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Abstract. Previous research has shown that (1) treelines are shifting upward in elevation on high mountain peaks worldwide,1

and (2) the rate of the upward shift appears to have increased markedly in recent decades. Because treeline elevational shift2

is a process manifested over broad scales of space and time, a particular challenge has been that of obtaining a broad-enough3

view of patterns of treeline shift to permit inferences about geographic and environmental patterns. What is more, intensive4

studies of treelines have been concentrated in North Temperate regions, such that little information is available about treeline5

shift patterns at lower latitudes. We have attempted to address this challenge by analyzing a long time series of vegetation6

indices derived from Landsat imagery obtained and analyzed via Google Earth Engine from the 1980s to the present. We7

sampled vegetation indices at points spaced every 100 m along 100 km transects radiating out from 115 high peaks across8

western North America (Canada to Central America), which means that we are sampling approximately every second or9

third pixel in the corresponding Landsat images. Considerable data preparation was necessary, including ending transects <210

km into closed forest, identifying current treelines via reference to Google Earth imagery, and consideration only of up to11

<1 km above treeline. Patterns that emerged were—as is well known—that treelines are generally higher at lower latitudes,12

but—previously unknown—that the magnitude of treeline shifts is nonrandomly distributed with respect to latitude, longitude,13

and their interaction. This analysis, via a broad-scale view of treeline shifts over almost 40 years and a geographic span of14

more than 40° of latitude, demonstrates that climate change effects and consequent treeline shifts are most dramatic in tropical15

regions where few or no detailed treeline studies have been and are being conducted.16
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1 Introduction19

The upper elevational limits of forests in mountain systems represent a fascinating and dramatic manifestation of distributional20

limitation at the species and community levels. As such, treeline phenomena have seen extensive analysis and discussion in the21

ecological literature: they are an important manifestation of the geographic ecology of ecosystems, and likely reflect important22

climate-related controls (Kullman, 1998). Numerous studies have been developed that aim to understand factors driving the23

location and possible shifts in treelines, with the general conclusion that treelines are determined by complex suites of factors24

(Cudlín et al., 2017; Körner, 1998; Holtmeier and Broll, 2005; Irl et al., 2016; Grafius et al., 2012; Kienle et al., 2023). Whereas25

some researchers have concluded that treeline position can be distilled down to simple rules regarding seasonal mean ground26

temperatures (Körner and Paulsen, 2004), others have argued that treeline drivers are considerably more multidimensional27

and complex (Paulsen and Körner, 2014; Zhao et al., 2015). In this study, we adopt Körner’s ( 2012 definition of elevational28

treeline, i.e., the uppermost elevation on a mountain slope at which upright woody plants (trees > 2m tall) can maintain a29

self-sustaining population. Above that limit, insufficient warmth (a too short or too cold growing season) prohibits the regular30

recruitment and survival of true tree forms, even if isolated, krummholz-like individuals may sporadically occur.31

Clearly, considerable complexity is involved in any attempt to characterize treeline phenomena. However, dendroecological32

approaches offer the useful possibility of obtaining establishment ages on an individual-tree basis across broad stands of trees33

at or near treelines (Elliott, 2011). When treelines change, a key challenge is that of considering treeline shifts (e.g., elevational34

advance upward with warming climate) versus densification (e.g., sparse forest or scattered trees near treeline filling in with35

more trees, regardless of whether the upper limit of the trees changes or not) (Shi et al., 2022). Finally, treeline is a highly scale-36

dependent phenomenon, such that all of its qualities vary in importance and effect at different spatial extents and resolutions37

(Holtmeier and Broll, 2017).38

From early in the discussions about the possibility that global climates would warm with increasing greenhouse gas concen-39

trations (LaMarche et al., 1984; Grace et al., 2002), the expectation has been that treelines would advance up mountain slopes40

as climatic controls relax at extreme elevations. Empirical evidence has been mixed, however, with some studies documenting41

what appears to be very rapid treeline advance (Peterson et al., 2022), and others finding no evidence of overall tendency to42

change (Beloiu et al., 2022). One broad analysis found that treeline advance was faster in subarctic regions than in temperate43

regions (Lu et al., 2021), and another found that treelines experiencing stronger winter warming and with diffuse treeline44

forms were more likely to advance (He et al., 2023).45

Nonetheless, most of these previous broad-scale analyses of patterns of treeline advance in the face of warming climates46

have been based on datasets with strong inherent biases and significant gaps. That is, in largest part, treeline studies have been47

conducted in the North Temperate zone: examples of such biased analyses are many (Shi et al., 2022; Zhao et al., 2015;48

Körner, 1998; Lu et al., 2021). A few analyses have achieved a somewhat better balance of representation of treelines in the49

Tropics and in the Southern Hemisphere (He et al., 2023; Hansson et al., 2023; Kienle et al., 2023). The concern, of course,50

is that such information gaps and biases in what information is available may blind researchers and their analyses to very real51

and important patterns in the global occurrence of the phenomenon of treeline advance.52
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Here, we address these important knowledge gaps about treeline dynamics in the face of warming climates globally over53

the past several decades. We assess the null hypothesis that magnitude of alpine treeline shifts is not related to a series of54

geographic features, such as latitude, longitude, distance to coast, and others. Specifically, to be able to assess treeline shifts55

on a continent-wide basis, we use a long time series of remote-sensing data to seek patterns in the magnitude of alpine treeline56

shifts across 115 high peaks scattered across western North America, ranging from Central America to southern Canada. We57

use vegetation index trends along transects radiating out from each peak in eight cardinal and sub-cardinal directions; the58

vegetation index approach has the advantage of “seeing” vegetative mass generally, in effect integrating over both treeline59

advance and densification of sparse, near-treeline forests (Feuillet et al., 2020). Of course, these broad-scale analyses are not60

a substitute for more detailed, field-based analyses, nor should vegetation-index-based assessments replace more fine-grained61

inspections of the actual geometry of treelines. Still, the result is a novel dataset from which we have derived several intriguing62

insights about geographic patterns in the magnitude of treeline elevational shifts.63

2 Methods64

2.1 Mountain peak characterization65

Our aim was to characterize temporal changes in vegetation mass on a set of mountains that covered western North America.66

To that end, we chose to follow a comprehensive summary of high mountains worldwide (Maizlish, 2007), which is based on67

an effort to identify all mountains worldwide with at least a 1500 m prominence; the authors of that compendium (called the68

Ultras Project) researched all summits on Earth that meet this criterion, finding 1524 such peaks. From this worldwide dataset,69

we extracted the 354 mountain peaks located in North America (Panama to the Arctic). We used the coordinates of each peak in70

this dataset as a centerpoint, and plotted 8 transects in each of the cardinal and sub-cardinal directions extending out from that71

centerpoint (points were plotted and distances measured in meters using the WGS84 Special Mercator for Web Applications72

(EPSG:3857) projection to assure consistent distances among sampling stations. Transects were each initially 100 km long,73

with sampling stations every 100 m, so each transect initially included 1000 sampling stations.74

We excluded from analysis all mountains that were forested to the peak, or that showed signs of anthropogenic modification75

at or around the peak upon visual inspection of the region in Google Earth. We also excluded peaks for which treelines were76

not associated clearly with the upper slopes of the peak, but rather were lower, extending just a bit up the valley walls and thus77

likely represent latitudinal treelines as opposed to altitudinal treelines; such low treelines were particularly common in central78

and northern Canada and Alaska, such that northern peaks were excluded. Given that, in eastern North America, only one peak79

(Mt. Washington, in New Hampshire) met our criteria, to avoid including a genuine spatial outlier in our analyses, we omitted80

that peak from analysis, thus focusing our analyses on the high peaks of western North America. At the end of this process,81

from the initial database, we had 120 peaks remaining as a basis for our analyses (Figure 1).82
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Figure 1. The 120 high mountain peaks analyzed in this study. Triangles represent individual mountain peaks used in our analysis. The ’X’

symbol is Mt. Washington, which was removed from the dataset prior to analysis. This map was constructed using QGIS ver 3.38.2. ESRI

physical basemap was used to create the map.
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In Google Earth Engine, we overlaid the transect sampling points on imagery from Landsat (1984–2017), and associated the83

values of the normalized difference vegetation index (NDVI) with each sampling point in the transect dataset. For this analysis,84

we focused on early (1984–1988) and late time periods (2013–2017) within the timespan of the Landsat dataset. We used NDVI85

data from the annual Landsat collection (Landsat/LT5_L1T_ANNUAL_NDVI, Landsat/LE7_L1T_ANNUAL_NDVI, and86

Landsat/LE8_L1T_ANNUAL_NDVI) in Google Earth Engine. We used the pre-processed LANDSAT_LT5_L1T_ANNUAL_NDVI87

collection in Google Earth Engine, which provides annual NDVI composites derived from Level-1 terrain-corrected Landsat 588

reflectance images (including cloud masking and quality assurance). Unfortunately, this collection is now deprecated in GEE.89

To ensure full transparency, our scripts for reproducing the NDVI computation from the original Landsat reflectance data are90

publicly available on Github. Detailed information about the original dataset can be found in the Earth Engine Data Cata-91

logue (USGS, 2017): Calibration procedures and validation methods for this collection are described by Chander et al., 2009.92

We generated a composite for each year from the available Landsat images, and extracted NDVI values for each year via a93

mean reducer. We then inspected each transect of each peak individually by overlaying the point data on the Google Satellite94

fine-resolution data product, using the GIS capabilities of QGIS (version 3.2).95

A key step was that of choosing the sampling station on each transect that corresponded to treeline, as follows. Descending96

from each peak (using the Google Satellite data layer in QGIS) along each transect, we identified the sampling station that most97

closely approximated the upper elevational limit of forest. That is, we ignored single, isolated trees, but rather identified the98

elevation at which forest became continuous, albeit in some cases sparse. For this sampling station, we set the field TreesBegin99

in the data table characterizing peaks to 1. To focus attention on the region just above and just below treeline, we ended the100

transect after up to 20 additional sampling stations descending from the peak beyond treeline into the forest; however, we101

retained fewer than 20 sampling stations when any anthropogenic effects were noticeable upon visual inspection, or when the102

straight-line transect reached a valley bottom and began to ascend again. All further sampling stations beyond this point were103

removed from the dataset.104

2.2 Data refinement105

Values of NDVI and elevation were assigned to each sampling station via GIS overlay (“extract value to point”) operations.106

All subsequent data preparation was done in R (version 4.4.1) and QGIS (version 3.38.2). We cleaned the data that had been107

exported from Google Earth Engine by removing any missing values. We averaged the yearly NDVI values over the two time108

periods (1984-1988 and 2013-2017) to provide “before and after” comparisons that would be more immune to measurement109

error or other sources of year-to-year variation.110

Our next goal was to calculate regression equations for individual mountains, slopes, and time periods, characterizing the111

negative-sloped relationship between elevation and NDVI. To this end, we transformed the data into a hierarchical nested list of112

lists; the dataset included 120 mountain peaks, each of which had 1-8 transects. Each transect had the two averaged year groups113

of NDVI data, for a total of 1848 distinct combinations of peak, transect, and year group; some transects were removed entirely114

based on the criteria listed above (Section 2.1). In our analyses, we included only NDVI measurements from “stations” that115

were in relatively close proximity to treeline. That is, we included at least the last 10 stations. If twice the number of stations116
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after the manually identified treeline to the transect edge (i.e., the furthest measured station downslope) plus one (to explicitly117

account for the station representing treeline itself) exceeded 10, we used this greater number of stations instead. This approach118

ensured we captured sufficient data from both sides of the treeline and minimized the effect of terrain variability from sources119

such as small bare peaks, increasing the probability of detecting the true relationship.120

We modeled the NDVI-elevation relationship with NDVI as the response variable and elevation as the predictor variable to121

find the best type of regression equation and, ultimately, the best approximation to the true relationship between these variables122

(Figure 2; see below); these models allowed us to associate NDVI and treeline elevation for calculation of our final response123

variables: change in elevation and change in NDVI. . To this end, we calculated three types of regressions on each data frame124

(linear, reciprocal-linear, and reciprocal-quadratic) to assess which model shape best describes the NDVI-elevation relationship.125

The three models were compared via the Akaike Information Criterion (AIC; Akaike 2011) for each peak, transect, and time126

period. As all 1848 of these NDVI elevation relationships were best described by a linear model we retained only linear127

regression equations for subsequent analyses. We excluded transects for which the regression equation was not statistically128

significant or for which the regression slope was positive. We used α = 0.05 as the threshold for statistical significance in all129

regressions. This criterion removed 688 of 1848 transects, leaving 1160 transects for analysis. Finally, since our goal was to130

create temporal comparisons between the two time periods, we also removed any transects for which regressions for either131

time period did not meet the criteria outlined above; this filter removed another 202 transects from analysis. The final dataset132

thus included 958 transects on 115 peaks.133
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Figure 2. Map showing continentwide patterns of regression slopes relating NDVI to elevation for each peak, averaged across the 1-8

transects available for each peak, for the 2013-2017 time period. Red circles represent a positive slope (excluded from final analysis), and

yellow circles represent a negative slope. The size of the circles coincide with the magnitude of the absolute value of each slope calculation.

The ’X’ symbol is Mt. Washington, which was removed from the dataset prior to analysis. This map was constructed using QGIS ver 3.38.2.

ESRI physical basemap was used to create the map.
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The goal in these analyses was to calculate change in treeline elevation for use as a response variable in continent-wide134

models. Alpine treeline position represents a bioclimatic threshold: trees cannot form self-sustaining closed canopy stands135

above it because low temperatures and a short growing season limit carbon assimilation and wood formation (Körner, 2012;136

Holtmeier, 2009). In turn, shifts in treeline elevation over time serve as a direct indicator of how local thermal regimes and137

associated growing-season lengths are changing on the landscape (Körner, 2012; Holtmeier and Broll, 2005). By modeling138

the change in treeline elevation, we capture how climate warming and other environmental drivers are pushing the arboreal139

“limit” upslope. To this end, we inserted the elevations at our manually selected treeline position into the 2013-2017 NDVI140

linear regression equations to calculate the NDVI values associated with present day treeline. We then inserted that calculated141

NDVI value into the 1984-1988 regression equations to obtain an estimate of treeline elevation (i.e., we sought the elevation142

with the same 1984-1988 NDVI value as present-day treeline on that slope of that mountain; Figure 3). Finally, we subtracted143

the 1984-1988 elevation values from the 2013-2017 elevation values to obtain an estimate of the change in treeline elevation144

over the broad temporal span of this study.145
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Figure 3. Example of a high mountain (Cerro de la Malinche, Tlaxcala, Mexico) and inferences deriving from it regarding position of treeline

through time. Top panel: View of the mountain in Google Earth, with 8 transects radiating out from the peak in cardinal and subcardinal

directions. White dots indicate stations at which NDVI values were sampled through time; purple stars indicate the position of treeline

identified visually. Bottom panel: dark red points and lines show the NDVI-elevation relationship in the 1980s; blue points and lines show

the same relationship in the 2010s. In one example (northward transect), the elevation of treeline observed for 2013-2017 (3960 m) was used

to identify a treeline NDVI threshold (0.3135), which was in turn used to identify a likely elevation (3448 m) of the same NDVI level for

1980s conditions. Background of top panel is from Google Earth©.
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We also calculated a second, simpler response variable, which was simply change in NDVI at the 2013-2017 treeline. In146

high-elevation contexts, an upward trend in NDVI within elevation bands at the present day treeline signals increased tree147

recruitment, shrub encroachment, or earlier green-up (Harsch et al., 2009; Rupp and Starfield, 2001). Thus, by computing the148

change in NDVI over our study period, we capture a functional or “greenness” dimension of treeline dynamics that comple-149

ments the structural dimension (change in elevation). In other words, even before trees form closed canopies, small shrubs or150

seedlings may begin to photosynthesize more vigorously, which will manifeset as change in NDVI. To this end, we inserted the151

manually located 2017 treeline elevation into the two regression equations for that mountain and slope. This resulted in NDVI152

values at a particular elevation (i.e., recent treeline) for 2013-2017 and 1984-1988 for each peak and direction. We subtracted153

the 1984-1988 values from the 2013-2017 values to obtain the change in treeline NDVI. A more positive value for change in154

NDVI indicates an increase in NDVI between 2013-2017 and 1984-1988.155

Finally, we assembled a suite of independent variables that may be of interest as possible drivers of variation in rates of156

treeline shift. We included (1) the number of stations in the transect below treeline (as a potential confounding factor), (2)157

cardinal direction of the transect, (3) latitude, and (4) longitude, all of which could be derived from the original data about158

each transect and peak in the analysis. We also calculated (5) the distance to the closest coastline in meters, based on the159

coastline corresponding to official maritime boundaries (Flanders Marine Institute, 2012). We built a raster file that contained160

the distance to the closest coastline for each 1.53 km (∼2.5’ pixels). We then added these distance values to the data table for161

the transect sampling points using the point sampling tool in QGIS.162

2.2.1 Model selection163

To understand which of the above independent variables likely drives variation in rate of treeline elevational shifts, we used164

an iterative stepwise model selection process. We selected the model that best describes western North American geographic165

treeline elevational shift patterns using AIC. We explored two statistical models to ensure that the final model would best166

explain geographic variation in treeline dynamics. First, we built 18 linear mixed models, each of which contained a random167

effect of ‘Peak ID’ to account for variability in local landscape characteristics. Second, we constructed 18 spatial mixed models168

using the R package ‘spaMM’ in which we specified Matèrn random effects to account for spatial autocorrelation by capturing169

the spatially structured variation in treeline elevation that is not explained by the fixed effects (Rousset and Ferdy, 2014).170

These models were fitted using restricted maximum likelihood.171

For the first two model sets (total 32 models), the response variable was the change in treeline elevation between the two172

time periods. We produced a second array of models, parallel to the first, in which we used change in treeline NDVI as the173

response variable. All other model characteristics were the same as for the models based on change in treeline elevation.174

For all of the models described above, the fixed effects were different combinations of the independent variables: distance to175

coast, number of stations after treeline, cardinal direction of slope, latitude, and longitude, as well as the interaction between176

latitude and longitude. The models ranged in complexity, but we always included latitude and longitude. We compared all 32177

models in an AIC table, as the response variable was constant and all models were fit by REML. We assessed significance by178

checking whether the 95% confidence interval of each fixed effect overlapped zero (Browne, 1979). We considered results for179
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Figure 4. Panel (a) diagrams the steps taken to 1. Characterize mountains, 2. Clean the data in preparation for analysis, and 3. Select models.

In panel (b), the hierarchical structure of our dataset is conceptually illustrated.

which confidence intervals did not overlap zero to be significant. Our dataset construction and analysis steps are summarized180

in a diagram for clarity (Figure 4).181
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3 Results182

3.1 Generalities about Treelines183

Treeline locations were non-random in a number of ways. On average, across all mountain peaks in our analyses, treeline184

was located at 2433 m. However, treeline position varied systematically, in that a significant relationship existed between185

treeline and latitude: tropical treelines averaged 3177 m, whereas temperate-zone treelines were lower, at 2244 m. As such,186

all subsequent analyses in this study needed to be conditioned on the geographic complexity underlying the phenomenon of187

treeline.188

3.2 Change in Treeline Elevation189

Treelines have been changing, even over the relatively short, 30-40-year timespan of this study. Indeed, treeline shifts among190

the western North American peaks in this study had a mean overall shift of 20.2 m upslope, though the mean absolute shift191

(positive or negative) was 240 m. The distribution of change values ranged from 165 m downslope to 127 m upslope.192

For the multivariate models relating change in treeline elevation to environmental drivers, we calculated the best-fit models193

for the linear mixed models and spatial mixed models using AIC and the coefficient of determination (R2). We calculated194

the marginal and conditional R2 values for linear mixed models and a pseudo R2 value for the spatial mixed models. The195

best linear mixed model included number of stations after treeline, direction of transect moving away from the peak, latitude,196

longitude, and the interaction between latitude and longitude as fixed effects, with mountain peak name as a random intercept197

(Table A1). From our candidate set of spatial mixed models, the best fit included only latitude as a fixed effect, with a Matèrn198

random effect structure (Table A2). When comparing all models and the two best fitting models from the linear and spatial199

analyses, the spatial mixed model was best overall (Tables A3 & 1).200

Model Type Terms AIC Delta AIC Weight

Spatial Latitude 6.893e+03 0.000e+00 1.000e+00

Linear # Stations After Treeline + Direction + Latitude * Longitude 6.914e+03 2.035e+01 3.814e-05

Table 1. AIC table comparing the best linear mixed model and the best spatial mixed model from their respective comparisons, which had

change in treeline elevation as the response variable. There were 2 models in this comparison.

The best spatial mixed model, which was also the best model overall, showed that change in treeline was not significantly201

related to the only fixed effect, latitude (Pseudo−R2 = 0.4512). This model was fit using a Gaussian random effect with a202

Matèrn correlation structure. The smoothness parameter (ν) was estimated at 0.398, indicating a moderate degree of spatial203

continuity in treeline elevation changes. The range parameter (ρ) was 0.00466, suggesting that spatial correlation between ob-204

servations declines sharply over very short distances. The variance of the spatial random effect (λ) was estimated at 3,651,000,205
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highlighting substantial spatial variation in the data. The residual variance (ϕ) was 64,159, representing unexplained variability206

after accounting for spatial effects (Table 2).207

Term Estimate SE T-Value Lower 95% CI Upper 95% CI

Intercept 2562 1991 1.287 -5116 9901

Latitude -51.27 30.61 -1.675 -126.8 10.34

Random intercept (variance) 3.651e+06

Random intercept (std. dev.) 1911

Residual (variance) 6.416e+04

Residual (std. dev.) 253.3

Table 2. Model summary of the top spatial mixed model. Fixed and random effect outputs are shown. The response variable for this model

was the change in treeline elevation. Significance would be denoted by bold text and was assessed by observing whether or not the confidence

interval overlapped zero. This model found no significant relationships.
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The less optimal best linear mixed model can be explored as well: it showed a significant relationship between change in208

treeline and latitude, longitude, and the interaction between latitude and longitude (ConditionalR2 = 0.6887, Marginal R2209

= 0.2815). Change in treeline elevation was significantly higher at lower values of latitude (β = -100.6, 95% CI = [-155.1,210

-46.29], Table 3; Figure 5a). The relationship between change in treeline elevation and the interaction between latitude and211

longitude were also significantly negative (β = -0.8418, 95% CI = [-1.345, -0.3413], Table 3): as longitude increases eastward,212

effects of latitude on treeline shift become more negative, suggesting a complex spatial relationship between these geographic213

variables and treeline dynamics. Longitude alone also had a significant positive relationship with change in treeline elevation214

(β = 36.21, 95% CI = [13.00, 59.52], 3; Figure 5b). This result indicates that mountain treelines further east in North America215

(farther from the Pacific Coast) have more drastic temporal changes in their treeline elevations compared to the more western216

mountain treelines in our study.217

Term Estimate SE T-Value Lower 95% CI Upper 95% CI

Intercept 4177 1130 3.696 1991 6374

# Stations After Treeline 0.6273 1.397 0.4492 -2.076 3.376

Direction (North) 18.72 52.51 0.3565 -83.02 121.4

Direction (Northeast) -4.987 51.42 -0.09699 -104.7 95.28

Direction (Northwest) 63.72 49.17 1.296 -31.49 160

Direction (South) 74.53 48.35 1.541 -19.3 168.8

Direction (Southeast) 32.52 50.39 0.6454 -65.53 130.4

Direction (Southwest) 47.26 49.7 0.9509 -49.43 143.9

Direction (West) 51.45 49.7 1.035 -45.04 148.2

Latitude -100.6 28.05 -3.585 -155.1 -46.29

Longitude 36.21 12 3.019 13 59.52

Latitude × Longitude -0.8418 0.2587 -3.254 -1.345 -0.3413

Random intercept (variance) 8.989e+04

Random intercept (std. dev.) 299.8

Residual (variance) 6.874e+04

Residual (std. dev.) 262.2

Table 3. Model summary of the top linear mixed model. Fixed and random effect outputs are shown. The response variable for this model

was the change in treeline elevation. Significance is denoted by bold text and was assessed by observing whether or not the confidence

interval overlapped zero.
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Figure 5. Summary of univariate relationships between treeline elevational shifts and latitude and longitude. Panel (a) shows latitude on the

x-axis, while panel (b) shows longitude on the x-axis. Regression lines for both panels are denoted in black. Note that the interaction term

between these two independent variables is also statistically significant.
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3.3 Change in Treeline NDVI218

As with the previous response variable, we fit a series of linear mixed models and spatial mixed models with a Màtern random219

effect structure for change in treeline NDVI as a response variable, and compared the resulting models via AIC, both individ-220

ually and in totality. The top linear mixed model (Marginal R2 = 0.3300, Conditional R2 = 0.7349) and the top spatial mixed221

model had only latitude as predictor variables when compared only to models of their respective type (Tables A4 & A5). The222

best-fitting model when comparing all linear and spatial mixed models and when comparing the top models from the spatial223

mixed model and linear mixed model AIC tables was the spatial mixed model with the fixed effect of latitude (Pseudo-R2 =224

0.6067) Tables A6 & 4).225

Model Type Terms AIC Delta AIC Weight

Spatial Latitude -1.532e+03 0.00e+00 9.995e-01

Linear Latitude -1.517e+03 1.51e+01 5.268e-04

Table 4. AIC table comparing the best linear mixed model and the best spatial mixed model from their respective comparisons, which had

change in treeline NDVI as the response variable. There were 2 models in this comparison.

The best-fit linear mixed model revealed that change in treeline NDVI was significantly related only to latitude (β = -226

0.003303, 95% CI = [-0.004121, -0.002484], Table 5, Figure 6). The negative slope of this relationship indicates that change227

in NDVI is greater at lower latitudes, indicating more greenness in the Tropics and Subtropics in more recent years.228

Term Estimate SE T-Value Lower 95% CI Upper 95% CI

Intercept 0.1226 0.0187 6.558 0.08596 0.1593

Latitude -0.003303 0.0004176 -7.91 -0.004121 -0.002484

Random intercept (variance) 0.002359

Random intercept (std. dev.) 0.04857

Residual (variance) 0.001545

Residual (std. dev.) 0.03931

Table 5. Model summary of the top linear mixed model. Fixed and random effect outputs are shown. The response variable for this model

was the change in treeline NDVI. Significance is denoted by bold text and was assessed by observing whether or not the confidence interval

overlapped zero.
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Among the set of spatial mixed models, the top model concurred with the top linear mixed model. Latitude was again229

significantly negatively related to change in treeline NDVI (β = -0.003852, 95% CI = [-0.005047, -0.002705], Table 6, Figure230

6), and no other variables had significant effects. The negative slope underlines the linkage between lower latitudes and more231

intense treeline movement. This model was the best performing overall out of all models with change in NDVI as the response232

variable that we tested. The smoothness parameter (ν) was estimated at 0.259, indicating moderate spatial continuity in the233

data. The range parameter (ρ) was 1.006, suggesting that spatial correlation between observations diminishes rapidly over very234

short distances. The variance of the spatial random effect (λ) was estimated at 0.00298, reflecting residual spatial variability in235

the data. The residual variance (ϕ) was estimated at 0.00107, representing the remaining variability not explained by the spatial236

random effect (Table 6).237

Term Estimate SE T-Value Lower 95% CI Upper 95% CI

Intercept 0.1395 0.02449 5.697 0.09113 0.189

Latitude -0.003852 0.0005828 -6.61 -0.005047 -0.002705

Random intercept (variance) 0.002983

Random intercept (std. dev.) 0.05462

Residual (variance) 0.001074

Residual (std. dev.) 0.03277

Table 6. Model summary of the top spatial mixed model. Fixed and random effect outputs are shown. The response variable for this model

was the change in treeline NDVI. Significance is denoted by bold text and was assessed by observing whether or not the confidence interval

overlapped zero.
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Figure 6. Summary of the univariate relationship between NDVI at manually identified 2017 treeline elevation. Change in NDVI on the

y-axis represents 2017 NDVI - 1984 NDVI. Latitude, which was significant in the models with change in treeline NDVI as the response

variable, is shown on the x-axis. The regression line from the linear model of change in treeline NDVI and latitude is denoted by the black

line.
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4 Discussion238

4.1 Overview239

This study represents a first broad-scope view of spatial patterns of temporal shifts in treeline elevation across a region. In that240

sense, it is novel, but has been limited by a significant number of data-related challenges: e.g., the necessity of eliminating the241

northernmost set of high peaks because treelines were not uniquely associated with individual peaks, as well as the removal242

of a number of peaks from consideration owing to positive slopes in the regression models relating NDVI to elevation. These243

complications point out the nascent nature of the endeavor and the need for quite a bit more exploration and experimentation.244

Our results underlined some previous results, such as treelines occurring at higher elevations in the Tropics and Subtropics,245

and at lower elevations at higher latitudes (Körner, 1998). This broad pattern makes sense, of course, if one thinks of the246

conditions present at the highest elevations—they are at the extremes of what is survivable for upright trees (Körner, 2021).247

If treeline is set at least in part by hard physiological limits, and given global climate patterns and how they vary with latitude248

(Peterson et al., 2016), then high-latitude treelines would necessarily be lower in elevation.249

More importantly and more novel, however, our results show clear associations between magnitude of treeline shift and250

latitude, such that tropical treelines have shifted upward faster than higher-latitude treelines in recent decades (Jiménez-García251

et al., 2021). Such an effect has not been appreciated or reported previously, at least to our knowledge, but may relate to the252

greater physiological flexibility that may characterize tropical treelines: that is, high-latitude treelines may be fixed in elevation253

very clearly by hard physiological limits related to freeze tolerance (Körner, 2021). This focus of treeline mobility in the254

tropical zone, unfortunately, coincides with significant knowledge gaps, given that the great majority of detailed studies of255

treelines and their dynamics has been conducted on peaks at higher latitudes (Shi et al., 2022; Zhao et al., 2015; Körner, 1998;256

Lu et al., 2021).257

Our results were suggestive of further effects, related to longitude and perhaps distance to coastlines; proximity to ocean has258

been underlined in past studies as important in determining treeline elevations at least (Hansson et al., 2023). That is, although259

we included a variable summarizing geographic distance to coastline, it did not have any significant effect in the best models.260

Rather, in some of the models that ranked among the best, effects of longitude were indeed substantial. We suspect that this261

lack of clear effect of distance to coastlines may be related to the relatively minor representation of peaks close to coastlines in262

our dataset.263

4.2 Limitations264

The deepest concern regarding the analyses presented herein is, of course, the relatively short time span covered by the Landsat265

imagery, with our analyses spanning just a bit more than three decades. This time span is, of course, what is available from266

remote-sensing data streams, as Landsat is among the deepest-time remote-sensing data sources available anywhere. Even our267

relatively short time span of Landsat data, however, does cross the use of multiple sensors to produce the imagery, which may268

introduce noise into the analyses that we present herein (Vogelmann et al., 2016). The only remedy to this concern about time269
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span is therefore to appeal to other data sources, such as aerial or ground-based photos (Jiménez-García et al., 2021; Peterson270

et al., 2022).271

This study covered an impressive expanse in western North America, from 9.4°N in Costa Rica north to 54.1°N in south-272

western Canada, and from the shores of the Pacific Ocean to the eastern edge of the Rocky Mountains in Colorado. However,273

this geographic span includes relatively fewer high mountain peaks in Mexico and Central America, at least compared with274

the northern peaks in the study; a further possible limitation of our work stems from the broad latitudinal gaps in northern275

Mexico. Finally, our inability to associate specific treelines with specific high peaks north of southernmost Canada meant that276

the highest-latitude peaks could not be included in the study. The former concerns can be remedied by broadening the area of277

study and analysis still further, perhaps globally, but the latter concern will remain complicated, as very high latitude peaks278

tend to be mostly above treeline, such that we do not see a way to create a peak-based analysis of those regions.279

Finally, a concern could be that of anthropogenic effects that are not related to climate. That is, although we eliminated from280

consideration any peaks that had human activities visible at the peak or near treeline (e.g., agricultural activities), we could not281

control for changing practices of fire control, for example. In this sense, if fire control has been implemented or has become282

more effective over the past few decades, that—unrelated to climate—could elevate NDVI owing to reduced fire-based removal283

of vegetation. We hope that the broad variety of peaks included in this study will avoid any confounding effects of this concern.284

4.3 Conclusions and Next Steps285

The results of this study point rather dramatically to a major knowledge gap regarding high-elevation vegetation dynamics.286

That is, the bias of treeline studies away from tropical regions and towards temperate-zone and boreal-zone regions coin-287

cides—unfortunately—with the most dramatic regions of treeline elevational shifts. As we have pointed out in previous con-288

tributions (Jiménez-García et al., 2021), treelines in the Tropics and their dynamics remain little-documented and poorly289

characterized.290

At the same time, the results of this study and others (Peterson et al., 2022; Singh et al., 2012) indicate that remote-sensing291

data streams are both relevant and informative, and have been incorporated into many treeline studies (Garbarino et al.,292

2023). Although the detail available in on-the-ground studies cannot be achieved, significant insight can indeed be gained from293

satellite-based observations and data streams, particularly when multiple data streams are integrated (Garbarino et al., 2023).294

As such, we are in the process of extending this approach globally and using more-diverse remote sensing data streams, in the295

hope of garnering additional useful insights into patterns of treeline change worldwide, and into processes that drive treeline296

change phenomena.297

Code and data availability. All data and code are available on a public Github repository found at the following URL:298

https://github.com/jocori/GeographicTreelinePatterns.git299
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Appendix A: Supplementary Tables400

Model Terms AIC Delta AIC Weight

# Stations After Treeline + Direction + Latitude x Longitude 6.829e+03 0.000e+00 5.731e-01

Direction + Latitude x Longitude 6.829e+03 7.044e-01 4.030e-01

Latitude + Longitude + # Stations After Treeline + Direction 6.836e+03 7.423e+00 1.400e-02

Latitude + Longitude + Direction 6.837e+03 8.152e+00 9.728e-03

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude x Longitude 6.846e+03 1.737e+01 9.680e-05

Distance to the Coast (m) + Direction + Latitude x Longitude 6.847e+03 1.807e+01 6.818e-05

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude 6.847e+03 1.879e+01 4.774e-05

Distance to the Coast (m) + Direction + Latitude + Longitude 6.848e+03 1.948e+01 3.376e-05

# Stations After Treeline + Latitude x Longitude 6.884e+03 5.567e+01 4.684e-13

Latitude x Longitude 6.885e+03 5.626e+01 3.479e-13

Latitude + Longitude + # Stations After Treeline 6.892e+03 6.353e+01 9.189e-15

Latitude + Longitude 6.893e+03 6.414e+01 6.762e-15

Latitude 6.897e+03 6.860e+01 7.284e-16

Longitude 6.900e+03 7.100e+01 2.190e-16

Distance to the Coast (m) + # Stations After Treeline + Latitude x Longitude 6.902e+03 7.304e+01 7.909e-17

Distance to the Coast (m) + Latitude x Longitude 6.902e+03 7.363e+01 5.882e-17

Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude 6.903e+03 7.448e+01 3.847e-17

Latitude + Longitude + Distance to the Coast (m) 6.904e+03 7.507e+01 2.867e-17

Table A1. AIC table comparing all linear mixed models which had change in treeline elevation as the response variable. There were 18

models in this comparison.
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Terms AIC Delta AIC Weight

Latitude 6.893e+03 0.000e+00 3.456e-01

Latitude x Longitude 6.894e+03 1.156e+00 1.939e-01

Longitude 6.895e+03 1.495e+00 1.636e-01

# Stations After Treeline + Latitude x Longitude 6.896e+03 3.035e+00 7.578e-02

Latitude + Longitude 6.896e+03 3.176e+00 7.061e-02

Distance to the Coast (m) + Latitude x Longitude 6.897e+03 3.895e+00 4.929e-02

Latitude + Longitude + Distance to the Coast (m) 6.898e+03 4.527e+00 3.594e-02

Latitude + Longitude + # Stations After Treeline 6.898e+03 5.080e+00 2.726e-02

Distance to the Coast (m) + # Stations After Treeline + Latitude x Longitude 6.899e+03 5.775e+00 1.926e-02

Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude 6.900e+03 6.399e+00 1.410e-02

Direction + Latitude x Longitude 6.904e+03 1.048e+01 1.836e-03

# Stations After Treeline + Direction + Latitude x Longitude 6.905e+03 1.230e+01 7.358e-04

Latitude + Longitude + Direction 6.906e+03 1.244e+01 6.878e-04

Distance to the Coast (m) + Direction + Latitude x Longitude 6.906e+03 1.323e+01 4.639e-04

Distance to the Coast (m) + Direction + Latitude + Longitude 6.907e+03 1.386e+01 3.386e-04

Latitude + Longitude + # Stations After Treeline + Direction 6.907e+03 1.430e+01 2.714e-04

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude x Longitude 6.908e+03 1.506e+01 1.853e-04

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude 6.909e+03 1.568e+01 1.362e-04

Table A2. AIC table comparing all spatial mixed models which had change in treeline elevation as the response variable. There were 18

models in this comparison.
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Model Type Terms AIC Delta AIC Weight

Spatial Latitude 6.893e+03 0.000e+00 3.429e-01

Spatial Direction + Latitude x Longitude 6.904e+03 1.048e+01 1.821e-03

Linear # Stations After Treeline + Latitude x Longitude 6.904e+03 1.105e+01 1.364e-03

Linear Distance to the Coast (m) + Latitude x Longitude 6.904e+03 1.118e+01 1.280e-03

Spatial Latitude x Longitude 6.894e+03 1.156e+00 1.923e-01

Linear Latitude + Longitude + Distance to the Coast (m) 6.905e+03 1.225e+01 7.486e-04

Spatial # Stations After Treeline + Direction + Latitude x Longitude 6.905e+03 1.230e+01 7.300e-04

Spatial Latitude + Longitude + Direction 6.906e+03 1.244e+01 6.823e-04

Linear Distance to the Coast (m) + # Stations After Treeline + Latitude x Longitude 6.906e+03 1.305e+01 5.023e-04

Spatial Distance to the Coast (m) + Direction + Latitude x Longitude 6.906e+03 1.323e+01 4.602e-04

Spatial Distance to the Coast (m) + Direction + Latitude + Longitude 6.907e+03 1.386e+01 3.359e-04

Linear Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude 6.907e+03 1.414e+01 2.920e-04

Spatial Latitude + Longitude + # Stations After Treeline + Direction 6.907e+03 1.430e+01 2.693e-04

Spatial Longitude 6.895e+03 1.495e+00 1.623e-01

Spatial Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude x Longitude 6.908e+03 1.506e+01 1.838e-04

Spatial Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude 6.909e+03 1.568e+01 1.351e-04

Linear Latitude 6.910e+03 1.670e+01 8.088e-05

Linear Latitude + Longitude 6.911e+03 1.820e+01 3.831e-05

Linear Direction + Latitude x Longitude 6.912e+03 1.857e+01 3.189e-05

Linear Longitude 6.913e+03 1.949e+01 2.012e-05

Linear Latitude + Longitude + # Stations After Treeline 6.913e+03 2.007e+01 1.503e-05

Linear # Stations After Treeline + Direction + Latitude x Longitude 6.914e+03 2.035e+01 1.308e-05

Linear Distance to the Coast (m) + Direction + Latitude x Longitude 6.914e+03 2.056e+01 1.175e-05

Linear Distance to the Coast (m) + Direction + Latitude + Longitude 6.915e+03 2.161e+01 6.961e-06

Linear Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude x Longitude 6.916e+03 2.234e+01 4.823e-06

Linear Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude 6.917e+03 2.341e+01 2.831e-06

Linear Latitude + Longitude + Direction 6.920e+03 2.718e+01 4.304e-07

Linear Latitude + Longitude + # Stations After Treeline + Direction 6.922e+03 2.896e+01 1.768e-07

Spatial # Stations After Treeline + Latitude x Longitude 6.896e+03 3.035e+00 7.519e-02

Spatial Latitude + Longitude 6.896e+03 3.176e+00 7.005e-02

Spatial Distance to the Coast (m) + Latitude x Longitude 6.897e+03 3.895e+00 4.890e-02

Spatial Latitude + Longitude + Distance to the Coast (m) 6.898e+03 4.527e+00 3.566e-02

Spatial Latitude + Longitude + # Stations After Treeline 6.898e+03 5.080e+00 2.704e-02

Spatial Distance to the Coast (m) + # Stations After Treeline + Latitude x Longitude 6.899e+03 5.775e+00 1.911e-02

Spatial Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude 6.900e+03 6.399e+00 1.398e-02

Linear Latitude x Longitude 6.902e+03 9.182e+00 3.477e-03

Table A3. AIC table comparing all linear mixed models and spatial mixed models which had change in treeline elevation as the response

variable. There were 36 models in this comparison.
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Terms AIC Delta AIC Weight

Latitude -1.495e+03 0.000e+00 7.437e-01

Longitude -1.493e+03 2.145e+00 2.544e-01

Latitude + Longitude -1.483e+03 1.194e+01 1.903e-03

Latitude + Longitude + # Stations After Treeline -1.466e+03 2.899e+01 3.767e-07

Latitude x Longitude -1.463e+03 3.166e+01 9.906e-08

Latitude + Longitude + Distance to the Coast (m) -1.449e+03 4.589e+01 8.046e-11

# Stations After Treeline + Latitude x Longitude -1.446e+03 4.872e+01 1.955e-11

Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude -1.432e+03 6.296e+01 1.583e-14

Distance to the Coast (m) + Latitude x Longitude -1.431e+03 6.400e+01 9.431e-15

Latitude + Longitude + Direction -1.421e+03 7.382e+01 6.951e-17

Distance to the Coast (m) + # Stations After Treeline + Latitude x Longitude -1.414e+03 8.106e+01 1.855e-18

Latitude + Longitude + # Stations After Treeline + Direction -1.404e+03 9.072e+01 1.486e-20

Direction + Latitude x Longitude -1.401e+03 9.371e+01 3.329e-21

Distance to the Coast (m) + Direction + Latitude + Longitude -1.387e+03 1.081e+02 2.508e-24

# Stations After Treeline + Direction + Latitude x Longitude -1.384e+03 1.106e+02 7.068e-25

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude -1.370e+03 1.250e+02 5.291e-28

Distance to the Coast (m) + Direction + Latitude x Longitude -1.369e+03 1.262e+02 3.005e-28

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude x Longitude -1.352e+03 1.431e+02 6.336e-32

Table A4. AIC table comparing all linear mixed models which had change in treeline NDVI as the response variable. There were 18 models

in this comparison.
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Terms AIC Delta AIC Weight

Latitude -1.532e+03 0.000e+00 4.038e-01

Latitude + Longitude -1.531e+03 1.666e+00 1.756e-01

Latitude x Longitude -1.529e+03 3.610e+00 6.642e-02

Latitude + Longitude + # Stations After Treeline -1.529e+03 3.649e+00 6.512e-02

Latitude + Longitude + Distance to the Coast (m) -1.529e+03 3.020e+00 8.921e-02

Distance to the Coast (m) + Latitude x Longitude -1.528e+03 4.793e+00 3.675e-02

Longitude -1.528e+03 4.585e+00 4.079e-02

# Stations After Treeline + Latitude x Longitude -1.527e+03 5.600e+00 2.456e-02

Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude -1.527e+03 5.006e+00 3.304e-02

Latitude + Longitude + Direction -1.526e+03 6.212e+00 1.808e-02

Distance to the Coast (m) + # Stations After Treeline + Latitude x Longitude -1.526e+03 6.774e+00 1.365e-02

Distance to the Coast (m) + Direction + Latitude + Longitude -1.525e+03 7.724e+00 8.491e-03

Direction + Latitude x Longitude -1.524e+03 8.216e+00 6.638e-03

Latitude + Longitude + # Stations After Treeline + Direction -1.524e+03 8.093e+00 7.058e-03

Distance to the Coast (m) + Direction + Latitude x Longitude -1.523e+03 9.452e+00 3.578e-03

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude -1.523e+03 9.608e+00 3.309e-03

# Stations After Treeline + Direction + Latitude x Longitude -1.522e+03 1.010e+01 2.582e-03

Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude x Longitude -1.521e+03 1.131e+01 1.410e-03

Table A5. AIC table comparing all spatial mixed models which had change in treeline NDVI as the response variable. There were 18 models

in this comparison.
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Model Type Terms AIC Delta AIC Weight

Spatial Latitude -1.532e+03 0.000e+00 4.033e-01

Spatial # Stations After Treeline + Direction + Latitude x Longitude -1.522e+03 1.010e+01 2.578e-03

Spatial Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude x Longitude -1.521e+03 1.131e+01 1.409e-03

Linear Latitude + Longitude + Distance to the Coast (m) -1.517e+03 1.509e+01 2.130e-04

Linear Latitude -1.517e+03 1.510e+01 2.125e-04

Linear Latitude + Longitude -1.517e+03 1.540e+01 1.829e-04

Linear Distance to the Coast (m) + Latitude x Longitude -1.516e+03 1.614e+01 1.263e-04

Spatial Latitude + Longitude -1.531e+03 1.666e+00 1.753e-01

Linear Latitude x Longitude -1.516e+03 1.676e+01 9.267e-05

Linear Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude -1.515e+03 1.705e+01 8.002e-05

Linear Latitude + Longitude + # Stations After Treeline -1.515e+03 1.735e+01 6.903e-05

Linear Longitude -1.515e+03 1.763e+01 5.983e-05

Linear Distance to the Coast (m) + # Stations After Treeline + Latitude x Longitude -1.514e+03 1.809e+01 4.750e-05

Linear # Stations After Treeline + Latitude x Longitude -1.514e+03 1.871e+01 3.489e-05

Linear Latitude + Longitude + Direction -1.514e+03 1.891e+01 3.152e-05

Linear Distance to the Coast (m) + Direction + Latitude + Longitude -1.514e+03 1.891e+01 3.153e-05

Linear Distance to the Coast (m) + Direction + Latitude x Longitude -1.513e+03 1.990e+01 1.927e-05

Linear Direction + Latitude x Longitude -1.512e+03 2.043e+01 1.477e-05

Linear Latitude + Longitude + # Stations After Treeline + Direction -1.512e+03 2.072e+01 1.280e-05

Linear Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude -1.512e+03 2.074e+01 1.267e-05

Linear Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude x Longitude -1.511e+03 2.172e+01 7.755e-06

Linear # Stations After Treeline + Direction + Latitude x Longitude -1.510e+03 2.224e+01 5.969e-06

Spatial Latitude + Longitude + Distance to the Coast (m) -1.529e+03 3.020e+00 8.910e-02

Spatial Latitude x Longitude -1.529e+03 3.610e+00 6.634e-02

Spatial Latitude + Longitude + # Stations After Treeline -1.529e+03 3.649e+00 6.503e-02

Spatial Longitude -1.528e+03 4.585e+00 4.074e-02

Spatial Distance to the Coast (m) + Latitude x Longitude -1.528e+03 4.793e+00 3.670e-02

Spatial Distance to the Coast (m) + # Stations After Treeline + Latitude + Longitude -1.527e+03 5.006e+00 3.299e-02

Spatial # Stations After Treeline + Latitude x Longitude -1.527e+03 5.600e+00 2.453e-02

Spatial Latitude + Longitude + Direction -1.526e+03 6.212e+00 1.806e-02

Spatial Distance to the Coast (m) + # Stations After Treeline + Latitude x Longitude -1.526e+03 6.774e+00 1.363e-02

Spatial Distance to the Coast (m) + Direction + Latitude + Longitude -1.525e+03 7.724e+00 8.480e-03

Spatial Latitude + Longitude + # Stations After Treeline + Direction -1.524e+03 8.093e+00 7.049e-03

Spatial Direction + Latitude x Longitude -1.524e+03 8.216e+00 6.630e-03

Spatial Distance to the Coast (m) + Direction + Latitude x Longitude -1.523e+03 9.452e+00 3.573e-03

Spatial Distance to the Coast (m) + Direction + # Stations After Treeline + Latitude + Longitude -1.523e+03 9.608e+00 3.305e-03

Table A6. AIC table comparing all linear mixed models and spatial mixed models which had change in treeline NDVI as the response

variable. There were 36 models in this comparison.
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