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\begin{abstract}

Previous research has shown that (1) treelines are shifting upward in elevation on high
mountain peaks worldwide, and (2) the rate of the upward shift appears to have increased
markedly in recent decades. Because treeline elevational shift is a process manifested over
broad scales of space and time, a particular challenge has been that of obtaining a
broad-enough view of patterns of treeline shift to permit inferences about geographic and
environmental patterns. What is more, intensive studies of treelines have been concentrated in
North Temperate regions, such that little information is available about treeline shift patterns at
lower latitudes. We have attempted to address this challenge by analyzing a long time series of
vegetation indices derived from Landsat imagery obtained and analyzed via Google Earth
Engine from the 1980s to the present. We sampled vegetation indices at points spaced every
100 m along 100 km transects radiating out from 115 high peaks across western North America
(Canada to Central America), which means that we are sampling approximately every second or
third pixel in the corresponding Landsat images. Considerable data preparation was necessary,
including ending transects <2 km into closed forest, identifying current treelines via reference to
Google Earth imagery, and consideration only of up to <1 km above treeline. Patterns that
emerged were—as is well known—that treelines are generally higher at lower latitudes,
but—previously unknown—that the magnitude of treeline shifts is nonrandomly distributed with
respect to latitude, longitude, and their interaction. This analysis, via a broad-scale view of
treeline shifts over almost 40 years and a geographic span of more than 40° of latitude,
demonstrates that climate change effects and consequent treeline shifts are most dramatic in
tropical regions where few or no detailed treeline studies have been and are being conducted.



\end{abstract}
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\introduction %% \introduction[modified heading if necessary]

%hey this is to learn how to cite~\citep{cud17}.

The upper elevational limits of forests in mountain systems represent a fascinating and dramatic
manifestation of distributional limitation at the species and community levels. As such, treeline
phenomena have seen extensive analysis and discussion in the ecological literature: they are
an important manifestation of the geographic ecology of ecosystems, and likely reflect important
climate-related controls ~\citep{kullman98}. Numerous studies have been developed that aim to
understand factors driving the location and possible shifts in treelines, with the general
conclusion that treelines are determined by complex suites of factors ~\citep{cud17,
korner98,holtmeier05,irl16,Grafius12,kienle23}. Whereas some researchers have concluded
that treeline position can be distilled down to simple rules regarding seasonal mean ground
temperatures ~\citep{korner04}, others have argued that treeline drivers are considerably more

multldlmensmnal and complex ~\C|tep{korner14 zhao15} —Iﬂ—thrs—s’fudy—we—adep{—Kemer—s

mdﬁ«rdﬂa%—may—spelﬂa&%/—eeeuF In thls study we adopt Korner s (~\C|teyear{korner2012}

definition of elevational treeline, i.e., the uppermost elevation on a mountain slope at which
upright woody plants (trees > 2m tall) can maintain a self-sustaining population. Above that limit,
insufficient warmth (a too short or too cold growing season) prohibits the regular recruitment and
survival of true tree forms, even if isolated, krummholz-like individuals may sporadically occur.

Clearly, considerable complexity is involved in any attempt to characterize treeline phenomena.
However, dendroecological approaches offer the useful possibility of obtaining establishment
ages on an individual-tree basis across broad stands of trees at or near treelines
~\citep{grant11}. When treelines change, a key challenge is that of considering treeline shifts
(e.g., elevational advance upward with warming climate) versus densification (e.g., sparse forest
or scattered trees near treeline filling in with more trees, regardless of whether the upper limit of
the trees changes or not) ~\citep{shi22}. Finally, treeline is a highly scale-dependent
phenomenon, such that all of its qualities vary in importance and effect at different spatial
extents and resolutions ~\citep{holtmeier17}.

From early in the discussions about the possibility that global climates would warm with
increasing greenhouse gas concentrations ~\citep{lamarche84,john02}, the expectation has
been that treelines would advance up mountain slopes as climatic controls relax at extreme
elevations. Empirical evidence has been mixed, however, with some studies documenting what
appears to be very rapid treeline advance ~\citep{peterson22}, and others finding no evidence



of overall tendency to change ~\citep{beloiu22}. One broad analysis found that treeline advance
was faster in subarctic regions than in temperate regions ~\citep{lu21}, and another found that
treelines experiencing stronger winter warming and with diffuse treeline forms were more likely
to advance ~\citep{he23}.

Nonetheless, most of these previous broad-scale analyses of patterns of treeline advance in the
face of warming climates have been based on datasets with strong inherent biases and
significant gaps. That is, in largest part, treeline studies have been conducted in the North
Temperate zone: examples of such biased analyses are many
~\citep{shi22,zhao15,korner98,lu21}. A few analyses have achieved a somewhat better balance
of representation of treelines in the Tropics and in the Southern Hemisphere
~\citep{he23,hansson23,kienle23}. The concern, of course, is that such information gaps and
biases in what information is available may blind researchers and their analyses to very real and
important patterns in the global occurrence of the phenomenon of treeline advance.

Here, we address these important knowledge gaps about treeline dynamics in the face of
warming climates globally over the past several decades. We assess the null hypothesis that
magnitude of alpine treeline shifts is not related to a series of geographic features, such as
latitude, longitude, distance to coast, and others. Specifically, to be able to assess treeline shifts
on a continent-wide basis, we use a long time series of remote-sensing data to seek patterns in
the magnitude of alpine treeline shifts across 115 high peaks scattered across western North
America, ranging from Central America to southern Canada. We use vegetation index trends
along transects radiating out from each peak in eight cardinal and sub-cardinal directions; the
vegetation index approach has the advantage of “seeing” vegetative mass generally, in effect
integrating over both treeline advance and densification of sparse, near-treeline forests
~\citep{feuillet20}. Of course, these broad-scale analyses are not a substitute for more detailed,
field-based analyses, nor should vegetation-index-based assessments replace more
fine-grained inspections of the actual geometry of treelines. Still, the result is a novel dataset
from which we have derived several intriguing insights about geographic patterns in the
magnitude of treeline elevational shifts.

\section{Methods}

\subsection{Mountain peak characterization}

Our aim was to characterize temporal changes in vegetation mass on a set of mountains that
covered western North America. To that end, we chose to follow a comprehensive summary of
high mountains worldwide ~\citep{peaklistUltraProminencesPage}, which is based on an effort
to identify all mountains worldwide with at least a 1500 m prominence; the authors of that
compendium (called the Ultras Project) researched all summits on Earth that meet this criterion,
finding 1524 such peaks. From this worldwide dataset, we extracted the 354 mountain peaks
located in North America (Panama to the Arctic). We used the coordinates of each peak in this
dataset as a centerpoint, and plotted 8 transects in each of the cardinal and sub-cardinal
directions extending out from that centerpoint (points were plotted and distances measured in
meters using the WGS84 Special Mercator for Web Applications (ERSG:3857datum=sphere;



OEPSG: 3857) prOJectlon to assure conS|stent dlstances among sampllng stations. Transects
were each initially 100 km long, with sampling stations every 100 m, so each transect initially
included 1000 sampling stations.

We excluded from analysis all mountains that were forested to the peak, or that showed signs of
anthropogenic modification at or around the peak-upen-visuatnspection-of-theregionin-Google
Earth upon visual inspection of the region in Google Earth. We also excluded peaks for which
treelines were not associated clearly with the upper slopes of the peak, but rather were lower,
extending just a bit up the valley walls-and-thusikelyrepresentiatitudinat-treelines-as-opposed
to-altitudinat-treelines and thus likely represent latitudinal treelines as opposed to altitudinal
treelines; such low treelines were particularly common in central and northern Canada and
Alaska, such that northern peaks were excluded. Given that, in eastern North America, only one
peak (Mt. Washington, in New Hampshire) met our criteria, to avoid including a genuine spatial
outlier in our analyses, we omitted that peak from analysis, thus focusing our analyses on the
high peaks of western North America. At the end of this process, from the initial database, we
had 120 peaks remaining as a basis for our analyses (\textbf{Figure \ref{fig:1}}).

\setcounter{figure}{0}

\begin{figure}t]

\includegraphics[width=17cm[{figure01.png}

\caption{The 120 high mountain peaks analyzed in this study. Triangles represent individual
mountain peaks used in our analysis. The 'X' symbol is Mt. Washington, which was removed
from the dataset prior to analysis. This map was constructed using QGIS ver 3.38.2. ESRI
physical basemap was used to create the map.}

\label{fig: 1}

\end{figure}

\clearpage

In Google Earth Engine, we overlaid the transect sampling points on imagery from Landsat
(1984--2017), and associated the values of the normalized difference vegetation index (NDVI)
with each sampling point in the transect dataset. For this analysis, we focused on early
(1984--1988) and late time periods (2013--2017) within the timespan of the Landsat dataset. We
used NDVI data from the annual Landsat collection

(\textnormal{Landsat/LT5\ L1T\_ANNUAL\ NDVI},
\textnormal{Landsat/LE7\_L1T\_ANNUAL\_NDVI}, and

\textnormal{Landsat/LE8\ L1T\_ANNUAL\_NDVI}) in Google Earth Engine. We used the
pre-processed LANDSAT _LT5 L1T_ANNUAL_NDVI collection in Google Earth Engine,
which provides annual NDVI composites derived from Level-1 terrain-corrected Landsat 5
reflectance images (including cloud masking and quality assurance). Unfortunately, this
collection is now deprecated in GEE. To ensure full transparency, our scripts for reproducing
the NDVI computation from the original Landsat reflectance data are publicly available finte
te-seriptsion Github. Detailed information about the original dataset can be found in the
Earth Engine Data Catalogue ~\citep{USGS17}: Calibration procedures and validation



methods for this collection are described by Chander et al., ~\citeyear{chander2009}.- We
generated a composite for each year from the available Landsat images, and extracted NDVI
values for each year via a mean reducer. We then inspected each transect of each peak
individually by overlaying the point data on the Google Satellite fine-resolution data product,
using the GIS capabilities of QGIS (version 3.2).

A key step was that of choosing the sampling station on each transect that corresponded to
treeline, as follows. Descending from each peak (using the Google Satellite data layer in QGIS)
along each transect, we identified the sampling station that most closely approximated the
upper elevational limit of forest. That is, we ignored single, isolated trees, but rather identified
the elevation at which forest became continuous, albeit in some cases sparse. For this sampling
statlon we set the fleld TreesBegln in the data table characterlzmg peaks to 1. Fofeeus

v w W To focus attention on the region
just above and just below treeline, we ended the transect after up to 20 additional sampling
stations descending from the peak beyond treeline into the forest; however, we retained fewer
than 20 sampling stations when any anthropogenic effects were noticeable-upen-visuat
trspeetiorr upon visual inspection, or when the straight-line transect reached a valley bottom and
began to ascend again. All further sampling stations beyond this point were removed from the
dataset.

\subsection{Data refinement}

va+ue—te—pe+n{—)—epe|=a+|ene—Values of NDVI and eIevatlon were aSS|gned to each sampllng
station via GIS overlay (“extract value to point”) operations. All subsequent data preparation was

done in R (version 4.4.1) and QGIS (version 3.38.2). We cleaned the data that had been
exported from Google Earth Engine by removing any-NA=andany missing values. We averaged
the yearly NDVI values over the two time periods (1984-1988 and 2013-2017) to provide “before
and after’ comparlsons that would be more immune to meaetrfement—e#er—eﬁe’eheﬁeeﬂrees—ef

eeven)—measurement error or other sources of year-to-year variation.

Our next goal was to calculate regression equations for individual mountains, slopes, and time
periods, characterizing the negative-sloped relationship between elevation and NBVivegetation
massNDVI. To this end, we transformed the data into a hierarchical nested list of lists; the
dataset included 120 mountain peaks, each of which had 1-8 transects. Each transect had the
two averaged year groups of NDVI data, for a total of 1848 distinct combinations of peak,
transect, and year group; some transects were removed entirely based on the criteria listed
above (ttextbf{Ss\textbf{Section 2.4271}). In our analyses, we included only NDVI
measurements from “stations” that were in relatively close proximity to treeline. That is, we
included at least the last 10 stations. If twice the number of stations after the manually identified
treeline to the transect edge (i.e., the furthest measured station downslope) plus one (to
explicitly account for the station representing treeline itself) exceeded 10, we used this greater
number of stations instead. This approach ensured we captured sufficient data from both sides

of the treeline and minimized the-effect-of-terrain-variabilitygeegraphie-neisesthe effect of terrain



variability frem-seurees-from sources such as small bare peaks, increasing the probability of
detecting the true relationship.

We modeled the NDVI-elevation relationship with-NBVH-as-theresponrse-variable-and-elevation
as-thepredictor-vartable-with NDVI as the response variable and elevation as the predictor

variable to find theathe best type-ef-type of regression equation and, ultimately, the best
approximation to the-trae true relationship between these variables-textbf{Figure-\reffig:2}:
see-below) (\textbf{Figure \ref{fig:2}}; see below); these models allowed us to associate NDVI
and treeline elevation for calculation of our final response variables:-ehange-in-eclevation-and
changein-NBYts: change in elevation and change in NDVI. §textbf{Fgure-ref{fig:2}}-see
belevs). To this end, we calculated three types of regressions on each data frame (linear,
reciprocal-linear, and reciprocal-quadratic) to assess which model shape best describes the
NDVI-elevation relationship. The three models were compared via the Akaike Information
Criterion (AIC; \citealt{Akaike2011}) for each peak, transect, and time period. As all 1848 of
these NBVetevation—relationshipsregressionsNDVI elevation relationships were best described
by a linear model we retained only linear regression equations for subsequent analyses. We
excluded transects for which the regression equation was not statistically significant
&egres&enswe*e—eer&de*ed—s@mﬁe&at—ai—e—@—%—)— or for WhICh the regressmn slope was

= We
used a = 0 05 as the threshold for statistical significance in all regressions. FThis criterion
removed 688 of 1848 transects, leaving 1160 transects for analysis. Finally, since our goal was
to create temporal comparisons-between-the-two-timeperiods between the two time periods, we
also removed any transects for which regressions for either time period did not meet theeurthe
criteria-eutiired-abeve outlined above; this filter removed another 202 transects from analysis.
The final dataset thus included 958 transects on 115 peaks.

\begin{figure}[t]

\includegraphics[width=17cm]{figure02.png}

\caption{Map showing continentwide patterns of regression slopes relating NDVI to elevation for
each peak, averaged across the 1-8 transects available for each peak, for the 2013-2017 time
period. Red circles represent a positive slope (excluded from final analysis), and yellow circles
represent a negative slope. The size of the circles coincide with the magritude-efthe-magnitude
of the absolute value of each slope calculation. The 'X' symbol is Mt. Washington, which was
removed from the dataset prior to analysis. This map was constructed using QGIS ver 3.38.2.
ESRI physical basemap was used to create the map.}

\label{fig:2}

\end{figure}

\clearpage

The goal in these analyses was to calculate change in treeline elevation for use as a response

variable in continent-wide models A+p+ﬁe—tre~ehﬁe—pesmeﬁ—repfesems—a—b+eehmaﬂeth+eshe}ek




treeline position represents a bIOC|ImatIC threshold: trees cannot form self-sustalnlng cIosed
canopy stands above it because low temperatures and a short growing season limit carbon
assimilation and wood formation ~\citep{korner2012, holtmeier09}. In turn, shifts in treeline
elevation over time serve as a direct indicator of how local thermal regimes and associated
growing-season lengths are changing on the landscape ~\citep{korner2012,holtmeier05}. By
modeling the change in treeline elevation, we capture how climate warming and other
environmental drivers are pushing the arboreal “limit” upslope. To this end, we inserted the
elevations at our manually selected treeline position into the 2013-2017 NDVI tinearlinear
regression equations to calculate the NDVI values asseciated-withmanifestedassociated with at
presentday-present day treeline-in-the-recenttime-peried. We then inserted that calculated
NDVI value into the 1984-1988 regression equations to obtain an estimate of treeline elevation
(i.e., we sought the elevation with the same 1984-1988 NDVI value as present-day treeline on
that slope of that mountain; \textbf{Figure \ref{fig:3}}). Finally, we subtracted the 1984-1988
elevation values from the 2013-2017 elevation values to obtain an estimate of the change in
treeline elevation over the broad temporal span of this study.

\begin{figure}t]

\includegraphics[width=12cm]{figure03.jpg}

\caption{Example of a high mountain (Cerro de la Malinche, Tlaxcala, Mexico) and inferences
deriving from it regarding position of treeline through time. Top panel: View of the mountain in
Google Earth, with 8 transects radiating out from the peak in cardinal and subcardinal
directions. White dots indicate stations at which NDVI values were sampled through time; purple
stars indicate the position of treeline identified visually. Bottom panel: dark red points and lines
show the NDVI-elevation relationship in the 1980s; blue points and lines show the same
relationship in the 2010s. In one example (northward transect), the elevation of treeline
observed for 2013-2017 (3960 m) was used to identify a treeline NDVI threshold (0.3135), which
was in turn used to identify a likely elevation (3448 m) of the same NDVI level for 1980s
conditions. Background of top panel is from Google Earth©®©.}

\label{fig:3}

\end{figure}

\clearpage

We also calculated a second simpler response variable, which was S|mply change in NDVI at
the 2013-2017 treeline.

whreh—m”—mam#eset—as—eh&nge—m—N—D%q—ln hlgh eIevatlon contexts an upward trend in NDVI

within elevation bands at the present day treeline signals increased tree recruitment, shrub
encroachment, or earlier green-up ~\citep{harsch09,rupp01}. Thus, by computing the change in
NDVI over our study period, we capture a functional or “greenness” dimension of treeline




dynamics that complements the structural dimension (change in elevation). In other words, even
before trees form closed canopies, small shrubs or seedlings may begin to photosynthesize
more vigorously, which will manifeset as change in NDVI. To this end, we inserted the manually
located 2017 treeline elevation into the two regression equations for that mountain and slope.
This resulted in NDVI values at a particular elevation (i.e., recent treeline) for 2013-2017 and
1984-1988 for each peak and direction. We subtracted the 1984-1988 values from the
2013-2017 values to obtain the change in treeline NDVI. A more positive value for change in
NDVI indicates an increase in NDVI between 2013-2017 and 1984-1988.

Finally, we assembled a suite of independent variables that may be of interest as possible
drivers of variation in rates of treeline shift. We included (1) the number of stations in the
transect below treeline (as a potential confounding factor), (2) cardinal direction of the transect,
(3) latitude, and (4) longitude, all of which could be derived from the original data about each
transect and peak in the analysis. We also calculated (5) the distance to the closest coastline in
meters, based on the coastline corresponding to official maritime boundaries
~\citep{flanders19}. We buiilt a raster file that contained the distance to the closest coastline for
each 1.53 km ($\sim$2.5’ pixels). We then added these distance values to the data table for the
transect sampling points using the point sampling tool in QGIS.

\subsubsection{Model selection}

To understand which of the above independent variables likely drives variation in rate of treeline
elevational shifts, we used an iterative stepwise model selection process. We selected the
model that best describes western North American geographic treeline elevational shift patterns
using AIC. We explored twothreetwo statistical models to ensure that the final model would best

geographic variation in treeline dynamics. First, we built 1868 linear mixed models, each of
which contained a random effect of ‘Peak ID’ to account for variability in local landscape
characteristics. Second, we constructed 1868 spatial mixed models using-the-Rpackage
‘spaMi-using the R package ‘spaMM’ in which we specified Matérn random effects to account
for spatial autocorrelation by capturing the spatially structured variation in treeline elevation that
is not explained by the fixed effects ~\citep{spamm}. These models were fitted using restricted
maximum likelihood.




For the first two model sets (total 32 models), the response variable was the change in treeline
elevation between the two time periods. We produced a second array of models, parallel to the
first, in which we used change in treeline NDVI as the response variable. All other model
characteristics were the same as for the models based on change in treeline elevation.

For all of the models described above, the fixed effects were different combinations of the
independent variables: distance to coast, number of stations after treeline, cardinal direction of
slope, latitude, and longitude, as well as the interaction between latitude and longitude. The
models ranged in complexity, but we always included latitude and longitude. We compared all
32 models in an AIC table, as the response variable was constant and all models were fit by
REML. We assessed significance by checking whether the 95\% confidence interval of each
fixed effect overlapped zero—\eitepibrowne1979} ~\citep{browne1979}. We considered results
for which conﬂdence intervals d|d not overlap zero to be S|gn|f|cant —G&Pda+aset—eeﬂs#uet-reﬁ
i Our

dataset construction and analysis steps are summarized in a diagram for clarity below (
\textbf{Figure \ref{fig:4}})

\begin{figure}i]

\includegraphics[width=17cm]{figure04.png}

\caption{Panel (a) diagrams the steps taken to 1. Characterize mountains, 2. Clean the data in
preparation for analysis, and 3. Select models. In panel (b), the hierarchical structure of our
dataset is conceptually illustrated.}

\label{fig:4}

\end{figure}

\clearpage

\section{Results}

\subsection{Generalities about Treelines}

Treeline locations were non-random in a number of ways. On average, across all mountain
peaks in our analyses, treeline was located at 2433 m. However, treeline position varied
systematically, in that a significant relationship existed between treeline and latitude: tropical
treelines averaged 3177 m, whereas temperate-zone treelines were lower, at 2244 m. As such,



all subsequent analyses in this study needed to be conditioned on the geographic complexity
underlying the phenomenon of treeline.

\subsection{Change in Treeline Elevation}

Treelines have been changing, even over the relatively short, 30-40-year timespan of this study.
Indeed, treeline shifts among the western North American peaks in this study had a mean
overall shift of 20.2 m upslope, though the mean absolute shift (positive or negative) was 240 m.
The distribution of change values ranged from 165 m downslope to 127 m upslope.

For the multivariate models relating change in treeline elevation to environmental drivers, we
calculated the best-fit models for the linear mixed models and spatial mixed models using AIC
and the coefficient of determination ($R”2$). We calculated the marginal and conditional $R*2$
values for linear mixed models and a pseudo $R*2$ value for the spatial mixed models. The
best linear mixed model included number of stations after treeline, direction of transect moving
away from the peak, latitude, longitude, and the interaction between latitude and longitude as
fixed effects, with mountain peak name as a random intercept (\textbf{Table \ref{tab:tableA1}}).
From our candidate set of spatial mixed models, the best fit included only latitude as a fixed
effect, with a Matérn random effect structure (\textbf{Table \ref{tab:tableA2}}). When comparing
all models and the two best fitting models from the linear and spatial analyses, the spatial mixed
model was best overall (\textbf{Tables \ref{tab:tableA3} \& \ref{tab:table1}}).

\begin{table}[ht]

\input{best_aic_elevation.tex}

\vspace{0.25cm}

\caption{AIC table comparing the best linear mixed model and the best spatial mixed model
from their respective comparisons, which had change in treeline elevation as the response
variable. There were 2 models in this comparison.}

\label{tab:table1}

\end{table}

The best spatial mixed model, which was also the best model overall, showed that change in
treeline was not significantly related to the only fixed effect, latitude-{$Pseude-R22$=0-4512)
($Pseudo-R7*2$ = 0.4512). This model was fit using a Gaussian random effect with a Matérn
correlation structure. The smoothness parameter (v) was estimated at 0.398, indicating a
moderate degree of spatial continuity in treeline elevation changes. The range parameter (p)
was 0.00466, suggesting that spatial correlation between observations declines sharply over
very short distances. The variance of the spatial random effect (A) was estimated at 3,651,000,
highlighting substantial spatial variation in the data. The residual variance (¢) was 64,159,
representing unexplained variability after accounting for spatial effects (\textbf{Table
\ref{tab:table2}}).



% m17_spamm, best spatial mixed model with elevation
\begin{table}[ht]
\input{model_summary_table_elevation_m17_spamm.tex}

\vspace{0.25cm}

\caption{Model summary of the top spatial mixed model. Fixed and random effect outputs are
shown. The response variable for this model was the change in treeline elevation. Significance
wotd-beiswould be denoted by bold text and was assessed by observing whether or not the
confidence interval overlapped zero.-Fhis-medeound-nro-significantrelationships— This model
found no significant relationships. }

\label{tab:table2}

\end{table}
\clearpage

The less optimal best linear mixed model can be explored as well: it showed a significant
relationship between change in treeline and latitude, longitude, and the interaction between
latitude and longitude{$Genditional-RA2$=-0-6887Marginal-$R22$-=0-2845}) ($Conditional
R72$ = 0.6887, Marginal $R*2$ = 0.2815). Change in treeline elevation was significantly higher
at lower values of latitude ($\beta$ = -100.6, 95\% CI| = [-155.1, -46.29],-FCenditional-RA24—=
0-6887-Margiral-$RA25-=0-2845; \textbf{Table \ref{tab:table3}; Figure \ref{fig:545}a}). The
relationship between change in treeline elevation and the interaction between latitude and
longitude were also significantly negative ($\beta$ = -0.8418, 95\% CI = [-1.345, -0.3413],
\textbf{Table \ref{tab:table3}}): as longitude increases eastward, effects of latitude on treeline
shift become more negative, suggesting a complex spatial relationship between these
geographic variables and treeline dynamics. Longitude alone also had a significant positive
relationship with change in treeline elevation ($\beta$ = 36.21, 95\% CI = [13.00, 59.52],
\textbf{\ref{tab:table3}; Figure \ref{fig:545}b}). This result indicates that mountain treelines further
east in North America (farther from the Pacific Coast) have more drastic temporal changes in
their treeline elevations compared to the more western mountain treelines in our study.

\begin{table}[ht]
\input{model_summary_table_elevation_m8.tex}

\vspace{0.25cm}

\caption{Model summary of the top linear mixed model. Fixed and random effect outputs are
shown. The response variable for this model was the change in treeline elevation. Significance
is denoted by bold text and was assessed by observing whether or not the confidence interval
overlapped zero.}

\label{tab:table3}

\end{table}
\clearpage



\begin{figure}t]

\includegraphics[width=15cm[{figure0545.png}

\caption{Summary of univariate relationships between treeline elevational shifts and latitude and
longitude. Panel (a) shows latitude on the x-axis, while panel (b) shows longitude on the x-axis.
Regression lines for both panels are denoted in black. Note that the interaction term between
these two independent variables is also statistically significant.}

\label{fig:545}

\end{figure}

\clearpage

\subsection{Change in Treeline NDVI}

As with the previous response variable, we fit a series of linear mixed models and spatial mixed
models with a Matern random effect structure for change in treeline NDVI as a response
variable, and compared the resulting models via AIC, both individually and in totality. The top
linear mixed modelHMarginal-$R225=-0-3360,-Conditional-$R225=-0-7349) (Marginal $R"2$ =
0.3300, Conditional $R"2$% = 0.7349) and the top spatial mixed model had only latitude as
predictor variables when compared only to models of their respective type (\textbf{Tables
\ref{tab:tableA4} \& \ref{tab:tableA5}}). The best-fitting model when comparing all linear and
spatial mixed models and when comparing the top models from the spatial mixed model and
linear mixed model AIC tables was the spatial mixed model with the fixed effect of latitude
(Pseude-$R228=0-6067-Pseudo-$R"2$ = 0.6067) \textbf{Tables \ref{tab:tableA6} \&
\ref{tab:table4}}).

\begin{table}[ht] % Force the table to appear exactly here

\input{best_aic_ndvi.tex}

\vspace{0.25cm}

\caption{AIC table comparing the best linear mixed model and the best spatial mixed model
from their respective comparisons, which had change in treeline NDVI as the response variable.
There were 2 models in this comparison.}

\label{tab:table4}

\end{table}

The best-fit linear mixed model revealed that change in treeline NDVI was significantly related
only to latitude ($\beta$ = -0.003303, 95\% CI = [-0.004121, -0.002484], \textbf{Table
\ref{tab:table5}, Figure \ref{fig:656}}). The negative slope of this relationship indicates that
change in NDVI is greater at lower latitudes, indicating more greenness in the Tropics and
Subtropics in more recent years.

\begin{table}[ht]
\input{model_summary_table_NDVI_m17}



\vspace{0.25cm}

\caption{Model summary of the top linear mixed model. Fixed and random effect outputs are
shown. The response variable for this model was the change in treeline NDVI. Significance is
denoted by bold text and was assessed by observing whether or not the confidence interval
overlapped zero.}

\label{tab:table5}

\end{table}
\clearpage

Among the set of spatial mixed models, the top model concurred with the top linear mixed
model. Latitude was again significantly negatively related to change in treeline NDVI ($\beta$ =
-0.003852, 95\% CI =[-0.005047, -0.002705], \textbf{Table \ref{tab:table6}, Figure \ref{fig:656}}),
and no other variables had significant effects. The negative slope underlines the linkage
between lower latitudes and more intense treeline movement. This model was the best
performing overall out of all models with change in NDVI as the response variable that we
tested. The smoothness parameter (v) was estimated at 0.259, indicating moderate spatial
continuity in the data. The range parameter (p) was 1.006, suggesting that spatial correlation
between observations diminishes rapidly over very short distances. The variance of the spatial
random effect (A\) was estimated at 0.00298, reflecting residual spatial variability in the data. The
residual variance (¢) was estimated at 0.00107, representing the remaining variability not
explained by the spatial random effect (\textbf{Table \ref{tab:table6}}).

\begin{table}[ht]
\input{model_summary_table_NDVI_m17_spamm}

\vspace{0.25cm}

\caption{Model summary of the top spatial mixed model. Fixed and random effect outputs are
shown. The response variable for this model was the change in treeline NDVI. Significance is
denoted by bold text and was assessed by observing whether or not the confidence interval
overlapped zero.}

\label{tab:table6}

\end{table}
\clearpage

\begin{figure}t]

\includegraphics[width = 15cm]{figure0656.png}

\caption{Summary of the univariate relationship between NDVI at manually identified 2017
treeline elevation. Change in NDVI on the y-axis represents 2017 NDVI - 1984 NDV!I. Latitude,
which was significant in the models with change in treeline NDVI as the response variable, is
shown on the x-axis. The regression line from the linear model of change in treeline NDVI and
latitude is denoted by the black line.}

\label{fig:666}

\end{figure}

\clearpage



\conclusions[Discussion] %% \conclusions[modified heading if necessary]
\subsection{Overview}

This study represents a first broad-scope view of spatial patterns of temporal shifts in treeline
elevation across a region. In that sense, it is novel, but has been limited by a significant number
of data-related challenges: e.g., the necessity of eliminating the northernmost set of high peaks
because treelines were not uniquely associated with individual peaks, as well as the removal of
a number of peaks from consideration owing to positive slopes in the regression models relating
NDVI to elevation. These complications point out the nascent nature of the endeavor and the

need for quite a bit more exploration and experimentation-with-effective-methodotegies.

Our results underlined some previous results, such as treelines occurring at higher elevations in
the Tropics and Subtropics, and at lower elevations at higher latitudes ~\citep{korner98}. Fhis

This broad pattern makes sense, of course, if one thinks of the conditions present at the highest
elevations—they are at the extremes of what is survivable for upright trees ~\citep{korner2021}.
If treeline is set at least in part by hard physiological limits, and given global climate patterns
and how they vary with latitude ~\citep{peterson2016}, then high-latitude treelines would
necessarily be lower in elevation.

More importantly and more novel, however, our results show clear associations between
magnitude of treeline shift and latitude, such that tropical treelines have shifted upward faster
ezgarcia21}. Such-an-effecthasnet

~\eiteptkorner2024—Such an effect has not been appreciated or reported previously, at least to
our knowledge, but may relate to the greater physiological flexibility that may characterize
tropical treelines: that is, high-latitude treelines may be fixed in elevation very clearly by hard
physiological limits related to freeze tolerance ~\citep{korner2021}. This focus of treeline
mobility in the tropical zone, unfortunately, coincides with significant knowledge gaps, given that
the great majority of detailed studies of treelines and their dynamics hasves been conducted on
peaks at higher latitudes ~\citep{shi22,zhao15,korner98,lu21}.

Our results were suggestive of further effects, related to longitude and perhaps distance to
coastlines; proximity to ocean has been underlined in past studies as important in determining
treeline elevations at least ~\citep{hansson23}. That is, although we included a variable
summarizing geographic distance to coastline, it did not have any significant effect in the best
models. Rather, in some of the models that ranked among the best, effects of longitude were



indeed substantial. We suspect that this lack of clear effect of distance to coastlines may be
related to the relatively minor representation of peaks close to coastlines in our dataset. Snaly;

\subsection{Limitations}

The deepest concern regarding the analyses presented herein is, of course, the relatively short
time span covered by the Landsat imagery-that-we-analyzed, with-ouranalyses-with our
analyses spanning just a bit more than three decades. This time span is, of course, what is
available from remote-sensing data streams, as Landsat is among the deepest-time

remote- sensmg data sources available anywhere Evea—euwela%we#y—sheﬁ—t-m%e—sp%—ef

relatively short time span of Landsat data, however, does cross the use of multiple sensors to
produce the imagery, which may introduce noise into the analyses that we present herein
~\citep{vogelmann2016}. The only remedy to this concern about time span is therefore to
appeal to other data sources, such as aerial or ground-based photos
~\citep{jimenezgarcia21,peterson22}.

This study covered an impressive expanse in western North America, from 9.4°N in Costa Rica
north to 54.1°N in southwestern Canada, and from the shores of the Pacific Ocean to the
eastern edge of the Rocky Mountains in Colorado. However, this geographic span includes
relatively fewer high mountain peaks in Mexico and Central America, at least compared with the
northern peaks in the study; a further possible limitation of our work stems from the broad
latitudinal gaps in northern Mexico. Finally, our inability to associate specific treelines with
specific high peaks north of southernmost Canada meant that the highest-latitude peaks could
not be included in the study. The former concerns can be remedied by broadening the area of
study and analysis still further, perhaps globally, but the latter concern will remain complicated,
as very high latitude peaks tend to be mostly above treeline, such that we do not see a way to
create a peak-based analysis of those regions.

Finally, a concern could be that of anthropogenic effects that are not related to climate. That is,
although we eliminated from consideration any peaks that had human activities visible at the
peak or near treeline (e.g., agricultural activities), we could not control for changing practices of
fire control, for example. In this sense, if fire control has been implemented or has become more
effective over the past few decades, that—unrelated to climate—could elevate NDVI owing to
reduced fire-based removal of vegetation. We hope that the broad variety of peaks included in
this study will avoid any confounding effects of this concern.

\subsection{Conclusions and Next Steps}

The results of this study point rather dramatically to a major knowledge gap regarding
high-elevation vegetation dynamics. That is, the bias of treeline studies away from tropical
regions and towards temperate-zone and boreal-zone regions coincides—unfortunately—with



the most dramatic regions of treeline elevational shifts. As we have pointed out in previous
contributions ~\citep{jimenezgarcia21}, treelines in the Tropics-ard-theirdynramies and their
dynamics remain little-documented and poorly characterized.

At the same time, the results of this study and others ~\citep{peterson22,singh12} indicate that
remote-sensing data streams are both relevant and informative;-ard-have-beenincorperated
into-many-treetine-studies—\eitep{garbarine2623}, and have been incorporated into many

treeline studies ~\citep{garbarino2023}. Although the detail available in on-the-ground studies
cannot be achieved, significant insight can indeed be gained from satellite-based observations
and data streams;particutarty-whenmultipte-data-streams-are-integrated
~\eiteplgarbarine2023}, particularly when multiple data streams are integrated
~\citep{garbarino2023}. As such, we are in the process of extending this approach globally-and
usthg-mere-diverseremeote-sensing-data-streams and using more-diverse remote sensing data
streams, in the hope of garnering additional useful insights into patterns of treeline change
worldwide, and into processes that drive treeline change phenomena.




