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Abstract. The application of ground-based microwave radiometers (GMWRs), which provide high-quality and continuous 

vertical atmospheric observations, has traditionally focused on the indirect assimilation of retrieved profiles. This study 

advanced this application by developing a direct assimilation capability for GMWR radiance observations within the Weather 

Research and Forecasting model Ddata Aassimilation (WRFDA) system, along with a bias correction scheme based on the 20 

random forest technique. The proposed bias correction scheme effectively reduced the observation-minus-background (O−B) 

biases and standard deviations by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. A series of ten-day-long experiments 

demonstrated that assimilating GMWR radiances improves both the initial conditions and the forecasts, with additional benefits 

from higher assimilation frequencies. In the initial conditions, hourly assimilation significantly enhanced low-level 

temperature and humidity fields, reducing the root-mean-square error (RMSE) for temperature and water vapor mixing ratio 25 

by 6.32 % below 1 km and water vapor mixing ratio by 1.98 % below 5 km. These improvements extended to forecasts, where 

2 m temperature and humidity showed sustained benefits for over 12 hoursh, and precipitation forecasts exhibited 

improvements to a certain extent. The time-averaged Fractions Skill Score (FSS) for 3 h accumulated precipitation within the 

24 h forecasts increased by 0.02–0.04 (3.9–10.2 %) for thresholds of 3–6 mm. 

1 Introduction 30 

Data assimilation (DA), a core component of numerical weather prediction (NWP), plays an important role in improving 

forecast accuracy by integrating observational data to refine initial conditions (Bauer et al., 2015; Gustafsson et al., 2018). 
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Among various types of observations, microwave radiance data are crucial for DA due to their ability to penetrate the 

atmosphere and their sensitivity to temperature, humidity, clouds, and precipitation. Correspondingly, satellite-borne 

microwave radiance observations have been extensively studied and are considered among the most influential contributors to 35 

data assimilation systems (Geer et al., 2017; Kim et al., 2020; Candy and Migliorini, 2021). 

Unlike satellite-borne microwave radiometers, ground-based microwave radiometers (GMWRs) offer unique advantages for 

DA, including high temporal resolution (minute-level) and greater sensitivity to the atmospheric boundary layer (ABL). Over 

the past two decades, the assimilation of GMWRs has been increasingly studied, leading to improvements in the accuracy of 

NWP (Vandenberghe and Ware, 2002; Otkin, 2010; Hartung et al., 2011; Otkin et al., 2011; Caumont et al., 2016; He et al., 40 

2020; Qi et al., 2021, 2022; Lin et al., 2023). The assimilation of retrieved temperature and humidity profiles from GMWRs 

has shown improvements in forecasting fog, storms, and precipitation. However, the reliance on indirect assimilation methods 

introduces uncertainties and complicates error quantification, which limits their overall effectiveness in enhancing forecast 

accuracy (Caumont et al., 2016; Martinet et al., 2017; Lin et al., 2023). 

Direct assimilation of GMWR radiances, which bypasses the retrieval process, offers significant advantages by avoiding 45 

retrieval-related errors and improving the effective use of observations. This approach requires accurate observation operators 

and robust bias correction to address differences between radiance observations and model states. The direct assimilation of 

satellite-borne radiance observations is relatively mature (Geer et al., 2008; Bauer et al., 2010; Geer et al., 2010; Eyre et al., 

2020; Sun and Xu, 2021; Eyre et al., 2022) and utilizes fast radiative transfer models (RTMs) as observation-operators, such 

as the Radiative Transfer for Television and Infrared Observation Satellite (RTTOV) (Saunders et al., 2018). However, the 50 

unique characteristics of upward-looking GMWR observations, such as sensitivity to near-surface conditions, require 

specialized RTMs and adaptation of existing techniques. Recent studies have developed fast RTMs suitable for GMWRs, 

which provide a foundation for constructing observation operators for assimilation of GMWR radiances (De Angelis et al., 

2016; Cimini et al., 2019; Shi et al., 2025). The RTTOV-gb, a ground-based version of the RTTOV model, was used to simulate 

brightness temperature from GMWRs, demonstrating high accuracy (De Angelis et al., 2016, 2017; Cimini et al., 2019). Recent 55 

studies have demonstrated the potential of direct GMWR radiance assimilation using RTTOV-gb to improve temperature, 

humidity, and precipitation forecasts (Cao et al., 2023; Vural et al., 2024). 

Despite these advancements, previous studies have typically relied on limited GMWR networks or focused on specific case 

studies. Additionally, research conducted in regions with relatively simple terrain may not fully address the complexities of 

areas like the Tibetan Plateau, where complex topography often leads to significant model biases (Yang et al., 2020; Wei et 60 

al., 2021). These biases make accurate bias correction essential for improving the effectiveness of direct assimilation, while 

traditional bias correction approaches developed for satellite-borne microwave radiance observations are not directly 

applicable to GMWRs. 

To address these issues, this study integrates RTTOV-gb into the Weather Research and Forecasting Data Assimilation 

(WRFDA) system (Barker et al., 2012) to develop a direct assimilation module for GMWR radiances. A nonlinear bias 65 

correction scheme based on machine learning is also constructed using three months of observational data. The impact of direct 
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GMWR assimilation is then investigated through a series of ten-day experiments conducted in Southwest China, a region 

shaped by the influence of the Tibetan Plateau and characterized by complex terrain. The remainder of this paper is organized 

as follows. Section 2 describes the data, the implementation of RTTOV-gb in WRFDA, and the model configuration. Section 

3 evaluates the performance of the bias correction scheme. Section 4 presents the impacts of GMWR assimilation on the initial 70 

and forecast fields. The conclusions and discussion are presented in Sect. 5. 

2 Methodology 

2.1 Data 

Two types of GMWR sensors were assimilated in this study, as shown in Fig. 1: the MP3000A and the Humidity And 

Temperature Profiler PROfiler (HATPRO). Atmospheric radiance is measured as brightness temperatures in 14 channels for 75 

HATPRO and 22 channels for MP3000A (Table 1). For HATPRO, channels 1–7 are in the K-band, while channels 8–14 are 

in the V-band. For MP3000A, channels 1–8 are in the K-band, and channels 9–22 are in the V-band. The K-band channels 

correspond to humidity-sensitive water vapor absorption lines, whereas the V-band channels correspond to temperature-

sensitive oxygen absorption lines. 

The Fengyun-4B (FY-4B) Advanced Geostationary Geosynchronous Radiation Imager (AGRI) cloud mask (CLM) is used to 80 

identify GMWR-observed brightness temperatures under clear-sky conditions. The AGRI-based CLM product has a temporal 

resolution of 15 minutes and a horizontal resolution of 4 km, categorizing conditions as confidently cloudy, probably cloudy, 

probably clear, or confidently clear, with corresponding values of 0, 1, 2, and 3, respectively (Min et al., 2017). Due to its high 

quality, this cloud mask product is widely applied in satellite data assimilation (Yin et al., 2020, 2021; Xu et al., 2023; Shen 

et al., 2024). 85 

The National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis data (FNL) (0.25° × 0.25°, 6-

hourly) were used to establish the initial and boundary conditions for regional NWP. Conventional observations from the 

Global Telecommunications System (GTS) were assimilated and evaluated, including land surface, marine surface, radiosonde, 

and aircraft reports. The hourly precipitation analysis product from the China Meteorological Administration Multisource 

Precipitation Analysis System (Shen et al., 2014) was used for evaluation. This dataset has been widely used in precipitation 90 

studies (Xia et al., 2019; Su et al., 2020; Sun and Xu, 2021; Wang et al., 2021; Li et al., 2023; Zheng et al., 2024). 

Table 1. Central frequency for GMWRs 

Sensor Frequencies for K-band (GHz) Frequencies for V-band (GHz) 

HATPRO 
22.240;23.040;23.840;25.440; 

26.240;27.840;31.400 

51.260;52.280;53.860;54.940; 

56.660;57.300;58.000 
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MP3000A 
22.234;22.500;23.034;23.834; 

25.000;26.234;28.000;30.000 

51.248;51.760;52.280;52.804; 

53.336;53.848;54.400;54.940; 

55.500;56.020;56.660;57.288; 

57.964;58.800 

 

2.2 Assimilation system and observation operator 

The WRFDA system, developed by the National Center for Atmospheric Research (NCAR), is designed for data assimilation 95 

and includes three-dimensional variational (3DVAR), four-dimensional variational (4DVAR), and hybrid data assimilation 

algorithms. In this study, version 4.5 of the WRFDA system with 3DVAR is used for the direct assimilation of GMWR 

radiances. The 3DVAR algorithm produces the analysis by minimizing a scalar objective cost function:  

𝐽(𝒙) =
1

2
(𝒙 − 𝒙b)

𝑇𝐁−1(𝒙 − 𝒙b) +
1

2
(𝒚 − 𝐇(𝒙))T𝐑−1(𝒚 − 𝐇(𝒙)) ,      (1) 

where 𝒙 and 𝒙b represent the analysis and background fields of the model variables, 𝐲 is the vector of the observations, and 𝐁 100 

and 𝐑 represent the background and observation error covariance matrices, respectively. The covariance matrices determine 

the weights assigned to the background and observations in the analysis, dictate how localized observation information is 

distributed vertically and horizontally in the model space, and maintains the balance among the model's control variables. 𝐇 

is the non-linear observation operator, that transforms model variables to the observed quantities. The observation operator 

works slightly differently for different types of observations. For conventional observations (e.g., temperature), its primary 105 

role is to perform spatiotemporal interpolation of model grid values to the observation space. For unconventional observations 

(e.g., reflectivity and radiance), where the model state cannot be directly compared with the observations, the observation 

operator must also convert model variables into observed variables. 

The static background error covariance for the variational experiments is estimated using the National Meteorological Center 

(NMC) method (Parrish and Derber, 1992), which uses the difference between WRF forecasts at lead times of 24 h and 12 h 110 

(T + 24 h minus T + 12 h) valid at the same time over a specified period. Control variables option 5 (CV5) is adopted for the 

background error covariance used in 3DVAR. CV5 is domain-dependent and therefore must be generated based on forecast or 

ensemble data over the same domain. It utilizes streamfunction, unbalanced velocity potential, unbalanced temperature, 

unbalanced surface pressure, and pseudo relative humidity. In this study, the background error covariance matrix was generated 

using the Generalized Background Error Covariance Matrix Model (GEN_BE v2.0) (Descombes et al., 2015) based on one 115 

month of WRF forecasts. Observation-error correlations are typically assumed to be zero in WRFDA, resulting in a diagonal 

observation-error covariance matrix. Observation errors were specified based on the standard deviation of O−–B. 

RTMs serve as observation operators for assimilating radiance data by mapping model variables (e.g., temperature and water 

vapor) into radiance space. RTTOV, a fast RTM, is widely used for assimilating satellite radiance data. However, GMWR 

radiances are upward-looking microwave observations, differing from the downward-looking measurements of satellite-borne 120 



5 

 

microwave radiometers. This difference in direction makes RTTOV difficult to apply in to GMWR radiances assimilation. 

Fortunately, RTTOV-gb can simulate brightness temperatures from GMWRs, and serves as the observation operator in this 

study. The weighting function (WF) quantifies the contribution of emissions from each atmospheric layer, and the maximum 

WF height indicates which atmospheric layer contributes most to the measured radiance (Carrier et al., 2008). According to 

Cui et al. (2020), WFs are calculated as the derivative of transmittance with respect to the natural logarithm of pressure. The 125 

vertical distribution of WFs for HATPRO and MP3000A, calculated using RTTOV-gb, is shown in Fig. 2. The WFs reach 

their maximum at 1000 hPa and decrease monotonically with height. These results confirm that the lower atmosphere 

contributes most to the observed radiance radiation across all channels, consistent with the findings of Shu et al. (2012).  

It should be noted that RTTOV-gb is not included in the publicly available version of WRFDA. To address this limitation, a 

GMWR direct assimilation module was developed within WRFDA. A single-observation assimilation experiment was 130 

conducted to test the GMWR direct assimilation module. In this experiment, a pseudo radiance observation from the HATPRO 

sensor was assimilated in channel 6 (K- band), with an assigned observation error of 1 K and an innovation of 2 K. Results 

confirm that the GMWR direct assimilation module performs correctly. The temperature and water vapor increments are 

horizontally isotropic and show a maximum at lower atmospheric levels vertically (Fig. 2). It should also be noted that this 

experiment was conducted to verify the correct performance of the GMWR direct assimilation module and to provide valuable 135 

insights into the characteristics of GMWR assimilation. However, it is not representative of the subsequent multi-observation, 

multi-channel assimilation experiments. 

 

2.3 Model configuration and experimental design 

In this study, version 4.5 of the Weather Research and Forecasting (WRF) model (Skamarock et al., 2021) is used to simulate 140 

atmospheric evolution. The simulation employs a single domain (Fig. 1) with a horizontal resolution of 3 km, comprising 

1,261 × 811 grid points and 51 vertical levels, with the top boundary at 10 hPa. The model physics configuration includes the 

Morrison two-moment microphysics scheme (Morrison et al., 2009), the Yonsei University PBL scheme (Hong et al., 2006), 

the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) shortwave and longwave radiation schemes 

(Iacono et al., 2008), and the unified Noah land-surface model (Chen and Dudhia, 2001). Cumulus parameterization was 145 

excluded due to the convection-permitting horizontal resolution of 3 km (Li et al., 2023; Moker et al., 2018). 

Similar to previous studies (Jiang et al., 2017; Nie and Sun, 2023), the target region of Southwest China in this study is defined 

as the area within the rectangular domain 22°–35° N, 93°–110° E (Fig. 1). This region encompasses the Hengduan Mountains, 

the Yunnan–Guizhou Plateau, and the Sichuan Basin, and is generally consistent with Chinese administrative divisions. Based 

on the model configuration described above, four parallel experiments were conducted to investigate the impact of GMWR 150 

assimilation (Table 2). Each experiment started at 12:00 UTC daily, followed by a 12 h cycling data assimilation period and a 

subsequent 24 h forecast.incorporating 12 hours of data assimilation followed by a 24 h forecast. The primary differences 

among these experiments lie in the assimilated data and assimilation intervals. The CNTL experiment assimilated GTS data 
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with a 6 h interval, while the GMWR_6H experiment added GMWR assimilation to the CNTL setup, enabling an evaluation 

of GMWR assimilation's impact. The other two experiments, GMWR_3H and GMWR_1H, assimilated both GTS and GMWR 155 

data with 3 h and 1 h intervals, respectively, to assess the effects of observation frequency in GMWR assimilation.  

The assimilation experiments were conducted under clear-sky conditions due to the uncertainties in the model and observation 

operators under cloudy or rainy conditions. All experiments were conducted over a ten-day period from 13 to 22 October 2023. 

Among the available GMWR observations from August to October 2023, this period exhibited a notably higher frequency of 

clear-sky data, which was more favorable for demonstrating the role and potential of GMWR assimilation. Before 160 

implementing bias correction, clear-sky screening, first-guess departure check, and whitelist check were sequentially applied 

to improve measurement quality. Subsequently, a relative departure check was applied prior to minimization. For the 6 h, 3 h, 

and 1 h assimilation intervals, 34 (0.91 %), 70 (1.42 %), and 76 (0.72 %) observations were rejected, respectively. Although 

the experiment with a 1 h assimilation interval rejects the largest number of observations, its rejection rate remains the lowest 

because it has the highest assimilation frequency and assimilates the largest volume of GMWR data. The detailed procedure 165 

prior to a single assimilation cycle is as follows: 

(1) Observation Selection: The observation nearest to the analysis time within ±10 minutes is selected. 

(2) Clear-sky Screening: Clear-sky GMWR observations were screened using the AGRI-based CLM, with background-

simulated cloud liquid water path equal to zero. 

(3) First-Guess Departure Check: Observations with |O−B|(O−B) values greater than 20 K are excluded. 170 

(4) Whitelist Check: Remove observations from stations identified as unreliable or displaying abnormal behavior. 

(5) Bias Correction: A machine learning bias correction scheme was applied (see Sect.tion 3.2). 

(6) Relative Departure Check: Applied when the absolute value of the O−B exceeds three times the standard deviation of the 

observational error, further rejecting questionable data. 

 175 
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Figure 1.: Computational Computation domain (shaded). The shadingThe shaded denotes topography (units: m). The green 

rectangle denotes the target region of Southwest China. The blue empty open circles denotes radiosondes. The 'x' and '+' symbols 

denote HATPRO and MP3000A, respectively. 

 180 

Figure 2.: Normalized weighting functions of (a) HATPRO and (b) MP3000A calculated using the RTTOV-gb. The (c, d) horizontal 

and (e, f) vertical analysis increments for (c, e) temperature and (d, f) water vapor mixing ratio in single-observation assimilation 
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experiment. The vertical increments are cross-sections along the green lines shown in the horizontal increments. The colorbar tick 

labels for temperature and water vapor mixing ratio are expressed in scientific notation as 1×10⁻² and 1×10⁻⁴, respectively. 

 185 

Table 2 Experimental design 

Experiment Assimilated Data Assimilation Interval 

CNTL GTS 6-hour 

GMWR_6H GTS and GMWR 6-hour 

GMWR_3H GTS and GMWR 3-hour 

GMWR_1H GTS and GMWR 1-hour 

3 Machine learning based bias correction for GMWR 

3.1 Bias characteristics 

Variational assimilation assumes that both observation and background errors follow an unbiased Gaussian distribution. 

However, due to instrument errors, limitations of the RTMs, and errors in the NWP model background, observed brightness 190 

temperaturesradiances (O) and simulated brightness temperatures radiances (B) inherently contain errors (denoted as 𝜇𝑜 and 

𝜇𝑏), which may exhibit a biased distribution. Bias correction is a crucial process in radiance data assimilation, aiming to 

identify and remove these biases (Auligné et al., 2007; Dee, 2005). In the real atmosphere, O and B are regarded as the true 

value (T) plus their respective deviations μ, as shown in Eq. (2): 

O − B̅̅ ̅̅ ̅̅ ̅̅ = (O − T) − (B − T)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = μ𝑜 − μ𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ,         (2) 195 

It shows that the statistical expectation value of O−B can represent the systematic deviation (μ𝑜 − μ𝑏). Therefore, it is critical 

to evaluate the bias characteristics of O−B and correct them. 

To estimate the bias and develop a bias correction scheme for GMWR direct assimilation, a long-term experiment was 

conducted from August to October 2023, yielding a three-month sample dataset. In this experiment, the WRF model was 

initialized every 6 hours h using NCEP FNL data, and WRFDA operated hourly in monitoring mode (only calculating O−B). 200 

After a cloud check using the AGRI-based CLM and a gross check (|O−B| < 20 K), the bias of O−B for HATPRO and 

MP3000A was estimated. 

A comparative scatterplot analysis of observed and simulated brightness temperatures was conducted. For most channels, the 

scatter points are closely aligned along the diagonal and exhibit high correlation coefficients, indicating strong agreement 

between the simulations and observations. However, the scatter points for some channels forms two distinct clusters. To further 205 

investigate, representative channels from the K-band (water vapor absorption lines) and the V-band (temperature-sensitive 

oxygen absorption lines) were selected. Figure 3 presents scatterplots for channel 1 (K-band) and channel 13 (V-band) of 
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HATPRO, as well as channel 1 (K-band) and channel 14 (V-band) of MP3000A. Results for the remaining channels are shown 

in Fig.ures A1 and Fig. A2. For HATPRO, more than 6,000 samples are were analyzed. The O−B biases are were 1.25 K for 

channel 1 and 2.14 K for channel 13, with standard deviations (STD) of 3.35 K and 2.82 K, respectively. Additionally, the 210 

scatter distribution for channel 13 is not centered, showing a cluster shifted to the right of the diagonal (Fig. 3b). For MP3000A, 

more than 2,000 samples are were analyzed, with O−B biases of 3.06 K for channel 1 and −0.54 K for channel 14. The O−B 

STDs are were 3.94 K and 3.08 K, respectively. Similar to the results for HATPRO channel 13 (V-band), the scatter points for 

MP3000A channel 14 (V-band) also shows a cluster offset from the diagonal, but to the left (Fig. 3d). Based on these results, 

significant O−B biases are detected in GMWR observations, with their characteristics varying across different sensors and 215 

channels. However, the correlation coefficients between observed and simulated brightness temperatures are high, at least 0.95, 

suggesting that these biases can be effectively corrected. 

 

Figure 3.: Scatter plots of observed brightness temperature (Tb) versus simulated Tb, based on samples collected from August to 

October 2023. The top and bottom rows correspond to the HATPRO and MP3000A sensors, and the left and right columns represent 220 
the K-band and V-band, respectively. Each panel displays the number of samples (num), the O−B mean (bias), O−B standard 

deviation (STD), and the correlation coefficient (r) between observed and simulated Tb. 

To further analyze the O−B bias characteristics at each station and investigate the reasons for the band shifting from the 

diagonal (Fig. 3b and 3d), the statistics for each station are presented in Fig. 4. For HATPRO, the O−B bias varies among 
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stations. Stations near complex topography (e.g., 56312, 56137, 56029, and 55664) exhibit notable positive O−B biases in 225 

channels 8 –to 13 (Fig. 4a), leading to a rightward shift of the band relative to the diagonal (Fig. 3b). These positive biases 

may result from biases in the background field over the topographic region, the limited applicability of RTTOV-gb coefficients, 

or calibration issues in the observations. Overall, the O−B STD at each station for the K-band is larger than that for the V-

band (Fig. 4b). The correlation coefficients between observed and simulated brightness temperatures are high across all 

channels (typically above 0.90), although they are slightly lower for channels 4– to 9. For MP3000A, station 57461 exhibits a 230 

negative O−B bias in channels 9– to 14 (Fig. 4d), contributing to the band shifting to the left of the diagonal (Fig. 3d). Similar 

to the results for HATPRO, the O−B STD in the K-band is generally larger than that in the V-band (Fig. 4e), and the correlation 

coefficients are also overall higher, typically exceeding 0.90 (Fig. 4f). 

 

Figure 4: . Statistics at each station based on samples collected from August to October 2023. O−B (a) bias and (b) standard 235 
deviations (STD) for HATPRO; (c) correlation coefficient (r) between observed and simulated brightness temperatures for 

HATPRO; (d–f) same as (a–c) but for MP3000A. Some stations did not provide observations for specific channels; the corresponding 

missing data are displayed in grey in the figure. 
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3.2 Bias correction 

Based on the results above, noticeable O−B biases were observed, varying across sensors, channels, and the geographical 240 

locations of stations. It is essential to remove these biases before assimilation. Static bias correction (Harris and Kelly, 2001) 

and variational bias correction (Dee, 2005) are commonly used in radiance data assimilation. O−–B bias is commonly 

represented using multiple linear regression with several predictors. Compared to linear estimates, nonlinear approaches show 

improved performance in reducing systematic biases (Zhang et al., 2023, 2024). Following these works, this study employed 

a machine learning–based bias correction scheme using the Random Forest (RF) technique (Breiman, 2001). 245 

According to Yin et al. (2020), the predictors include the 1,000–300 hPa thickness, 200–50 hPa thickness, model surface skin 

temperature (TS) and total precipitable water (PW). Considering that GMWRs are sensitive to the lower atmosphere, the 

predictors also include 1,000–700 hPa thickness, 700–500 hPa thickness, 500–300 hPa thickness, 2 m temperature (T2), 2 m 

water vapor mixing ratio (Q2), 10 m zonal wind (U10), 10 m meridional wind (V10), and surface pressure (PS). Finally, 

latitude, longitude, and observed brightness temperatures (Tb) are included as predictors due to their potential importance 250 

(Zhang et al., 2023). The O−B biases vary across sensors and channels. Therefore, a separate model is trained for each type of 

instrumentsensor and channel. Biases also vary across the geographical locations of stations, potentially influenced by the 

large-scale topography of the Tibetan Plateau. As predictors, 2 m temperature, surface pressure, and latitude and longitude are 

important for explaining these biases. 

There are two types of parameters in machine learning models: model parameters and hyperparameters. Model parameters are 255 

initialized and updated during the learning process. Hyperparameters, on the other hand, cannot be directly estimated from 

data. They must be configured before training because they define the model's architecture. Building an optimal machine 

learning model requires exploring a range of possibilities. The process of determining the ideal model architecture and 

hyperparameter configuration is known as hyperparameter tuning, which is a key component of developing an effective 

machine learning model (Yang and Shami, 2020).  260 

The RF model has four key hyperparameters: the number of trees in the forest (n_estimators), the maximum depth of the tree 

(max_depth), the minimum number of samples required to split an internal node (min_samples_split), and the minimum 

number of samples required to be at a leaf node (min_samples_leaf). These hyperparameters were tuned using scikit-learn’s 

GridSearchCV (Pedregosa et al., 2011) with 5-fold cross-validation, which exhaustively searches over a predefined range of 

hyperparameters, training and evaluating the model for each configuration. The flowchart illustrating the training and 265 

evaluation process of the bias correction (BC) model is shown in Fig. 5. The three-month sample dataset (described in Sect.ion 

3.1) was randomly split into a training set (70 %) and a test set (30 %). During training, GridSearchCV constructed a large 

grid of possible hyperparameter configurations, iteratively trained and evaluated the model for each, and calculated a score. 

Finally, the optimized model was trained using the configuration with the highest score. 
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 270 

Figure 5: . Flowchart of the training and evaluation for of bias correction model. 

To investigate the impact of hyperparameters on model training time and performance, the fit time and score of the RF model 

under various hyperparameter settings were analyzed (figure not shown). During hyperparameter tuning, n_estimators was 

varied between 10– and 150, max_depth was adjusted from 5– to 30, min_samples_leaf was tested with values between 1– and 

3, and min_samples_split was tuned in the range of 2– to 6. Overall, the fit time and score demonstrated a positive correlation. 275 

As the min_samples_leaf and min_samples_split parameters increased, both fit time and score decreased monotonically. 

Conversely, increasing the max_depth and n_estimators parameters resulted in a monotonic increase in both fit time and score. 

Notably, max_depth had the most significant impact on the score, while n_estimators primarily affected the fit time. For 

n_estimators, the score increased logarithmically, while the fit time grew linearly. These findings suggest that selecting a 

moderately small value for the n_estimators parameter can achieve better results while reducing computational time. 280 

Using the above bias correction (BC) model, the corrected O−B values are obtained by subtracting the predicted O−B bias 

from the original O−B valuesobservations. The effectiveness of the BC model is assessed based on the probability density 

functions (PDFs) of the O−B distributions in the test set (see Fig. 6 and Appendix B). Similar to Fig. 3, channel 1 (K-band) 

and channel 13 (V-band) of HATPRO, as well as channel 1 (K-band) and channel 14 (V-band) of MP3000A, are selected for 

detailed analysis (Fig. 6). For HATPRO channels 1 and 13, the biases (STDs) are 1.24 K (3.38 K) and 2.21 K (2.90 K), 285 

respectively. For MP3000A channels 1 and 14, the biases (STDs) are 3.00 K (3.89 K) and –0.64 K (3.08 K), respectively. The 

differences between the test set (Fig. 6) and the full dataset (Fig. 3) are negligible, with maximum differences in bias and STD 

of 0.10 K and 0.08 K, respectively, highlighting the strong representativeness of the test set. The original PDFs generally 

exhibit a unimodal shape, although their peaks deviate from zero. Moreover, some channels display bimodal features, often 

manifested as secondary peaks superimposed on the primary distribution—an issue that may affect 3D-VARar, which typically 290 

assumes the errors to follow an unbiased Gaussian distribution. 
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After applying the BC model, both the O−–B bias and STD are reduced, and the distribution becomes more sharply 

concentrated around zero, accompanied by an increase in kurtosis. For instance, in HATPROMP3000A channel 1, the bias 

(STD) decreases from 1.24 K (3.38 K) to 0.03 K (1.44 K), respectively, while the kurtosis markedly increases from 1.53 to 

9.44. It is noted that the PDFs of corrected O−–B approximate an unbiased distribution, and the secondary peaks are effectively 295 

suppressed. These results confirm that the proposed BC scheme effectively reduces both the bias and STD in the O−–B 

statistics, transforming the PDFs from a bimodal to a unimodal distribution. The bimodal feature in the O−–B PDFs 

corresponds to the two distinct clusters observed in the scatter plots shown in Fig. 3. Specifically, when one cluster is 

concentrated along the diagonal and the other shifts to the right, a peak forms on the positive x-axis of the O−B PDFs, resulting 

in a bimodal distribution. From the O−–B PDFs (Fig. 6), both instruments exhibit a positive bias with a unimodal distribution 300 

in the K-band. In contrast, the V-band displays a bimodal distribution: the second peak appears on the right for HATPRO and 

on the left for MP3000A. These results are consistent with the scatter plots shown in Fig. 3. After BC, the O−–B PDFs changes 

from a bimodal to a unimodal distribution, indicating that the two clusters have been effectively merged. 
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Figure 6: . Probability density functions (PDFs) of the O−B distributions, based on a test set randomly selected from 30 % of the 305 
three-month sample dataset collected from August to October 2023. The top and bottom rows correspond to the HATPRO and 

MP3000A sensors, respectively, while the left and right columns represent the K-band and V-band, respectively. Each panel 

displays the number of samples (num), the mean (bias), standard deviation (STD), skewness, and kurtosis of the distributions. 

 

Figure 7 illustrates the O−B bias and STD for each HATPRO channel. Before BC, the O−B bias ranged from 0 to 2 K, with 310 

the bias in the K-band (particularly channels 4– to 7) smaller than that in the V-band. After BC, the bias for each channel is 

approximately 0 K. In terms of the O−B STD, values ranged from 2 to 4 K without BC, with channels 4– to 7 exhibiting 

smaller values compared to other channels. After BC, the STD of O−B oscillates between 0.5 and 1.5 K. The application of 

this BC model significantly reduced both the O−B bias and STD, with reductions of 0.83 K (97.1 %) and 1.63 K (64.6 %), 

respectively. Meanwhile, the corrected O−B distributions display approximately Gaussian characteristics centered around zero, 315 

indicating effective removal of systematic O−B biases. 

Diagnosing the contributions of each predictor is crucial. Figure 7c illustrates the feature importance of several predictors for 

HATPRO. This BC model normalized normalizes the feature importance scores so that their sum equals 1. A higher score 

reflects a stronger influence correlation of the between predictors and on the O−B biases. Observed brightness temperature, 

total precipitable water, and surface pressure are significant contributors to BC for the K-band (water vapor channels). For the 320 

V-band (temperature channels), observed brightness temperature, latitude, and surface pressure are the most influential 

predictors. The contributions of atmospheric thickness predictors are smaller compared to the other predictors; however, the 

1,000–700 hPa thickness predictor has a relatively larger contribution among them. This may be because GMWR primarily 

observes radiation from the lower atmosphere. Notably, surface pressure plays a critical role in BC for V-band, which may 

account for the positive bias in O−B observed at plateau stations (Fig. 4a). 325 
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Figure 7: . (a) Bias and (b) standard deviation (STD) of O−B, based on a test set randomly selected from 30 % of the three-month 

sample dataset collected from August to October 2023. (c) Feature importance of the predictors used in the bias correction (BC) 

model. For each band, tThe shaded regions and solid lines represent the range and mean feature importance for the K-band and V-

band, respectively. 330 

4 Direct assimilation of GMWR radiance observations 

4.1 Assimilation impacts on initial conditions 

The performance of GMWR assimilation in the observation space was evaluated. Figure 8 summarizes the biases and STDs 

of the O−B and observation minus analysis (O−A) statistics, aggregated over time and acrossfor different channels. The bias 

of O−A was reduced compared to O−B, particularly in the V-band. Specifically, for channel 11 of GMWR_1H (1 h assimilation 335 

interval), O−B was −0.40 K and O−A was −0.13 K. When GMWR observations were assimilated, the simulated brightness 

temperatures became closer to the observations, resulting in smaller STDs. Moreover, as the frequency of GMWR observation 

assimilation increases, the bias and STD of the O−B gradually converge toward closer to zero. For channel 3, the O−B STD 

in GMWR_6H, GMWR_3H, and GMWR_1H significantly decreased from 1.03 K, 0.92 K, and 0.56 K to O−A STD values 

of 0.36 K, 0.34 K, and 0.34 K, respectively. Although the differences in O−A are less noticeable, the improvement of O−B 340 

suggests that increasing the frequency in cycling assimilation accumulates the impact of the GMWRs, producing a higher-

quality first-guess field for the final cycle. O–A statistics were also computed based on the initial fields from the CNTL 

experiment. The O–A bias in CNTL is slightly larger than that in the GMWR assimilation experiments, with a more noticeable 
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difference in the V band. Regarding the STD, the CNTL experiment shows higher values across all channels, with the largest 

difference approaching 1 K. These results suggest that assimilating GMWR data improves the consistency between the initial 345 

fields and the observed brightness temperatures. The assimilation of GMWR observations effectively influences the brightness 

temperatures, demonstrating the successful processing of GMWR data by the 3DVAR system.  

 

Figure 8: . Verification of the initial conditions against GMWR observations, based on the ten-day assimilation experiment 

conducted from 13 to 22 October 2023. (a) Bias and (b) standard deviation (STD) of the observation minus background (O−B) and 350 
observation minus analysis (O−A) for the GMWR assimilation in the target region of Southwest China (blue green rectangle box in 

Fig. 1).  

The above evaluation demonstrates the successful implementation of the newly introduced GMWR radiance direct assimilation 

in WRFDA. However, compared to brightness temperature simulations, greater attention should be given to the model state 

variables in the initial conditionsfield, as they directly influence subsequent model forecasts. To this end, radiosonde 355 

observations in the target region of Southwest China were used to evaluate the impact of GMWR assimilation. The root-mean-

square error (RMSE) was calculated, and the RMSE differences between CNTL and other assimilation experiments are shown 

in Fig. 9. Results indicate that assimilating GMWR radiances enhances low-level temperature and humidity fields, with higher 

assimilation frequencies offering the potential for additional improvements. GMWR assimilation has a neutral impact on 

atmospheric temperature above 1 km above ground level ( AGL), where the RMSE difference is minimal. However, it 360 

positively impacts lower atmospheric temperature, with the RMSE for temperature decreasing below 1 km AGL. Specifically, 

the average RMSE improvements below 1 km are 3.67 %, 5.28 %, and 6.32 % for GMWR_6H, GMWR_3H, and GMWR_1H, 

respectively. This indicates that increasing assimilation frequency enhances observational impacts and further improves the 
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initial conditionsfield. The improvement becomes more pronounced with decreasing altitude, with 100 m RMSE improvements 

of 0.10 K (6.25 %), 0.13 K (7.90 %), and 0.19 K (11.34 %) in GMWR_6H, GMWR_3H, and GMWR_1H, respectively. For 365 

the water vapor mixing ratio (QVAPOR), GMWR assimilation demonstrates a positive impact extending into the middle 

troposphere, with average RMSE reductions below 5 km of 2.30 %, 2.20 %, and 1.98 % for GMWR_6H, GMWR_3H, and 

GMWR_1H, respectively. The impact of GMWR assimilation and the effect of assimilation frequency are more pronounced 

in the lower atmosphere, with average RMSE reductions below 300 m of 3.01 % for GMWR_1H, compared to 2.43 % for 

GMWR_6H and 2.05 % for GMWR_3H.  370 

It is should be noted that the GMWR assimilation has shows a slight degradationnegative impacts on in the wind fields. The 

RMSE for zonal and meridional winds exhibits a slight negative effect when GMWR is assimilated, with meridional winds 

even showing an increase in RMSE. These negative impacts on the wind field caused by GMWR assimilation may be attributed 

to two factors: (1) When assimilating observed brightness temperatures, the adjoint model of the observation operator directly 

adjusts temperature and humidity to optimize the simulation, while changes in the wind field are indirectly driven by these 375 

adjustments through the background error covariance. (2) GMWR assimilation primarily improves the lower atmosphere, 

while changes in the upper atmosphere are also governed by the background error covariance. The static background error 

covariance used here is climatological and isotropic, which does not fully align with evolving weather conditions, potentially 

resulting in ineffective wind field improvements. 

 380 

Figure 9: . Verification of the initial conditions against radiosonde observations. RMSEs are computed from all samples over the 

ten-day assimilation experiment conducted from 13 to 22 October 2023.Verification of the initial conditions against radiosonde 

observations, based on the ten-day assimilation experiment conducted from 13 to 22 October 2023. Root mean square error (RMSE) 

of (a) temperature, (b) water vapor mixing ratio (QVAPOR), (c) zonal wind, and (d) meridional wind in the target region of 

Southwest China (green rectangleblue box in Fig. 1). 385 
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Based on the evaluation against radiosonde observations, the assimilation of GMWR data improves the initial fields of 

temperature and humidity, aligning them more closely with observations, particularly in the lower atmosphere. Additionally, 

the initial fields are validated against surface station observations, including measurements of 2 m temperature, 2 m humidity, 

and 10 m wind (Fig. 10). The RMSE differences indicate that GMWR assimilation effectively enhances the 2 m temperature 

and humidity fields. Under 6-hourly GMWR assimilation, the temperature RMSE generally increased on the southern side of 390 

the basin, whereas other regions showed a positive effect with reduced RMSE values. Moreover, the temperature RMSE 

reduction in these positively affected areas further improved as the assimilation frequency increased, with overall differences 

ranging from −0.008 K (−0.3 %) to −0.099 K (−4.1 %). For humidity, GMWR assimilation shows a negative impact on relative 

humidity (RH) at a 6 h assimilation frequency. However, the RMSE over the plateau decreases as the assimilation frequency 

increases, with the RMSE difference shifting from positive to negative. In the GMWR_1H experiment, the RMSE is reduced 395 

by 0.276 (1.3 %). 

Unlike the temperature and humidity RMSEs, the improvement in the wind field RMSE does not exhibit a distinct spatial 

pattern. Compared to the CNTL experiment, the RMSE differences for zonal wind are −0.005 m s−1 (−0.3 %), −0.017 m s−1 

(−1.0 %), and −0.019 m s−1 (−1.2 %) in GMWR_6H, GMWR_3H, and GMWR_1H, respectively. Similarly, the RMSE 

differences for meridional wind are −0.008 m s−1 (−0.5 %), −0.011 m s−1 (−0.7 %), and −0.009 m s−1 (−0.5 %) in GMWR_6H, 400 

GMWR_3H, and GMWR_1H, respectively. While the changes in wind RMSE are relatively small, the results indicate that 

assimilating GMWR data improves the initial conditionsfield, with higher assimilation frequencies offering potential for 

further enhancement. 
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Figure 10: . Verification of the initial conditions against surface station observations, based on the ten-day assimilation experiment 405 
conducted from 13 to 22 October 2023. The percentage differences in RMSE differences (scatter) of temperature (T), relative 

humidity (RH), zonal wind (U), and meridional wind (V) in the target region of Southwest China (green rectangleblue box in Fig. 1). 

The grey solid line represents the topography height (m). 

4.2 Assimilation impacts on forecast field 

After presenting the improvements in the initial conditions, this section investigated the impact of GMWR assimilation on the 410 

24 h forecasts. The time series of RMSE for the CNTL experiment and RMSE differences (assimilation experiments minus 

the CNTL experiment) against surface station observations for 2 m temperature, 2 m relative humidity, and 10 m wind fields 

are shown in Fig. 11. In the CNTL experiment, the RMSE of temperature and relative humidity initially decreases and then 

increases with lead time, while the RMSE of the wind field exhibits the opposite trend, increasing at first and then decreasing. 
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The mean RMSEs over the 24 -hourh forecast period are 2.32 K for temperature, 16.26 % for relative humidity, 1.92 m s⁻¹ for 415 

zonal wind, and 2.08 m s⁻¹ for meridional wind. Regarding assimilation impacts, the RMSE reduction for temperature gradually 

decreases, approaching zero at a lead time of 6 hoursh, with higher assimilation frequency (GMWR_1H) achieving a greater 

RMSE reduction. Similar results are observed for relative humidity, where the RMSE reduction also decreases and approaches 

zero at a lead time of 12 hoursh. GMWR_1H consistently demonstrates the largest RMSE reduction for relative humidity. 

However, it should be noted that the direct assimilation of GMWR data caused a negative impact on relative humidity at a lead 420 

time of 12 hoursh. The degradation of wind fields (Fig. 9) and the model’s inherent nonlinearity may be responsible. For the 

wind field, no increase in the RMSE difference with lead time was observed, as previously described. However, the RMSE 

differences between the assimilation experiments and the CNTL experiment remain overall negative, indicating that GMWR 

assimilation improves wind forecasts. Additionally, GMWR_1H demonstrates the largest RMSE reduction in meridional wind, 

suggesting that increasing the frequency of GMWR assimilation may lead to further improvements. The quantitative statistics 425 

are presented in Table 3. The temperature RMSE differences between GMWR_6H and CNTL are −0.012, −0.005, and −0.004 

K for lead time of 1–6 hoursh, 1–12 hoursh, and 1–24 hoursh, respectively. This gradual decrease in RMSE differences with 

increasing forecast time is also observed in other experiments and variables, indicating a weakening of the positive impact of 

GMWR assimilation as the forecast period extends. When the impact of GMWR assimilation is most pronounced (at a lead 

time of 1–6 hoursh), the temperature RMSE differences range from −0.012 K in GMWR_6H to −0.014 K in GMWR_3H, and 430 

−0.019 K in GMWR_1H. The temperature RMSE reduction increases with the frequency of GMWR assimilation, a trend also 

observed in relative humidity and wind, suggesting that increasing the assimilation frequency can further improve the short-

term forecasts. Although these differences are small, the results reflect the potential for improved model forecasts with GMWR 

assimilation. 
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 435 

Figure 11: . Verification of the forecasts against surface station observations, based on the ten-day assimilation experiment conducted 

from 13 to 22 October 2023. RMSE (black line) for the CNTL experiment and RMSE differences (colored lines) between the 

assimilation experiments and the CNTL experiment for (a) temperature, (b) relative humidity, (c) zonal wind, and (d) meridional 

wind.  

 440 

 

 

 

 

Table 3 RMSE difference against surface station observations. 445 

EXP Lead 

time 

(hour) 

Temperature 

(K) 

Relative  

Humidity 

 (%) 

Zonal 

wind 

(m s−1) 

Meridional  

wind 

(m s−1) 

GMWR_6

H 

1–6 −0.012 −0.046 −0.006 −0.004 

1–12 −0.005 −0.027 −0.003 −0.006 
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minus 

CNTL 
1–24 −0.004 0.046 −0.003 −0.003 

GMWR_3

H 

minus 

CNTL 

1–6 −0.014 −0.046 −0.005 −0.005 

1–12 −0.010 −0.036 −0.006 −0.007 

1–24 −0.003 0.072 −0.005 −0.003 

GMWR_1

H 

minus 

CNTL 

1–6 −0.019 −0.127 −0.007 −0.013 

1–12 −0.012 −0.087 −0.006 −0.013 

1–24 −0.005 0.065 −0.006 −0.009 

 

Verification against surface station observations indicated that assimilating GMWR radiances improves near-surface forecasts, 

with higher assimilation frequencies offering potential for further enhancement. To further examine the impact of GMWR 

assimilation, Fig. 12 presents the forecast verification against radiosonde measurements. Unlike the RMSE differences in the 

initial conditions (Fig. 9), the GMWR assimilation did not reduce RMSE for temperature or and water vapor mixing ratio, 450 

indicating a neutral impact of GMWR assimilation on forecasts. Similarly, the wind field verification results did not show 

noticeable improvements with GMWR assimilation. While the RMSE of zonal wind was reduced in the GMWR_1H 

experiment, the RMSE differences for the wind field in other experiments were close to or greater than zero, suggesting a 

neutral to slightly negative impact of GMWR assimilation on wind forecastingforecasts. Based on radiosonde-based 

verification at 12 and 24 h lead times, only limited improvements are evident after GMWR assimilation; however, this does 455 

not rule out larger impacts within 0–6 h, which cannot be robustly assessed here due to the limited temporal availability of 

radiosonde observations. According to the verifications against radiosonde data, limited improvements were found in the 

forecasts through GMWR assimilation. The limited improvement shown in this figure could be related to the relatively long 

forecast lead times (12 and 24 hoursh), during which model errors tend to accumulate and weaken the benefits of improved 

initial conditions from GMWR assimilation. In the surface-station verification, the improvements were primarily confined to 460 

the first few hours, particularly for temperature and humidity.Verification against surface station observations indicates that 

the improvements were primarily confined to the first few hours, particularly for temperature and humidity. After 12 hoursh, 

the impact declined noticeably, with some cases even exhibiting negative effects (Fig. 11). 
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Figure 12: . Same as Fig. 9, but for forecasts at lead times of 12 and 24 hoursh., with RMSEs computed from all forecast 465 
samples during the ten-day experiment. 

 

To further explore the role of GMWR assimilation in precipitation forecasting, the fractions skill score (FSS) of 3 h 

accumulated precipitation forecasts was calculated. The radius of influence for the FSS was set to 18 km, equivalent to six 

times the grid spacing (Ha and Snyder, 2014; Zheng et al., 2024). Figure 13 presents the time series of FSS for the CNTL 470 

experiment and FSS differences (assimilation experiments minus the CNTL experiment). The assimilation experiments were 

conducted during a period with a high frequency of clear-sky observations. Cloud cover and precipitation were sparse over the 

10-day period, resulting in the absence of frequent heavy rainfall events. Consequently, the FSS was calculated using small 

precipitation thresholds. In the CNTL experiment, the FSS for 3 h accumulated precipitation shows an initial decline followed 

by a subsequent increase with lead time, with relatively low FSS values observed around the 9 12 h forecast period. Moreover, 475 

the FSS generally decreases as the precipitation threshold increases. The time mean FSS values are 0.47, 0.45, 0.42, and 0.39 

for thresholds of 3 mm, 4 mm, 5 mm, and 6  mm, respectively. Regarding the role of GMWR assimilation in precipitation 

forecasting, the results indicate that assimilating GMWR radiances enhances precipitation forecasts, with FSS differences 

increasing progressively at higher precipitation thresholds. Additionally, increasing assimilation frequency shows the potential 

to further enhance forecast performance. When assimilating GMWR data at a 1 h frequency, the time-averaged FSS 480 

improvements for 3 h accumulated precipitation are 0.02 (3.9 %) for the 3 mm threshold, 0.02 (4.7 %) for 4 mm 4 mm threshold, 

0.03 (7.3 %) for 5 mm threshold, and 0.04 (10.2 %) for 6 mm threshold precipitation. For 3 h accumulated precipitation with 

a threshold of 6  mm, the time-averaged FSS improvements are 0.01, 0.02, and 0.03 for GMWR_6H, GMWR_3H, and 

GMWR_1H, respectively. These findings are consistent with the above verification against radiosonde and surface station 
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observations, suggesting that GMWR assimilation can improve forecasts and that higher-frequency assimilation leads to 485 

further enhancements.  

 

 

 

Figure 13: . The time series of FSS (black line) for the CNTL experiment and FSS differences (colored lines) between the assimilation 490 
experiments and the CNTL experiment. These experiments were conducted from 13 to 22 October 2023. The FSS was calculated for 

3 h accumulated precipitation for with thresholds of (a) 3 mm, (b) 4 mm, (c) 5 mm, and (d) 6 mm. 

5 Discussion, Cconclusions, and future work Discussion 

5.1 Discussion 

This section discusses (i) O−B characteristics and their potential sources, (ii) the effectiveness and physical interpretability of 495 

the RF-based bias correction (BC), and (iii) the impacts of direct GMWR radiance assimilation on analyses and forecasts. 

In the three-month O−B statistics, the STD in the K-band is larger than that in the V-band, consistent with Vural et al. (2024) 

and Cao et al. (2023). A notable positive O−B bias is observed at high-altitude stations over the Tibetan Plateau, which may 

be related to large-scale topographic effects. In this region, model simulations may contain errors, and RTTOV-gb coefficients 

may be inapplicable. The RTTOV-gb coefficients are based on global atmospheric profiles, which may differ significantly 500 

from the climatic conditions of plateau regions, potentially affecting simulation accuracy.  
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To mitigate these systematic O−B biases, Aa machine learning-based BC scheme using the RF technique was developed. The 

number and depth of trees are critical hyperparameters that must be predetermined. Training time increases approximately 

linearly with the number of trees, while performance exhibits a logarithmic-like saturation trend. In terms of tree depth, both 

training time and performance increase approximately logarithmically with depth. Thus, selecting a modest number 505 

(n_estimators) and depth (max_depth) of trees, such as 50 and 15, can balance efficiency and accuracy. Feature importance 

analysis for BC predictors revealed observed brightness temperature, atmospheric precipitable water, and surface pressure as 

key factors for correcting biases. The importance of brightness temperatures aligns with findings in satellite data bias correction 

(Liu et al., 2022; Zhang et al., 2023). Atmospheric precipitable water is essential for the K-band, a humidity-sensitive channel. 

Surface pressure plays a key role in temperature channels, thereby accounting for the positive bias observed in plateau regions. 510 

Although atmospheric thickness predictors contributed less overall, the 1,000–700 hPa thickness was relatively significant, 

likely due to GMWRs primarily sensing radiation from the lower atmosphere.  

The machine learning-based BC scheme effectively mitigated the bimodal distribution and systematic errors in the O−B 

statistics. To assess its impact on the initial and forecast fields, a parallel experiment without bias correction was conducted, 

based on the 1-hour assimilation interval experiment (GMWR_1H). For the initial fields, as verified against radiosonde 515 

observations, the experiment without BC yielded only minor improvements in temperature and even degraded the water vapor 

field. As for the forecast fields, verification against surface station observations showed that the absence of BC led to a 

noticeable degradation in the forecast accuracy of 2 m temperature and relative humidity. These findings indicate that the 

machine learning-based BC scheme had a beneficial impact on both the initial conditions and the subsequent forecasts. 

Nevertheless, despite its demonstrated effectiveness, the scheme is subject to several limitations. Relying on offline O−–B 520 

statistics, it implicitly assumes that all biases originate from the observations—an assumption that may not always hold and 

may, in some instances, mask model biases (Auligné et al., 2007; Eyre, 2016). These limitations motivate further improvements 

in future work (Sect. 5.2). 

In this study, direct assimilation of GMWR radiances enhances both the initial conditions and the forecasts, showing a potential 

forin improving ABL and precipitation simulations. Although the assimilation of GMWR radiances yields slight improvements 525 

in the forecast wind fields (Fig. 11), it exerts an overall negative impact on the wind fields in the initial conditions (Fig. 9). 

This discrepancy stems from the use of distinct observational datasets: the initial conditions are verified against radiosonde 

observations, while the forecasts are evaluated using surface station data. It should be noted that assimilating GMWR improves 

the wind fields below 500 m AGL in the initial conditions. This improvement is consistent with the verification of the forecast, 

which demonstrates enhancements in the 2-meter10 m wind fields. Regarding the degradation forof wind fields above 500 m 530 

AGL, the background error covariance may contribute to this negative impact. On the one hand, it determines the response of 

the wind fields to temperature and humidity adjustments made by RTTOV-gb. On the other hand, since RTTOV-gb’s 

adjustments are primarily concentrated in the ABL, the response above the ABL may be propagated through the background 

error covariance. 
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5.2 Conclusions and future work 535 

To investigate the impact of directly assimilating GMWRs in Southwest China, a GMWR assimilation module has been 

developed built in WRFDA-4.5, where RTTOV-gb is used as the observation operator. Based on this module, a three-month 

sample dataset of O−B statistics was collected calculated to evaluate the bias and develop a BC model. Furthermore, 10-day 

assimilation experiments (Table 2) were conducted using this GMWR assimilation module and BC model to investigate the 

impact of direct GMWR assimilation and the effects of assimilation frequency. The main findings are as follows: 540 

(1) 1.Based on three months of hourly samples, noticeable O−B biases were observed, varying across sensors, channels, and 

geographical locations. The machine learning-based bias correction scheme, employing an RF model, effectively reduced 

these O−B systematic biases. After applying this BC model, both the bias and STD of the O−−B were substantially reduced. 

Specifically, the bias and STD decreased by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. For some channels, the 

original O−B distribution exhibited a bimodal pattern, which was transformed into a unimodal distribution after BC. The 545 

corrected O−B distributions exhibited Gaussian characteristics centered around zero. 

(1)  

(2)  

(2) 2.Assimilating GMWR enhances the accuracy of initial atmospheric conditions, with higher assimilation frequencies 

amplifying the positive impact, particularly for temperature and humidity in the lower atmosphere. Evaluation against 550 

radiosonde observations shows that the temperature RMSE below 1 km AGL decreases by 3.67 % to 6.32 % as the 

assimilation frequency increases from 6 h to 1 h. For the water vapor mixing ratio, positive impacts extend up to 5 km 

AGL, with average RMSE improvements ranging from 1.98 % to 2.30 %. Verification against surface station observations 

further supports these findings, indicating that the RMSE for 2 m temperature decreases by up to 4.1 %, while the RMSE 

for 2 m relative humidity decreases by up to 1.3 % at the 1 h assimilation frequency. 555 

(3)  

(4)(3) 3.The assimilation of GMWR observations leads to improvements in forecasts, and increasing assimilation 

frequencies haves the potential to get yield further improvements. In the first 6 hours of the forecast, the temperature 

RMSE decreases by 0.012 K, 0.014 K, and 0.019 K with 6 h, 3 h , and 1 h assimilation frequency, respectively. Similar 

trends are observed for relative humidity, the experiment with 1 h GMWR assimilation frequency frequency showings the 560 

largest decrease in RMSE. GMWR assimilation also improves precipitation forecasts, with further enhancements seen as 

assimilation frequency increases. For 1 h GMWR assimilation, time-averaged FSS improvements reach 0.02 for both the 

3 mm and 4 mm, 0.03 for 5 mm, and 0.04 for 6 mm thresholds. 

Despite these encouraging results, this study has some limitations that motivate future work. Regarding bias correction,In the 

three-month O−B statistics, the STD in the K-band is larger than that in the V-band, consistent with  and . The O−B bias varies 565 

across sensors, channels, and geographical locations, with a notable positive bias observed at high-altitude stations. This 

positive bias is potentially caused by large-scale topographical effects on the Tibetan Plateau. In this region, model simulations 
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may contain errors, and RTTOV-gb coefficients may be inapplicable. The RTTOV-gb coefficients are based on global 

atmospheric profiles, which may differ significantly from the climatic conditions of plateau regions, potentially affecting 

simulation accuracy.  570 

A machine learning-based BC scheme using the RF technique was developed. The number and depth of trees are critical 

hyperparameters that must be predetermined. Training time increases approximately linearly with the number of trees, while 

performance exhibits a logarithmic-like saturation trend. In term of tree depth, both training time and performance increase 

approximately logarithmically with depth. Thus, selecting a modest number (n_estimators) and depth (max_depth) of trees, 

such as 50 and 15, can balance efficiency and accuracy. Feature importance analysis for BC predictors revealed observed 575 

brightness temperature, atmospheric precipitable water, and surface pressure as key factors for correcting biases. The 

importance of brightness temperatures aligns with findings in satellite data bias correction (Liu et al., 2022; Zhang et al., 2023). 

Atmospheric precipitable water is essential for the K-band, a humidity-sensitive channel. Surface pressure plays a key role in 

temperature channels, thereby accounting for the positive bias observed in plateau regions. Although atmospheric thickness 

predictors contributed less overall, the 1,000–700 hPa thickness was relatively significant, likely due to GMWRs primarily 580 

sensing radiation from the lower atmosphere.  

The machine learning-based BC scheme effectively mitigated the bimodal distribution and systematic errors in the O−B 

statistics. To assess its impact on the initial and forecast fields, a parallel experiment without bias correction was conducted, 

based on the 1-hour assimilation interval experiment (GMWR_1H). For the initial fields, as verified against radiosonde 

observations, the experiment without BC yielded only minor improvements in temperature and even degraded the water vapor 585 

field. As for the forecast fields, verification against surface station observations showed that the absence of BC led to a 

noticeable degradation in the forecast accuracy of 2 m temperature and relative humidity. These findings indicate that the 

machine learning-based BC scheme had a beneficial impact on both the initial conditions and the subsequent forecasts. 

Nevertheless, despite its demonstrated effectiveness, the scheme is subject to several limitations. Relying on offline O–B 

statistics, it implicitly assumes that all biases originate from the observations—an assumption that may not always hold and 590 

may, in some instances, mask model biases (Auligné et al., 2007; Eyre, 2016). Moreover, the offline scheme lacks anchoring 

observations, rendering the analysis fields more susceptible to model bias. Future efforts should consider bias correction 

strategies based on unbiased reference observations or adopt a constrained correction scheme, such as the constrained adaptive 

bias correction (Han and Bormann, 2016).  

In this study, direct assimilation of GMWR radiance enhances both the initial conditions and the forecasts, showing a potential 595 

in improving ABL and precipitation simulations. Although the assimilation of GMWR radiance yields slight improvements in 

the forecast wind fields (Fig. 11), it exerts an overall negative impact on the wind fields in the initial conditions (Fig. 9). This 

discrepancy stems from the use of distinct observational datasets: the initial conditions are verified against radiosonde 

observations, while the forecasts are evaluated using surface station data. It should be noted that assimilating GMWR improves 

the wind field below 500 m AGL in the initial conditions. This improvement is consistent with the verification of the forecast, 600 

which demonstrate enhancements in the 2-meter wind fields. Regarding the degradation for wind field above 500m AGL, the 
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background error covariance may contribute to this negative impact. On the one hand, it determines the response of the wind 

fields to temperature and humidity adjustments made by RTTOV-gb. On the other hand, since RTTOV-gb’s adjustments are 

primarily concentrated in the ABL, the response above the ABL may be propagated through the background error covariance. 

As an initial study primarily focused on the direct variational assimilation of GMWR data, it is admitted that this study has 605 

some limitations. The GMWR assimilation was implemented using 3DVAR, based on RTTOV-gb and WRFDA, and only 

static background-error covariances were employed in this study. The background error covariance matrix plays an important 

role in variational data assimilation, but this type of covariance is climatological, spatially homogeneous, and isotropic. This 

may limit the impact of GMWR assimilation, and flow-dependent error covariances should be considered in future work.  

 610 

Moreover, only clear-sky GMWRs were assimilated in this study. Since precipitation processes are often accompanied by 

extensive cloud cover, few clear-sky GMWRs were available. To better explore the potential of GMWR assimilation, 

experiments were conducted during periods with abundant clear-sky GMWRs (e.g., a ten-day period in October 2023), which 

coincided with minimal heavy precipitation. Studies on satellite all-sky assimilation have shown that incorporating cloud- and 

precipitation-affected data improves forecasts (Ma et al., 2022; Xian et al., 2019), highlighting the need for future research on 615 

all-sky assimilation of GMWRs. Under such conditions, assimilation experiments could be conducted during a different or 

longer period, given that assimilated GMWR observations would be relatively more abundant. It is noted that GMWRs exhibit 

higher sensitivity and provide more valuable observations of the lower troposphere and planetary boundary layer compared to 

satellite-based microwave radiometers (Shi et al., 2023). Building on this study, future research could explore the joint direct 

assimilation of satellite-based and ground-based microwave radiometers. A more comprehensive evaluation of upper-air 620 

impacts could also be performed using additional independent observations, including aircraft reports and radio occultation 

data. By leveraging their complementary observational capabilities, this approach has the potential to further enhance the 

accuracy of atmospheric analysis and improve forecasting across multiple layers of the atmosphere. 
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Appendix A: Observed versus simulated Tb 

 625 

Figure A1: . Scatter plots of observed brightness temperature (Tb) versus simulated Tb for HATPRO. Same as Fig. 3 but 

for additional channels. 
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Figure A2: . Scatter plots of observed brightness temperature (Tb) versus simulated Tb for MP3000A. Same as Fig. 3 but 

for additional channels. 630 
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Appendix B: PDF distributions of O−–B 

 

Figure B1: . Probability density functions (PDFs) of the O−B distributions for HATPRO. Same as Fig. 6 but for additional 

channels. 
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Figure B2: . Probability density functions (PDFs) of the O−B distributions for MP3000A. Same as Fig. 6 but for additional 

channels. 

 

Code availability 
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Data availability 
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