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Abstract. The application of ground-based microwave radiometers (GMWRs), which provide high-quality and continuous 

vertical atmospheric observations, has traditionally focused on the indirect assimilation of retrieved profiles. This study 

advanced this application by developing a direct assimilation capability for GMWR radiance observations within the Weather 15 

Research and Forecasting model data assimilation (WRFDA) system, along with a bias correction scheme based on the random 

forest technique. The proposed bias correction scheme effectively reduced the observation-minus-background (O−B) biases 

and standard deviations by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. A series of ten-day-long experiments 

demonstrated that assimilating GMWR radiances improves both the initial conditions and the forecasts, with additional benefits 

from higher assimilation frequencies. In the initial conditions, hourly assimilation significantly enhanced low-level 20 

temperature and humidity fields, reducing the root-mean-square error (RMSE) for temperature and water vapor mixing ratio 

by 6.32 % below 1 km and 1.98 % below 5 km. These improvements extended to forecasts, where 2 m temperature and 

humidity showed sustained benefits for over 12 hours, and precipitation forecasts exhibited improvements to a certain extent. 

The time-averaged Fractions Skill Score (FSS) for 3 h accumulated precipitation within the 24 h forecasts increased by 0.02–

0.04 (3.9–10.2 %) for thresholds of 3–6 mm. 25 

1 Introduction 

Data assimilation (DA), a core component of numerical weather prediction (NWP), plays an important role in improving 

forecast accuracy by integrating observational data to refine initial conditions (Bauer et al., 2015; Gustafsson et al., 2018). 

Among various types of observations, microwave radiance data are crucial for DA due to their ability to penetrate the 

atmosphere and their sensitivity to temperature, humidity, clouds, and precipitation. Correspondingly, satellite-borne 30 
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microwave radiance observations have been extensively studied and are considered among the most influential contributors to 

data assimilation systems (Geer et al., 2017; Kim et al., 2020; Candy and Migliorini, 2021). 

Unlike satellite-borne microwave radiometers, ground-based microwave radiometers (GMWRs) offer unique advantages for 

DA, including high temporal resolution (minute-level) and greater sensitivity to the atmospheric boundary layer (ABL). Over 

the past two decades, the assimilation of GMWRs has been increasingly studied, leading to improvements in the accuracy of 35 

NWP (Vandenberghe and Ware, 2002; Otkin, 2010; Hartung et al., 2011; Otkin et al., 2011; Caumont et al., 2016; He et al., 

2020; Qi et al., 2021, 2022; Lin et al., 2023). The assimilation of retrieved temperature and humidity profiles from GMWRs 

has shown improvements in forecasting fog, storms, and precipitation. However, the reliance on indirect assimilation methods 

introduces uncertainties and complicates error quantification, which limits their overall effectiveness in enhancing forecast 

accuracy (Caumont et al., 2016; Martinet et al., 2017; Lin et al., 2023). 40 

Direct assimilation of GMWR radiances, which bypasses the retrieval process, offers significant advantages by avoiding 

retrieval-related errors and improving the effective use of observations. This approach requires accurate observation operators 

and robust bias correction to address differences between radiance observations and model states. The direct assimilation of 

satellite-borne radiance observations is relatively mature (Geer et al., 2008; Bauer et al., 2010; Geer et al., 2010; Eyre et al., 

2020; Sun and Xu, 2021; Eyre et al., 2022) and utilizes fast radiative transfer models (RTMs) as observation-operator, such as 45 

the Radiative Transfer for Television and Infrared Observation Satellite (RTTOV) (Saunders et al., 2018). However, the unique 

characteristics of upward-looking GMWR observations, such as sensitivity to near-surface conditions, require specialized 

RTMs and adaptation of existing techniques. It is noted that studies began to develop fast RTMs suitable for GMWR, which 

provide a foundation for constructing observation operators for assimilation of GMWR observations (De Angelis et al., 2016; 

Cimini et al., 2019; Shi et al., 2025). The RTTOV-gb, a ground-based version of the RTTOV model, was used to simulate 50 

brightness temperature from GMWRs, demonstrating high accuracy (De Angelis et al., 2016, 2017; Cimini et al., 2019). Recent 

studies have demonstrated the potential of direct GMWR radiance assimilation using RTTOV-gb to improve temperature, 

humidity, and precipitation forecasts (Cao et al., 2023; Vural et al., 2023). 

Despite these advancements, previous studies have typically relied on limited GMWR networks or focused on specific case 

studies. Additionally, research conducted in regions with relatively simple terrain may not fully address the complexities of 55 

areas like the Tibetan Plateau, where complex topography often leads to significant model biases (Yang et al., 2020; Wei et 

al., 2021). These biases make accurate bias correction essential for improving the effectiveness of direct assimilation, while 

traditional bias correction approaches developed for satellite-borne microwave radiance observations are not directly 

applicable to GMWRs. 

To address these issues, this study integrates RTTOV-gb into the Weather Research and Forecasting Data Assimilation 60 

(WRFDA) system (Barker et al., 2012) to develop a direct assimilation module for GMWR radiances. A nonlinear bias 

correction scheme based on machine learning is also constructed using three months of observational data. The impact of direct 

GMWR assimilation is then investigated through a series of ten-day experiments conducted in Southwest China, a region 

shaped by the influence of the Tibetan Plateau and characterized by complex terrain. The remainder of this paper is organized 
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as follows. Section 2 describes the data, the implementation of RTTOV-gb in WRFDA, and the model configuration. Section 65 

3 evaluates the performance of the bias correction scheme. Section 4 presents the impacts of GMWR assimilation on the initial 

and forecast fields. The conclusions and discussion are presented in Sect. 5. 

2 Methodology 

2.1 Data 

Two types of GMWR sensors were assimilated in this study, as shown in Fig. 1: the MP3000A and the Humidity And 70 

Temperature Profiler (HATPRO). Atmospheric radiance is measured as brightness temperatures in 14 channels for HATPRO 

and 22 channels for MP3000A (Table 1). For HATPRO, channels 1–7 are in the K-band, while channels 8–14 are in the V-

band. For MP3000A, channels 1–8 are in the K-band, and channels 9–22 are in the V-band. The K-band channels correspond 

to humidity-sensitive water vapor absorption lines, whereas the V-band channels correspond to temperature-sensitive oxygen 

absorption lines. 75 

The Fengyun-4B (FY-4B) Advanced Geosynchronous Radiation Imager (AGRI) cloud mask (CLM) is used to identify 

GMWR-observed brightness temperatures under clear-sky conditions. The AGRI-based CLM product has a temporal 

resolution of 15 minutes and a horizontal resolution of 4 km, categorizing conditions as confidently cloudy, probably cloudy, 

probably clear, or confidently clear, with corresponding values of 0, 1, 2, and 3, respectively (Min et al., 2017). Due to its high 

quality, this cloud mask product is widely applied in satellite data assimilation (Yin et al., 2020, 2021; Xu et al., 2023; Shen 80 

et al., 2024). 

The National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis data (FNL) (0.25° × 0.25°, 6-

hourly) were used to establish the initial and boundary conditions for regional NWP. Conventional observations from the 

Global Telecommunications System (GTS) were assimilated and evaluated, including land surface, marine surface, radiosonde, 

and aircraft reports. The hourly precipitation analysis product from the China Meteorological Administration Multisource 85 

Precipitation Analysis System (Shen et al., 2014) was used for evaluation. This dataset has been widely used in precipitation 

studies (Xia et al., 2019; Su et al., 2020; Sun and Xu, 2021; Wang et al., 2021; Li et al., 2023; Zheng et al., 2024). 

Table 1. Central frequency for GMWRs 

Sensor Frequencies for K-band (GHz) Frequencies for V-band (GHz) 

HATPRO 
22.240;23.040;23.840;25.440; 

26.240;27.840;31.400 

51.260;52.280;53.860;54.940; 

56.660;57.300;58.000 

MP3000A 
22.234;22.500;23.034;23.834; 

25.000;26.234;28.000;30.000 

51.248;51.760;52.280;52.804; 

53.336;53.848;54.400;54.940; 

55.500;56.020;56.660;57.288; 

57.964;58.800 
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2.2 Assimilation system and observation operator 90 

The WRFDA system, developed by the National Center for Atmospheric Research (NCAR), is designed for data assimilation 

and includes three-dimensional variational (3DVAR), four-dimensional variational (4DVAR), and hybrid data assimilation 

algorithms. In this study, version 4.5 of the WRFDA system with 3DVAR is used for the direct assimilation of GMWR 

radiances. The 3DVAR algorithm produces the analysis by minimizing a scalar objective cost function:  

𝐽(𝒙) =
1

2
(𝒙 − 𝒙b)

𝑇𝐁−1(𝒙 − 𝒙b) +
1

2
(𝒚 − 𝐇(𝒙))T𝐑−1(𝒚 − 𝐇(𝒙)) ,      (1) 95 

where 𝒙 and 𝒙b represent the analysis and background fields of the model variables, 𝐲 is the vector of the observations, and 𝐁 

and 𝐑 represent the background and observation error covariance matrices, respectively. The covariance matrices determine 

the weights assigned to the background and observations in the analysis, dictates how localized observation information is 

distributed vertically and horizontally in the model space, and maintains the balance among the model's control variables. 𝐇 

is the non-linear observation operator, that transforms model variables to the observed quantities. The observation operator 100 

works slightly differently for different types of observations. For conventional observations (e.g., temperature), its primary 

role is to perform spatiotemporal interpolation of model grid values to the observation space. For unconventional observations 

(e.g., reflectivity and radiance), where the model state cannot be directly compared with the observations, the observation 

operator must also convert model variables into observed variables. 

The static background error covariance for the variational experiments is estimated using the National Meteorological Center 105 

(NMC) method (Parrish and Derber, 1992), which uses the difference between WRF forecasts at lead times of 24 h and 12 h 

(T + 24 h minus T + 12 h) valid at the same time over a specified period. Control variables option 5 (CV5) is adopted for the 

background error covariance used in 3DVAR. CV5 is domain-dependent and therefore must be generated based on forecast or 

ensemble data over the same domain. It utilizes streamfunction, unbalanced velocity potential, unbalanced temperature, 

unbalanced surface pressure, and pseudo relative humidity. In this study, the background error covariance matrix was generated 110 

using the Generalized Background Error Covariance Matrix Model (GEN_BE v2.0) (Descombes et al., 2015) based on one 

month of WRF forecasts. Observation-error correlations are typically assumed to be zero in WRFDA, resulting in a diagonal 

observation-error covariance matrix. Observation errors were specified based on the standard deviation of O–B. 

RTMs serve as observation operators for assimilating radiance data by mapping model variables (e.g., temperature and water 

vapor) into radiance space. RTTOV, a fast RTM, is widely used for assimilating satellite radiance data. However, GMWR 115 

radiances are upward-looking microwave observations, differing from the downward-looking measurements of satellite-borne 

microwave radiometers. This difference in direction makes RTTOV difficult to apply in GMWR radiances assimilation. 

Fortunately, RTTOV-gb can simulate brightness temperatures from GMWRs, and serves as the observation operator in this 

study. The weighting function (WF) quantifies the contribution of emissions from each atmospheric layer, and the maximum 

WF height indicates which atmospheric layer contributes most to the measured radiance (Carrier et al., 2008). According to 120 

Cui et al. (2020), WFs are calculated as the derivative of transmittance with respect to the natural logarithm of pressure. The 
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vertical distribution of WFs for HATPRO and MP3000A, calculated using RTTOV-gb, is shown in Fig. 2. The WFs reach 

their maximum at 1000 hPa and decrease monotonically with height. These results confirm that the lower atmosphere 

contributes most to the observed radiation across all channels, consistent with the findings of Shu et al. (2012).  

It should be noted that RTTOV-gb is not included in the publicly available version of WRFDA. To address this limitation, a 125 

GMWR direct assimilation module was developed within WRFDA. Results from the single-observation assimilation 

experiment confirm that the GMWR direct assimilation module performs correctly. The temperature and water vapor 

increments are horizontally isotropic and show a maximum at lower atmospheric levels vertically (Fig. 2). It should also be 

noted that this experiment was conducted to verify the correct performance of the GMWR direct assimilation module and to 

provide valuable insights into the characteristics of GMWR assimilation. However, it is not representative of the subsequent 130 

multi-observation, multi-channel assimilation experiments. 

 

2.3 Model configuration and experimental design 

In this study, version 4.5 of the Weather Research and Forecasting (WRF) model (Skamarock et al., 2021) is used to simulate 

atmospheric evolution. The simulation employs a single domain (Fig. 1) with a horizontal resolution of 3 km, comprising 135 

1,261 × 811 grid points and 51 vertical levels, with the top boundary at 10 hPa. The model physics configuration includes the 

Morrison two-moment microphysics scheme (Morrison et al., 2009), the Yonsei University PBL scheme (Hong et al., 2006), 

the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) shortwave and longwave radiation schemes 

(Iacono et al., 2008), and the unified Noah land-surface model (Chen and Dudhia, 2001). Cumulus parameterization was 

excluded due to the convection-permitting horizontal resolution of 3 km (Li et al., 2023; Moker et al., 2018). 140 

Similar to previous studies (Jiang et al., 2017; Nie and Sun, 2023), the target region of Southwest China in this study is defined 

as the area within the rectangular domain 22°–35°N, 93°–110°E (Fig. 1). This region encompasses the Hengduan Mountains, 

the Yunnan–Guizhou Plateau, and the Sichuan Basin, and is generally consistent with Chinese administrative divisions. Based 

on the model configuration described above, four parallel experiments were conducted to investigate the impact of GMWR 

assimilation (Table 2). Each experiment started at 12:00 UTC daily, incorporating 12 hours of data assimilation followed by a 145 

24 h forecast. The primary differences among these experiments lie in the assimilated data and assimilation intervals. The 

CNTL experiment assimilated GTS data with a 6 h interval, while the GMWR_6H experiment added GMWR assimilation to 

the CNTL setup, enabling an evaluation of GMWR assimilation's impact. The other two experiments, GMWR_3H and 

GMWR_1H, assimilated both GTS and GMWR data with 3 h and 1 h intervals, respectively, to assess the effects of observation 

frequency in GMWR assimilation.  150 

The assimilation experiments were conducted under clear-sky conditions due to the uncertainties in the model and observation 

operators under cloudy or rainy conditions. All experiments were conducted over a ten-day period from 13 to 22 October 2023. 

Among the available GMWR observations from August to October 2023, this period exhibited a notably higher frequency of 

clear-sky data, which was more favorable for demonstrating the role and potential of GMWR assimilation. Before 
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implementing bias correction, clear-sky screening, first-guess departure check, and whitelist check were sequentially applied 155 

to improve measurement quality. Subsequently, a relative departure check was applied prior to minimization. For the 6 h, 3 h, 

and 1 h assimilation intervals, 34 (0.91%), 70 (1.42%), and 76 (0.72%) observations were rejected, respectively. The detailed 

procedure prior to a single assimilation cycle is as follows: 

(1) Observation Selection: The observation nearest to the analysis time within ±10 minutes is selected. 

(2) Clear-sky Screening: Clear-sky GMWR observations were screened using the AGRI-based CLM, with background-160 

simulated cloud liquid water path equal to zero. 

(3) First-Guess Departure Check: Observations with (O−B) values greater than 20 K are excluded. 

(4) Whitelist Check: Remove observations from stations identified as unreliable or displaying abnormal behavior. 

(5) Bias Correction: a machine learning bias correction scheme was applied (see Section 3.2). 

(6) Relative Departure Check: Applied when the absolute value of the O−B exceeds three times the standard deviation of the 165 

observational error, further rejecting questionable data. 

 

 

Figure 1: Computation domain(shaded). The shaded denotes topography (units: m). The green rectangle denotes the target region 

of Southwest China. The blue empty circle denotes radiosonde. The 'x' and '+' symbols denote HATPRO and MP3000A, respectively. 170 
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Figure 2: Normalized weighting functions of (a) HATPRO and (b) MP3000A calculated using the RTTOV-gb. The (c, d) horizontal 

and (e, f) vertical analysis increments for (c, e) temperature and (d, f) water vapor mixing ratio in single-observation assimilation 

experiment. The vertical increments are cross-sections along the green lines shown in the horizontal increments. The colorbar tick 

labels for temperature and water vapor mixing ratio are expressed in scientific notation as 1×10⁻² and 1×10⁻⁴, respectively. 175 

 

Table 2 Experimental design 

Experiment 
Assimilated 

Data 

Assimilation 

Interval 

CNTL GTS 6-hour 

GMWR_6H 
GTS and 

GMWR 
6-hour 

GMWR_3H 
GTS and 

GMWR 
3-hour 

GMWR_1H 
GTS and 

GMWR 
1-hour 

3 Machine learning based bias correction for GMWR 

3.1 Bias characteristics 

Variational assimilation assumes that both observation and background errors follow an unbiased Gaussian distribution. 180 

However, due to instrument errors, limitations of the RTMs, and errors in the NWP model background, observed radiances (O) 

and simulated radiances (B) inherently contain errors (denoted as 𝜇𝑜 and 𝜇𝑏), which may exhibit a biased distribution. Bias 
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correction is a crucial process in radiance data assimilation, aiming to identify and remove these biases (Auligné et al., 2007; 

Dee, 2005). In the real atmosphere, O and B are regarded as the true value (T) plus their respective deviations μ, as shown in 

Eq. (2): 185 

O − B̅̅ ̅̅ ̅̅ ̅̅ = (O − T) − (B − T)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = μ𝑜 − μ𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ,         (2) 

It shows that the statistical expectation value of O−B can represent the systematic deviation (μ𝑜 − μ𝑏) Therefore, it is critical 

to evaluate the bias characteristics of O−B and correct them. 

To estimate the bias and develop a bias correction scheme for GMWR direct assimilation, a long-term experiment was 

conducted from August to October 2023, yielding a three-month sample dataset. In this experiment, the WRF model was 190 

initialized every 6 hours using NCEP FNL data, and WRFDA operated hourly in monitoring mode (only calculate O−B). After 

a cloud check using the AGRI-based CLM and a gross check (O−B < 20 K), the bias of O−B for HATPRO and MP3000A was 

estimated. 

A comparative scatterplot analysis of observed and simulated brightness temperatures was conducted. For most channels, the 

scatter points are closely aligned along the diagonal and exhibit high correlation coefficients, indicating strong agreement 195 

between the simulations and observations. However, the scatter for some channels forms two distinct clusters. To further 

investigate, representative channels from the K-band (water vapor absorption lines) and the V-band (temperature-sensitive 

oxygen absorption lines) were selected. Figure 3 presents scatterplots for channel 1 (K-band) and channel 13 (V-band) of 

HATPRO, and channel 1 (K-band) and channel 14 (V-band) of MP3000A. Results for the remaining channels are shown in 

Figures A1 and A2. For HATPRO, more than 6,000 samples are analyzed for channels 1 and 13. The O−B biases are 1.25 K 200 

for channel 1 and 2.14 K for channel 13, with standard deviations (STD) of 3.35 K and 2.82 K, respectively. Additionally, the 

scatter distribution for channel 13 is not centered, showing a cluster shifted to the right of the diagonal (Fig. 3b). For MP3000A, 

more than 2,000 samples are analyzed for channels 1 and 14, with O−B biases of 3.06 K for channel 1 and −0.54 K for channel 

14. The O−B STDs are 3.94 K and 3.08 K, respectively. Similar to the results for HATPRO channel 13 (V-band), the scatter 

for MP3000A channel 14 (V-band) also shows a cluster offset from the diagonal, but to the left (Fig. 3d). Based on these 205 

results, significant O−B biases are detected in GMWR observations, with their characteristics varying across different sensors 

and channels. However, the correlation coefficients between observed and simulated brightness temperatures are high, at least 

0.95, suggesting that these biases can be effectively corrected. 
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Figure 3: Scatter plot of observed brightness temperature (Tb) versus simulated Tb, based on samples collected from August to 210 
October 2023. The top and bottom rows correspond to the HATPRO and MP3000A sensors, and the left and right columns represent 

the K-band and V-band, respectively. Each panel displays the number of samples (num), the O−B mean (bias), O−B standard 

deviation (STD), and the correlation coefficient (r) between observed and simulated Tb. 

To further analyze the O−B bias characteristics at each station and investigate the reasons for the band shifting from the 

diagonal (Fig. 3b and d), the statistics for each station are presented in Fig. 4. For HATPRO, the O−B bias varies among 215 

stations. Stations near complex topography (e.g., 56312, 56137, 56029, and 55664) exhibit notable positive O−B biases in 

channels 8 to 13 (Fig. 4a), leading to a rightward shift of the band relative to the diagonal (Fig. 3b). These positive biases may 

result from biases in the background field over the topographic region, the limited applicability of RTTOV-gb coefficients, or 

calibration issues in the observations. Consistent with results for all stations, the O−B STD at each station for the K-band is 

larger than that for the V-band (Fig. 4b). The correlation coefficients between observed and simulated brightness temperatures 220 

are high across all channels (typically above 0.90), although they are slightly lower for channels 4 to 9. For MP3000A, station 

57461 exhibits a negative O−B bias in channels 9 to 14 (Fig. 4d), contributing to the band shifting to the left of the diagonal 

(Fig. 3d). Similar to the results for HATPRO, the O−B STD in the K-band is generally larger than that in the V-band (Fig. 4e), 

and the correlation coefficients are also overall higher, typically exceeding 0.9 (Fig. 4f). 
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 225 

Figure 4: Statistics at each station based on samples collected from August to October 2023. O−B (a) bias and (b) standard deviations 

(STD) for HATPRO; (c) correlation coefficient (r) between observed and simulated brightness temperatures for HATPRO; (d–f) 

same as (a–c) but for MP3000A. Some stations did not provide observations for specific channels; the corresponding missing data 

are displayed in grey in the figure. 

3.2 Bias correction 230 

Based on the results above, noticeable O−B biases were observed, varying across sensors, channels, and the geographical 

locations of stations. It is essential to remove these biases before assimilation. Static bias correction (Harris and Kelly, 2001) 

and variational bias correction (Dee, 2005) are commonly used in radiance data assimilation. These methods typically assume 

a linear correlation between the biases and selected predictors. However, nonlinear sources of bias are common, and Zhang et 

al. (2023) demonstrated that nonlinear scheme outperforms linear scheme in reducing systematic biases. Following Zhang et 235 

al. (2023), this study developed a machine learning-based bias correction scheme, using the Random Forest (RF) technique 

(Breiman, 2001). 

Following Yin et al. (2020), the predictors include 1,000–300hPa thickness, 200–50hPa thickness, model surface skin 

temperature (TS) and total precipitable water (PW). Considering that GMWRs are sensitive to the lower atmosphere, the 

predictors also include 1,000–700hPa thickness, 700–500hPa thickness, 500–300hPa thickness, 2m temperature (T2), 2m 240 
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water vapor mixing ratio (Q2), 10m zonal wind (U10), 10m meridional wind (V10), and surface pressure (PS). Finally, latitude, 

longitude, and observed brightness temperatures (Tb) are included as predictors due to their potential importance (Zhang et 

al., 2023). The O−B biases vary across sensors and channels. Therefore, a separate model is trained for each type of instrument 

and channel. Biases also vary across the geographical locations of stations, potentially influenced by the large-scale topography 

of the Tibetan Plateau. As predictors, 2 m temperature, surface pressure, and latitude and longitude are important for explaining 245 

these biases. 

There are two types of parameters in machine learning models: model parameters and hyperparameters. Model parameters are 

initialized and updated during the learning process. Hyperparameters, on the other hand, cannot be directly estimated from 

data. They must be configured before training because they define the model's architecture. Building an optimal machine 

learning model requires exploring a range of possibilities. The process of determining the ideal model architecture and 250 

hyperparameter configuration is known as hyperparameter tuning. Hyperparameter tuning is a key component of developing 

an effective machine learning model (Yang and Shami, 2020).  

The RF model has four key hyperparameters: the number of trees in the forest (n_estimators), the maximum depth of the tree 

(max_depth), the minimum number of samples required to split an internal node (min_samples_split), and the minimum 

number of samples required to be at a leaf node (min_samples_leaf). These hyperparameters were tuned using scikit-learn’s 255 

GridSearchCV (Pedregosa et al., 2011) with 5-fold cross-validation (CV), which exhaustively searches over a predefined range 

of hyperparameters, training and evaluating the model for each configuration. The flowchart illustrating the training and 

evaluation process of the bias correction (BC) model is shown in Fig. 5b. The three-month sample dataset (described in Section 

3.1) was randomly split into a training set (70 %) and a test set (30 %). During training, GridSearchCV constructed a large 

grid of possible hyperparameter configurations, iteratively trained and evaluated the model for each, and calculated a score. 260 

Finally, the optimized model was trained using the configuration with the highest score. 
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Figure 5: Flowchart of the training and evaluation for bias correction model 

To investigate the impact of hyperparameters on model training time and performance, the fit time and score of the RF model 

under various hyperparameter settings were analyzed (figure not shown). Overall, the fit time and score demonstrated a positive 265 

correlation. As the min_samples_leaf and min_samples_split parameters increased, both fit time and score decreased 

monotonically. Conversely, increasing the max_depth and n_estimators parameters resulted in a monotonic increase in both 

fit time and score. Notably, max_depth had the most significant impact on the score, while n_estimators primarily affected the 

fit time. For n_estimators, the score increased logarithmically, while the fit time grew linearly. These findings suggest that 

selecting a moderately small value for the n_estimators parameter can achieve better results while reducing computational 270 

time. 

Using the above bias correction model, the corrected O−B is obtained by subtracting the predicted O−B from the original O−B. 

The effectiveness of the BC model was assessed based on the probability density functions (PDFs) of the O−B distribution 

using the test set. For most channels, the PDFs exhibit a unimodal pattern, with peak positions deviating from zero, indicating 

that the O−B values are biased. For some channels, the distributions are multimodal, characterized by a secondary peak 275 

superimposed on the primary one. Although these issues are present in the original distributions, after bias correction, the PDFs 

approximate an unbiased distribution, and the secondary peaks are effectively suppressed, demonstrating the effectiveness of 

the correction. From the scatter plots in Fig. 3, the O−B distribution appears bimodal—an issue that may affect 3D-Var, which 

typically assumes the errors to be unimodal (Gaussian). Similar to Fig. 3, channel 1 (K-band) and channel 13 (V-band) of 

HATPRO, as well as channel 1 (K-band) and channel 14 (V-band) of MP3000A, are selected for detailed analysis (Fig. 6). 280 

Results for the remaining channels are presented in Figures B1 and B2. The biases for HATPRO channel 1, HATPRO channel 

13, MP3000A channel 1, and MP3000A channel 14 are 1.24 K, 2.21 K, 3.00 K, and –0.64 K, respectively, with corresponding 

STDs of 3.38 K, 2.90 K, 3.89 K, and 3.08 K. The differences between the test set and the full dataset (shown in Fig. 3) are 
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negligible, with a maximum bias difference of 0.10 K and a maximum STD difference of 0.08 K, highlighting the strong 

representativeness of the test set. From the PDF distributions of O–B, both instruments exhibit a positive bias in the K-band 285 

with a unimodal distribution. In contrast, a bimodal distribution is observed in the V-band: the second peak appears on the 

right for HATPRO and on the left for MP3000A. These results are consistent with the scattering patterns shown in Fig. 3. 

After the bias correction is applied, both the bias and STD are reduced, and the O–B distribution becomes more sharply 

concentrated around zero, accompanied by an increase in kurtosis. For example, in channel 1 of MP3000A, the bias and STD 

decrease from 1.24 K and 3.38 K to 0.03 K and 1.44 K, respectively, while the kurtosis increases markedly from 1.53 to 9.44. 290 

It is also noteworthy that the bimodal distributions in the V-band for both instruments become unimodal after the correction. 

Meanwhile, the skewness decreases from 1.04 and 1.54 to 0.55 and 1.05, respectively, indicating a more symmetrical O–B 

distribution. These results demonstrate that the proposed bias correction scheme effectively reduces bias and STD, addresses 

bimodal distribution, and shifts the O–B distribution closer to a Gaussian shape. 

 295 
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Figure 6: Probability density functions (PDFs) of the O−B distributions, based on a test set randomly selected from 30% of the 

three-month sample dataset collected from August to October 2023. The top and bottom rows correspond to the HATPRO and 

MP3000A sensors, respectively, while the left and right columns represent the K-band and V-band. Each panel displays the 

number of samples (num), the mean (bias), standard deviation (STD), skewness, and kurtosis of the distributions. 

 300 

Figure 7 illustrates the bias and STD of the O−B for each HATPRO channel. Before BC, the O−B bias for HATPRO ranged 

from 0 to 2 K, with the bias in the K-band (particularly channels 4 to 7) being smaller than that in the V-band. After bias 

correction, the bias for each channel is approximately 0 K. In terms of the O−B STD, values ranged from 2 to 4 K without BC, 

with channels 4 to 7 exhibiting smaller values compared to other channels. After BC, the STD of O−B oscillates between 0.5 

and 1.5 K. The application of this BC model significantly reduced both the bias and STD of O−B, with reductions of 0.83 K 305 

(97.1 %) and 1.63 K (64.6 %), respectively. Meanwhile, the corrected O−B distributions display Gaussian characteristics 

centered around zero, indicating effective removal of systematic biases. 

Diagnosing the contributions of each predictor is crucial. Figure 7c illustrates the feature importance of several predictors for 

HATPRO. The model normalized the feature importance scores so that their sum equals 1. A higher score reflects a stronger 

correlation between predictors and O−B biases. Observed brightness temperature, total precipitable water, and surface pressure 310 

are significant contributors to BC for the K-band (water vapor channel). For the V-band (temperature channel), observed 

brightness temperature, latitude, and surface pressure are the most influential predictors. The contributions of atmospheric 

thickness predictors are smaller compared to the other predictors; however, the 1,000–700 hPa thickness predictor has a 

relatively larger contribution among them. This may be because GMWR primarily observes radiation from the lower 

atmosphere. Notably, surface pressure plays a critical role in BC for the temperature channels, which may account for the 315 

positive bias in O−B observed at plateau stations (Fig. 4a). 
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Figure 7: (a) Bias and (b) standard deviation (STD) of O−B, based on a test set randomly selected from 30% of the three-month 

sample dataset collected from August to October 2023. (c) Feature importance of the predictors used in the bias correction (BC) 

model. The shaded regions and solid lines represent the range and mean feature importance for the K-band and V-band, respectively. 320 

4 Direct assimilation of GMWR radiance observations 

4.1 Assimilation impacts on initial condition 

The performance of GMWR assimilation in the observation space was evaluated. Figure 8 summarizes the bias and STD of 

the O−B and observation minus analysis (O−A) statistics, aggregated over time and across different channels. The bias of O−A 

was reduced compared to O−B, particularly in the V-band. Specifically, for channel 11 of GMWR_1H (1 h assimilation 325 

interval), O−B was −0.40 K and O−A was −0.13 K. When GMWR observations were assimilated, the simulated brightness 

temperatures became closer to the observations, resulting in smaller STD. Moreover, as the frequency of GMWR observation 

assimilation increases, the bias and STD of the O−B gradually converge closer to zero. For channel 3, the O−B STD in 

GMWR_6H, GMWR_3H, and GMWR_1H significantly decreased from 1.03 K, 0.92 K, and 0.56 K to O−A STD values of 

0.36 K, 0.34 K, and 0.34 K, respectively. Although the differences in O−A are less noticeable, the improvement of O−B 330 

suggests that increasing the frequency in cycling assimilation accumulates the impact of the GMWRs, producing a higher-

quality first-guess field for the final cycle. The assimilation of GMWR observations effectively influences the brightness 

temperatures, demonstrating the successful processing of GMWR data by the 3DVAR system.  
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Figure 8: Verification of the initial conditions against GMWR observations, based on the ten-day assimilation experiment conducted 335 
from 13 to 22 October 2023. (a) Bias and (b) standard deviation (STD) of the observation minus background (O−B) and observation 

minus analysis (O−A) for the GMWR assimilation in the target region of Southwest China (blue box in Fig. 1). 

The above evaluation demonstrates the successful implementation of the newly introduced GMWR radiance direct assimilation 

in WRFDA. However, compared to brightness temperature simulations, greater attention should be given to the model state 

variables in the initial field, as they directly influence subsequent model forecasts. To this end, radiosonde observations in the 340 

target region of Southwest China were used to evaluate the impact of GMWR assimilation. The root-mean-square error (RMSE) 

was calculated, and the RMSE differences between CNTL and other assimilation experiments are shown in Fig. 9.  

Results indicate that assimilating GMWR radiances enhances low-level temperature and humidity fields, with higher 

assimilation frequencies offering the potential for additional improvements. GMWR assimilation has a neutral impact on 

atmospheric temperature above 1 km AGL, where the RMSE difference is minimal. However, it positively impacts lower 345 

atmospheric temperature, with the RMSE for temperature decreasing below 1 km AGL. Specifically, the average RMSE 

improvements below 1 km are 3.67 %, 5.28 %, and 6.32 % for GMWR_6H, GMWR_3H, and GMWR_1H, respectively. This 

indicates that increasing assimilation frequency enhances observational impacts and further improves the initial field. The 

improvement becomes more pronounced with decreasing altitude, with 100 m RMSE improvements of 0.10 K (6.25 %), 0.13 

K (7.90 %), and 0.19 K (11.34 %) in GMWR_6H, GMWR_3H, and GMWR_1H, respectively. For the water vapor mixing 350 

ratio (QVAPOR), GMWR assimilation demonstrates a positive impact that extends into the middle atmosphere, with average 

RMSE improvements below 5 km of 2.30 %, 2.20 %, and 1.98 % for GMWR_6H, GMWR_3H, and GMWR_1H, respectively. 
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The impact of GMWR assimilation and the effect of assimilation frequency become more pronounced in the lower atmosphere, 

with average RMSE improvements below 300 m of 3.01 % for GMWR_1H, compared to 2.43 % for GMWR_6H and 2.05 % 

for GMWR_3H.  355 

It is noted that the GMWR assimilation has negative impacts on the wind fields. The RMSE for zonal and meridional winds 

exhibits a slight negative effect when GMWR is assimilated, with meridional winds even showing an increase in RMSE. These 

negative impacts on the wind field caused by GMWR assimilation may be attributed to two factors: (1) When assimilating 

observed brightness temperature, the adjoint model of the observation operator directly adjusts temperature and humidity to 

optimize the simulation, while changes in the wind field are indirectly driven by these adjustments through the background 360 

error covariance. (2) GMWR assimilation primarily improves the lower atmosphere, while changes in the upper atmosphere 

are also governed by the background error covariance. The static background error covariance used here is climatological and 

isotropic, which does not fully align with evolving weather conditions, potentially resulting in ineffective wind field 

improvements. 

 365 

Figure 9: Verification of the initial conditions against radiosonde observations, based on the ten-day assimilation experiment 

conducted from 13 to 22 October 2023. Root mean square error (RMSE) of (a) temperature, (b) water vapor mixing ratio (QVAPOR), 

(c) zonal wind, and (d) meridional wind in the target region of Southwest China (blue box in Fig. 1). 

Based on the evaluation against radiosonde observations, the assimilation of GMWR data improves the initial fields of 

temperature and humidity, aligning them more closely with observations, particularly in the lower atmosphere. Additionally, 370 

the initial fields are validated against surface station observations, including measurements of 2m temperature, 2m humidity, 

and 10m wind (Fig. 10). 

The RMSE differences indicate that GMWR assimilation effectively enhances the 2m temperature and humidity fields. Under 

6-hourly GMWR assimilation, the temperature RMSE generally increased on the southern side of the basin, whereas other 
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regions showed a positive effect with reduced RMSE values. Moreover, the temperature RMSE reduction in these positively 375 

affected areas further improved as the assimilation frequency increased, with overall differences ranging from −0.008 K 

(−0.3 %) to −0.099 K (−4.1 %). For humidity, GMWR assimilation shows a negative impact on relative humidity (RH) at a 6 

h assimilation frequency. However, the RMSE over the plateau decreases as the assimilation frequency increases, with the 

RMSE difference shifting from positive to negative. In the GMWR_1H experiment, the RH RMSE is reduced by 0.276 (1.3 %). 

Unlike the temperature and humidity RMSEs, the improvement in the wind field RMSE does not exhibit a distinct spatial 380 

pattern. Compared to the CNTL experiment, the RMSE differences for zonal wind are −0.005 m s−1 (−0.3 %), −0.017 m s−1 

(−1.0 %), and −0.019 m s−1 (−1.2 %) in GMWR_6H, GMWR_3H, and GMWR_1H, respectively. Similarly, the RMSE 

differences for meridional wind are −0.008 m s−1 (−0.5 %), −0.011 m s−1 (−0.7 %), and −0.009 m s−1 (−0.5 %) in GMWR_6H, 

GMWR_3H, and GMWR_1H, respectively. While the changes in wind RMSE are relatively small, the results indicate that 

assimilating GMWR data improves the initial field, with higher assimilation frequencies offering potential for further 385 

enhancement. 
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Figure 10: Verification of the initial conditions against surface station observations, based on the ten-day assimilation experiment 

conducted from 13 to 22 October 2023. The percentage in RMSE differences (scatter) of temperature (T), relative humidity (RH), 

zonal wind (U), and meridional wind (V) in the target region of Southwest China (blue box in Fig. 1). The grey solid line represents 390 
the topography height (m). 

4.2 Assimilation impacts on forecast field 

After presenting the improvements in the initial condition, this section investigated the impact of GMWR assimilation on the 

24 h forecasts. The time series of RMSE for the CNTL experiment and RMSE differences (assimilation experiments minus 

the CNTL experiment) against surface station observations for 2 m temperature, 2 m relative humidity, and 10 m wind fields 395 

are shown in Fig. 11. In the CNTL experiment, the RMSE of temperature and relative humidity initially decreases and then 

increases with lead time, while the RMSE of the wind field exhibits the opposite trend, increasing at first and then decreasing. 
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The mean RMSEs over the 24-hour forecast period are 2.32 K for temperature, 16.26% for relative humidity, 1.92 m s⁻¹ for 

zonal wind, and 2.08 m s⁻¹ for meridional wind. Regarding assimilation impacts, the RMSE reduction for temperature gradually 

decreases, approaching zero at a lead time of 6 hours, with higher assimilation frequency (GMWR_1H) achieving a greater 400 

RMSE reduction. Similar results are observed for relative humidity, where the RMSE reduction also decreases and approaches 

zero at a lead time of 12 hours. GMWR_1H consistently demonstrates the largest RMSE reduction for relative humidity. 

However, it should be noted that the direct assimilation of GMWR data caused a negative impact on relative humidity at a lead 

time of 12 hours. The degradation of wind fields (Fig. 9) and the model’s inherent nonlinearity may be responsible.  For the 

wind field, no increase in the RMSE difference with lead time was observed, as previously described. However, the RMSE 405 

differences between the assimilation experiments and the CNTL experiment remain overall negative, indicating that GMWR 

assimilation improves wind forecasts. Additionally, GMWR_1H demonstrates the largest RMSE reduction in meridional wind, 

suggesting that increasing the frequency of GMWR assimilation may lead to further improvements. The quantitative statistics 

are presented in Table 3. The temperature RMSE differences between GMWR_6H and CNTL are −0.012, −0.005, and −0.004 

K for lead time of 1–6 hours, 1–12 hours, and 1–24 hours, respectively. This gradual decrease in RMSE differences with 410 

increasing forecast time is also observed in other experiments and variables, indicating a weakening of the positive impact of 

GMWR assimilation as the forecast period extends. When the impact of GMWR assimilation is most pronounced (at a lead 

time of 1–6 hours), the temperature RMSE differences range from −0.012 K in GMWR_6H to −0.019 K in GMWR_3H, and 

−0.030 K in GMWR_1H. The temperature RMSE reduction increases with the frequency of GMWR assimilation, a trend also 

observed in relative humidity and wind, suggesting that increasing the assimilation frequency can further improve the short-415 

term forecasts. Although these differences are small, the results reflect the potential for improved model forecasts with GMWR 

assimilation. 
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Figure 11: Verification of the forecast against surface station observations, based on the ten-day assimilation experiment conducted 

from 13 to 22 October 2023. RMSE (black line) for the CNTL experiment and RMSE differences (colored lines) between the 420 
assimilation experiments and the CNTL experiment for (a) temperature, (b) relative humidity, (c) zonal wind, and (d) meridional 

wind.  

 

 

 425 

 

 

Table 3 RMSE difference against surface station observations. 

EXP Lead 

time 

(hour) 

Temperature 

(K) 

Relative  

Humidity 

 (%) 

Zonal 

wind 

(m s−1) 

Meridional  

wind 

(m s−1) 

GMWR_6

H 

1–6 −0.012 −0.011 −0.006 −0.005 

1–12 −0.005 −0.027 −0.003 −0.006 
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minus 

CNTL 
1–24 −0.004 0.046 −0.003 −0.003 

GMWR_3

H 

minus 

CNTL 

1–6 −0.019 −0.042 −0.007 −0.006 

1–12 −0.010 −0.036 −0.006 −0.007 

1–24 −0.003 0.072 −0.005 −0.003 

GMWR_1

H 

minus 

CNTL 

1–6 −0.030 −0.153 −0.008 −0.013 

1–12 −0.012 −0.087 −0.006 −0.013 

1–24 −0.005 0.065 −0.006 −0.009 

 

Verification against surface station observations indicated that assimilating GMWR radiances improves near-surface forecasts, 430 

with higher assimilation frequencies offering potential for further enhancement. To further examine the impact of GMWR 

assimilation, Fig. 12 presents the forecast verification against radiosonde measurements. Unlike the RMSE differences for the 

initial condition (Fig. 9), the GMWR assimilation did not reduce the RMSE for lower atmospheric temperature and water 

vapor mixing ratio, indicating a neutral impact of GMWR assimilation on forecasts. Similarly, the wind field verification 

results did not show significant improvements with GMWR assimilation. While the RMSE of zonal wind was reduced in the 435 

GMWR_1H experiment, the RMSE differences for the wind field in other experiments were close to or greater than zero, 

suggesting a neutral to slightly negative impact of GMWR assimilation on wind forecasting. According to the verifications 

against radiosonde data, limited improvements were found in the forecasts through GMWR assimilation. The limited 

improvement shown in this figure could be related to the relatively long forecast lead times (12 and 24 hours), during which 

model errors tend to accumulate and weaken the benefits of improved initial conditions from GMWR assimilation. Verification 440 

against surface station observations indicates that the improvements were primarily confined to the first few hours, particularly 

for temperature and humidity. After 12 hours, the impact declined noticeably, with some cases even exhibiting negative effects 

(Fig. 11). 
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Figure 12: Same as Fig. 9, but for forecast at lead time of 12 and 24 hours. 445 

 

To further explore the role of GMWR assimilation in precipitation forecasting, the fractions skill score (FSS) of 3 h 

accumulated precipitation forecasts was calculated. The radius of influence for the FSS was set to 18 km, equivalent to six 

times the grid spacing (Ha and Snyder, 2014; Zheng et al., 2024). Figure 13 presents the time series of FSS for the CNTL 

experiment and FSS differences (assimilation experiments minus the CNTL experiment). The assimilation experiments were 450 

conducted during a period characterized by a higher frequency of clear-sky observations. Cloud cover and precipitation were 

limited throughout the 10-day period, resulting in the absence of frequent heavy rainfall events. Consequently, the FSS was 

calculated using small precipitation thresholds. In the CNTL experiment, the FSS for 3 h accumulated precipitation shows an 

initial decline followed by a subsequent increase with lead time, with relatively low FSS values observed around the 9 h 

forecast period. Moreover, the FSS generally decreases as the precipitation threshold increases. The time mean FSS values are 455 

0.47, 0.45, 0.42, and 0.39 for thresholds of 3 mm, 4mm, 5mm, and 6 mm, respectively. Regarding the role of GMWR 

assimilation in precipitation forecasting, the results indicate that assimilating GMWR radiances enhances precipitation 

forecasts, with FSS differences increasing progressively at higher precipitation thresholds. Additionally, increasing 

assimilation frequency shows the potential to further enhance forecast performance. When assimilating GMWR data at a 1 h 

frequency, the time-averaged FSS improvements for 3 h accumulated precipitation are 0.02 (3.9 %) for the 3 mm threshold, 460 

0.02 (4.7 %) for 4 mm threshold, 0.03 (7.3 %) for 5 mm threshold, and 0.04 (10.2 %) for 6 mm threshold precipitation. For 3 

h accumulated precipitation with a threshold of 6 mm, the time-averaged FSS improvements are 0.01, 0.02, and 0.03 for 

GMWR_6H, GMWR_3H, and GMWR_1H, respectively. These findings are consistent with the above verification against 

radiosonde and surface station observations, suggesting that GMWR assimilation can improve forecasts and that higher-

frequency assimilation leads to further enhancements. 465 
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Figure 13: The time series of FSS (black line) for CNTL experiment and FSS differences (colored lines) between the assimilation 

experiments and the CNTL experiment. These experiments were conducted from 13 to 22 October 2023.The FSS was calculated for 

3 h accumulated precipitation for thresholds of (a) 3 mm, (b) 4 mm, (c) 5 mm, and (d) 6 mm. 470 

5 Conclusions and Discussion 

To investigate the impact of directly assimilating GMWRs in Southwest China, GMWR assimilation module has been built in 

WRFDA-4.5, where RTTOV-gb is used as the observation operator. Based on this module, three-month O−B statistic sample 

was calculated to evaluate the bias for O−B and developed a BC model. Furthermore, 10-day assimilation experiments (Table 

2) were conducted using this GMWR assimilation module and BC model to investigate the impact of direct assimilation 475 

GMWR and the effects of assimilation frequency. The main findings are as follows: 

1.Based on three months of hourly samples, noticeable O−B biases were observed, varying across sensors, channels, and 

geographical locations. The machine learning-based bias correction scheme, employing an RF model, effectively reduced these 

systematic biases. After applying this BC model, both the bias and STD of the O−B were substantially reduced. Specifically, 

the bias and STD decreased by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. The corrected O−B distributions exhibited 480 

Gaussian characteristics centered around zero, indicating the successful mitigation of systematic biases.  

2.Assimilating GMWR enhances the accuracy of initial atmospheric conditions, with higher assimilation frequencies 

amplifying the positive impact, particularly for temperature and humidity in the lower atmosphere. Evaluation against 
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radiosonde observations shows that the temperature RMSE below 1 km AGL decreases by 3.67 % to 6.32 %, with 

improvements below 100 m AGL ranging from 6.25 % to 11.34 % for 6 h, 3 h, and 1 h assimilation frequencies, respectively. 485 

For the water vapor mixing ratio, positive impacts extend up to 5 km AGL, with average RMSE improvements ranging from 

1.98 % to 2.30 %. Verification against surface station observations further supports these findings, indicating that the RMSE 

for 2 m temperature decreases by up to 4.1 %, while the RMSE for 2 m relative humidity decreases by up to 1.3 % at the 1 h 

assimilation frequency. 

3. The assimilation of GMWR observations leads to improvements in forecasts, and increasing assimilation frequencies has 490 

potential to get further improvement. In the first 6 hours of the forecast, the temperature RMSE decrease by 0.012 K, 0.019 K, 

and 0.030 K with 6 h, 3 h and 1 h GMWR assimilation frequency, respectively. Similar trends are observed for relative 

humidity, the experiment with 1 h GMWR assimilation frequency showing the largest decrease in RMSE. GMWR assimilation 

also improves precipitation forecasts, with further enhancements seen as assimilation frequency increases. For 1 h GMWR 

assimilation, time-averaged FSS improvements reach 0.02 for both the 3 mm and 4mm, 0.03 for 5 mm, and 0.04 for 6 mm 495 

thresholds. 

In the three-month O−B statistics, the STD in the K-band is larger than that in the V-band, consistent with Vural et al. (2023) 

and Cao et al. (2023). This phenomenon may be attributed to the K-band's sensitivity to water vapor and the V-band's sensitivity 

to temperature, with model temperature accuracy being better than that of water vapor. The O−B bias varies across sensors, 

channels, and geographical locations, with a notable positive bias observed at high-altitude stations. This positive bias is 500 

potentially caused by large-scale topographical effects on the Tibetan Plateau. In this region, model simulations may contain 

errors, and RTTOV-gb coefficients may be inapplicable. The RTTOV-gb coefficients are based on global atmospheric profiles, 

which may differ significantly from the climatic conditions of plateau regions, potentially affecting simulation accuracy.  

A machine learning-based bias correction scheme using the RF technique was developed, demonstrating strong performance. 

The number of trees is a critical hyperparameter that must be predetermined. Training time increases linearly with the number 505 

of trees, while performance gradually plateaus. Thus, a modest number of trees, such as 50, can balance efficiency and accuracy. 

Feature importance analysis for BC predictors revealed observed brightness temperature, atmospheric precipitable water, and 

surface pressure as key factors for correcting biases. The importance of brightness temperatures aligns with findings in satellite 

data bias correction (Liu et al., 2022; Zhang et al., 2023). Atmospheric precipitable water is essential for the K-band, a 

humidity-sensitive channel. Surface pressure plays a key role in temperature channels, thereby accounting for the positive bias 510 

observed in plateau regions. Although atmospheric thickness predictors contributed less overall, the 1,000–700 hPa thickness 

was relatively significant, likely due to GMWRs primarily sensing radiation from the lower atmosphere. 

In this study, direct assimilation of GMWR radiance enhances both the initial conditions and the forecasts, showing a potential 

in improving ABL and precipitation simulations. However, it should be noted that the assimilation of GMWR data generally 

has a negative impact on the wind fields in the initial conditions. The background error covariance may contribute to this 515 

negative impact, as it determines the response of the wind fields to the adjustments in temperature and humidity made by 

RTTOV-gb. As an initial study primarily focused on the direct variational assimilation of GMWR data with machine learning-
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based bias correction, it is admitted that this study has some limitations. The GMWR assimilation was implemented using 

3DVAR, based on RTTOV-gb and WRFDA, and only static background-error covariances were employed in this study. The 

background error covariance matrix plays an important role in variational data assimilation, but this type of covariance is 520 

climatological, spatially homogeneous, and isotropic. This may limit the impact of GMWR assimilation, and flow-dependent 

error covariances should be considered in future work. Moreover, only clear-sky GMWRs were assimilated in this study. Since 

precipitation processes are often accompanied by extensive cloud cover, few clear-sky GMWRs were available. To better 

explore the potential of GMWR assimilation, experiments were conducted during periods with abundant clear-sky GMWRs 

(e.g., a ten-day period in October 2023), which coincided with minimal heavy precipitation. Studies on satellite all-sky 525 

assimilation have shown that incorporating cloud- and precipitation-affected data improves forecasts (Ma et al., 2022; Xian et 

al., 2019), highlighting the need for future research on all-sky assimilation of GMWRs. Under such conditions, assimilation 

experiments could be conducted during a different or longer period, given that assimilated GMWR observations would be 

relatively more abundant. It is noted that GMWRs exhibit higher sensitivity and provide more valuable observations of the 

lower troposphere and planetary boundary layer compared to satellite-based microwave radiometers (Shi et al., 2023). Building 530 

on this study, future research could explore the joint direct assimilation of satellite-based and ground-based microwave 

radiometers. By leveraging their complementary observational capabilities, this approach has the potential to further enhance 

the accuracy of atmospheric analysis and improve forecasting across multiple layers of the atmosphere. 
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Appendix A: Observed versus simulated Tb 

 535 

Figure A1: Scatter plot of observed brightness temperature (Tb) versus simulated Tb for HATPRO. Same as Fig. 3 but for 

additional channels. 
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Figure A2: Scatter plot of observed brightness temperature (Tb) versus simulated Tb for MP3000A. Same as Fig. 3 but for 

additional channels. 540 



29 

 

Appendix B: PDF distributions of O–B 

 

Figure B1: Probability density functions (PDFs) of the O−B distributions for HATPRO. Same as Fig. 6 but for additional 

channels. 
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Figure B2: Probability density functions (PDFs) of the O−B distributions for MP3000A. Same as Fig. 6 but for additional 

channels. 
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