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Abstract. The application of ground-based microwave radiometers (MWRs), which provide high-quality and continuous 

vertical atmospheric observations, has traditionally focused on the indirect assimilation of retrieved profiles. This study 

advanced this application by developing a direct assimilation capability for MWR radiance observations within the Weather 15 

Research and Forecasting model data assimilation (WRFDA) system, along with a bias correction scheme based on random 

forest technique. The proposed bias correction scheme effectively reduced the observation-minus-background (O−B) biases 

and standard deviations by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. A series of ten-day-long experiments 

demonstrated that assimilating MWR radiances improves both the initial conditions and the forecasts, with additional benefits 

from higher assimilation frequencies. In the initial conditions, hourly assimilation significantly enhanced low-level 20 

temperature and humidity fields, reducing the root-mean-square-error (RMSE) for temperature and water vapor mixing ratio 

by 6.32 % below 1 km and 1.98 % below 5 km. These improvements extended to forecasts, where 2 m temperature and 

humidity showed sustained benefits for over 12 hours, and precipitation forecasts exhibited notable gains, particularly for 

higher intensity events. The time-averaged Fractions Skill Score (FSS) for 3 h accumulated precipitation within the 24 h 

forecasts increased by 0.04–0.11 (10.2–58.1 %) for thresholds of 6–15 mm 25 

1 Introduction 

Data assimilation (DA), a core component of numerical weather prediction (NWP), plays an important role in improving the 

forecast accuracy by integrating observational data to refine initial conditions (Bauer et al., 2015; Gustafsson et al., 2018) 

Among various types of observations, microwave radiance data are crucial for DA due to their ability to penetrate the 

atmosphere and their sensitivity to temperature, humidity, clouds, and precipitation. Correspondingly, satellite-borne 30 

https://doi.org/10.5194/egusphere-2025-12
Preprint. Discussion started: 23 January 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

microwave radiance observations have been extensively studied and are considered among the most influential contributors to 

data assimilation systems (Geer et al., 2017; Kim et al., 2020; Candy and Migliorini, 2021) 

Unlike satellite-borne radiometers, ground-based microwave radiometers (MWRs) offer unique advantages for DA, including 

high temporal resolution (minute-level) and greater sensitivity to the atmospheric boundary layer (ABL). Over the past two 

decades, the assimilation of MWRs has been increasingly studied, leading to improvements in the accuracy of NWP 35 

(Vandenberghe and Ware, 2002; Otkin, 2010; Hartung et al., 2011; Otkin et al., 2011; Caumont et al., 2016; HE et al., 2020; 

Qi et al., 2021, 2022; Lin et al., 2023). The assimilation of retrieved temperature and humidity profiles from MWRs has shown 

improvements in forecasting fog, storms, and precipitation. However, the reliance on indirect assimilation methods introduces 

uncertainties and complicates error quantification, which limits their overall effectiveness in enhancing forecast accuracy 

(Martinet et al., 2015; Caumont et al., 2016; Lin et al., 2023). 40 

Direct assimilation of MWR radiances, which bypasses the retrieval process, offers significant advantages by avoiding 

retrieval-related errors and improving the effective use of observations. This approach requires accurate observation operators 

and robust bias correction to address differences between radiance observations and model states. The direct assimilation of 

satellite-borne radiance observations is relatively mature (Geer et al., 2008; Bauer et al., 2010; Geer et al., 2010; Eyre et al., 

2020; Sun and Xu, 2021; Eyre et al., 2022) and utilizes fast radiative transfer models (RTMs) as observation-operator, such as 45 

Radiative Transfer for Television and Infrared Observation Satellite (Saunders et al., 2018). However, the unique 

characteristics of upward-looking MWR observations, such as sensitivity to near-surface conditions, require specialized RTMs 

and adaptation of existing techniques. It is noted that studies began to develop fast RTMs suitable for MWR, which provide a 

foundation for constructing observation operators for assimilation of MWR observations (De Angelis et al., 2016; Cimini et 

al., 2019; Shi et al., 2024). The RTTOV-gb, a ground-based version of the RTTOV model, was used to simulate brightness 50 

temperature from MWRs, demonstrating high accuracy (De Angelis et al., 2016, 2017; Cimini et al., 2019). Recent studies 

have demonstrated the potential of direct MWR radiance assimilation using RTTOV-gb to improve temperature, humidity, 

and precipitation forecasts (Cao et al., 2023; Vural et al., 2023). 

Despite these advancements, previous studies have typically relied on limited MWR networks or focused on specific case 

studies. Additionally, research conducted in regions with relatively simple terrain may not fully address the complexities of 55 

areas like the Tibetan Plateau, where the presence of complex topography often leads to significant model biases (Yang et al., 

2020; Wei et al., 2021). These biases make accurate bias correction essential for improving the effectiveness of direct 

assimilation, while traditional bias correction approach developed for satellite-borne microwave radiance observations are not 

directly applicable to ground-based MWRs. 

To address these issues, this study integrates the RTTOV-gb into the Weather Research and Forecasting Data Assimilation 60 

(Barker et al., 2012) system to develop a direct assimilation module for MWR radiances. A nonlinear bias correction scheme 

based on machine learning is also constructed based on three months of observational data. The impact of direct MWR 

assimilation is then investigated through a series of ten-day experiments conducted in Southwest China, a region shaped by 

the influence of the Tibetan Plateau and characterized by complex terrain. The remainder of this paper is organized as follows. 
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Section 2 describes the data, the implementation of RTTOV-gb in WRFDA, and the model configuration. Section 3 evaluates 65 

the performance of the bias correction scheme, followed by Sect. 4 presenting the impacts of MWR assimilation on the initial 

and forecast fields. The conclusions and discussion are presented in Sect. 5. 

2 Methodology 

2.1 Data 

Two types of MWR sensors were assimilated in this study, as shown in Fig. 1: MP3000A and Humidity And Temperature 70 

Profiler (HATPRO). Atmospheric radiance is measured as brightness temperatures in 14 channels for HATPRO and 22 

channels for MP3000A (Table 1). For HATPRO, channels 1–7 are in the K band, while channels 8–14 are in the V band. 

Similarly, for MP3000A, channels 1–8 are in the K band, and channels 9–22 are in the V band. The K band channels correspond 

to humidity-sensitive water vapor absorption lines, whereas the V band channels correspond to temperature-sensitive oxygen 

absorption lines. 75 

The Fengyun-4B (FY-4B) Advanced Geosynchronous Radiation Imager (AGRI) cloud mask (CLM) is used to identify MWR-

observed brightness temperatures under clear-sky conditions. The AGRI-based CLM product has a temporal resolution of 15 

minutes and a horizontal resolution of 4 km, categorizing conditions as confidently cloudy, probably cloudy, probably clear, 

or confidently clear, with corresponding values of 0, 1, 2, and 3, respectively (Min et al., 2017). Due to its high quality, this 

cloud mask product is widely applied in satellite data assimilation (Yin et al., 2020, 2021; Xu et al., 2023; Shen et al., 2024). 80 

The National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis data (FNL) (0.25° × 0.25°, 6-

hourly) were used to establish the initial and boundary conditions for regional NWP. Conventional observations from the 

Global Telecommunications System (GTS) were assimilated and evaluated, including land surface, marine surface, radiosonde, 

and aircraft reports. The hourly precipitation analysis product from the China Meteorological Administration Multisource 

Precipitation Analysis System (Shen et al., 2014) was used for evaluation. This dataset has been widely used in precipitation 85 

studies (Xia et al., 2019; Su et al., 2020; Sun and Xu, 2021; Wang et al., 2021; Li et al., 2023; Zheng et al., 2024) 

Table 1. Central frequency for MWRs 

Sensor Frequencies for K band (GHz) Frequencies for V band (GHz) 

HATPRO 
22.240;23.040;23.840;25.440; 

26.240;27.840;31.400 

51.260;52.280;53.860;54.940; 

56.660;57.300;58.000 

MP3000A 
22.234;22.500;23.034;23.834; 

25.000;26.234;28.000;30.000 

51.248;51.760;52.280;52.804; 

53.336;53.848;54.400;54.940; 

55.500;56.020;56.660;57.288; 

57.964;58.800 
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2.2 Assimilation system and observation operator 

The WRFDA system, developed by the National Center for Atmospheric Research (NCAR), is designed for data assimilation 90 

and includes three-dimensional variational (3DVAR), four-dimensional variational (4DVAR), and hybrid data assimilation 

algorithms. In this study, version 4.5 of the WRFDA system with 3DVAR is used for the direct assimilation of MWRs. The 

3DVAR algorithm produces the analysis by minimizing a scalar objective cost function:  

𝐽(𝒙) =
1

2
(𝒙 − 𝒙b)

𝑇𝐁−1(𝒙 − 𝒙b) +
1

2
(𝒚 − 𝐇(𝒙))T𝐑−1(𝒚 − 𝐇(𝒙)) ,      (1) 

where 𝒙 and 𝒙b represents the analysis and background fields of the model variables, 𝐲 is the vector of the observations, and 95 

𝐁 and 𝐑 represent the background and observation error covariance matrices, respectively. The covariance matrix determines 

the weight assigned to the background and observations in the analysis, dictates how localized observation information is 

distributed vertically and horizontally in the model space, and maintains the balance among the model's control variables. 𝐇 

is the non-linear observation operator, that transforms model variables to the observed quantities. The observation operator 

works slightly differently for different types of observations. For conventional observations (e.g., temperature), the primary 100 

role of the observation operator is to perform spatiotemporal interpolation of model grid values to the observation space. For 

unconventional observations (e.g., reflectivity and radiance), where the model state cannot be directly compared with 

observations, the observation operator must also convert model variables into observed variables. 

RTMs serve as observation operators for assimilating radiance data by mapping model variables (e.g., temperature and water 

vapor) into radiance space. RTTOV, a fast RTM, is widely used for assimilating satellite radiance data, which involves 105 

downward-looking observations. However, MWR radiances are upward-looking microwave observations, which differ from 

the downward-looking observation of satellites. This difference in direction makes RTTOV difficult to apply in MWR 

radiances assimilation. Fortunately, RTTOV-gb can simulate brightness temperatures from MWRs, and serves as the 

observation operator in this study. The weighting function (WF) quantifies the contribution of emissions from each 

atmospheric layer, and the maximum WF height indicates which atmospheric layer contributes most to the measured radiance 110 

(Carrier et al., 2008). The vertical distribution of WFs for HATPRO and MP3000A, calculated using RTTOV-gb, is shown in 

Fig. 2. The WFs reach their maximum at 1000 hPa and decrease monotonically with height. These results confirm that the 

lower atmosphere contributes most to the observed radiation across all channels, consistent with the findings of Shu et al. 

(2012).  

It should be noted that RTTOV-gb is not included in the publicly available version of WRFDA. To address this limitation, an 115 

MWR direct assimilation module was developed, modeled after the satellite direct assimilation module, allowing RTTOV and 

RTTOV-gb to coexist within WRFDA. Results from the single-observation assimilation experiment confirm that the MWR 

direct assimilation module functions correctly. The temperature and water vapor increments are horizontally isotropic and 

show a maximum at lower atmospheric levels vertically (Fig. 2). 
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2.3 Model configuration and experimental design 120 

In this study, version 4.5 of the Weather Research and Forecasting (WRF) model (Skamarock et al., 2021) is used to simulate 

atmospheric evolution. The simulation employs a single domain (Fig. 1) with a horizontal resolution of 3 km, comprising 

1,261 × 811 grid points and 51 vertical levels, with the top boundary at 10 hPa. The model physics configuration includes the 

Morrison two-moment microphysics scheme (Morrison et al., 2009), the Yonsei University PBL scheme (Hong et al., 2006), 

the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) shortwave and longwave radiation schemes 125 

(Iacono et al., 2008), and the unified Noah land-surface model (Chen and Dudhia, 2001). Cumulus parameterization was 

excluded due to the convection-permitting horizontal resolution of 3 km (Li et al., 2023; Moker et al., 2018). 

Based on the model configuration described above, four parallel experiments were conducted to investigate the impact of 

MWR assimilation (Table 2). Each experiment started at 12:00 UTC daily, incorporating 12 hours of data assimilation followed 

by a 24 h forecast. The primary differences among these experiments lie in the assimilated data and assimilation intervals. The 130 

CNTL experiment assimilated GTS data with a 6 h interval, while the MWR_6H experiment added MWR assimilation to the 

CNTL setup, enabling an evaluation of MWR assimilation's impact. The other two experiments, MWR_3H and MWR_1H, 

assimilated both GTS and MWR data with 3 h and 1 h intervals, respectively, to assess the effects of observation frequency in 

MWR assimilation. All experiments were conducted over a ten-day period from 13 October 2023 to 22 October 2023. 

 135 

Figure 1: Computation domain(shaded). The shaded denotes topography (units: m). The green rectangle denotes the target region 

of Southwest China. The blue empty circle denotes radiosonde. The 'x' and '+' symbols denote HATPRO and MP3000A, respectively. 
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Figure 2: Weighting functions of (a) HATPRO and (b) MP3000A calculated by the RTTOV-gb. The (c, d) horizontal and (e, f) 

vertical analysis increments for (c, e) temperature and (d, f) water vapor mixing ratio in single-observation assimilation experiment. 140 
The main figures show vertical cross-sections of the increments along the green line shown in the inset figures. The inset figures 

show the horizontal increments at the model level with the maximum increment. 

 

Table 2 Experimental design 

Experiment Assimilated Data Assimilation Interval 

CNTL GTS 6-hour 

MWR_6H GTS and MWR 6-hour 

MWR_3H GTS and MWR 3-hour 

MWR_1H GTS and MWR 1-hour 

3 Machine learning based bias correction for MWR 145 

3.1 Bias characteristics 

Variational assimilation assumes that both observation and background errors follow an unbiased Gaussian distribution. 

However, due to instrument errors, limitations of the RTMs, and errors in the NWP model background, observed radiances (O) 

and simulated radiances (B) inherently contain errors (denoted as 𝜇𝑜 and 𝜇𝑏), which may exhibit a biased distribution. Bias 

correction is a crucial process in radiance data assimilation, aiming to identify and remove these biases (Auligné et al., 2007; 150 

Dee, 2005). In the real atmosphere, O and B are regarded as the true value (T) plus their respective deviations μ, as shown in 

Eq. (2): 
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O − B̅̅ ̅̅ ̅̅ ̅̅ = (O − T) − (B − T)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = μ𝑜 − μ𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ,         (2) 

It shows the statistical expectation value of O−B can represent the systematic deviation (μ𝑜 − μ𝑏) Therefore, it is critical to 

evaluate the bias characteristics of O−B and correct them. 155 

To estimate the bias and develop a bias correction scheme for MWR direct assimilation, a three-month experiment was 

conducted to obtain a large number of samples. In this experiment, the WRF model was initialized every 6 hours using NCEP 

FNL data, and WRFDA operated hourly in monitoring mode (only calculate O−B). After a cloud check using AGRI-based 

CLM and gross check (O−B < 20 K), the bias of O−B for HATPRO and MP3000A was estimated. 

Figure 3 shows the scatter of observed and simulated brightness temperatures for K band (water-vapor absorption lines) and 160 

V band (temperature-sensitive oxygen absorption lines). For HATPRO, more than 6,000 samples are analyzed. The O−B biases 

are 1.25 K for the K band (channel 1) and 2.14 K for the V band (channel 13), with standard deviations (STD) of 3.35 K and 

2.82 K, respectively. Additionally, the scatter distribution of the V band is not centered, showing a band shifted to the right of 

the diagonal (Fig. 3b). For MP3000A, more than 2,000 samples are analyzed, with O−B biases of 3.06 K for the K band 

(channel 1) and −0.54 K for the V band (channel 14). The O−B STD are 3.94 K and 3.08 K, respectively. Similar to the 165 

HATPRO V band results, the scatter for the MP3000A V band also shows bands offset from the diagonal, but to the left (Fig. 

3d). Based on the above results, the O−B STD of K band is larger than that of V band. Moreover, significant O−B biases are 

detected in MWR observations, with their characteristics varying across different sensors and channels. However, the 

correlation coefficients between observed and simulated brightness temperatures are high, at least 0.95, suggesting that these 

biases can be effectively corrected. 170 
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Figure 3: Scatter plot of observed brightness temperature (Tb) versus simulated Tb. The top and bottom rows correspond to the 

HATPRO and MP3000A sensors, and the left and right columns represent the K band and V band, respectively. Each panel displays 

the number of samples (num), the O−B mean (bias), O−B standard deviation (STD), and the correlation coefficient (r) between 

observed and simulated Tb. 175 

To further analyze the O−B bias characteristics at each station and investigate the reasons for the band shifting from the 

diagonal (Fig. 3b and d), the statistics for each station are presented in Fig. 4. For HATPRO, the O−B bias varies among 

stations. Stations near complex topography (e.g., 56312, 56137, 56029, and 55664) exhibit notable positive O−B biases in 

channels 8 to 13 (Fig. 4a), leading to a rightward shift of the band relative to the diagonal (Fig. 3b). These positive biases may 

result from biases in the background field over the topographic region, the limited applicability of RTTOV-gb coefficients, or 180 

calibration issues in the observations. Consistent with results for all stations, each station shows that the O−B STD for the K 

band is larger than that for the V band (Fig. 4b). Regarding the correlation coefficients between observed and simulated 

brightness temperatures, the overall values are high but slightly lower for channels 4 to 9. For MP3000A, station 57461 exhibits 

a negative O−B bias in channels 9 to 14 (Fig. 4d), contributing to the band shifting to the left of the diagonal (Fig. 3d). Similar 

to the results for HATPRO, the O−B STD in the K band is generally larger than that in the V band (Fig. 4e), and the correlation 185 

coefficients are also overall higher, typically exceeding 0.9 (Fig. 4f). 
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Figure 4: Statistics for each station. O−B (a) bias and (b) standard deviations (STD) for HATPRO; (c) correlation coefficient (r) 

between observed and simulated brightness temperatures for HATPRO; (d–f) same as (a–c) but for MP3000A. 

3.2 Bias correction 190 

Based on the results above, noticeable O−B biases were observed, varying across sensors, channels, and the geographical 

locations of stations. It is essential to remove these biases before assimilation. Static bias correction (Harris and Kelly, 2001) 

and variational bias correction (Dee, 2005) are commonly used in radiance data assimilation. These methods typically assume 

a linear correlation between the biases and some selected predictors. However, nonlinear sources of bias are common, and 

Zhang et al. (2023) demonstrated that the nonlinear scheme outperforms the linear scheme in reducing systematic biases. 195 

Following Zhang et al. (2023), this study developed a machine learning-based bias correction scheme, using the Random 

Forest (RF) technique (Breiman, 2001). 

Following Yin et al. (2020), the predictors include 1,000–300hPa thickness, 200–50hPa thickness, model surface skin 

temperature (TS) and total precipitable water (PW). Considering that MWR are sensitive to the low-level atmosphere, the 

predictors also include 1,000–700hPa thickness, 700–500hPa thickness, 500–300hPa thickness, 2m temperature (T2), 2m 200 

water vapor mixing ratio (Q2), 10m zonal wind (U10), 10m meridional wind (V10), and surface pressure (PS). Finally, latitude, 

longitude, and observed brightness temperatures (Tb) are added as predictors due to their possible importance (Zhang et al., 
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2023). The O−B biases vary across sensors and channels. Therefore, a separate model is trained for each type of instrument 

and channel. Biases also vary across the geographical locations of stations, potentially influenced by the large-scale topography 

of the Tibetan Plateau. As predictors, 2 m temperature, surface pressure, and latitude and longitude are important for explaining 205 

these biases. 

There are two types of parameters in machine learning models: model parameters and hyperparameters. Model parameters are 

initialized and updated during the learning process. Hyperparameters, on the other hand, cannot be directly estimated from the 

data. They must be configured before training because they define the model's architecture. Building an optimal machine 

learning model requires exploring a range of possibilities. The process of determining the ideal model architecture and 210 

hyperparameter configuration is known as hyperparameter tuning. This hyperparameter tuning is a key component of 

developing an effective machine learning model (Yang and Shami, 2020).  

The RF model has four key hyperparameters: the number of trees in the forest (n_estimators), the maximum depth of the tree 

(max_depth), the minimum number of samples required to split an internal node (min_samples_split), and the minimum 

number of samples required to be at a leaf node (min_samples_leaf). These hyperparameters were tuned using GridSearchCV 215 

with 5-fold cross-validation (CV), which exhaustively searches over a predefined range of hyperparameters, training and 

evaluating the model for each configuration. The flowchart illustrating the training and evaluation process of the bias correction 

(BC) model is shown in Fig. 5b. The three-month dataset was split into a training set (70 %) and a test set (30 %). During 

training, GridSearchCV constructed a large grid of possible hyperparameter configurations, iteratively trained and evaluated 

the model for each, and calculated a score. Finally, the optimized model was trained using the configuration with the highest 220 

score. 

 

Figure 5: Flowchart of the training and evaluation for bias correction model 
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To investigate the impact of hyperparameters on model training time and performance, the fit time and score of the RF model 

under various hyperparameter settings were analyzed (figure not shown). Overall, the fit time and score demonstrated a positive 225 

correlation. As the min_samples_leaf and min_samples_split parameters increased, both fit time and score decreased 

monotonically. Conversely, increasing the max_depth and n_estimators parameters resulted in a monotonic increase in both 

fit time and score. Notably, max_depth had the most significant impact on the score, while n_estimators primarily affected the 

fit time. For n_estimators, the score increased logarithmically, while the fit time grew linearly. These findings suggest that 

selecting a moderately small value for the n_estimators parameter can achieve better results while reducing computational 230 

time. 

Using above bias correction model, the corrected O−B is obtained by subtracting the predicted O−B from the original O−B. 

The effectiveness of the BC model was assessed using the test set. The probability density function (PDF) of O−B for HATPRO 

was analyzed (figure not shown). Without BC, the O−B exhibits biases; for example, the PDF peak of channel 7 is located on 

the negative semi-axis, while the PDF peak of channel 13 is on the positive semi-axis. Furthermore, some individual channels, 235 

such as channel 10, display bimodal distributions. After bias correction, the PDF distributions approximate Gaussian 

distributions with a mean value of 0, indicating that the bias has been corrected. Figure 6 illustrates the bias and STD of the 

O−B for each HATPRO channel. Before BC, the bias of O−B for HATPRO ranged from 0 to 2 K, with the bias in the K band 

(particularly channels 4 to 7) being smaller than that in the V band. After bias correction, the bias for each channel is 

approximately 0 K. In terms of the O−B STD, the values for HATPRO ranged from 2 to 4 K without BC, with channels 4 to 240 

7 exhibiting smaller values compared to other channels. After BC, the STD of O−B oscillates between 0.5 and 1.5 K. The 

application of this BC model significantly reduced both the bias and STD of O−B, with reductions of 0.83 K (97.1 %) and 

1.63 K (64.6 %), respectively. Meanwhile, the corrected O−B distributions display Gaussian characteristics centered around 

zero, indicating the effective removal of systematic biases. 

Diagnosing the contributions of each predictor is crucial. Figure 6c illustrates the feature importance of several predictors for 245 

HATPRO. The model normalized the feature importance scores so that their sum equals 1. A higher score reflects a stronger 

correlation between predictors and O−B biases. Observed brightness temperature, total precipitable water, and surface pressure 

are significant contributors to BC for the K band (water vapor channel). For the V band (temperature channel), observed 

brightness temperature, latitude, and surface pressure are the most influential predictors. The contributions of atmospheric 

thickness predictors are smaller compared to the other predictors; however, the 1,000–700 hPa thickness predictor has a 250 

relatively larger contribution among them. This may be because MWR primarily observes radiation from the lower atmosphere. 

Notably, surface pressure plays a critical role in BC for the temperature channels, which may account for the positive bias in 

O−B observed at plateau stations (Fig. 4a). 
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Figure 6: (a) Bias and (b) standard deviation (STD) of O−B. (c) Feature importance of the predictors used in the bias correction (BC) 255 
model. The shaded regions and solid lines represent the range and mean feature importance for the K band and V band, respectively. 

4 Direct assimilation of MWR radiance observations 

4.1 Assimilation impacts on initial condition 

The performance of MWR assimilation in the observation space was evaluated. Figure 7 summarizes the bias and STD of the 

O−B and observation minus analysis (O−A) statistics, aggregated over time and across different channels. The bias of O−A 260 

was reduced compared to O−B, particularly in the V band. Specifically, for channel 11 of MWR_1H (1 h assimilation interval), 

O−B was −0.40 K and O−A was −0.13 K. When MWR observations were assimilated, the simulated brightness temperatures 

became closer to the observations, resulting in smaller STD. Moreover, as the frequency of MWR observation assimilation 

increases, the bias and STD of the O−B gradually converge closer to zero. For channel 3, the O−B STD in MWR_6H, 

MWR_3H, and MWR_1H significantly decreased from 1.03 K, 0.92 K, and 0.56 K to O−A STD values of 0.36 K, 0.34 K, 265 

and 0.34 K, respectively. Although the differences in O−A are less noticeable, the improvement of O−B suggests that 

increasing the frequency in cycling assimilation accumulates the impact of the MWRs, producing a higher-quality first-guess 

field for the final cycle. The assimilation of MWR observations effectively influences the brightness temperatures, 

demonstrating the successful processing of MWR data by the 3DVAR system.  
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 270 

Figure 7: Verification of the initial condition against MWR observations in the target region of Southwest China (blue box in Fig. 

1). (a) Bias and (b) standard deviation (STD) of the observation minus background (O−B) and observation minus analysis (O−A) 

for the MWR assimilation in the target region of Southwest China (blue box in Fig. 1). 

The above evaluation demonstrates the successful implementation of the newly introduced MWR radiance direct assimilation 

in WRFDA. However, compared to brightness temperature simulations, greater attention should be given to the model state 275 

variables in the initial field, as they directly influence subsequent model forecasts. To this end, radiosonde observations in the 

target region of Southwest China were used to evaluate the impact of MWR assimilation. The root-mean-square error (RMSE) 

was calculated, and the RMSE differences between CNTL and other assimilation experiments are shown in Fig. 8.  

Results indicate that assimilating MWR radiances enhances low-level temperature and humidity fields, with higher 

assimilation frequencies offering the potential for additional improvements. MWR assimilation has a neutral impact on 280 

atmospheric temperature above 1 km AGL, where the RMSE difference is minimal. However, it positively impacts lower 

atmospheric temperature, with the RMSE for temperature decreasing below 1 km AGL. Specifically, the average RMSE 

improvements below 1 km are 3.67 %, 5.28 %, and 6.32 % for MWR_6H, MWR_3H, and MWR_1H, respectively. This 

indicates that increasing assimilation frequency enhances observational impacts and further improves the initial field. The 

phenomenon becomes more pronounced with decreasing altitude, with 100 m RMSE improvements of 0.10 K (6.25 %), 0.13 285 

K (7.90 %), and 0.19 K (11.34 %) in MWR_6H, MWR_3H, and MWR_1H, respectively. For the water vapor mixing ratio 

(QVAPOR), MWR assimilation demonstrates a positive impact that extends into the middle atmosphere, with average RMSE 

improvements below 5 km of 2.30 %, 2.20 %, and 1.98 % for MWR_6H, MWR_3H, and MWR_1H, respectively. The impact 
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of MWR assimilation and the effect of assimilation frequency become more pronounced in the lower atmosphere, with average 

RMSE improvements below 300 m of 3.01 % for MWR_1H, compared to 2.43 % for MWR_6H and 2.05 % for MWR_3H.  290 

It is noted that the MWR assimilation shows limited improvement for the wind field. The RMSE for Zonal and Meridional 

winds exhibited a neutral impact when MWR was assimilated, with meridional winds even showing an increase in RMSE. 

The modest improvement in the wind field by MWR assimilation may be due to two factors: (1) When assimilating observed 

brightness temperature, the adjoint model of the observation operator directly adjusts temperature and humidity to optimize 

the simulation, while changes in the wind field are indirectly driven by these adjustments through the background error 295 

covariance. (2) MWR assimilation primarily improves the lower atmosphere, while changes in the upper atmosphere are also 

governed by the background error covariance. The static background error covariance used here is climatological and isotropic, 

which does not fully align with evolving weather conditions, potentially resulting in ineffective wind field improvements. 

 

Figure 8: Verification of the initial condition against radiosonde observations in the target region of Southwest China (blue box in 300 
Fig. 1). Root mean square error (RMSE) for (a) temperature, (b) water vapor mixing ratio (QVAPOR), (c) zonal wind, and (d) 

meridional wind. 

Based on the evaluation against radiosonde observations, the assimilation of MWR data improves the initial fields of 

temperature and humidity, aligning them more closely with observations, particularly in the lower atmosphere. Additionally, 

the initial fields are validated against station observations, including measurements of 2m temperature, 2m humidity, and 10m 305 

wind (Fig. 9). 

The RMSE differences indicate that MWR assimilation effectively enhances the 2m temperature and humidity fields. Under 

6-hourly MWR assimilation, the temperature RMSE generally increased on the southern side of the basin, whereas other 

regions showed a positive effect with reduced RMSE values. Moreover, the temperature RMSE reduction in these positively 

affected areas further improved as the assimilation frequency increased, with overall differences ranging from −0.008 K 310 
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(−0.3 %) to −0.099 K (−4.1 %). For humidity, MWR assimilation shows a negative impact on relative humidity (RH) at a 6 h 

assimilation frequency. However, the RMSE over the plateau decreases as the assimilation frequency increases, with the 

RMSE difference shifting from positive to negative. In the MWR_1H experiment, the RH RMSE is reduced by 0.276 (1.3 %).  

Unlike the temperature and humidity RMSEs, the improvement in the wind field RMSE does not exhibit a distinct spatial 

pattern. Compared to the CNTL experiment, the RMSE differences for zonal wind are −0.005 m s−1 (−0.3 %), −0.017 m s−1 315 

(−1.0 %), and −0.019 m s−1 (−1.2 %) in MWR_6H, MWR_3H, and MWR_1H, respectively. Similarly, the RMSE differences 

for meridional wind are −0.008 m s−1 (−0.5 %), −0.011 m s−1 (−0.7 %), and −0.009 m s−1 (−0.5 %) in MWR_6H, MWR_3H, 

and MWR_1H, respectively. While the changes in wind RMSE are relatively small, the results indicate that assimilating MWR 

data improves the initial field, with higher assimilation frequencies offering potential for further enhancement. 
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 320 

Figure 9: Verification of the initial condition against station observations in the target region of Southwest China (blue box in Fig. 

1). The percentage in RMSE differences (scatter) for temperature (T), relative humidity (RH), zonal wind (U), and meridional wind 

(V). The grey solid line is the topography height (m). 

4.2 Assimilation impacts on forecast field 

After presenting the improvements in the initial condition, this section investigate the impact of MWR assimilation on the 24 325 

h forecasts. The time series of RMSE differences (assimilation experiments minus the CNTL experiment) against station 

observations for 2 m temperature, 2 m relative humidity, and 10 m wind fields are shown in Fig. 10. For temperature, the 

negative RMSE difference gradually increases, approaching zero at a lead time of 6 hours, with higher assimilation frequency 

(MWR_1H) achieving a greater RMSE reduction. Similar results are observed for relative humidity, where the RMSE 

difference also increases and approaches zero at a lead time of 12 hours. MWR_1H consistently demonstrates the largest 330 
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RMSE reduction for relative humidity. For the wind field, no increase in the RMSE difference with lead time was observed, 

as previously described. However, the RMSE differences between the assimilation experiments and the CNTL experiment 

remain overall negative, indicating that MWR assimilation improves wind forecasts. Additionally, MWR_1H demonstrates 

the largest RMSE reduction in meridional wind, suggesting that increasing the frequency of MWR assimilation may lead to 

further improvements. The quantitative statistics are presented in Table 3. The temperature RMSE differences between 335 

MWR_6H and CNTL are −0.012, −0.005, and −0.004 K for lead time of 1–6 hours, 1–12 hours, and 1–24 hours, respectively. 

This gradual decrease in RMSE difference with increasing forecast time is also observed in other experiments and variables, 

indicating a weakening of the positive impact of MWR assimilation as the forecast period extends, likely due to a gradual 

increase in model error. When the impact of MWR assimilation is most pronounced (at a lead time of 1–6 hours), the 

temperature RMSE differences range from −0.012 K in MWR_6H to −0.019 K in MWR_3H, and −0.030 K in MWR_1H. The 340 

temperature RMSE reduction increases with the frequency of MWR assimilation, a trend also observed in relative humidity 

and wind, suggesting that increasing the assimilation frequency can further improve forecasts. Although these differences are 

small, the results reflect the potential for improved model forecasts with MWR assimilation. 

 

Figure 10: Verification of the forecast against station observations. RMSE differences for (a) temperature, (b) relative humidity, 345 
(c)zonal wind, and (d) meridional wind between the assimilation experiments and the CNTL experiment. 

 

 

 

 350 
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Table 3 RMSE difference against station observations. 

EXP Lead 

time 

(hour) 

Temperature 

(K) 

Relative  

Humidity 

 (%) 

Zonal 

wind 

(m s−1) 

Meridional  

wind 

(m s−1) 

MWR_6H 

minus 

CNTL 

1–6 −0.012 −0.011 −0.006 −0.005 

1–12 −0.005 −0.027 −0.003 −0.006 

1–24 −0.004 0.046 −0.003 −0.003 

MWR_3H 

minus 

CNTL 

1–6 −0.019 −0.042 −0.007 −0.006 

1–12 −0.010 −0.036 −0.006 −0.007 

1–24 −0.003 0.072 −0.005 −0.003 

MWR_1H 

minus 

CNTL 

1–6 −0.030 −0.153 −0.008 −0.013 

1–12 −0.012 −0.087 −0.006 −0.013 

1–24 −0.005 0.065 −0.006 −0.009 

 

Verification against station observations indicate that assimilating MWR radiances improves near-surface forecasts, with 

higher assimilation frequencies offering potential for further enhancement. To further examine the impact of MWR 355 

assimilation, Fig. 11 presents the forecast verification against radiosonde measurements. Unlike the RMSE differences for the 

initial condition (Fig. 8), the MWR assimilation did not reduce the RMSE for lower atmospheric temperature and water vapor 

mixing ratio, indicating a neutral impact of MWR assimilation on forecasts. Similarly, the wind field verification results did 

not show significant improvements with MWR assimilation. While the RMSE of zonal wind was reduced in the MWR_1H 

experiment, the RMSE differences for the wind field in other experiments were close to or greater than zero, suggesting a 360 

neutral to slightly negative impact of MWR assimilation on wind forecasting. According to the verifications against radiosonde 

data, limited improvements are found in the forecasts through MWR assimilation. This may be attributed to increased model 

error with longer lead time, reducing the effectiveness of initial condition improvements from MWR assimilation. It should be 

noted that 12 h and 24 h forecast fields were verified against radiosonde data. Moreover, verification against station 

observations indicates that temperature improvements were primarily concentrated within the first 6 hours, while humidity 365 

improvements extended to the first 12 hours. 
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Figure 11: Same as Fig. 8, but for forecast at lead time of 12 and 24 hours. 

 

To further explore the role of MWR assimilation in precipitation forecasting, the fractions skill score (FSS) of 3 h accumulated 370 

precipitation forecasts was calculated. The radius of influence for the FSS was set to 18 km, equivalent to six times the grid 

spacing (Ha and Snyder, 2014; Zheng et al., 2024). Figure 12 presents the time series of FSS differences between the 

assimilation experiments and the CNTL experiment. The results indicate that assimilating MWR radiances improves 

precipitation forecasting, with FSS differences increasing progressively with higher precipitation intensities. Additionally, 

increasing assimilation frequencies shows the potential to further enhance forecast performance. When assimilating MWR 375 

data at a 1 h frequency, the time-averaged FSS improvements for 3 h accumulated precipitation are 0.04 (10.2 %) for the 6 mm 

threshold, 0.08 (23.5 %) for 9 mm threshold, 0.11 (40.8 %) for 12 mm threshold, and 0.11 (58.1 %) for 15 mm threshold 

precipitation. For 3 h accumulated precipitation with a threshold of 15 mm, the time-averaged FSS improvements are 0.03, 

0.06, and 0.11 for MWR_6H, MWR_3H, and MWR_1H, respectively. These findings are consistent with the above 

verification against radiosonde and station observations, suggesting that MWR assimilation can improve forecasts and that 380 

higher-frequency assimilation leads to further enhancements. 
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Figure 12: The time series of fractions skill score (FSS) differences (assimilation experiments minus the CNTL experiment). The 

FSS was calculated for 3 h accumulated precipitation for thresholds of (a) 6 mm, (b) 9 mm, (c) 12 mm, and (d) 15 mm. 

5 Conclusions and Discussion 385 

To investigate the impact of directly assimilating MWRs in Southwest China, MWR assimilation module is built in WRFDA-

4.5, where RTTOV-gb is used as observation operator. Based on this module, three-month O−B statistic sample was calculated 

to evaluate the bias for O−B and develop a BC model. Furthermore, 10-days assimilation experiments (Table 2) using this 

MWR assimilation module and BC model are conducted to investigate the impact of the direct assimilation MWR and the 

effects of assimilation frequency. The main findings are as follows: 390 

1.Based on three months of hourly samples, noticeable O−B biases were observed, varying across sensors, channels, and 

geographical locations. The machine learning-based bias correction scheme, employing a RF model, effectively reduced these 

systematic biases. After applying this BC model, both the bias and STD of the O−B were substantially reduced. Specifically, 

the bias and STD decreased by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. The corrected O−B distributions exhibited 

Gaussian characteristics centered around zero, indicating the successful mitigation of systematic biases.  395 

2.Assimilating MWR enhances the accuracy of initial atmospheric conditions, with higher assimilation frequencies amplifying 

the positive impact, particularly for temperature and humidity in the lower atmosphere. Evaluation against radiosonde 

observations shows that the temperature RMSE below 1 km AGL decreases by 3.67 % to 6.32 %, with improvements below 

100 m AGL ranging from 6.25 % to 11.34 % for 6 h, 3 h, and 1 h assimilation frequencies, respectively. For the water vapor 

mixing ratio, positive impacts extend up to 5 km AGL, with average RMSE improvements ranging from 1.98 % to 2.30 %. 400 
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Verification against station observations further supports these findings, indicating that the RMSE for 2 m temperature 

decreases by up to 4.1 %, while the RMSE for 2 m relative humidity decreases by up to 1.3 % at the 1 h assimilation frequency. 

3. The assimilation of MWR observations leads to improvements in forecasts, and increasing assimilation frequencies has 

potential to get further improvement. In the first 6 hours of the forecast, the temperature RMSE decrease by 0.012 K, 0.019 K, 

and 0.030 K with 6 h, 3 h and 1 h MWR assimilation frequency, respectively. Similar trends are observed for relative humidity, 405 

the experiment with 1 h MWR assimilation frequency showing the largest decrease in RMSE. MWR assimilation also improves 

precipitation forecasts, with further enhancements seen as assimilation frequency increases. For 1 h MWR assimilation, time-

averaged FSS improvements reach 0.04 for the 6 mm threshold, 0.08 for 9 mm, and 0.11 for both 12 mm and 15 mm thresholds. 

In the three-month O−B statistics, the STD in the K band is larger than that in the V band, consistent with the findings of 

(Vural et al., 2023) and (Cao et al., 2023). This phenomenon may be attributed to the K-band's sensitivity to water vapor and 410 

the V-band's sensitivity to temperature, with model temperature accuracy being better than that of water vapor. The O−B bias 

varies across sensors, channels, and geographical locations, with a notable positive bias observed at high-altitude stations. This 

positive bias is potentially caused by large-scale topographical effects on the Tibetan Plateau, where model simulations may 

introduce errors, and RTTOV-gb coefficients may be inapplicable. The RTTOV-gb coefficient files are trained on global 

profiles and are not tailored to the plateau region; consequently, their vertical coordinates extend up to 1050 hPa, while surface 415 

pressure in the plateau region typically exceeds 700 hPa. 

A machine learning-based bias correction scheme using the RF technique was developed, demonstrating strong performance. 

The number of trees is a critical hyperparameter that must be predetermined. Training time increases linearly with the number 

of trees, while performance gradually plateaus. Thus, a modest number of trees, such as 50, can balance efficiency and accuracy. 

Feature importance analysis for BC predictors revealed observed brightness temperature, atmospheric precipitable water, and 420 

surface pressure as key factors for correcting biases. The importance of brightness temperatures aligns with findings in satellite 

data bias correction(Liu et al., 2022; Zhang et al., 2023). Atmospheric precipitable water is essential for the K band, a humidity-

sensitive channel. Surface pressure plays a key role in temperature channels, thereby accounting for the positive bias observed 

in plateau regions. Although atmospheric thickness predictors contributed less overall, the 1,000–700 hPa thickness was 

relatively significant, likely due to MWRs primarily sensing radiation from the lower atmosphere. 425 

In this study, direct assimilating MWR radiance enhances both the initial conditions and the forecasts, show a great potential 

in improving ABL and precipitation simulations. However, as a preliminary attempt, it is admitted that the study has some 

limitations. Firstly, only static background-error covariances were used in this study. The background error covariance matrix 

plays an important role in variational data assimilation, and this type covariances are climatological, spatially homogeneous, 

and isotropic. This may limit the impact of MWR assimilation, and flow-dependent error covariances should be implemented 430 

in the future work. Second, only clear-sky MWRs were assimilated in this study. Since precipitation processes are often 

accompanied by extensive cloud cover, few clear-sky MWRs were available. To better explore the potential of MWR 

assimilation, experiments focused on periods with abundant clear-sky MWRs, which coincided with minimal heavy 

precipitation. Studies on satellite all-sky assimilation show that including cloud- and precipitation-affected data improves 
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forecasts(Ma et al., 2022; Xian et al., 2019), highlighting the need for future research on all-sky assimilation of MWRs. It is 435 

noted that satellite-based microwave radiometers are primarily sensitive to the middle and upper atmosphere, while ground-

based MWRs provide valuable observations of the lower atmosphere (Shi et al., 2023).Building on this study, future research 

could explore the joint direct assimilation of satellite-based and ground-based microwave radiometers. By leveraging their 

complementary observational capabilities, this approach has the potential to further enhance the accuracy of atmospheric 

analysis and improve forecasting across multiple layers of the atmosphere. 440 
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The original RTTOV-gb v1.0 can be obtained via the request form on the NWPSAF website (https://nwp-

saf.eumetsat.int/site/software/rttov-gb/). The WRF v4.5 and WRFDA v4.5 are open-source models and can be downloaded 

from https://github.com/wrf-model/WRF. Due to the ongoing operational testing of this technology and the licensing 

restrictions of RTTOV-gb, the developed versions of RTTOV-gb and WRFDA can be requested by contacting the 445 

corresponding author (sunwei@cma.gov.cn) or Qing Zheng (zq551379@outlook.com). Additionally, the code for training the 

machine learning-based MWR bias correction model is available on Zenodo (https://doi.org/10.5281/zenodo.14586317; 

Zheng et al., 2025a) 
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https://rda.ucar.edu/datasets/d083003/. The assimilated GTS data are available at https://rda.ucar.edu/datasets/d337000/. The 

model outputs for the single-observation assimilation experiment and the three-month sample data for the “Machine learning 
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