://doi.org/https://doi.org/10.2747/0272-3646.33.2.146, 2012.342

Hansson, A., Shulmeister, J., Dargusch, P., and Hill, G.: A review of factors controlling Southern Hemisphere treelines343

and the implications of climate change on future treeline dynamics, Agricultural and Forest Meteorology, 332, 109 375,344

https://doi.org/https://doi.org/10.1016/j.agrformet.2023.109375, 2023.345

Harsch, M. A., Hulme, P. E., McGlone, M. S., and Duncan, R. P.: Are treelines advancing? A global meta-analysis of treeline response to346

climate warming, Ecology Letters, 12, 1040–1049, https://doi.org/https://doi.org/10.1111/j.1461-0248.2009.01355.x, 2009.347

22

https://doi.org/https://doi.org/10.1007/978-3-642-04898-2_110
https://doi.org/https://doi.org/10.1016/j.fecs.2022.100002
http://www.jstor.org/stable/2530259
https://doi.org/https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/https://doi.org/10.3354/cr01465
https://doi.org/https://doi.org/10.1111/j.1466-8238.2010.00588.x
https://doi.org/https://doi.org/10.1111/j.1466-8238.2010.00588.x
https://doi.org/https://doi.org/10.1111/j.1466-8238.2010.00588.x
https://doi.org/https://doi.org/10.1029/2005RG000183
https://doi.org/https://doi.org/10.1111/jbi.13779
https://doi.org/https://doi.org/10.14284/386
https://doi.org/https://doi.org/10.1002/rse2.351
https://doi.org/https://doi.org/10.1093/aob/mcf222
https://doi.org/https://doi.org/10.2747/0272-3646.33.2.146
https://doi.org/https://doi.org/10.1016/j.agrformet.2023.109375
https://doi.org/https://doi.org/10.1111/j.1461-0248.2009.01355.x


He, X., Jiang, X., Spracklen, D. V., Holden, J., Liang, E., Liu, H., Xu, C., Du, J., Zhu, K., Elsen, P. R., and Zeng, Z.: Global distribution and348

climatic controls of natural mountain treelines, Global Change Biology, 29, 7001–7011, https://doi.org/https://doi.org/10.1111/gcb.16885,349

2023.350

Holtmeier, F.-K.: Physiognomic and Ecological Differentiation of Mountain Timberline, pp. 29–292, Springer Netherlands, Dordrecht, ISBN351

978-1-4020-9705-8, https://doi.org/10.1007/978-1-4020-9705-8_4, 2009.352

Holtmeier, F.-K. and Broll, G.: Sensitivity and response of Northern Hemisphere altitudinal and polar treelines to environmental353

change at landscape and local scales, Global Ecology and Biogeography, 14, 395–410, https://doi.org/https://doi.org/10.1111/j.1466-354

822X.2005.00168.x, 2005.355

Holtmeier, F.-K. and Broll, G.: Treelines—Approaches at different scales, Sustainability, 9,356

https://doi.org/https://doi.org/10.3390/su9050808, 2017.357

Irl, S. D. H., Anthelme, F., Harter, D. E. V., Jentsch, A., Lotter, E., Steinbauer, M. J., and Beierkuhnlein, C.: Patterns of island treeline358

elevation–A global perspective, Ecography, 39, 427–436, https://doi.org/https://doi.org/10.1111/ecog.01266, 2016.359

Jiménez-García, D., Li, X., Lira-Noriega, A., and Peterson, A. T.: Upward shifts in elevational limits of forest and grassland for Mexican360

volcanoes over three decades, Biotropica, 53, 798–807, https://doi.org/https://doi.org/10.1111/btp.12942, 2021.361

Kienle, D., Irl, S., and Beierkuhnlein, C.: Mass elevation effect and continentality have a stronger impact on global treelines than spatial362

isolation, Global Ecology and Biogeography, 32, 1087–1097, https://doi.org/https://doi.org/10.1111/geb.13689, 2023.363

Körner, C.: Definitions and conventions, pp. 11–19, Springer Basel, Basel, ISBN 978-3-0348-0396-0, https://doi.org/10.1007/978-3-0348-364

0396-0_2, 2012.365

Kullman, L.: Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability, AMBIO: A366

Journal of the Human Environment, 27, 312–321, https://doi.org/https://doi.org/10.5555/19980613906, 1998.367

Körner, C.: A re-assessment of high elevation treeline positions and their explanation, Oecologia, 115, 781–790,368

https://doi.org/https://doi.org/10.1007/s004420050540, 1998.369

Körner, C.: The cold range limit of trees, Trends in Ecology & Evolution, 36, 979–989,370

https://doi.org/https://doi.org/10.1016/j.tree.2021.06.011, 2021.371

Körner, C. and Paulsen, J.: A world-wide study of high altitude treeline temperatures, Journal of Biogeography, 31, 713–732,372

https://doi.org/https://doi.org/10.1111/j.1365-2699.2003.01043.x, 2004.373

LaMarche, V. C., Graybill, D. A., Fritts, H. C., and Rose, M. R.: Increasing atmospheric carbon dioxide: tree ring evidence for growth374

enhancement in natural vegetation, Science, 225, 1019–1021, https://doi.org/10.1126/science.225.4666.1019, 1984.375

Lu, X., Liang, E., Wang, Y., Babst, F., and Camarero, J. J.: Mountain treelines climb slowly despite rapid climate warming, Global Ecology376

and Biogeography, 30, 305–315, https://doi.org/https://doi.org/10.1111/geb.13214, 2021.377

Maizlish, A.: The Ultra-Prominences Page — peaklist.org, http://www.peaklist.org/ultras.html, [Accessed 31-01-2025], 2007.378

Paulsen, J. and Körner, C.: A climate-based model to predict potential treeline position around the globe, Alpine Botany, 124, 1–12,379

https://doi.org/https://doi.org/10.1007/s00035-014-0124-0, 2014.380

Peterson, A. T., Osorio, J., Qiao, H., and Escobar, L. E.: Zika virus, elevation, and transmission risk, PLoS Currents, 8, ecur-381

rents.outbreaks.a832cf06c4bf89fb2e15cb29d374f9de, https://doi.org/10.1371/currents.outbreaks.a832cf06c4bf89fb2e15cb29d374f9de,382

2016.383

23

https://doi.org/https://doi.org/10.1111/gcb.16885
https://doi.org/10.1007/978-1-4020-9705-8_4
https://doi.org/https://doi.org/10.1111/j.1466-822X.2005.00168.x
https://doi.org/https://doi.org/10.1111/j.1466-822X.2005.00168.x
https://doi.org/https://doi.org/10.1111/j.1466-822X.2005.00168.x
https://doi.org/https://doi.org/10.3390/su9050808
https://doi.org/https://doi.org/10.1111/ecog.01266
https://doi.org/https://doi.org/10.1111/btp.12942
https://doi.org/https://doi.org/10.1111/geb.13689
https://doi.org/10.1007/978-3-0348-0396-0_2
https://doi.org/10.1007/978-3-0348-0396-0_2
https://doi.org/10.1007/978-3-0348-0396-0_2
https://doi.org/https://doi.org/10.5555/19980613906
https://doi.org/https://doi.org/10.1007/s004420050540
https://doi.org/https://doi.org/10.1016/j.tree.2021.06.011
https://doi.org/https://doi.org/10.1111/j.1365-2699.2003.01043.x
https://doi.org/10.1126/science.225.4666.1019
https://doi.org/https://doi.org/10.1111/geb.13214
http://www.peaklist.org/ultras.html
https://doi.org/https://doi.org/10.1007/s00035-014-0124-0
https://doi.org/10.1371/currents.outbreaks.a832cf06c4bf89fb2e15cb29d374f9de


Peterson, A. T., Berthiaume, K., Klett, M., and Munroe, J. S.: Linking repeat photography and remote sensing to assess tree-384

line rise with climate warming: Mount of the Holy Cross, Colorado, Arctic, Antarctic, and Alpine Research, 54, 478–487,385

https://doi.org/https://doi.org/10.1080/15230430.2022.2121245, 2022.386

Rousset, F. and Ferdy, J.-B.: Testing environmental and genetic effects in the presence of spatial autocorrelation, Ecography, 37, 781–790,387

https://doi.org/https://dx.doi.org/10.1111/ecog.00566, 2014.388

Rupp, T. S. and Starfield, A. M.: Modeling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in north-389

western Alaska, Climatic Change, 48, 399–416, https://doi.org/https://doi.org/10.1023/A:1010738502596, 2001.390

Shi, H., Zhou, Q., He, R., Zhang, Q., and Dang, H.: Climate warming will widen the lagging gap of global treeline shift relative to densifica-391

tion, Agricultural and Forest Meteorology, 318, 108 917, https://doi.org/https://doi.org/10.1016/j.agrformet.2022.108917, 2022.392

Singh, C. P., Panigrahy, S., Thaplyal, A., Kimothi, M., Soni, P., and Parihar, J.: Monitoring the alpine treeline shift in parts of the Indian393

Himalayas using remote sensing, Current Science, 102, 559, 2012.394

USGS: Landsat 5 TM Annual NDVI Composite [deprecated], https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT5_395

L1T_ANNUAL_NDVI, [Accessed 31-01-2025], 2017.396

Vogelmann, J. E., Gallant, A. L., Shi, H., and Zhu, Z.: Perspectives on monitoring gradual change across the continuity of Landsat sensors397

using time-series data, Remote Sensing of Environment, 185, 258–270, https://doi.org/https://doi.org/10.1016/j.rse.2016.02.060, landsat398

8 Science Results, 2016.399

Zhao, F., Zhang, B. P., Zhang, S., Qi, W. W., He, W. H., Wang, J., and Yao, Y. H.: Contribution of mass elevation effect to the altitudinal400

distribution of global treelines, Journal of Mountain Science, 12, 289–297, https://doi.org/https://doi.org/10.1007/s11629-014-3223-x,401

2015.402

24

https://doi.org/https://doi.org/10.1080/15230430.2022.2121245
https://doi.org/https://dx.doi.org/10.1111/ecog.00566
https://doi.org/https://doi.org/10.1023/A:1010738502596
https://doi.org/https://doi.org/10.1016/j.agrformet.2022.108917
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT5_L1T_ANNUAL_NDVI
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT5_L1T_ANNUAL_NDVI
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT5_L1T_ANNUAL_NDVI
https://doi.org/https://doi.org/10.1016/j.rse.2016.02.060
https://doi.org/https://doi.org/10.1007/s11629-014-3223-x


Appendix A: Supplementary Tables403

Model Terms AIC Delta AIC Weight

# Stations After Treeline + Direction + Latitude x Longitude 6.8× 103 0.000 5.7× 10−1

Direction + Latitude x Longitude 6.8× 103 7.0× 10−1 4.0× 10−1

Latitude + Longitude + # Stations After Treeline + Direction 6.8× 103 7.4 1.4× 10−2

Latitude + Longitude + Direction 6.8× 103 8.2 9.7× 10−3

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude x Longitude 6.8× 103 1.7× 101 9.7× 10−5

Distance to the Coast (m) + Direction + Latitude x Longitude 6.8× 103 1.8× 101 6.8× 10−5

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude 6.8× 103 1.9× 101 4.8× 10−5

Distance to the Coast (m) + Direction + Latitude + Longitude 6.8× 103 1.9× 101 3.4× 10−5

# Stations After Treeline + Latitude x Longitude 6.9× 103 5.6× 101 4.7× 10−13

Latitude x Longitude 6.9× 103 5.6× 101 3.5× 10−13

Latitude + Longitude + # Stations After Treeline 6.9× 103 6.4× 101 9.2× 10−15

Latitude + Longitude 6.9× 103 6.4× 101 6.8× 10−15

Latitude 6.9× 103 6.9× 101 7.3× 10−16

Longitude 6.9× 103 7.1× 101 2.2× 10−16

Distance to the Coast (m) + # Stations After Treeline + Latitude x Longitude 6.9× 103 7.3× 101 7.9× 10−17

Distance to the Coast (m) + Latitude x Longitude 6.9× 103 7.4× 101 5.9× 10−17

Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude 6.9× 103 7.4× 101 3.8× 10−17

Latitude + Longitude + Distance to the Coast (m) 6.9× 103 7.5× 101 2.9× 10−17

Table A1. AIC table comparing all linear mixed models which had change in treeline elevation as the response variable. In all, 18 models

were involved in this comparison.
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Term AIC Delta AIC Weight

Latitude 6.9× 103 0.000 3.5× 10−1

Latitude × Longitude 6.9× 103 1.2 1.9× 10−1

Longitude 6.9× 103 1.5 1.6× 10−1

# Stations After Treeline + Latitude × Longitude 6.9× 103 3.0 7.6× 10−2

Latitude + Longitude 6.9× 103 3.2 7.1× 10−2

Distance to the Coast (m) + Latitude × Longitude 6.9× 103 3.9 4.9× 10−2

Latitude + Longitude + Distance to the Coast (m) 6.9× 103 4.5 3.6× 10−2

Latitude + Longitude + # Stations After Treeline 6.9× 103 5.1 2.7× 10−2

Distance to the Coast (m) + # Stations After Treeline + Latitude × Longitude 6.9× 103 5.8 1.9× 10−2

Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude 6.9× 103 6.4 1.4× 10−2

Direction + Latitude × Longitude 6.9× 103 1.0× 101 1.8× 10−3

# Stations After Treeline + Direction + Latitude × Longitude 6.9× 103 1.2× 101 7.4× 10−4

Latitude + Longitude + Direction 6.9× 103 1.2× 101 6.9× 10−4

Distance to the Coast (m) + Direction + Latitude × Longitude 6.9× 103 1.3× 101 4.6× 10−4

Distance to the Coast (m) + Direction + Latitude + Longitude 6.9× 103 1.4× 101 3.4× 10−4

Latitude + Longitude + # Stations After Treeline + Direction 6.9× 103 1.4× 101 2.7× 10−4

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude × Longitude 6.9× 103 1.5× 101 1.9× 10−4

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude 6.9× 103 1.6× 101 1.4× 10−4

Table A2. AIC table comparing all spatial mixed models which had change in treeline elevation as the response variable. In all, 18 models

were involved in this comparison.
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Model Type Terms AIC Delta AIC Weight

Spatial Latitude 6.9× 103 0.000 3.4× 10−1

Spatial Direction + Latitude × Longitude 6.9× 103 1.0× 101 1.8× 10−3

Linear # Stations After Treeline + Latitude × Longitude 6.9× 103 1.1× 101 1.4× 10−3

Linear Distance to the Coast (m) + Latitude × Longitude 6.9× 103 1.1× 101 1.3× 10−3

Spatial Latitude × Longitude 6.9× 103 1.2 1.9× 10−1

Linear Latitude + Longitude + Distance to the Coast (m) 6.9× 103 1.2× 101 7.5× 10−4

Spatial # Stations After Treeline + Direction + Latitude × Longitude 6.9× 103 1.2× 101 7.3× 10−4

Spatial Latitude + Longitude + Direction 6.9× 103 1.2× 101 6.8× 10−4

Linear Distance to the Coast (m) + # Stations After Treeline + Latitude × Longitude 6.9× 103 1.3× 101 5.0× 10−4

Spatial Distance to the Coast (m) + Direction + Latitude × Longitude 6.9× 103 1.3× 101 4.6× 10−4

Spatial Distance to the Coast (m) + Direction + Latitude + Longitude 6.9× 103 1.4× 101 3.4× 10−4

Linear Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude 6.9× 103 1.4× 101 2.9× 10−4

Spatial Latitude + Longitude + # Stations After Treeline + Direction 6.9× 103 1.4× 101 2.7× 10−4

Spatial Longitude 6.9× 103 1.5 1.6× 10−1

Spatial Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude × Longitude 6.9× 103 1.5× 101 1.8× 10−4

Spatial Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude 6.9× 103 1.6× 101 1.4× 10−4

Linear Latitude 6.9× 103 1.7× 101 8.1× 10−5

Linear Latitude + Longitude 6.9× 103 1.8× 101 3.8× 10−5

Linear Direction + Latitude × Longitude 6.9× 103 1.9× 101 3.2× 10−5

Linear Longitude 6.9× 103 1.9× 101 2.0× 10−5

Linear Latitude + Longitude + # Stations After Treeline 6.9× 103 2.0× 101 1.5× 10−5

Linear # Stations After Treeline + Direction + Latitude × Longitude 6.9× 103 2.0× 101 1.3× 10−5

Linear Distance to the Coast (m) + Direction + Latitude × Longitude 6.9× 103 2.1× 101 1.2× 10−5

Linear Distance to the Coast (m) + Direction + Latitude + Longitude 6.9× 103 2.2× 101 7.0× 10−6

Linear Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude × Longitude 6.9× 103 2.2× 101 4.8× 10−6

Linear Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude 6.9× 103 2.3× 101 2.8× 10−6

Linear Latitude + Longitude + Direction 6.9× 103 2.7× 101 4.3× 10−7

Linear Latitude + Longitude + # Stations After Treeline + Direction 6.9× 103 2.9× 101 1.8× 10−7

Spatial # Stations After Treeline + Latitude × Longitude 6.9× 103 3.0 7.5× 10−2

Spatial Latitude + Longitude 6.9× 103 3.2 7.0× 10−2

Spatial Distance to the Coast (m) + Latitude × Longitude 6.9× 103 3.9 4.9× 10−2

Spatial Latitude + Longitude + Distance to the Coast (m) 6.9× 103 4.5 3.6× 10−2

Spatial Latitude + Longitude + # Stations After Treeline 6.9× 103 5.1 2.7× 10−2

Spatial Distance to the Coast (m) + # Stations After Treeline + Latitude × Longitude 6.9× 103 5.8 1.9× 10−2

Spatial Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude 6.9× 103 6.4 1.4× 10−2

Linear Latitude × Longitude 6.9× 103 9.2 3.5× 10−3

Table A3. AIC table comparing all linear mixed models and spatial mixed models which had change in treeline elevation as the response

variable. In all, 36 models were involved in this comparison.
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Terms AIC Delta AIC Weight

Latitude −1.5× 103 0.00 7.4× 10−1

Longitude −1.5× 103 2.1 2.5× 10−1

Latitude + Longitude −1.5× 103 1.2× 101 1.9× 10−3

Latitude + Longitude + # Stations After Treeline −1.5× 103 2.9× 101 3.8× 10−7

Latitude × Longitude −1.5× 103 3.2× 101 9.9× 10−8

Latitude + Longitude + Distance to the Coast (m) −1.4× 103 4.6× 101 8.0× 10−11

# Stations After Treeline + Latitude × Longitude −1.4× 103 4.9× 101 2.0× 10−11

Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude −1.4× 103 6.3× 101 1.6× 10−14

Distance to the Coast (m) + Latitude × Longitude −1.4× 103 6.4× 101 9.4× 10−15

Latitude + Longitude + Direction −1.4× 103 7.4× 101 7.0× 10−17

Distance to the Coast (m) + # Stations After Treeline + Latitude × Longitude −1.4× 103 8.1× 101 1.9× 10−18

Latitude + Longitude + # Stations After Treeline + Direction −1.4× 103 9.1× 101 1.5× 10−20

Direction + Latitude × Longitude −1.4× 103 9.4× 101 3.3× 10−21

Distance to the Coast (m) + Direction + Latitude + Longitude −1.4× 103 1.1× 102 2.5× 10−24

# Stations After Treeline + Direction + Latitude × Longitude −1.4× 103 1.1× 102 7.1× 10−25

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude −1.4× 103 1.3× 102 5.3× 10−28

Distance to the Coast (m) + Direction + Latitude × Longitude −1.4× 103 1.3× 102 3.0× 10−28

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude × Longitude −1.4× 103 1.4× 102 6.3× 10−32

Table A4. AIC table comparing all linear mixed models which had change in treeline NDVI as the response variable. In all, 18 models were

involved in this comparison.
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Terms AIC Delta AIC Weight

Latitude −1.5× 103 0.000 4.0× 10−1

Latitude + Longitude −1.5× 103 1.7 1.8× 10−1

Latitude × Longitude −1.5× 103 3.6 6.6× 10−2

Latitude + Longitude + # Stations After Treeline −1.5× 103 3.6 6.5× 10−2

Latitude + Longitude + Distance to the Coast (m) −1.5× 103 3.0 8.9× 10−2

Distance to the Coast (m) + Latitude × Longitude −1.5× 103 4.8 3.7× 10−2

Longitude −1.5× 103 4.6 4.1× 10−2

# Stations After Treeline + Latitude × Longitude −1.5× 103 5.6 2.5× 10−2

Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude −1.5× 103 5.0 3.3× 10−2

Latitude + Longitude + Direction −1.5× 103 6.2 1.8× 10−2

Distance to the Coast (m) + # Stations After Treeline + Latitude × Longitude −1.5× 103 6.8 1.4× 10−2

Distance to the Coast (m) + Direction + Latitude + Longitude −1.5× 103 7.7 8.5× 10−3

Direction + Latitude × Longitude −1.5× 103 8.2 6.6× 10−3

Latitude + Longitude + # Stations After Treeline + Direction −1.5× 103 8.1 7.1× 10−3

Distance to the Coast (m) + Direction + Latitude × Longitude −1.5× 103 9.5 3.6× 10−3

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude −1.5× 103 9.6 3.3× 10−3

Table A5. AIC table comparing all spatial mixed models which had change in treeline NDVI as the response variable. In all, 18 models were

involved in this comparison.
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Model Type Terms AIC Delta AIC Weight

Spatial Latitude −1.5 × 103 0.000 4.0 × 10−1

Spatial # Stations After Treeline + Direction + Latitude × Longitude −1.5 × 103 1.0 × 101 2.6 × 10−3

Spatial Distance to the Coast (m) + Direction + # Stations After Tree-

line + Latitude × Longitude

−1.5 × 103 1.1 × 101 1.4 × 10−3

Linear Latitude + Longitude + Distance to the Coast (m) −1.5 × 103 1.5 × 101 2.1 × 10−4

Linear Latitude −1.5 × 103 1.5 × 101 2.1 × 10−4

Linear Latitude + Longitude −1.5 × 103 1.5 × 101 1.8 × 10−4

Linear Distance to the Coast (m) + Latitude × Longitude −1.5 × 103 1.6 × 101 1.3 × 10−4

Spatial Latitude + Longitude −1.5 × 103 1.7 1.8 × 10−1

Linear Latitude × Longitude −1.5 × 103 1.7 × 101 9.3 × 10−5

Linear Distance to the Coast (m) + # Stations After Treeline + Lati-

tude + Longitude

−1.5 × 103 1.7 × 101 8.0 × 10−5

Linear Latitude + Longitude + # Stations After Treeline −1.5 × 103 1.7 × 101 6.9 × 10−5

Linear Longitude −1.5 × 103 1.8 × 101 6.0 × 10−5

Linear Distance to the Coast (m) + # Stations After Treeline + Lati-

tude × Longitude

−1.5 × 103 1.8 × 101 4.8 × 10−5

Linear # Stations After Treeline + Latitude × Longitude −1.5 × 103 1.9 × 101 3.5 × 10−5

Linear Latitude + Longitude + Direction −1.5 × 103 1.9 × 101 3.2 × 10−5

Linear Distance to the Coast (m) + Direction + Latitude + Longitude −1.5 × 103 1.9 × 101 3.2 × 10−5

Linear Distance to the Coast (m) + Direction + Latitude × Longitude −1.5 × 103 2.0 × 101 1.9 × 10−5

Linear Direction + Latitude × Longitude −1.5 × 103 2.0 × 101 1.5 × 10−5

Linear Latitude + Longitude + # Stations After Treeline + Direction −1.5 × 103 2.1 × 101 1.3 × 10−5

Linear Distance to the Coast (m) + Direction + # Stations After Tree-

line + Latitude + Longitude

−1.5 × 103 2.1 × 101 1.3 × 10−5

Linear Distance to the Coast (m) + Direction + # Stations After Tree-

line + Latitude × Longitude

−1.5 × 103 2.2 × 101 7.8 × 10−6

Linear # Stations After Treeline + Direction + Latitude × Longitude −1.5 × 103 2.2 × 101 6.0 × 10−6

Spatial Latitude + Longitude + Distance to the Coast (m) −1.5 × 103 3.0 8.9 × 10−2

Spatial Latitude × Longitude −1.5 × 103 3.6 6.6 × 10−2

Spatial Latitude + Longitude + # Stations After Treeline −1.5 × 103 3.6 6.5 × 10−2

Spatial Longitude −1.5 × 103 4.6 4.1 × 10−2

Spatial Distance to the Coast (m) + Latitude × Longitude −1.5 × 103 4.8 3.7 × 10−2

Spatial Distance to the Coast (m) + # Stations After Treeline + Lati-

tude + Longitude

−1.5 × 103 5.0 3.3 × 10−2

Spatial # Stations After Treeline + Latitude × Longitude −1.5 × 103 5.6 2.5 × 10−2

Spatial Latitude + Longitude + Direction −1.5 × 103 6.2 1.8 × 10−2

Spatial Distance to the Coast (m) + # Stations After Treeline + Lati-

tude × Longitude

−1.5 × 103 6.8 1.4 × 10−2

Spatial Distance to the Coast (m) + Direction + Latitude + Longitude −1.5 × 103 7.7 8.5 × 10−3

Spatial Latitude + Longitude + # Stations After Treeline + Direction −1.5 × 103 8.1 7.0 × 10−3

Spatial Direction + Latitude × Longitude −1.5 × 103 8.2 6.6 × 10−3

Spatial Distance to the Coast (m) + Direction + Latitude × Longitude −1.5 × 103 9.5 3.6 × 10−3

Spatial Distance to the Coast (m) + Direction + # Stations After Tree-

line + Latitude + Longitude

−1.5 × 103 9.6 3.3 × 10−3

Table A6. AIC table comparing all linear mixed models and spatial mixed models which had change in treeline NDVI as the response

variable. In all, 36 models were involved in this comparison.
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