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‭\begin{abstract}‬
‭Previous research has shown that (1) treelines are shifting upward in elevation on high‬
‭mountain peaks worldwide, and (2) the rate of the upward shift appears to have increased‬
‭markedly in recent decades. Because treeline elevational shift is a process manifested over‬
‭broad scales of space and time, a particular challenge has been that of obtaining a‬
‭broad-enough view of patterns of treeline shift to permit inferences about geographic and‬
‭environmental patterns. What is more, intensive studies of treelines have been concentrated in‬
‭North Temperate regions, such that little information is available about treeline shift patterns at‬
‭lower latitudes. We have attempted to address this challenge by analyzing a long time series of‬
‭vegetation indices derived from Landsat imagery obtained and analyzed via Google Earth‬
‭Engine from the 1980s to the present. We sampled vegetation indices at points spaced every‬
‭100 m along 100 km transects radiating out from 115 high peaks across western North America‬
‭(Canada to Central America), which means that we are sampling approximately every second or‬
‭third pixel in the corresponding Landsat images. Considerable data preparation was necessary,‬
‭including ending transects <2 km into closed forest, identifying current treelines via reference to‬
‭Google Earth imagery, and consideration only of up to <1 km above treeline. Patterns that‬
‭emerged were—as is well known—that treelines are generally higher at lower latitudes,‬
‭but—previously unknown—that the magnitude of treeline shifts is nonrandomly distributed with‬
‭respect to latitude, longitude, and their interaction. This analysis, via a broad-scale view of‬
‭treeline shifts over almost 40 years and a geographic span of more than 40° of latitude,‬
‭demonstrates that climate change effects and consequent treeline shifts are most dramatic in‬
‭tropical regions where few or no detailed treeline studies have been and are being conducted.‬



‭\end{abstract}‬
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‭\introduction  %% \introduction[modified heading if necessary]‬
‭%hey this is to learn how to cite~\citep{cud17}.‬
‭The upper elevational limits of forests in mountain systems represent a fascinating and dramatic‬
‭manifestation of distributional limitation at the species and community levels. As such, treeline‬
‭phenomena have seen extensive analysis and discussion in the ecological literature: they are‬
‭an important manifestation of the geographic ecology of ecosystems, and likely reflect important‬
‭climate-related controls ~\citep{kullman98}. Numerous studies have been developed that aim to‬
‭understand factors driving the location and possible shifts in treelines, with the general‬
‭conclusion that treelines are determined by complex suites of factors ~\citep{cud17,‬
‭korner98,holtmeier05,irl16,Grafius12,kienle23}. Whereas some researchers have concluded‬
‭that treeline position can be distilled down to simple rules regarding seasonal mean ground‬
‭temperatures ~\citep{korner04}, others have argued that treeline drivers are considerably more‬
‭multidimensional and complex ~\citep{korner14,zhao15}.‬‭In this study, we adopt Körner’s‬
‭(~\citeyear{korner2012} definition of elevational treeline, i.e., the uppermost elevation on a‬
‭mountain slope at which upright woody plants (trees > 2m tall) can maintain a self-sustaining‬
‭population. Above that limit, insufficient warmth (a too short or too cold growing season)‬
‭prohibits the regular recruitment and survival of true tree forms, even if isolated, krummholz-like‬
‭individuals may sporadically occur.‬‭In this study,‬‭we adopt Körner’s (~\citeyear{korner2012}‬
‭definition of elevational treeline, i.e., the uppermost elevation on a mountain slope at which‬
‭upright woody plants (trees > 2m tall) can maintain a self-sustaining population. Above that limit,‬
‭insufficient warmth (a too short or too cold growing season) prohibits the regular recruitment and‬
‭survival of true tree forms, even if isolated, krummholz-like individuals may sporadically occur.‬

‭Clearly, considerable complexity is involved in any attempt to characterize treeline phenomena.‬
‭However, dendroecological approaches offer the useful possibility of obtaining establishment‬
‭ages on an individual-tree basis across broad stands of trees at or near treelines‬
‭~\citep{grant11}. When treelines change, a key challenge is that of considering treeline shifts‬
‭(e.g., elevational advance upward with warming climate) versus densification (e.g., sparse forest‬
‭or scattered trees near treeline filling in with more trees, regardless of whether the upper limit of‬
‭the trees changes or not) ~\citep{shi22}. Finally, treeline is a highly scale-dependent‬
‭phenomenon, such that all of its qualities vary in importance and effect at different spatial‬
‭extents and resolutions ~\citep{holtmeier17}.‬

‭From early in the discussions about the possibility that global climates would warm with‬
‭increasing greenhouse gas concentrations ~\citep{lamarche84,john02}, the expectation has‬
‭been that treelines would advance up mountain slopes as climatic controls relax at extreme‬
‭elevations. Empirical evidence has been mixed, however, with some studies documenting what‬
‭appears to be very rapid treeline advance ~\citep{peterson22}, and others finding no evidence‬



‭of overall tendency to change ~\citep{beloiu22}. One broad analysis found that treeline advance‬
‭was faster in subarctic regions than in temperate regions ~\citep{lu21}, and another found that‬
‭treelines experiencing stronger winter warming and with diffuse treeline forms were more likely‬
‭to advance ~\citep{he23}.‬

‭Nonetheless, most of these previous broad-scale analyses of patterns of treeline advance in the‬
‭face of warming climates have been based on datasets with strong inherent biases and‬
‭significant gaps. That is, in largest part, treeline studies have been conducted in the North‬
‭Temperate zone: examples of such biased analyses are many‬
‭~\citep{shi22,zhao15,korner98,lu21}. A few analyses have achieved a somewhat better balance‬
‭of representation of treelines in the Tropics and in the Southern Hemisphere‬
‭~\citep{he23,hansson23,kienle23}. The concern, of course, is that such information gaps and‬
‭biases in what information is available may blind researchers and their analyses to very real and‬
‭important patterns in the global occurrence of the phenomenon of treeline advance.‬

‭Here, we address these important knowledge gaps about treeline dynamics in the face of‬
‭warming climates globally over the past several decades. We assess the null hypothesis that‬
‭magnitude of alpine treeline shifts is not related to a series of geographic features, such as‬
‭latitude, longitude, distance to coast, and others. Specifically, to be able to assess treeline shifts‬
‭on a continent-wide basis, we use a long time series of remote-sensing data to seek patterns in‬
‭the magnitude of alpine treeline shifts across 115 high peaks scattered across western North‬
‭America, ranging from Central America to southern Canada. We use vegetation index trends‬
‭along transects radiating out from each peak in eight cardinal and sub-cardinal directions; the‬
‭vegetation index approach has the advantage of “seeing” vegetative mass generally, in effect‬
‭integrating over both treeline advance and densification of sparse, near-treeline forests‬
‭~\citep{feuillet20}. Of course, these broad-scale analyses are not a substitute for more detailed,‬
‭field-based analyses, nor should vegetation-index-based assessments replace more‬
‭fine-grained inspections of the actual geometry of treelines. Still, the result is a novel dataset‬
‭from which we have derived several intriguing insights about geographic patterns in the‬
‭magnitude of treeline elevational shifts.‬

‭\section{Methods}‬
‭\subsection{Mountain peak characterization}‬
‭Our aim was to characterize temporal changes in vegetation mass on a set of mountains that‬
‭covered western North America. To that end, we chose to follow a comprehensive summary of‬
‭high mountains worldwide ~\citep{peaklistUltraProminencesPage}, which is based on an effort‬
‭to identify all mountains worldwide with at least a 1500 m prominence; the authors of that‬
‭compendium (called the Ultras Project) researched all summits on Earth that meet this criterion,‬
‭finding 1524 such peaks. From this worldwide dataset, we extracted the 354 mountain peaks‬
‭located in North America (Panama to the Arctic). We used the coordinates of each peak in this‬
‭dataset as a centerpoint, and plotted 8 transects in each of the cardinal and sub-cardinal‬
‭directions extending out from that centerpoint (points were plotted and distances measured in‬
‭meters using the WGS84 Special Mercator for Web Applications (‬‭EPSG:3857‬‭datum: sphere,‬



‭delta WGS84: 0 0 0, ellipsoid: sphere, major s-ax: 6378137.000, minor s-ax: 6378137.000,‬
‭origin long: 0, origin lat :0, origin X: 0, origin Y: 0, scale fac: 1.0, units: m, parameters:‬
‭0‬‭EPSG:3857‬‭) projection to assure consistent distances‬‭among sampling stations. Transects‬
‭were each initially 100 km long, with sampling stations every 100 m, so each transect initially‬
‭included 1000 sampling stations.‬

‭We excluded from analysis all mountains that were forested to the peak, or that showed signs of‬
‭anthropogenic modification at or around the peak‬‭upon‬‭visual inspection of the region in Google‬
‭Earth‬‭upon visual inspection of the region in Google‬‭Earth‬‭. We also excluded peaks for which‬
‭treelines were not associated clearly with the upper slopes of the peak, but rather were lower,‬
‭extending just a bit up the valley walls‬‭and thus‬‭likely represent latitudinal treelines as opposed‬
‭to altitudinal treelines‬‭and thus likely represent‬‭latitudinal treelines as opposed to altitudinal‬
‭treelines‬‭; such low treelines were particularly common‬‭in central and northern Canada and‬
‭Alaska, such that northern peaks were excluded. Given that, in eastern North America, only one‬
‭peak (Mt. Washington, in New Hampshire) met our criteria, to avoid including a genuine spatial‬
‭outlier in our analyses, we omitted that peak from analysis, thus focusing our analyses on the‬
‭high peaks of western North America. At the end of this process, from the initial database, we‬
‭had 120 peaks remaining as a basis for our analyses (\textbf{Figure \ref{fig:1}}).‬

‭\setcounter{figure}{0}‬
‭\begin{figure}[t]‬
‭\includegraphics[width=17cm]{figure01.png}‬
‭\caption{The 120 high mountain peaks analyzed in this study. Triangles represent individual‬
‭mountain peaks used in our analysis. The 'X' symbol is Mt. Washington, which was removed‬
‭from the dataset prior to analysis. This map was constructed using QGIS ver 3.38.2. ESRI‬
‭physical basemap was used to create the map.}‬
‭\label{fig:1}‬
‭\end{figure}‬
‭\clearpage‬
‭In Google Earth Engine, we overlaid the transect sampling points on imagery from Landsat‬
‭(1984--2017), and associated the values of the normalized difference vegetation index (NDVI)‬
‭with each sampling point in the transect dataset. For this analysis, we focused on early‬
‭(1984--1988) and late time periods (2013--2017) within the timespan of the Landsat dataset. We‬
‭used NDVI data from the annual Landsat collection‬
‭(\textnormal{Landsat/LT5\_L1T\_ANNUAL\_NDVI},‬
‭\textnormal{Landsat/LE7\_L1T\_ANNUAL\_NDVI}, and‬
‭\textnormal{Landsat/LE8\_L1T\_ANNUAL\_NDVI}) in Google Earth Engine.‬‭We used the‬
‭pre‐processed LANDSAT_LT5_L1T_ANNUAL_NDVI collection in Google Earth Engine,‬
‭which provides annual NDVI composites derived from Level‐1 terrain‐corrected Landsat 5‬
‭reflectance images (including cloud masking and quality assurance). Unfortunately, this‬
‭collection is now deprecated in GEE. To ensure full transparency, our scripts for reproducing‬
‭the NDVI computation from the original Landsat reflectance data are publicly available‬‭[link‬
‭to scripts]‬‭on Github‬‭. Detailed information about the‬‭original dataset can be found in the‬
‭Earth Engine Data Catalogue ~\citep{USGS17}: Calibration procedures and validation‬



‭methods for this collection are described by Chander et al., ~\citeyear{chander2009}.‬ ‭We‬
‭generated a composite for each year from the available Landsat images, and extracted NDVI‬
‭values for each year via a mean reducer. We then inspected each transect of each peak‬
‭individually by overlaying the point data on the Google Satellite fine-resolution data product,‬
‭using the GIS capabilities of QGIS (version 3.2).‬

‭A key step was that of choosing the sampling station on each transect that corresponded to‬
‭treeline, as follows. Descending from each peak (using the Google Satellite data layer in QGIS)‬
‭along each transect, we identified the sampling station that most closely approximated the‬
‭upper elevational limit of forest. That is, we ignored single, isolated trees, but rather identified‬
‭the elevation at which forest became continuous, albeit in some cases sparse. For this sampling‬
‭station, we set the field TreesBegin in the data table characterizing peaks to 1.‬‭To focus‬
‭attention on the region just above and just below treeline, w‬‭W‬‭To focus attention on the region‬
‭just above and just below treeline, w‬‭e ended the transect‬‭after up to 20 additional sampling‬
‭stations descending from the peak beyond treeline into the forest; however, we retained fewer‬
‭than 20 sampling stations when any anthropogenic effects were noticeable‬‭upon visual‬
‭inspection‬‭upon visual inspection‬‭, or when the straight-line‬‭transect reached a valley bottom and‬
‭began to ascend again. All further sampling stations beyond this point were removed from the‬
‭dataset.‬

‭\subsection{Data refinement}‬
‭Values of NDVI and elevation were assigned to each sampling station via GIS overlay (“extract‬
‭value to point”) operations.‬‭Values of NDVI and elevation‬‭were assigned to each sampling‬
‭station via GIS overlay (“extract value to point”) operations.‬‭All subsequent data preparation was‬
‭done in R (version 4.4.1) and QGIS (version 3.38.2). We cleaned the data that had been‬
‭exported from Google Earth Engine by removing‬‭any‬‭“NA”‬‭and‬‭any‬‭missing values. We averaged‬
‭the yearly NDVI values over the two time periods (1984-1988 and 2013-2017) to provide “before‬
‭and after” comparisons that would be more immune to‬‭measurement error or other sources of‬
‭year-to-year variation.‬‭random effects and error in‬‭NDVI measurements (e.g., from partial cloud‬
‭cover).‬‭measurement error or other sources of year-to-year‬‭variation.‬

‭Our next goal was to calculate regression equations for individual mountains, slopes, and time‬
‭periods, characterizing the negative-sloped relationship between elevation and‬‭NDVI‬‭vegetation‬
‭mass‬‭NDVI‬‭. To this end, we transformed the data into‬‭a hierarchical nested list of lists; the‬
‭dataset included 120 mountain peaks, each of which had 1-8 transects. Each transect had the‬
‭two averaged year groups of NDVI data, for a total of 1848 distinct combinations of peak,‬
‭transect, and year group; some transects were removed entirely based on the criteria listed‬
‭above (‬‭\textbf{S‬‭s‬‭\textbf{S‬‭ection 2.‬‭1‬‭2‬‭}‬‭1}‬‭). In our‬‭analyses, we included only NDVI‬
‭measurements from “stations” that were in relatively close proximity to treeline. That is, we‬
‭included at least the last 10 stations. If twice the number of stations after the manually identified‬
‭treeline to the transect edge (i.e., the furthest measured station downslope) plus one (to‬
‭explicitly account for the station representing treeline itself) exceeded 10, we used this greater‬
‭number of stations instead. This approach ensured we captured sufficient data from both sides‬
‭of the treeline and minimized‬‭the effect of terrain‬‭variability‬‭geographic noise,‬‭the effect of terrain‬



‭variability‬‭from sources‬‭from sources‬‭such as small bare peaks, increasing the probability of‬
‭detecting the true relationship.‬

‭We modeled the NDVI-elevation relationship‬‭with NDVI‬‭as the response variable and elevation‬
‭as the predictor variable‬‭with NDVI as the response‬‭variable and elevation as the predictor‬
‭variable‬‭to find‬‭the‬‭a‬‭the‬‭best‬‭type of‬‭type of‬‭regression‬‭equation and, ultimately, the best‬
‭approximation to the‬‭true‬‭true‬‭relationship between‬‭these variables‬‭(\textbf{Figure \ref{fig:2}};‬
‭see below)‬‭(\textbf{Figure \ref{fig:2}}; see below)‬‭;‬‭these models allowed us to associate NDVI‬
‭and treeline elevation for calculation of our final response variable‬‭s: change in elevation and‬
‭change in NDVI.‬‭s: change in elevation and change in‬‭NDVI.‬‭(\textbf{Figure \ref{fig:2}}; see‬
‭below)‬‭. To this end, we calculated three types of‬‭regressions on each data frame (linear,‬
‭reciprocal-linear, and reciprocal-quadratic) to assess which model shape best describes the‬
‭NDVI-elevation relationship. The three models were compared via the Akaike Information‬
‭Criterion (AIC; \citealt{Akaike2011}) for each peak, transect, and time period. As all 1848 of‬
‭these‬‭NDVI elevation relationships‬‭regressions‬‭NDVI‬‭elevation relationships‬‭were best described‬
‭by a linear model we retained only linear regression equations for subsequent analyses. We‬
‭excluded transects for which the regression equation was not statistically significant‬
‭(regressions were considered significant at ɑ = 0.05)‬ ‭or for which the regression slope was‬
‭positive‬‭. We used α = 0.05 as the threshold for statistical‬‭significance in all regressions.‬‭;‬‭. We‬
‭used α = 0.05 as the threshold for statistical significance in all regressions.‬‭T‬‭t‬‭T‬‭his criterion‬
‭removed 688 of 1848 transects, leaving 1160 transects for analysis. Finally, since our goal was‬
‭to create temporal comparisons‬‭between the two time‬‭periods‬‭between the two time periods‬‭, we‬
‭also removed any transects for which regressions for either time period did not meet‬‭the‬‭our‬‭the‬
‭criteria‬‭outlined above‬‭outlined above‬‭; this filter‬‭removed another 202 transects from analysis.‬
‭The final dataset thus included 958 transects on 115 peaks.‬

‭\begin{figure}[t]‬
‭\includegraphics[width=17cm]{figure02.png}‬
‭\caption{Map showing continentwide patterns of regression slopes relating NDVI to elevation for‬
‭each peak, averaged across the 1-8 transects available for each peak, for the 2013-2017 time‬
‭period. Red circles represent a positive slope (excluded from final analysis), and yellow circles‬
‭represent a negative slope. The size of the circles coincide with the‬‭magnitude of the‬‭magnitude‬
‭of the‬‭absolute value of each slope calculation. The‬‭'X' symbol is Mt. Washington, which was‬
‭removed from the dataset prior to analysis. This map was constructed using QGIS ver 3.38.2.‬
‭ESRI physical basemap was used to create the map.}‬
‭\label{fig:2}‬
‭\end{figure}‬
‭\clearpage‬

‭The goal in these analyses was to calculate change in treeline elevation for use as a response‬
‭variable in continent-wide models.‬‭Alpine treeline‬‭position represents a bioclimatic threshold:‬
‭trees cannot form self-sustaining closed canopy stands above it because low temperatures and‬
‭a short growing season limit carbon assimilation and wood formation ~\citep{korner2012,‬
‭holtmeier09}. In turn, shifts in treeline elevation over time serve as a direct indicator of how local‬
‭thermal regimes and associated growing-season lengths are changing on the landscape‬



‭~\citep{korner2012,holtmeier05}. By modeling the change in treeline elevation, we capture how‬
‭climate warming and other environmental drivers are pushing the arboreal “limit” upslope.‬‭Alpine‬
‭treeline position represents a bioclimatic threshold: trees cannot form self-sustaining closed‬
‭canopy stands above it because low temperatures and a short growing season limit carbon‬
‭assimilation and wood formation ~\citep{korner2012, holtmeier09}. In turn, shifts in treeline‬
‭elevation over time serve as a direct indicator of how local thermal regimes and associated‬
‭growing-season lengths are changing on the landscape ~\citep{korner2012,holtmeier05}. By‬
‭modeling the change in treeline elevation, we capture how climate warming and other‬
‭environmental drivers are pushing the arboreal “limit” upslope.‬‭To this end, we inserted the‬
‭elevations at our manually selected treeline position into the 2013-2017 NDVI‬‭linear‬‭linear‬
‭regression equations to calculate the NDVI values‬‭associated with‬‭manifested‬‭associated with‬‭at‬
‭present day‬‭present day‬‭treeline‬‭in the recent time‬‭period‬‭. We then inserted that calculated‬
‭NDVI value into the 1984-1988 regression equations to obtain an estimate of treeline elevation‬
‭(i.e., we sought the elevation with the same 1984-1988 NDVI value as present-day treeline on‬
‭that slope of that mountain; \textbf{Figure \ref{fig:3}}). Finally, we subtracted the 1984-1988‬
‭elevation values from the 2013-2017 elevation values to obtain an estimate of the change in‬
‭treeline elevation over the broad temporal span of this study.‬

‭\begin{figure}[t]‬
‭\includegraphics[width=12cm]{figure03.jpg}‬
‭\caption{Example of a high mountain (Cerro de la Malinche, Tlaxcala, Mexico) and inferences‬
‭deriving from it regarding position of treeline through time. Top panel: View of the mountain in‬
‭Google Earth, with 8 transects radiating out from the peak in cardinal and subcardinal‬
‭directions. White dots indicate stations at which NDVI values were sampled through time; purple‬
‭stars indicate the position of treeline identified visually. Bottom panel: dark red points and lines‬
‭show the NDVI-elevation relationship in the 1980s; blue points and lines show the same‬
‭relationship in the 2010s. In one example (northward transect), the elevation of treeline‬
‭observed for 2013-2017 (3960 m) was used to identify a treeline NDVI threshold (0.3135), which‬
‭was in turn used to identify a likely elevation (3448 m) of the same NDVI level for 1980s‬
‭conditions. Background of top panel is from Google Earth‬‭©‬‭©‬‭.}‬
‭\label{fig:3}‬
‭\end{figure}‬
‭\clearpage‬

‭We also calculated a second, simpler response variable, which was simply change in NDVI at‬
‭the 2013-2017 treeline.‬‭In high-elevation contexts,‬‭an upward trend in NDVI within elevation‬
‭bands at the present day treeline signals increased tree recruitment, shrub encroachment, or‬
‭earlier green-up ~\citep{harsch09,rupp01}. Thus, by computing the change in NDVI over our‬
‭study period, we capture a functional or “greenness” dimension of treeline dynamics that‬
‭complements the structural dimension (change in elevation). In other words, even before trees‬
‭form closed canopies, small shrubs or seedlings may begin to photosynthesize more vigorously,‬
‭which will manifeset as change in NDVI.‬‭In high-elevation‬‭contexts, an upward trend in NDVI‬
‭within elevation bands at the present day treeline signals increased tree recruitment, shrub‬
‭encroachment, or earlier green-up ~\citep{harsch09,rupp01}. Thus, by computing the change in‬
‭NDVI over our study period, we capture a functional or “greenness” dimension of treeline‬



‭dynamics that complements the structural dimension (change in elevation). In other words, even‬
‭before trees form closed canopies, small shrubs or seedlings may begin to photosynthesize‬
‭more vigorously, which will manifeset as change in NDVI.‬‭To this end, we inserted the manually‬
‭located 2017 treeline elevation into the two regression equations for that mountain and slope.‬
‭This resulted in NDVI values at a particular elevation (i.e., recent treeline) for 2013-2017 and‬
‭1984-1988 for each peak and direction. We subtracted the 1984-1988 values from the‬
‭2013-2017 values to obtain the change in treeline NDVI. A more positive value for change in‬
‭NDVI indicates an increase in NDVI between 2013-2017 and 1984-1988.‬

‭Finally, we assembled a suite of independent variables that may be of interest as possible‬
‭drivers of variation in rates of treeline shift. We included (1) the number of stations in the‬
‭transect below treeline (as a potential confounding factor), (2) cardinal direction of the transect,‬
‭(3) latitude, and (4) longitude, all of which could be derived from the original data about each‬
‭transect and peak in the analysis. We also calculated (5) the distance to the closest coastline in‬
‭meters, based on the coastline corresponding to official maritime boundaries‬
‭~\citep{flanders19}. We built a raster file that contained the distance to the closest coastline for‬
‭each 1.53 km ($\sim$2.5’ pixels). We then added these distance values to the data table for the‬
‭transect sampling points using the point sampling tool in QGIS.‬

‭\subsubsection{Model selection}‬
‭To understand which of the above independent variables likely drives variation in rate of treeline‬
‭elevational shifts, we used an iterative stepwise model selection process. We selected the‬
‭model that best describes western North American geographic treeline elevational shift patterns‬
‭using AIC. We explored‬‭two‬‭three‬‭two‬‭statistical models‬‭to ensure that the final model would‬‭best‬
‭explain geographic variation in treeline dynamics‬‭be‬‭robust to spatial autocorrelation‬‭best explain‬
‭geographic variation in treeline dynamics‬‭. First,‬‭we built 1‬‭8‬‭6‬‭8‬‭linear mixed models, each of‬
‭which contained a random effect of ‘Peak ID’ to account for variability in local landscape‬
‭characteristics. Second, we constructed 1‬‭8‬‭6‬‭8‬‭spatial‬‭mixed models‬‭using the R package‬
‭‘spaMM’‬‭using the R package ‘spaMM’‬‭in which we specified‬‭Matèrn random effects to account‬
‭for spatial autocorrelation by capturing the spatially structured variation in treeline elevation that‬
‭is not explained by the fixed effects ~\citep{spamm}. These models were fitted using restricted‬
‭maximum likelihood.‬

‭We attempted a third model set using principal coordinates of neighbor matrices (PCNM), which‬
‭generates spatial eigenvectors based on geographic distances between sampling locations‬
‭~\citep{BORCARD200251}. We used the first two PCNM axes as fixed effects, instead of‬
‭latitude and longitude, to explain spatially structured variation in treeline elevation change, with‬
‭a random intercept for each peak. However, the inherent clustering of our data owing to very‬
‭similar latitude and longitude values for the sampling points associated with individual peaks,‬
‭and the fact that PCNM creates matrices on a row-by-row basis, led the weights across all‬
‭principal coordinates to have a value of one. In the end, results under this approach were not‬
‭interpretable with regards to geographic patterns, which was the aim of this study, so we did not‬
‭pursue this approach further.‬‭¶‬



‭For the first two model sets (total 32 models), the response variable was the change in treeline‬
‭elevation between the two time periods. We produced a second array of models, parallel to the‬
‭first, in which we used change in treeline NDVI as the response variable. All other model‬
‭characteristics were the same as for the models based on change in treeline elevation.‬

‭For all of the models described above, the fixed effects were different combinations of the‬
‭independent variables: distance to coast, number of stations after treeline, cardinal direction of‬
‭slope, latitude, and longitude, as well as the interaction between latitude and longitude. The‬
‭models ranged in complexity, but we always included latitude and longitude. We compared all‬
‭32 models in an AIC table, as the response variable was constant and all models were fit by‬
‭REML. We assessed significance by checking whether the 95\% confidence interval of each‬
‭fixed effect overlapped zero‬‭~\citep{browne1979}‬‭~\citep{browne1979}‬‭.‬‭We considered results‬
‭for which confidence intervals did not overlap zero to be significant.‬‭Our dataset construction‬
‭and analysis steps are summarized in a diagram for clarity below ( \textbf{Figure \ref{fig:4}})‬‭Our‬
‭dataset construction and analysis steps are summarized in a diagram for clarity below (‬
‭\textbf{Figure \ref{fig:4}})‬

‭\begin{figure}[t]‬
‭\includegraphics[width=17cm]{figure04.png}‬
‭\caption{Panel (a) diagrams the steps taken to 1. Characterize mountains, 2. Clean the data in‬
‭preparation for analysis, and 3. Select models. In panel (b), the hierarchical structure of our‬
‭dataset is conceptually illustrated.}‬
‭\label{fig:4}‬
‭\end{figure}‬
‭\clearpage‬

‭\begin{figure}[t]‬
‭\includegraphics[width=17cm]{figure04.png}‬
‭\caption{Panel (a) diagrams the steps taken to 1. Characterize mountains, 2. Clean the data in‬
‭preparation for analysis, and 3. Select models. In panel (b), the hierarchical structure of our‬
‭dataset is conceptually illustrated.}‬
‭\label{fig:4}‬
‭\end{figure}‬
‭\clearpage‬

‭\section{Results}‬
‭\subsection{Generalities about Treelines}‬
‭Treeline locations were non-random in a number of ways. On average, across all mountain‬
‭peaks in our analyses, treeline was located at 2433 m. However, treeline position varied‬
‭systematically, in that a significant relationship existed between treeline and latitude: tropical‬
‭treelines averaged 3177 m, whereas temperate-zone treelines were lower, at 2244 m. As such,‬



‭all subsequent analyses in this study needed to be conditioned on the geographic complexity‬
‭underlying the phenomenon of treeline.‬

‭\subsection{Change in Treeline Elevation}‬
‭Treelines have been changing, even over the relatively short, 30-40-year timespan of this study.‬
‭Indeed, treeline shifts among the western North American peaks in this study had a mean‬
‭overall shift of 20.2 m upslope, though the mean absolute shift (positive or negative) was 240 m.‬
‭The distribution of change values ranged from 165 m downslope to 127 m upslope.‬

‭For the multivariate models relating change in treeline elevation to environmental drivers, we‬
‭calculated the best-fit models for the linear mixed models and spatial mixed models using AIC‬
‭and the coefficient of determination ($R^2$). We calculated the marginal and conditional $R^2$‬
‭values for linear mixed models and a pseudo $R^2$ value for the spatial mixed models. The‬
‭best linear mixed model included number of stations after treeline, direction of transect moving‬
‭away from the peak, latitude, longitude, and the interaction between latitude and longitude as‬
‭fixed effects, with mountain peak name as a random intercept (\textbf{Table \ref{tab:tableA1}}).‬
‭From our candidate set of spatial mixed models, the best fit included only latitude as a fixed‬
‭effect, with a Matèrn random effect structure (\textbf{Table \ref{tab:tableA2}}). When comparing‬
‭all models and the two best fitting models from the linear and spatial analyses, the spatial mixed‬
‭model was best overall (\textbf{Tables \ref{tab:tableA3} \& \ref{tab:table1}}).‬

‭\begin{table}[ht]‬
‭\input{best_aic_elevation.tex}‬
‭\vspace{0.25cm}‬
‭\caption{AIC table comparing the best linear mixed model and the best spatial mixed model‬

‭from their respective comparisons, which had change in treeline elevation as the response‬
‭variable. There were 2 models in this comparison.}‬

‭\label{tab:table1}‬
‭\end{table}‬

‭The best spatial mixed model, which was also the best model overall, showed that change in‬
‭treeline was not significantly related to the only fixed effect, latitude‬‭($Pseudo-R^2$ = 0.4512)‬
‭($Pseudo-R^2$ = 0.4512)‬‭. This model was fit using‬‭a Gaussian random effect with a Matèrn‬
‭correlation structure. The smoothness parameter (ν) was estimated at 0.398, indicating a‬
‭moderate degree of spatial continuity in treeline elevation changes. The range parameter (ρ)‬
‭was 0.00466, suggesting that spatial correlation between observations declines sharply over‬
‭very short distances. The variance of the spatial random effect (λ) was estimated at 3,651,000,‬
‭highlighting substantial spatial variation in the data. The residual variance (φ) was 64,159,‬
‭representing unexplained variability after accounting for spatial effects (\textbf{Table‬
‭\ref{tab:table2}}).‬



‭% m17_spamm, best spatial mixed model with elevation‬
‭\begin{table}[ht]‬
‭\input{model_summary_table_elevation_m17_spamm.tex}‬

‭\vspace{0.25cm}‬
‭\caption{Model summary of the top spatial mixed model. Fixed and random effect outputs are‬

‭shown. The response variable for this model was the change in treeline elevation. Significance‬
‭would be‬‭is‬‭would be‬‭denoted by bold text and was assessed‬‭by observing whether or not the‬
‭confidence interval overlapped zero.‬‭This model found‬‭no significant relationships.‬ ‭This model‬
‭found no significant relationships.‬‭}‬

‭\label{tab:table2}‬
‭\end{table}‬
‭\clearpage‬

‭The less optimal best linear mixed model can be explored as well: it showed a significant‬
‭relationship between change in treeline and latitude, longitude, and the interaction between‬
‭latitude and longitude‬‭($Conditional R^2$ = 0.6887,‬‭Marginal $R^2$ = 0.2815)‬‭($Conditional‬
‭R^2$ = 0.6887, Marginal $R^2$ = 0.2815)‬‭. Change in‬‭treeline elevation was significantly higher‬
‭at lower values of latitude ($\beta$ = -100.6, 95\% CI = [-155.1, -46.29],‬‭$Conditional R^2$ =‬
‭0.6887, Marginal $R^2$ = 0.2815,‬‭\textbf{Table \ref{tab:table3};‬‭Figure \ref{fig:‬‭5‬‭4‬‭5‬‭}a}). The‬
‭relationship between change in treeline elevation and the interaction between latitude and‬
‭longitude were also significantly negative ($\beta$ = -0.8418, 95\% CI = [-1.345, -0.3413],‬
‭\textbf{Table \ref{tab:table3}}): as longitude increases eastward, effects of latitude on treeline‬
‭shift become more negative, suggesting a complex spatial relationship between these‬
‭geographic variables and treeline dynamics. Longitude alone also had a significant positive‬
‭relationship with change in treeline elevation ($\beta$ = 36.21, 95\% CI = [13.00, 59.52],‬
‭\textbf{\ref{tab:table3}; Figure \ref{fig:‬‭5‬‭4‬‭5‬‭}b}).‬‭This result indicates that mountain treelines further‬
‭east in North America (farther from the Pacific Coast) have more drastic temporal changes in‬
‭their treeline elevations compared to the more western mountain treelines in our study.‬

‭\begin{table}[ht]‬
‭\input{model_summary_table_elevation_m8.tex}‬

‭\vspace{0.25cm}‬
‭\caption{Model summary of the top linear mixed model. Fixed and random effect outputs are‬

‭shown. The response variable for this model was the change in treeline elevation. Significance‬
‭is denoted by bold text and was assessed by observing whether or not the confidence interval‬
‭overlapped zero.}‬

‭\label{tab:table3}‬
‭\end{table}‬
‭\clearpage‬



‭\begin{figure}[t]‬
‭\includegraphics[width=15cm]{figure0‬‭5‬‭4‬‭5‬‭.png}‬
‭\caption{Summary of univariate relationships between treeline elevational shifts and latitude and‬
‭longitude. Panel (a) shows latitude on the x-axis, while panel (b) shows longitude on the x-axis.‬
‭Regression lines for both panels are denoted in black. Note that the interaction term between‬
‭these two independent variables is also statistically significant.}‬
‭\label{fig:‬‭5‬‭4‬‭5‬‭}‬
‭\end{figure}‬
‭\clearpage‬

‭\subsection{Change in Treeline NDVI}‬
‭As with the previous response variable, we fit a series of linear mixed models and spatial mixed‬
‭models with a Màtern random effect structure for change in treeline NDVI as a response‬
‭variable, and compared the resulting models via AIC, both individually and in totality. The top‬
‭linear mixed model‬‭(Marginal $R^2$ = 0.3300, Conditional‬‭$R^2$ = 0.7349)‬‭(Marginal $R^2$ =‬
‭0.3300, Conditional $R^2$ = 0.7349)‬‭and the top spatial‬‭mixed model had only latitude as‬
‭predictor variables when compared only to models of their respective type (\textbf{Tables‬
‭\ref{tab:tableA4} \& \ref{tab:tableA5}}). The best-fitting model when comparing all linear and‬
‭spatial mixed models and when comparing the top models from the spatial mixed model and‬
‭linear mixed model AIC tables was the spatial mixed model with the fixed effect of latitude‬
‭(‬‭Pseudo-$R^2$ = 0.6067)‬‭Pseudo-$R^2$ = 0.6067)‬‭\textbf{Tables‬‭\ref{tab:tableA6} \&‬
‭\ref{tab:table4}}).‬

‭\begin{table}[ht]  % Force the table to appear exactly here‬
‭\input{best_aic_ndvi.tex}‬
‭\vspace{0.25cm}‬
‭\caption{AIC table comparing the best linear mixed model and the best spatial mixed model‬

‭from their respective comparisons, which had change in treeline NDVI as the response variable.‬
‭There were 2 models in this comparison.}‬

‭\label{tab:table4}‬
‭\end{table}‬

‭The best-fit linear mixed model revealed that change in treeline NDVI was significantly related‬
‭only to latitude ($\beta$ = -0.003303, 95\% CI = [-0.004121, -0.002484], \textbf{Table‬
‭\ref{tab:table5}, Figure \ref{fig:‬‭6‬‭5‬‭6‬‭}}). The negative‬‭slope of this relationship indicates that‬
‭change in NDVI is greater at lower latitudes, indicating more greenness in the Tropics and‬
‭Subtropics in more recent years.‬

‭\begin{table}[ht]‬
‭\input{model_summary_table_NDVI_m17}‬



‭\vspace{0.25cm}‬
‭\caption{Model summary of the top linear mixed model. Fixed and random effect outputs are‬

‭shown. The response variable for this model was the change in treeline NDVI. Significance is‬
‭denoted by bold text and was assessed by observing whether or not the confidence interval‬
‭overlapped zero.}‬

‭\label{tab:table5}‬
‭\end{table}‬
‭\clearpage‬

‭Among the set of spatial mixed models, the top model concurred with the top linear mixed‬
‭model. Latitude was again significantly negatively related to change in treeline NDVI ($\beta$ =‬
‭-0.003852, 95\% CI = [-0.005047, -0.002705], \textbf{Table \ref{tab:table6}, Figure \ref{fig:‬‭6‬‭5‬‭6‬‭}}),‬
‭and no other variables had significant effects. The negative slope underlines the linkage‬
‭between lower latitudes and more intense treeline movement. This model was the best‬
‭performing overall out of all models with change in NDVI as the response variable that we‬
‭tested. The smoothness parameter (ν) was estimated at 0.259, indicating moderate spatial‬
‭continuity in the data. The range parameter (ρ) was 1.006, suggesting that spatial correlation‬
‭between observations diminishes rapidly over very short distances. The variance of the spatial‬
‭random effect (λ) was estimated at 0.00298, reflecting residual spatial variability in the data. The‬
‭residual variance (φ) was estimated at 0.00107, representing the remaining variability not‬
‭explained by the spatial random effect (\textbf{Table \ref{tab:table6}}).‬

‭\begin{table}[ht]‬
‭\input{model_summary_table_NDVI_m17_spamm}‬

‭\vspace{0.25cm}‬
‭\caption{Model summary of the top spatial mixed model. Fixed and random effect outputs are‬

‭shown. The response variable for this model was the change in treeline NDVI. Significance is‬
‭denoted by bold text and was assessed by observing whether or not the confidence interval‬
‭overlapped zero.}‬

‭\label{tab:table6}‬
‭\end{table}‬
‭\clearpage‬

‭\begin{figure}[t]‬
‭\includegraphics[width = 15cm]{figure0‬‭6‬‭5‬‭6‬‭.png}‬
‭\caption{Summary of the univariate relationship between NDVI at manually identified 2017‬
‭treeline elevation. Change in NDVI on the y-axis represents 2017 NDVI - 1984 NDVI. Latitude,‬
‭which was significant in the models with change in treeline NDVI as the response variable, is‬
‭shown on the x-axis. The regression line from the linear model of change in treeline NDVI and‬
‭latitude is denoted by the black line.}‬
‭\label{fig:‬‭6‬‭5‬‭6‬‭}‬
‭\end{figure}‬
‭\clearpage‬



‭\conclusions[Discussion]  %% \conclusions[modified heading if necessary]‬
‭\subsection{Overview}‬
‭This study represents a first broad-scope view of spatial patterns of temporal shifts in treeline‬
‭elevation across a region. In that sense, it is novel, but has been limited by a significant number‬
‭of data-related challenges: e.g., the necessity of eliminating the northernmost set of high peaks‬
‭because treelines were not uniquely associated with individual peaks, as well as the removal of‬
‭a number of peaks from consideration owing to positive slopes in the regression models relating‬
‭NDVI to elevation. These complications point out the nascent nature of the endeavor and the‬
‭need for quite a bit more exploration and experimentation‬‭with effective methodologies‬‭.‬

‭Our results underlined some previous results, such as treelines occurring at higher elevations in‬
‭the Tropics and Subtropics, and at lower elevations at higher latitudes ~\citep{korner98}.‬‭This‬
‭broad pattern makes sense, of course, if one thinks of the conditions present at the highest‬
‭elevations—they are at the extremes of what is survivable for upright trees ~\citep{korner2021}.‬
‭If treeline is set at least in part by hard physiological limits, and given global climate patterns‬
‭and how they vary with latitude ~\citep{peterson2016}, then high-latitude treelines would‬
‭necessarily be lower in elevation.‬

‭This broad pattern makes sense, of course, if one thinks of the conditions present at the highest‬
‭elevations—they are at the extremes of what is survivable for upright trees ~\citep{korner2021}.‬
‭If treeline is set at least in part by hard physiological limits, and given global climate patterns‬
‭and how they vary with latitude ~\citep{peterson2016}, then high-latitude treelines would‬
‭necessarily be lower in elevation.‬

‭More importantly and more novel, however, our results show clear associations between‬
‭magnitude of treeline shift and latitude, such that tropical treelines have shifted upward faster‬
‭than higher-latitude treelines in recent decades ~\citep{jimenezgarcia21}.‬‭Such an effect has not‬
‭been appreciated or reported previously, at least to our knowledge, but may relate to the greater‬
‭physiological flexibility that may characterize tropical treelines: that is, high-latitude treelines‬
‭may be fixed in elevation very clearly by hard physiological limits related to freeze tolerance‬
‭~\citep{korner2021}.‬‭Such an effect has not been appreciated‬‭or reported previously, at least to‬
‭our knowledge, but may relate to the greater physiological flexibility that may characterize‬
‭tropical treelines: that is, high-latitude treelines may be fixed in elevation very clearly by hard‬
‭physiological limits related to freeze tolerance ~\citep{korner2021}.‬‭This focus of treeline‬
‭mobility in the tropical zone, unfortunately, coincides with significant knowledge gaps, given that‬
‭the great majority of detailed studies of treelines and their dynamics ha‬‭s‬‭ve‬‭s‬‭been conducted on‬
‭peaks at higher latitudes ~\citep{shi22,zhao15,korner98,lu21}.‬

‭Our results were suggestive of further effects, related to longitude and perhaps distance to‬
‭coastlines; proximity to ocean has been underlined in past studies as important in determining‬
‭treeline elevations at least ~\citep{hansson23}. That is, although we included a variable‬
‭summarizing geographic distance to coastline, it did not have any significant effect in the best‬
‭models. Rather, in some of the models that ranked among the best, effects of longitude were‬



‭indeed substantial. We suspect that this lack of clear effect of distance to coastlines may be‬
‭related to the relatively minor representation of peaks close to coastlines in our dataset.‬‭Only,‬
‭we believe, further representation of peaks near to and far from coastlines will allow us to‬
‭discern such effects; for this reason, we are in the process of expanding this study to all high‬
‭peaks on Earth.‬

‭\subsection{Limitations}‬
‭The deepest concern regarding the analyses presented herein is, of course, the relatively short‬
‭time span covered by the Landsat imagery‬‭that we analyzed‬‭,‬‭with our analyses‬‭with our‬
‭analyses‬‭spanning just a bit more than three decades.‬‭This time span is, of course, what is‬
‭available from remote-sensing data streams, as Landsat is among the deepest-time‬
‭remote-sensing data sources available anywhere.‬‭Even‬‭our relatively short time span of‬
‭Landsat data, however, does cross the use of multiple sensors to produce the imagery, which‬
‭may introduce noise into the analyses that we present herein ~\citep{vogelmann2016}.‬‭Even our‬
‭relatively short time span of Landsat data, however, does cross the use of multiple sensors to‬
‭produce the imagery, which may introduce noise into the analyses that we present herein‬
‭~\citep{vogelmann2016}.‬‭The only remedy to this concern‬‭about time span is therefore to‬
‭appeal to other data sources, such as aerial or ground-based photos‬
‭~\citep{jimenezgarcia21,peterson22}.‬

‭This study covered an impressive expanse in western North America, from 9.4°N in Costa Rica‬
‭north to 54.1°N in southwestern Canada, and from the shores of the Pacific Ocean to the‬
‭eastern edge of the Rocky Mountains in Colorado. However, this geographic span includes‬
‭relatively fewer high mountain peaks in Mexico and Central America, at least compared with the‬
‭northern peaks in the study; a further possible limitation of our work stems from the broad‬
‭latitudinal gaps in northern Mexico. Finally, our inability to associate specific treelines with‬
‭specific high peaks north of southernmost Canada meant that the highest-latitude peaks could‬
‭not be included in the study. The former concerns can be remedied by broadening the area of‬
‭study and analysis still further, perhaps globally, but the latter concern will remain complicated,‬
‭as very high latitude peaks tend to be mostly above treeline, such that we do not see a way to‬
‭create a peak-based analysis of those regions.‬

‭Finally, a concern could be that of anthropogenic effects that are not related to climate. That is,‬
‭although we eliminated from consideration any peaks that had human activities visible at the‬
‭peak or near treeline (e.g., agricultural activities), we could not control for changing practices of‬
‭fire control, for example. In this sense, if fire control has been implemented or has become more‬
‭effective over the past few decades, that—unrelated to climate—could elevate NDVI owing to‬
‭reduced fire-based removal of vegetation. We hope that the broad variety of peaks included in‬
‭this study will avoid any confounding effects of this concern.‬

‭\subsection{Conclusions and Next Steps}‬
‭The results of this study point rather dramatically to a major knowledge gap regarding‬
‭high-elevation vegetation dynamics. That is, the bias of treeline studies away from tropical‬
‭regions and towards temperate-zone and boreal-zone regions coincides—unfortunately—with‬



‭the most dramatic regions of treeline elevational shifts. As we have pointed out in previous‬
‭contributions ~\citep{jimenezgarcia21}, treelines in the Tropics‬‭and their dynamics‬‭and their‬
‭dynamics‬‭remain little-documented and poorly characterized.‬

‭At the same time, the results of this study and others ~\citep{peterson22,singh12} indicate that‬
‭remote-sensing data streams are both relevant and informative‬‭, and have been incorporated‬
‭into many treeline studies ~\citep{garbarino2023}‬‭,‬‭and have been incorporated into many‬
‭treeline studies ~\citep{garbarino2023}‬‭. Although‬‭the detail available in on-the-ground studies‬
‭cannot be achieved, significant insight can indeed be gained from satellite-based observations‬
‭and data streams‬‭, particularly when multiple data‬‭streams are integrated‬
‭~\citep{garbarino2023}‬‭, particularly when multiple‬‭data streams are integrated‬
‭~\citep{garbarino2023}‬‭. As such, we are in the process‬‭of extending this approach globally‬‭and‬
‭using more-diverse remote sensing data streams‬‭and‬‭using more-diverse remote sensing data‬
‭streams‬‭, in the hope of garnering additional useful‬‭insights into patterns of treeline change‬
‭worldwide, and into processes that drive treeline change phenomena.‬

‭%% The following commands are for the statements about the availability of data sets and/or‬
‭software code corresponding to the manuscript.‬‭¶‬
‭%% It is strongly recommended to make use of these sections in case data sets and/or software‬
‭code have been part of your research the article is based on.‬‭¶‬
‭¶‬
‭\codedataavailability{All data and code are available on a public Github repository found at the‬
‭following URL: https://github.com/jocori/GeographicTreelinePatterns.git} %% use this section‬
‭when having data sets and software code available‬‭¶‬


