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Abstract. The application of ground-based microwave radiometers (GMWRs), which provide high-quality and continuous
vertical atmospheric observations, has traditionally focused on the indirect assimilation of retrieved profiles. This study
advanced this application by developing a direct assimilation capability for GMWR radiance observations within the Weather
Research and Forecasting model data assimilation (WRFDA) system, along with a bias correction scheme based on the random
forest technique. The proposed bias correction scheme effectively reduced the observation-minus-background (O—B) biases
and standard deviations by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. A series of ten-day-long experiments
demonstrated that assimilating GMWR radiances improves both the initial conditions and the forecasts, with additional benefits
from higher assimilation frequencies. In the initial conditions, hourly assimilation significantly enhanced low-level
temperature and humidity fields, reducing the root-mean-square error (RMSE) for temperature and water vapor mixing ratio
by 6.32 % below 1 km and 1.98 % below 5 km. These improvements extended to forecasts, where 2 m temperature and
humidity showed sustained benefits for over 12 hours, and precipitation forecasts exhibited improvements to a certain extent.
The time-averaged Fractions Skill Score (FSS) for 3 h accumulated precipitation within the 24 h forecasts increased by 0.02—
0.04 (3.9-10.2 %) for thresholds of 3—6 mm.

1 Introduction

Data assimilation (DA), a core component of numerical weather prediction (NWP), plays an important role in improving
forecast accuracy by integrating observational data to refine initial conditions (Bauer et al., 2015; Gustafsson et al., 2018).
Among various types of observations, microwave radiance data are crucial for DA due to their ability to penetrate the

atmosphere and their sensitivity to temperature, humidity, clouds, and precipitation. Correspondingly, satellite-borne
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microwave radiance observations have been extensively studied and are considered among the most influential contributors to
data assimilation systems (Geer et al., 2017; Kim et al., 2020; Candy and Migliorini, 2021).

Unlike satellite-borne microwave radiometers, ground-based microwave radiometers (GMWRs) offer unique advantages for
DA, including high temporal resolution (minute-level) and greater sensitivity to the atmospheric boundary layer (ABL). Over
the past two decades, the assimilation of GMWRs has been increasingly studied, leading to improvements in the accuracy of
NWP (Vandenberghe and Ware, 2002; Otkin, 2010; Hartung et al., 2011; Otkin et al., 2011; Caumont et al., 2016; He et al.,
2020; Qi et al., 2021, 2022; Lin et al., 2023). The assimilation of retrieved temperature and humidity profiles from GMWRs
has shown improvements in forecasting fog, storms, and precipitation. However, the reliance on indirect assimilation methods
introduces uncertainties and complicates error quantification, which limits their overall effectiveness in enhancing forecast
accuracy (Caumont et al., 2016; Martinet et al., 2017; Lin et al., 2023).

Direct assimilation of GMWR radiances, which bypasses the retrieval process, offers significant advantages by avoiding
retrieval-related errors and improving the effective use of observations. This approach requires accurate observation operators
and robust bias correction to address differences between radiance observations and model states. The direct assimilation of
satellite-borne radiance observations is relatively mature (Geer et al., 2008; Bauer et al., 2010; Geer et al., 2010; Eyre et al.,
2020; Sun and Xu, 2021; Eyre et al., 2022) and utilizes fast radiative transfer models (RTMs) as observation-operator, such as
the Radiative Transfer for Television and Infrared Observation Satellite (RTTOV) (Saunders et al., 2018). However, the unique
characteristics of upward-looking GMWR observations, such as sensitivity to near-surface conditions, require specialized
RTM:s and adaptation of existing techniques. It is noted that studies began to develop fast RTMs suitable for GMWR, which
provide a foundation for constructing observation operators for assimilation of GMWR observations (De Angelis et al., 2016;
Cimini et al., 2019; Shi et al., 2025). The RTTOV-gb, a ground-based version of the RTTOV model, was used to simulate
brightness temperature from GMWRs, demonstrating high accuracy (De Angelis et al., 2016, 2017; Cimini et al., 2019). Recent
studies have demonstrated the potential of direct GMWR radiance assimilation using RTTOV-gb to improve temperature,
humidity, and precipitation forecasts (Cao et al., 2023; Vural et al., 2023).

Despite these advancements, previous studies have typically relied on limited GMWR networks or focused on specific case
studies. Additionally, research conducted in regions with relatively simple terrain may not fully address the complexities of
areas like the Tibetan Plateau, where complex topography often leads to significant model biases (Yang et al., 2020; Wei et
al., 2021). These biases make accurate bias correction essential for improving the effectiveness of direct assimilation, while
traditional bias correction approaches developed for satellite-borne microwave radiance observations are not directly
applicable to GMWRs.

To address these issues, this study integrates RTTOV-gb into the Weather Research and Forecasting Data Assimilation
(WRFDA) system (Barker et al., 2012) to develop a direct assimilation module for GMWR radiances. A nonlinear bias
correction scheme based on machine learning is also constructed using three months of observational data. The impact of direct
GMWR assimilation is then investigated through a series of ten-day experiments conducted in Southwest China, a region

shaped by the influence of the Tibetan Plateau and characterized by complex terrain. The remainder of this paper is organized
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as follows. Section 2 describes the data, the implementation of RTTOV-gb in WRFDA, and the model configuration. Section
3 evaluates the performance of the bias correction scheme. Section 4 presents the impacts of GMWR assimilation on the initial

and forecast fields. The conclusions and discussion are presented in Sect. 5.

2 Methodology
2.1 Data

Two types of GMWR sensors were assimilated in this study, as shown in Fig. 1: the MP3000A and the Humidity And
Temperature Profiler (HATPRO). Atmospheric radiance is measured as brightness temperatures in 14 channels for HATPRO
and 22 channels for MP3000A (Table 1). For HATPRO, channels 1-7 are in the K-band, while channels 8—14 are in the V-
band. For MP3000A, channels 1-8 are in the K-band, and channels 9-22 are in the V-band. The K-band channels correspond
to humidity-sensitive water vapor absorption lines, whereas the V-band channels correspond to temperature-sensitive oxygen
absorption lines.

The Fengyun-4B (FY-4B) Advanced Geosynchronous Radiation Imager (AGRI) cloud mask (CLM) is used to identify
GMWR-observed brightness temperatures under clear-sky conditions. The AGRI-based CLM product has a temporal
resolution of 15 minutes and a horizontal resolution of 4 km, categorizing conditions as confidently cloudy, probably cloudy,
probably clear, or confidently clear, with corresponding values of 0, 1, 2, and 3, respectively (Min et al., 2017). Due to its high
quality, this cloud mask product is widely applied in satellite data assimilation (Yin et al., 2020, 2021; Xu et al., 2023; Shen
et al., 2024).

The National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis data (FNL) (0.25° x 0.25°, 6-
hourly) were used to establish the initial and boundary conditions for regional NWP. Conventional observations from the
Global Telecommunications System (GTS) were assimilated and evaluated, including land surface, marine surface, radiosonde,
and aircraft reports. The hourly precipitation analysis product from the China Meteorological Administration Multisource
Precipitation Analysis System (Shen et al., 2014) was used for evaluation. This dataset has been widely used in precipitation
studies (Xia et al., 2019; Su et al., 2020; Sun and Xu, 2021; Wang et al., 2021; Li et al., 2023; Zheng et al., 2024).

Table 1. Central frequency for GMWRs

Sensor Frequencies for K-band (GHz)  Frequencies for V-band (GHz)

HATPRO 22.240;23.040;23.840;25.440;  51.260;52.280;53.860;54.940;
26.240;27.840;31.400 56.660;57.300;58.000

51.248;51.760;52.280;52.804;

MP3000A 22.234;22.500;23.034;23.834;  53.336;53.848;54.400;54.940;

25.000;26.234;28.000;30.000 55.500;56.020;56.660;57.288;
57.964;58.800
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2.2 Assimilation system and observation operator

The WRFDA system, developed by the National Center for Atmospheric Research (NCAR), is designed for data assimilation
and includes three-dimensional variational (3DVAR), four-dimensional variational (4DVAR), and hybrid data assimilation
algorithms. In this study, version 4.5 of the WRFDA system with 3DVAR is used for the direct assimilation of GMWR

radiances. The 3DVAR algorithm produces the analysis by minimizing a scalar objective cost function:
J@®) =3 (x - 2,)"B7(x — 1) + 3 (y - H@®) 'R (y — H(®)) , (1)

where x and x}, represent the analysis and background fields of the model variables, y is the vector of the observations, and B
and R represent the background and observation error covariance matrices, respectively. The covariance matrices determine
the weights assigned to the background and observations in the analysis, dictates how localized observation information is
distributed vertically and horizontally in the model space, and maintains the balance among the model's control variables. H
is the non-linear observation operator, that transforms model variables to the observed quantities. The observation operator
works slightly differently for different types of observations. For conventional observations (e.g., temperature), its primary
role is to perform spatiotemporal interpolation of model grid values to the observation space. For unconventional observations
(e.g., reflectivity and radiance), where the model state cannot be directly compared with the observations, the observation
operator must also convert model variables into observed variables.

The static background error covariance for the variational experiments is estimated using the National Meteorological Center
(NMC) method (Parrish and Derber, 1992), which uses the difference between WRF forecasts at lead times of 24 hand 12 h
(T + 24 h minus T + 12 h) valid at the same time over a specified period. Control variables option 5 (CV5) is adopted for the
background error covariance used in 3DVAR. CVS5 is domain-dependent and therefore must be generated based on forecast or
ensemble data over the same domain. It utilizes streamfunction, unbalanced velocity potential, unbalanced temperature,
unbalanced surface pressure, and pseudo relative humidity. In this study, the background error covariance matrix was generated
using the Generalized Background Error Covariance Matrix Model (GEN_BE v2.0) (Descombes et al., 2015) based on one
month of WRF forecasts. Observation-error correlations are typically assumed to be zero in WRFDA, resulting in a diagonal
observation-error covariance matrix. Observation errors were specified based on the standard deviation of O—B.

RTMs serve as observation operators for assimilating radiance data by mapping model variables (e.g., temperature and water
vapor) into radiance space. RTTOV, a fast RTM, is widely used for assimilating satellite radiance data. However, GMWR
radiances are upward-looking microwave observations, differing from the downward-looking measurements of satellite-borne
microwave radiometers. This difference in direction makes RTTOV difficult to apply in GMWR radiances assimilation.
Fortunately, RTTOV-gb can simulate brightness temperatures from GMWRs, and serves as the observation operator in this
study. The weighting function (WF) quantifies the contribution of emissions from each atmospheric layer, and the maximum
WF height indicates which atmospheric layer contributes most to the measured radiance (Carrier et al., 2008). According to

Cui et al. (2020), WFs are calculated as the derivative of transmittance with respect to the natural logarithm of pressure. The
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vertical distribution of WFs for HATPRO and MP3000A, calculated using RTTOV-gb, is shown in Fig. 2. The WFs reach
their maximum at 1000 hPa and decrease monotonically with height. These results confirm that the lower atmosphere
contributes most to the observed radiation across all channels, consistent with the findings of Shu et al. (2012).

It should be noted that RTTOV-gb is not included in the publicly available version of WRFDA. To address this limitation, a
GMWR direct assimilation module was developed within WRFDA. Results from the single-observation assimilation
experiment confirm that the GMWR direct assimilation module performs correctly. The temperature and water vapor
increments are horizontally isotropic and show a maximum at lower atmospheric levels vertically (Fig. 2). It should also be
noted that this experiment was conducted to verify the correct performance of the GMWR direct assimilation module and to
provide valuable insights into the characteristics of GMWR assimilation. However, it is not representative of the subsequent

multi-observation, multi-channel assimilation experiments.

2.3 Model configuration and experimental design

In this study, version 4.5 of the Weather Research and Forecasting (WRF) model (Skamarock et al., 2021) is used to simulate
atmospheric evolution. The simulation employs a single domain (Fig. 1) with a horizontal resolution of 3 km, comprising
1,261 x 811 grid points and 51 vertical levels, with the top boundary at 10 hPa. The model physics configuration includes the
Morrison two-moment microphysics scheme (Morrison et al., 2009), the Yonsei University PBL scheme (Hong et al., 20006),
the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) shortwave and longwave radiation schemes
(Iacono et al., 2008), and the unified Noah land-surface model (Chen and Dudhia, 2001). Cumulus parameterization was
excluded due to the convection-permitting horizontal resolution of 3 km (Li et al., 2023; Moker et al., 2018).

Similar to previous studies (Jiang et al., 2017; Nie and Sun, 2023), the target region of Southwest China in this study is defined
as the area within the rectangular domain 22°-35°N, 93°~110°E (Fig. 1). This region encompasses the Hengduan Mountains,
the Yunnan—Guizhou Plateau, and the Sichuan Basin, and is generally consistent with Chinese administrative divisions. Based
on the model configuration described above, four parallel experiments were conducted to investigate the impact of GMWR
assimilation (Table 2). Each experiment started at 12:00 UTC daily, incorporating 12 hours of data assimilation followed by a
24 h forecast. The primary differences among these experiments lie in the assimilated data and assimilation intervals. The
CNTL experiment assimilated GTS data with a 6 h interval, while the GMWR_6H experiment added GMWR assimilation to
the CNTL setup, enabling an evaluation of GMWR assimilation's impact. The other two experiments, GMWR 3H and
GMWR _1H, assimilated both GTS and GMWR data with 3 h and 1 h intervals, respectively, to assess the effects of observation
frequency in GMWR assimilation.

The assimilation experiments were conducted under clear-sky conditions due to the uncertainties in the model and observation
operators under cloudy or rainy conditions. All experiments were conducted over a ten-day period from 13 to 22 October 2023.
Among the available GMWR observations from August to October 2023, this period exhibited a notably higher frequency of

clear-sky data, which was more favorable for demonstrating the role and potential of GMWR assimilation. Before
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155 implementing bias correction, clear-sky screening, first-guess departure check, and whitelist check were sequentially applied
to improve measurement quality. Subsequently, a relative departure check was applied prior to minimization. For the 6 h, 3 h,
and 1 h assimilation intervals, 34 (0.91%), 70 (1.42%), and 76 (0.72%) observations were rejected, respectively. The detailed
procedure prior to a single assimilation cycle is as follows:

(1) Observation Selection: The observation nearest to the analysis time within =10 minutes is selected.
160 (2) Clear-sky Screening: Clear-sky GMWR observations were screened using the AGRI-based CLM, with background-
simulated cloud liquid water path equal to zero.
(3) First-Guess Departure Check: Observations with (O—B) values greater than 20 K are excluded.
(4) Whitelist Check: Remove observations from stations identified as unreliable or displaying abnormal behavior.
(5) Bias Correction: a machine learning bias correction scheme was applied (see Section 3.2).
165 (6) Relative Departure Check: Applied when the absolute value of the O—B exceeds three times the standard deviation of the

observational error, further rejecting questionable data.
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Figure 1: Computation domain(shaded). The shaded denotes topography (units: m). The green rectangle denotes the target region
170  of Southwest China. The blue empty circle denotes radiosonde. The 'x' and '+' symbols denote HATPRO and MP3000A, respectively.
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Figure 2: Normalized weighting functions of (a) HATPRO and (b) MP3000A calculated using the RTTOV-gb. The (¢, d) horizontal
and (e, f) vertical analysis increments for (c, e) temperature and (d, f) water vapor mixing ratio in single-observation assimilation
experiment. The vertical increments are cross-sections along the green lines shown in the horizontal increments. The colorbar tick
labels for temperature and water vapor mixing ratio are expressed in scientific notation as 1x102 and 1x107%, respectively.

Table 2 Experimental design

Experiment Assimilated Assimilation
P Data Interval
CNTL GTS 6-hour
GTS and
GMWR_6H GMWR 6-hour
GTS and
GMWR 3H GMWR 3-hour
GTS and
GMWR 1H GMWR 1-hour

3 Machine learning based bias correction for GMWR

3.1 Bias characteristics

Variational assimilation assumes that both observation and background errors follow an unbiased Gaussian distribution.

However, due to instrument errors, limitations of the RTMs, and errors in the NWP model background, observed radiances (O)

and simulated radiances (B) inherently contain errors (denoted as u° and u”), which may exhibit a biased distribution. Bias
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correction is a crucial process in radiance data assimilation, aiming to identify and remove these biases (Auligné et al., 2007;

Dee, 2005). In the real atmosphere, O and B are regarded as the true value (T) plus their respective deviations p, as shown in

Eq. (2):

0-B=0-D-B-T)=pn"—p>, 2

It shows that the statistical expectation value of O—B can represent the systematic deviation (u° — u?) Therefore, it is critical
to evaluate the bias characteristics of O—B and correct them.

To estimate the bias and develop a bias correction scheme for GMWR direct assimilation, a long-term experiment was
conducted from August to October 2023, yielding a three-month sample dataset. In this experiment, the WRF model was
initialized every 6 hours using NCEP FNL data, and WRFDA operated hourly in monitoring mode (only calculate O—B). After
a cloud check using the AGRI-based CLM and a gross check (O—B < 20 K), the bias of O—B for HATPRO and MP3000A was
estimated.

A comparative scatterplot analysis of observed and simulated brightness temperatures was conducted. For most channels, the
scatter points are closely aligned along the diagonal and exhibit high correlation coefficients, indicating strong agreement
between the simulations and observations. However, the scatter for some channels forms two distinct clusters. To further
investigate, representative channels from the K-band (water vapor absorption lines) and the V-band (temperature-sensitive
oxygen absorption lines) were selected. Figure 3 presents scatterplots for channel 1 (K-band) and channel 13 (V-band) of
HATPRO, and channel 1 (K-band) and channel 14 (V-band) of MP3000A. Results for the remaining channels are shown in
Figures Al and A2. For HATPRO, more than 6,000 samples are analyzed for channels 1 and 13. The O—B biases are 1.25 K
for channel 1 and 2.14 K for channel 13, with standard deviations (STD) of 3.35 K and 2.82 K, respectively. Additionally, the
scatter distribution for channel 13 is not centered, showing a cluster shifted to the right of the diagonal (Fig. 3b). For MP3000A,
more than 2,000 samples are analyzed for channels 1 and 14, with O—B biases of 3.06 K for channel 1 and —0.54 K for channel
14. The O—B STDs are 3.94 K and 3.08 K, respectively. Similar to the results for HATPRO channel 13 (V-band), the scatter
for MP3000A channel 14 (V-band) also shows a cluster offset from the diagonal, but to the left (Fig. 3d). Based on these
results, significant O—B biases are detected in GMWR observations, with their characteristics varying across different sensors
and channels. However, the correlation coefficients between observed and simulated brightness temperatures are high, at least

0.95, suggesting that these biases can be effectively corrected.
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Figure 3: Scatter plot of observed brightness temperature (Tb) versus simulated Th, based on samples collected from August to
October 2023. The top and bottom rows correspond to the HATPRO and MP3000A sensors, and the left and right columns represent
the K-band and V-band, respectively. Each panel displays the number of samples (num), the O—B mean (bias), O—B standard
deviation (STD), and the correlation coefficient (r) between observed and simulated Tb.

To further analyze the O—B bias characteristics at each station and investigate the reasons for the band shifting from the
diagonal (Fig. 3b and d), the statistics for each station are presented in Fig. 4. For HATPRO, the O—B bias varies among
stations. Stations near complex topography (e.g., 56312, 56137, 56029, and 55664) exhibit notable positive O—B biases in
channels 8 to 13 (Fig. 4a), leading to a rightward shift of the band relative to the diagonal (Fig. 3b). These positive biases may
result from biases in the background field over the topographic region, the limited applicability of RTTOV-gb coefficients, or
calibration issues in the observations. Consistent with results for all stations, the O—B STD at each station for the K-band is
larger than that for the V-band (Fig. 4b). The correlation coefficients between observed and simulated brightness temperatures
are high across all channels (typically above 0.90), although they are slightly lower for channels 4 to 9. For MP3000A, station
57461 exhibits a negative O—B bias in channels 9 to 14 (Fig. 4d), contributing to the band shifting to the left of the diagonal
(Fig. 3d). Similar to the results for HATPRO, the O—B STD in the K-band is generally larger than that in the V-band (Fig. 4e),

and the correlation coefficients are also overall higher, typically exceeding 0.9 (Fig. 4f).
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Figure 4: Statistics at each station based on samples collected from August to October 2023. O—B (a) bias and (b) standard deviations
(STD) for HATPRO; (c) correlation coefficient (r) between observed and simulated brightness temperatures for HATPRO; (d—f)
same as (a—c) but for MP3000A. Some stations did not provide observations for specific channels; the corresponding missing data

are displayed in grey in the figure.
3.2 Bias correction

Based on the results above, noticeable O—B biases were observed, varying across sensors, channels, and the geographical
locations of stations. It is essential to remove these biases before assimilation. Static bias correction (Harris and Kelly, 2001)
and variational bias correction (Dee, 2005) are commonly used in radiance data assimilation. These methods typically assume
a linear correlation between the biases and selected predictors. However, nonlinear sources of bias are common, and Zhang et
al. (2023) demonstrated that nonlinear scheme outperforms linear scheme in reducing systematic biases. Following Zhang et
al. (2023), this study developed a machine learning-based bias correction scheme, using the Random Forest (RF) technique
(Breiman, 2001).

Following Yin et al. (2020), the predictors include 1,000—300hPa thickness, 200—50hPa thickness, model surface skin
temperature (TS) and total precipitable water (PW). Considering that GMWRs are sensitive to the lower atmosphere, the
predictors also include 1,000—-700hPa thickness, 700—-500hPa thickness, 500—300hPa thickness, 2m temperature (T2), 2m

10
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water vapor mixing ratio (Q2), 10m zonal wind (U10), 10m meridional wind (V10), and surface pressure (PS). Finally, latitude,
longitude, and observed brightness temperatures (Tb) are included as predictors due to their potential importance (Zhang et
al., 2023). The O—B biases vary across sensors and channels. Therefore, a separate model is trained for each type of instrument
and channel. Biases also vary across the geographical locations of stations, potentially influenced by the large-scale topography
of the Tibetan Plateau. As predictors, 2 m temperature, surface pressure, and latitude and longitude are important for explaining
these biases.

There are two types of parameters in machine learning models: model parameters and hyperparameters. Model parameters are
initialized and updated during the learning process. Hyperparameters, on the other hand, cannot be directly estimated from
data. They must be configured before training because they define the model's architecture. Building an optimal machine
learning model requires exploring a range of possibilities. The process of determining the ideal model architecture and
hyperparameter configuration is known as hyperparameter tuning. Hyperparameter tuning is a key component of developing
an effective machine learning model (Yang and Shami, 2020).

The RF model has four key hyperparameters: the number of trees in the forest (n_estimators), the maximum depth of the tree
(max_depth), the minimum number of samples required to split an internal node (min_samples splif), and the minimum
number of samples required to be at a leaf node (min_samples_leaf). These hyperparameters were tuned using scikit-learn’s
GridSearchCV (Pedregosa et al., 2011) with 5-fold cross-validation (CV), which exhaustively searches over a predefined range
of hyperparameters, training and evaluating the model for each configuration. The flowchart illustrating the training and
evaluation process of the bias correction (BC) model is shown in Fig. 5b. The three-month sample dataset (described in Section
3.1) was randomly split into a training set (70 %) and a test set (30 %). During training, GridSearchCV constructed a large
grid of possible hyperparameter configurations, iteratively trained and evaluated the model for each, and calculated a score.

Finally, the optimized model was trained using the configuration with the highest score.
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Figure 5: Flowchart of the training and evaluation for bias correction model

To investigate the impact of hyperparameters on model training time and performance, the fit time and score of the RF model
under various hyperparameter settings were analyzed (figure not shown). Overall, the fit time and score demonstrated a positive
correlation. As the min_samples leaf and min_samples split parameters increased, both fit time and score decreased
monotonically. Conversely, increasing the max_depth and n_estimators parameters resulted in a monotonic increase in both
fit time and score. Notably, max_depth had the most significant impact on the score, while n_estimators primarily affected the
fit time. For n_estimators, the score increased logarithmically, while the fit time grew linearly. These findings suggest that
selecting a moderately small value for the n_estimators parameter can achieve better results while reducing computational
time.

Using the above bias correction model, the corrected O—B is obtained by subtracting the predicted O—B from the original O—B.
The effectiveness of the BC model was assessed based on the probability density functions (PDFs) of the O—B distribution
using the test set. For most channels, the PDFs exhibit a unimodal pattern, with peak positions deviating from zero, indicating
that the O—B values are biased. For some channels, the distributions are multimodal, characterized by a secondary peak
superimposed on the primary one. Although these issues are present in the original distributions, after bias correction, the PDFs
approximate an unbiased distribution, and the secondary peaks are effectively suppressed, demonstrating the effectiveness of
the correction. From the scatter plots in Fig. 3, the O—B distribution appears bimodal—an issue that may affect 3D-Var, which
typically assumes the errors to be unimodal (Gaussian). Similar to Fig. 3, channel 1 (K-band) and channel 13 (V-band) of
HATPRO, as well as channel 1 (K-band) and channel 14 (V-band) of MP3000A, are selected for detailed analysis (Fig. 6).
Results for the remaining channels are presented in Figures B1 and B2. The biases for HATPRO channel 1, HATPRO channel
13, MP3000A channel 1, and MP3000A channel 14 are 1.24 K, 2.21 K, 3.00 K, and —0.64 K, respectively, with corresponding
STDs of 3.38 K, 2.90 K, 3.89 K, and 3.08 K. The differences between the test set and the full dataset (shown in Fig. 3) are

12



negligible, with a maximum bias difference of 0.10 K and a maximum STD difference of 0.08 K, highlighting the strong

285 representativeness of the test set. From the PDF distributions of O—B, both instruments exhibit a positive bias in the K-band
with a unimodal distribution. In contrast, a bimodal distribution is observed in the V-band: the second peak appears on the
right for HATPRO and on the left for MP3000A. These results are consistent with the scattering patterns shown in Fig. 3.
After the bias correction is applied, both the bias and STD are reduced, and the O—B distribution becomes more sharply
concentrated around zero, accompanied by an increase in kurtosis. For example, in channel 1 of MP3000A, the bias and STD

290 decrease from 1.24 K and 3.38 K to 0.03 K and 1.44 K, respectively, while the kurtosis increases markedly from 1.53 to 9.44.
It is also noteworthy that the bimodal distributions in the V-band for both instruments become unimodal after the correction.
Meanwhile, the skewness decreases from 1.04 and 1.54 to 0.55 and 1.05, respectively, indicating a more symmetrical O—-B
distribution. These results demonstrate that the proposed bias correction scheme effectively reduces bias and STD, addresses
bimodal distribution, and shifts the O—B distribution closer to a Gaussian shape.
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Figure 6: Probability density functions (PDFs) of the O—B distributions, based on a test set randomly selected from 30% of the
three-month sample dataset collected from August to October 2023. The top and bottom rows correspond to the HATPRO and
MP3000A sensors, respectively, while the left and right columns represent the K-band and V-band. Each panel displays the
number of samples (num), the mean (bias), standard deviation (STD), skewness, and kurtosis of the distributions.

Figure 7 illustrates the bias and STD of the O—B for each HATPRO channel. Before BC, the O—B bias for HATPRO ranged
from 0 to 2 K, with the bias in the K-band (particularly channels 4 to 7) being smaller than that in the V-band. After bias
correction, the bias for each channel is approximately 0 K. In terms of the O—B STD, values ranged from 2 to 4 K without BC,
with channels 4 to 7 exhibiting smaller values compared to other channels. After BC, the STD of O—B oscillates between 0.5
and 1.5 K. The application of this BC model significantly reduced both the bias and STD of O—B, with reductions of 0.83 K
(97.1 %) and 1.63 K (64.6 %), respectively. Meanwhile, the corrected O—B distributions display Gaussian characteristics
centered around zero, indicating effective removal of systematic biases.

Diagnosing the contributions of each predictor is crucial. Figure 7c illustrates the feature importance of several predictors for
HATPRO. The model normalized the feature importance scores so that their sum equals 1. A higher score reflects a stronger
correlation between predictors and O—B biases. Observed brightness temperature, total precipitable water, and surface pressure
are significant contributors to BC for the K-band (water vapor channel). For the V-band (temperature channel), observed
brightness temperature, latitude, and surface pressure are the most influential predictors. The contributions of atmospheric
thickness predictors are smaller compared to the other predictors; however, the 1,000—700 hPa thickness predictor has a
relatively larger contribution among them. This may be because GMWR primarily observes radiation from the lower
atmosphere. Notably, surface pressure plays a critical role in BC for the temperature channels, which may account for the

positive bias in O—B observed at plateau stations (Fig. 4a).
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Figure 7: (a) Bias and (b) standard deviation (STD) of O—B, based on a test set randomly selected from 30% of the three-month
sample dataset collected from August to October 2023. (c) Feature importance of the predictors used in the bias correction (BC)
model. The shaded regions and solid lines represent the range and mean feature importance for the K-band and V-band, respectively.

4 Direct assimilation of GMWR radiance observations
4.1 Assimilation impacts on initial condition

The performance of GMWR assimilation in the observation space was evaluated. Figure 8 summarizes the bias and STD of
the O—B and observation minus analysis (O—A) statistics, aggregated over time and across different channels. The bias of O—A
was reduced compared to O—B, particularly in the V-band. Specifically, for channel 11 of GMWR _1H (1 h assimilation
interval), O—B was —0.40 K and O—A was —0.13 K. When GMWR observations were assimilated, the simulated brightness
temperatures became closer to the observations, resulting in smaller STD. Moreover, as the frequency of GMWR observation
assimilation increases, the bias and STD of the O—B gradually converge closer to zero. For channel 3, the O—B STD in
GMWR_6H, GMWR 3H, and GMWR _1H significantly decreased from 1.03 K, 0.92 K, and 0.56 K to O—A STD values of
0.36 K, 0.34 K, and 0.34 K, respectively. Although the differences in O—A are less noticeable, the improvement of O—B
suggests that increasing the frequency in cycling assimilation accumulates the impact of the GMWRs, producing a higher-
quality first-guess field for the final cycle. The assimilation of GMWR observations effectively influences the brightness

temperatures, demonstrating the successful processing of GMWR data by the 3DV AR system.
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Figure 8: Verification of the initial conditions against GMWR observations, based on the ten-day assimilation experiment conducted
from 13 to 22 October 2023. (a) Bias and (b) standard deviation (STD) of the observation minus background (O—B) and observation
minus analysis (O—A) for the GMWR assimilation in the target region of Southwest China (blue box in Fig. 1).

The above evaluation demonstrates the successful implementation of the newly introduced GMWR radiance direct assimilation
in WRFDA. However, compared to brightness temperature simulations, greater attention should be given to the model state
variables in the initial field, as they directly influence subsequent model forecasts. To this end, radiosonde observations in the
target region of Southwest China were used to evaluate the impact of GMWR assimilation. The root-mean-square error (RMSE)
was calculated, and the RMSE differences between CNTL and other assimilation experiments are shown in Fig. 9.

Results indicate that assimilating GMWR radiances enhances low-level temperature and humidity fields, with higher
assimilation frequencies offering the potential for additional improvements. GMWR assimilation has a neutral impact on
atmospheric temperature above 1 km AGL, where the RMSE difference is minimal. However, it positively impacts lower
atmospheric temperature, with the RMSE for temperature decreasing below 1 km AGL. Specifically, the average RMSE
improvements below 1 km are 3.67 %, 5.28 %, and 6.32 % for GMWR_6H, GMWR_3H, and GMWR 1H, respectively. This
indicates that increasing assimilation frequency enhances observational impacts and further improves the initial field. The
improvement becomes more pronounced with decreasing altitude, with 100 m RMSE improvements of 0.10 K (6.25 %), 0.13
K (7.90 %), and 0.19 K (11.34 %) in GMWR _6H, GMWR 3H, and GMWR_1H, respectively. For the water vapor mixing
ratio (QVAPOR), GMWR assimilation demonstrates a positive impact that extends into the middle atmosphere, with average

RMSE improvements below 5 km of 2.30 %, 2.20 %, and 1.98 % for GMWR_6H, GMWR 3H, and GMWR _1H, respectively.
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The impact of GMWR assimilation and the effect of assimilation frequency become more pronounced in the lower atmosphere,
with average RMSE improvements below 300 m of 3.01 % for GMWR_1H, compared to 2.43 % for GMWR_6H and 2.05 %
for GMWR_3H.

It is noted that the GMWR assimilation has negative impacts on the wind fields. The RMSE for zonal and meridional winds
exhibits a slight negative effect when GMWR is assimilated, with meridional winds even showing an increase in RMSE. These
negative impacts on the wind field caused by GMWR assimilation may be attributed to two factors: (1) When assimilating
observed brightness temperature, the adjoint model of the observation operator directly adjusts temperature and humidity to
optimize the simulation, while changes in the wind field are indirectly driven by these adjustments through the background
error covariance. (2) GMWR assimilation primarily improves the lower atmosphere, while changes in the upper atmosphere
are also governed by the background error covariance. The static background error covariance used here is climatological and
isotropic, which does not fully align with evolving weather conditions, potentially resulting in ineffective wind field
improvements.
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Figure 9: Verification of the initial conditions against radiosonde observations, based on the ten-day assimilation experiment
conducted from 13 to 22 October 2023. Root mean square error (RMSE) of (a) temperature, (b) water vapor mixing ratio (QVAPOR),
(¢) zonal wind, and (d) meridional wind in the target region of Southwest China (blue box in Fig. 1).

Based on the evaluation against radiosonde observations, the assimilation of GMWR data improves the initial fields of
temperature and humidity, aligning them more closely with observations, particularly in the lower atmosphere. Additionally,
the initial fields are validated against surface station observations, including measurements of 2m temperature, 2m humidity,
and 10m wind (Fig. 10).

The RMSE differences indicate that GMWR assimilation effectively enhances the 2m temperature and humidity fields. Under

6-hourly GMWR assimilation, the temperature RMSE generally increased on the southern side of the basin, whereas other
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regions showed a positive effect with reduced RMSE values. Moreover, the temperature RMSE reduction in these positively
affected areas further improved as the assimilation frequency increased, with overall differences ranging from —0.008 K
(0.3 %) to —0.099 K (—4.1 %). For humidity, GMWR assimilation shows a negative impact on relative humidity (RH) at a 6
h assimilation frequency. However, the RMSE over the plateau decreases as the assimilation frequency increases, with the
RMSE difference shifting from positive to negative. In the GMWR _1H experiment, the RH RMSE is reduced by 0.276 (1.3 %).
Unlike the temperature and humidity RMSEs, the improvement in the wind field RMSE does not exhibit a distinct spatial
pattern. Compared to the CNTL experiment, the RMSE differences for zonal wind are —0.005 ms™" (0.3 %), —0.017 ms™!
(-1.0 %), and —0.019 ms™! (=1.2 %) in GMWR_6H, GMWR 3H, and GMWR_1H, respectively. Similarly, the RMSE
differences for meridional wind are —0.008 ms ™' (0.5 %), —0.011 ms ™' (0.7 %), and —0.009 ms™! (0.5 %) in GMWR_6H,
GMWR _3H, and GMWR _1H, respectively. While the changes in wind RMSE are relatively small, the results indicate that
assimilating GMWR data improves the initial field, with higher assimilation frequencies offering potential for further

enhancement.
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Figure 10: Verification of the initial conditions against surface station observations, based on the ten-day assimilation experiment
conducted from 13 to 22 October 2023. The percentage in RMSE differences (scatter) of temperature (T), relative humidity (RH),
zonal wind (U), and meridional wind (V) in the target region of Southwest China (blue box in Fig. 1). The grey solid line represents
the topography height (m).

4.2 Assimilation impacts on forecast field

After presenting the improvements in the initial condition, this section investigated the impact of GMWR assimilation on the
24 h forecasts. The time series of RMSE for the CNTL experiment and RMSE differences (assimilation experiments minus
the CNTL experiment) against surface station observations for 2 m temperature, 2 m relative humidity, and 10 m wind fields
are shown in Fig. 11. In the CNTL experiment, the RMSE of temperature and relative humidity initially decreases and then

increases with lead time, while the RMSE of the wind field exhibits the opposite trend, increasing at first and then decreasing.
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The mean RMSEs over the 24-hour forecast period are 2.32 K for temperature, 16.26% for relative humidity, 1.92 ms™ for
zonal wind, and 2.08 m s™' for meridional wind. Regarding assimilation impacts, the RMSE reduction for temperature gradually
decreases, approaching zero at a lead time of 6 hours, with higher assimilation frequency (GMWR 1H) achieving a greater
RMSE reduction. Similar results are observed for relative humidity, where the RMSE reduction also decreases and approaches
zero at a lead time of 12 hours. GMWR 1H consistently demonstrates the largest RMSE reduction for relative humidity.
However, it should be noted that the direct assimilation of GMWR data caused a negative impact on relative humidity at a lead
time of 12 hours. The degradation of wind fields (Fig. 9) and the model’s inherent nonlinearity may be responsible. For the
wind field, no increase in the RMSE difference with lead time was observed, as previously described. However, the RMSE
differences between the assimilation experiments and the CNTL experiment remain overall negative, indicating that GMWR
assimilation improves wind forecasts. Additionally, GMWR 1H demonstrates the largest RMSE reduction in meridional wind,
suggesting that increasing the frequency of GMWR assimilation may lead to further improvements. The quantitative statistics
are presented in Table 3. The temperature RMSE differences between GMWR_6H and CNTL are —0.012, —0.005, and —0.004
K for lead time of 1-6 hours, 1-12 hours, and 1-24 hours, respectively. This gradual decrease in RMSE differences with
increasing forecast time is also observed in other experiments and variables, indicating a weakening of the positive impact of
GMWR assimilation as the forecast period extends. When the impact of GMWR assimilation is most pronounced (at a lead
time of 1-6 hours), the temperature RMSE differences range from —0.012 K in GMWR_6H to —0.019 K in GMWR _3H, and
—0.030 K in GMWR_1H. The temperature RMSE reduction increases with the frequency of GMWR assimilation, a trend also
observed in relative humidity and wind, suggesting that increasing the assimilation frequency can further improve the short-
term forecasts. Although these differences are small, the results reflect the potential for improved model forecasts with GMWR

assimilation.
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Figure 11: Verification of the forecast against surface station observations, based on the ten-day assimilation experiment conducted
from 13 to 22 October 2023. RMSE (black line) for the CNTL experiment and RMSE differences (colored lines) between the
assimilation experiments and the CNTL experiment for (a) temperature, (b) relative humidity, (c) zonal wind, and (d) meridional

wind.

Table 3 RMSE difference against surface station observations.

EXP Lead Temperature Relative Zonal Meridional

time (K) Humidity wind wind
(hour) (%) (ms") (ms™
GMWR 6 1-6 —0.012 —0.011 —0.006  —0.005
H 1-12 —0.005 —0.027 —0.003  —0.006
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minus

1-24  -0.004 0.046 -0.003 —0.003

CNTL
GMWR 3 1-6 -0.019 -0.042 -0.007 —0.006
H 1-12 -0.010 -0.036 -0.006 —0.007

minus
1-24  —0.003 0.072 —0.005 —0.003

CNTL
GMWR 1 1-6 -0.030 -0.153 -0.008 —0.013
H 1-12  —0.012 -0.087 -0.006 —0.013

minus
1-24  —0.005 0.065 —0.006  —0.009

CNTL

Verification against surface station observations indicated that assimilating GMWR radiances improves near-surface forecasts,
with higher assimilation frequencies offering potential for further enhancement. To further examine the impact of GMWR
assimilation, Fig. 12 presents the forecast verification against radiosonde measurements. Unlike the RMSE differences for the
initial condition (Fig. 9), the GMWR assimilation did not reduce the RMSE for lower atmospheric temperature and water
vapor mixing ratio, indicating a neutral impact of GMWR assimilation on forecasts. Similarly, the wind field verification
results did not show significant improvements with GMWR assimilation. While the RMSE of zonal wind was reduced in the
GMWR _1H experiment, the RMSE differences for the wind field in other experiments were close to or greater than zero,
suggesting a neutral to slightly negative impact of GMWR assimilation on wind forecasting. According to the verifications
against radiosonde data, limited improvements were found in the forecasts through GMWR assimilation. The limited
improvement shown in this figure could be related to the relatively long forecast lead times (12 and 24 hours), during which
model errors tend to accumulate and weaken the benefits of improved initial conditions from GMWR assimilation. Verification
against surface station observations indicates that the improvements were primarily confined to the first few hours, particularly

for temperature and humidity. After 12 hours, the impact declined noticeably, with some cases even exhibiting negative effects

(Fig. 11).
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Figure 12: Same as Fig. 9, but for forecast at lead time of 12 and 24 hours.

To further explore the role of GMWR assimilation in precipitation forecasting, the fractions skill score (FSS) of 3 h
accumulated precipitation forecasts was calculated. The radius of influence for the FSS was set to 18 km, equivalent to six
times the grid spacing (Ha and Snyder, 2014; Zheng et al., 2024). Figure 13 presents the time series of FSS for the CNTL
experiment and FSS differences (assimilation experiments minus the CNTL experiment). The assimilation experiments were
conducted during a period characterized by a higher frequency of clear-sky observations. Cloud cover and precipitation were
limited throughout the 10-day period, resulting in the absence of frequent heavy rainfall events. Consequently, the FSS was
calculated using small precipitation thresholds. In the CNTL experiment, the FSS for 3 h accumulated precipitation shows an
initial decline followed by a subsequent increase with lead time, with relatively low FSS values observed around the 9 h
forecast period. Moreover, the FSS generally decreases as the precipitation threshold increases. The time mean FSS values are
0.47, 0.45, 0.42, and 0.39 for thresholds of 3 mm, 4mm, 5mm, and 6 mm, respectively. Regarding the role of GMWR
assimilation in precipitation forecasting, the results indicate that assimilating GMWR radiances enhances precipitation
forecasts, with FSS differences increasing progressively at higher precipitation thresholds. Additionally, increasing
assimilation frequency shows the potential to further enhance forecast performance. When assimilating GMWR data ata 1l h
frequency, the time-averaged FSS improvements for 3 h accumulated precipitation are 0.02 (3.9 %) for the 3 mm threshold,
0.02 (4.7 %) for 4 mm threshold, 0.03 (7.3 %) for 5 mm threshold, and 0.04 (10.2 %) for 6 mm threshold precipitation. For 3
h accumulated precipitation with a threshold of 6 mm, the time-averaged FSS improvements are 0.01, 0.02, and 0.03 for
GMWR_6H, GMWR 3H, and GMWR _1H, respectively. These findings are consistent with the above verification against
radiosonde and surface station observations, suggesting that GMWR assimilation can improve forecasts and that higher-

frequency assimilation leads to further enhancements.
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Figure 13: The time series of FSS (black line) for CNTL experiment and FSS differences (colored lines) between the assimilation
experiments and the CNTL experiment. These experiments were conducted from 13 to 22 October 2023.The FSS was calculated for
3 h accumulated precipitation for thresholds of (a) 3 mm, (b) 4 mm, (¢) 5 mm, and (d) 6 mm.

5 Conclusions and Discussion

To investigate the impact of directly assimilating GMWRs in Southwest China, GMWR assimilation module has been built in
WRFDA-4.5, where RTTOV-gb is used as the observation operator. Based on this module, three-month O—B statistic sample
was calculated to evaluate the bias for O—B and developed a BC model. Furthermore, 10-day assimilation experiments (Table
2) were conducted using this GMWR assimilation module and BC model to investigate the impact of direct assimilation
GMWR and the effects of assimilation frequency. The main findings are as follows:

1.Based on three months of hourly samples, noticeable O—B biases were observed, varying across sensors, channels, and
geographical locations. The machine learning-based bias correction scheme, employing an RF model, effectively reduced these
systematic biases. After applying this BC model, both the bias and STD of the O—B were substantially reduced. Specifically,
the bias and STD decreased by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. The corrected O—B distributions exhibited
Gaussian characteristics centered around zero, indicating the successful mitigation of systematic biases.

2.Assimilating GMWR enhances the accuracy of initial atmospheric conditions, with higher assimilation frequencies

amplifying the positive impact, particularly for temperature and humidity in the lower atmosphere. Evaluation against
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radiosonde observations shows that the temperature RMSE below 1 km AGL decreases by 3.67 % to 6.32 %, with
improvements below 100 m AGL ranging from 6.25 % to 11.34 % for 6 h, 3 h, and 1 h assimilation frequencies, respectively.
For the water vapor mixing ratio, positive impacts extend up to 5 km AGL, with average RMSE improvements ranging from
1.98 % to 2.30 %. Verification against surface station observations further supports these findings, indicating that the RMSE
for 2 m temperature decreases by up to 4.1 %, while the RMSE for 2 m relative humidity decreases by up to 1.3 % atthe 1 h
assimilation frequency.

3. The assimilation of GMWR observations leads to improvements in forecasts, and increasing assimilation frequencies has
potential to get further improvement. In the first 6 hours of the forecast, the temperature RMSE decrease by 0.012 K, 0.019 K,
and 0.030 K with 6 h, 3 h and 1 h GMWR assimilation frequency, respectively. Similar trends are observed for relative
humidity, the experiment with 1 h GMWR assimilation frequency showing the largest decrease in RMSE. GMWR assimilation
also improves precipitation forecasts, with further enhancements seen as assimilation frequency increases. For 1 h GMWR
assimilation, time-averaged FSS improvements reach 0.02 for both the 3 mm and 4mm, 0.03 for 5 mm, and 0.04 for 6 mm
thresholds.

In the three-month O—B statistics, the STD in the K-band is larger than that in the V-band, consistent with Vural et al. (2023)
and Cao et al. (2023). This phenomenon may be attributed to the K-band's sensitivity to water vapor and the V-band's sensitivity
to temperature, with model temperature accuracy being better than that of water vapor. The O—B bias varies across sensors,
channels, and geographical locations, with a notable positive bias observed at high-altitude stations. This positive bias is
potentially caused by large-scale topographical effects on the Tibetan Plateau. In this region, model simulations may contain
errors, and RTTOV-gb coefficients may be inapplicable. The RTTOV-gb coefficients are based on global atmospheric profiles,
which may differ significantly from the climatic conditions of plateau regions, potentially affecting simulation accuracy.

A machine learning-based bias correction scheme using the RF technique was developed, demonstrating strong performance.
The number of trees is a critical hyperparameter that must be predetermined. Training time increases linearly with the number
of trees, while performance gradually plateaus. Thus, a modest number of trees, such as 50, can balance efficiency and accuracy.
Feature importance analysis for BC predictors revealed observed brightness temperature, atmospheric precipitable water, and
surface pressure as key factors for correcting biases. The importance of brightness temperatures aligns with findings in satellite
data bias correction (Liu et al., 2022; Zhang et al., 2023). Atmospheric precipitable water is essential for the K-band, a
humidity-sensitive channel. Surface pressure plays a key role in temperature channels, thereby accounting for the positive bias
observed in plateau regions. Although atmospheric thickness predictors contributed less overall, the 1,000-700 hPa thickness
was relatively significant, likely due to GMWRs primarily sensing radiation from the lower atmosphere.

In this study, direct assimilation of GMWR radiance enhances both the initial conditions and the forecasts, showing a potential
in improving ABL and precipitation simulations. However, it should be noted that the assimilation of GMWR data generally
has a negative impact on the wind fields in the initial conditions. The background error covariance may contribute to this
negative impact, as it determines the response of the wind fields to the adjustments in temperature and humidity made by

RTTOV-gb. As an initial study primarily focused on the direct variational assimilation of GMWR data with machine learning-
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based bias correction, it is admitted that this study has some limitations. The GMWR assimilation was implemented using
3DVAR, based on RTTOV-gb and WRFDA, and only static background-error covariances were employed in this study. The
background error covariance matrix plays an important role in variational data assimilation, but this type of covariance is
climatological, spatially homogeneous, and isotropic. This may limit the impact of GMWR assimilation, and flow-dependent
error covariances should be considered in future work. Moreover, only clear-sky GMWRs were assimilated in this study. Since
precipitation processes are often accompanied by extensive cloud cover, few clear-sky GMWRs were available. To better
explore the potential of GMWR assimilation, experiments were conducted during periods with abundant clear-sky GMWRs
(e.g., a ten-day period in October 2023), which coincided with minimal heavy precipitation. Studies on satellite all-sky
assimilation have shown that incorporating cloud- and precipitation-affected data improves forecasts (Ma et al., 2022; Xian et
al., 2019), highlighting the need for future research on all-sky assimilation of GMWRs. Under such conditions, assimilation
experiments could be conducted during a different or longer period, given that assimilated GMWR observations would be
relatively more abundant. It is noted that GMWRs exhibit higher sensitivity and provide more valuable observations of the
lower troposphere and planetary boundary layer compared to satellite-based microwave radiometers (Shi et al., 2023). Building
on this study, future research could explore the joint direct assimilation of satellite-based and ground-based microwave
radiometers. By leveraging their complementary observational capabilities, this approach has the potential to further enhance

the accuracy of atmospheric analysis and improve forecasting across multiple layers of the atmosphere.
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Appendix A: Observed versus simulated Tb

(a) Channel2 (b) Channel3 (c) Channel4 (d) Channel5
100 sensoer;g;\TPRO Y senso(;;g_:,‘-\TPRO o sensog;g?TPRO < 60 sensog;gé'\TPRO L
fond num= - sad for Aum=| . . fond num= fo num=| o
ES bias=0.91 4 | <80 pias=061 ¥ 60 pias=-0.13 X [ bias=0.02 -
o STD=3.07 - il o STD=2.59 a STD=2.34 o STD=2.03 :
F 75Fr=0.99 2 F gofr=0.99 - F o009 F 4oLr=0.99 :
o - : : T 40 =2 Al
S ol 4 g :
[+ £
S i S 40 ; S S
£ £ y : E 20 £20
n 25 ; » 20 ) 7]
A R Al AP I B A I R AT T B
50 100 25 50 75 25 50 25 50
(e) Channel6 (f) Channel7 {g) Channel8 {h) Channel9
| sensor=HATPRO e I sensor=HATPRO /" 150 Fsensor=HATPRO ‘/’ I sensor=HATPRO ,/‘
< | num=6593 < I num=6589 2 < [ nUmM=6561 <. < [ num=6575 ﬁ
< | bias=-0.02 < | bias=-0.11 < [ bias=0.05 S [ bias=-0.53 Lk
2 4olsTD=189 © 401-5TD=104 o 1251 sTp=303 f S 150L.8TD=3.40 !
= "1 r=0.08 ="~ r=0.08 -l F r=0.99 . = r=1.00
- el el o L el -
‘9 L _9 Q 100 - E i A
© o F o [ & [ .
3 >3 3 [ 3 B . et
E E 20 E T5F E 100 i
o 7] [75] F 5] Al
L SO#t™ . il B TR
50 100 150 100 150
(i) Channel1Q (j) Channel11 (k) Channel12 (1) Channel14
275Fsensor=HATPRO | 300}-sensor=HATPRO | sensor=HATPRO [ sensor=HATPRO
& | num=6602 f g [ num=6084 < 300 | num=6618 & < 310Fnum=534 L
=250 [ bias=1.45 = [ bias=1.57 = bias=1.27 = [ bias=1.05 o
o FsTD=3.26 [ Q [ STD=1.93 o [ STD=1.87 o [ sTD=1.71
N A= & F 280 =099 o088 F 300083
B 225F A B I B i B Y pre
T | ) 5260_ T 280 ® g0
>3 - 3 - > i 3 B
£ 2001 ET E | E |
v P 2} L w [ W 280F
175-, 1 Ll 240" .4 . 1 260 oy S T
535 200 250 250 275 300 260 280 300 280 300

Figure A1: Scatter plot of observed brightness temperature (Tb) versus simulated Tb for HATPRO. Same as Fig. 3 but for

additional channels.
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Figure A2: Scatter plot of observed brightness temperature (Tb) versus simulated Tb for MP3000A. Same as Fig. 3 but for

540 additional channels.
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Appendix B: PDF distributions of O-B
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Figure B1: Probability density functions (PDFs) of the O—B distributions for HATPRO. Same as Fig. 6 but for additional

channels.
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Figure B2: Probability density functions (PDFs) of the O—B distributions for MP3000A. Same as Fig. 6 but for additional

channels.

Code availability

The RTTOV-gb v1.0, WRF v4.5, WRFDA v4.5, along with the code for developing a direct assimilation module for GMWR
radiances and training a machine learning-based GMWR bias correction model, are available on Zenodo

(https://doi.org/10.5281/zenodo.14865778; Zheng et al., 2025a)

Data availability

The GMWR data and precipitation analysis product are provided by the Chinese Meteorological Administration and can be

obtained via request from https:/www.cma.gov.cn/en/. The AGRI CLM used are available at

https://satellite.nsmc.org.cn/portalsite/default.aspx?currentculture=en-US. The NCEP FNL data used are available at
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