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Abstract. The application of ground-based microwave radiometers (MWRGMWRs), which provide high-quality and
continuous vertical atmospheric observations, has traditionally focused on the indirect assimilation of retrieved profiles. This
study advanced this application by developing a direct assimilation capability for MWRGMWR radiance observations within
the Weather Research and Forecasting model data assimilation (WRFDA) system, along with a bias correction scheme based
on the random forest technique. The proposed bias correction scheme effectively reduced the observation-minus-background
(O—B) biases and standard deviations by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. A series of ten-day-long
experiments demonstrated that assimilating MWRGMWR radiances improves both the initial conditions and the forecasts,
with additional benefits from higher assimilation frequencies. In the initial conditions, hourly assimilation significantly
enhanced low-level temperature and humidity fields, reducing the root-mean-square -error (RMSE) for temperature and water
vapor mixing ratio by 6.32 % below 1 km and 1.98 % below 5 km. These improvements extended to forecasts, where 2 m
temperature and humidity showed sustained benefits for over 12 hours, and precipitation forecasts exhibited improvements to
a certain extentnetable-gains—particularhyfor-higherintensity-events. The time-averaged Fractions Skill Score (FSS) for 3 h
accumulated precipitation within the 24 h forecasts increased by 0.6402—0.14+-04 (403.29-5810.+-2 %) for thresholds of 63—
+5-6 mm.

1 Introduction

Data assimilation (DA), a core component of numerical weather prediction (NWP), plays an important role in improving the
forecast accuracy by integrating observational data to refine initial conditions (Bauer et al., 2015; Gustafsson et al., 2018).
Among various types of observations, microwave radiance data are crucial for DA due to their ability to penetrate the

atmosphere and their sensitivity to temperature, humidity, clouds, and precipitation. Correspondingly, satellite-borne

1



35

40

45

50

55

60

65

microwave radiance observations have been extensively studied and are considered among the most influential contributors to
data assimilation systems (Geer et al., 2017; Kim et al., 2020; Candy and Migliorini, 2021).

Unlike satellite-borne microwave radiometers, ground-based microwave radiometers (MWRGMWRSs) offer unique
advantages for DA, including high temporal resolution (minute-level) and greater sensitivity to the atmospheric boundary layer
(ABL). Over the past two decades, the assimilation of MWRGMWRs has been increasingly studied, leading to improvements
in the accuracy of NWP (Vandenberghe and Ware, 2002; Otkin, 2010; Hartung et al., 2011; Otkin et al., 2011; Caumont et al.,
2016; HE-He et al., 2020; Qi et al., 2021, 2022; Lin et al., 2023). The assimilation of retrieved temperature and humidity
profiles from MWRGMWRs has shown improvements in forecasting fog, storms, and precipitation. However, the reliance on
indirect assimilation methods introduces uncertainties and complicates error quantification, which limits their overall
effectiveness in enhancing forecast accuracy (Martinet-et-al5—2045:-Caumont et al., 2016;_Martinet et al., 2017; Lin et al,,
2023).

Direct assimilation of MWRGMWR radiances, which bypasses the retrieval process, offers significant advantages by avoiding
retrieval-related errors and improving the effective use of observations. This approach requires accurate observation operators
and robust bias correction to address differences between radiance observations and model states. The direct assimilation of
satellite-borne radiance observations is relatively mature (Geer et al., 2008; Bauer et al., 2010; Geer et al., 2010; Eyre et al.,
2020; Sun and Xu, 2021; Eyre et al., 2022) and utilizes fast radiative transfer models (RTMs) as observation-operator, such as
the Radiative Transfer for Television and Infrared Observation Satellite (RTTOV) (Saunders et al., 2018). However, the unique
characteristics of upward-looking MWRGMWR observations, such as sensitivity to near-surface conditions, require
specialized RTMs and adaptation of existing techniques. It is noted that studies began to develop fast RTMs suitable for
MWRGMWR, which provide a foundation for constructing observation operators for assimilation of MWRGMWR
observations (De Angelis et al., 2016; Cimini et al., 2019; Shi et al., 26242025). The RTTOV-gb, a ground-based version of
the RTTOV model, was used to simulate brightness temperature from MWRGMWRSs, demonstrating high accuracy (De
Angelis etal., 2016, 2017; Cimini et al., 2019). Recent studies have demonstrated the potential of direct MWRGMWR radiance
assimilation using RTTOV-gb to improve temperature, humidity, and precipitation forecasts (Cao et al., 2023; Vural et al.,
2023).

Despite these advancements, previous studies have typically relied on limited MWRGMWR networks or focused on specific
case studies. Additionally, research conducted in regions with relatively simple terrain may not fully address the complexities
of areas like the Tibetan Plateau, where the-presenee-of-complex topography often leads to significant model biases (Yang et
al., 2020; Wei et al., 2021). These biases make accurate bias correction essential for improving the effectiveness of direct
assimilation, while traditional bias correction approaches developed for satellite-borne microwave radiance observations are
not directly applicable to greund-based MWRGMWRs.

To address these issues, this study integrates the-RTTOV-gb into the Weather Research and Forecasting Data Assimilation
(WRFDA) Barkeret-al;—2042)-system (Barker et al., 2012) to develop a direct assimilation module for MWRGMWR

radiances. A nonlinear bias correction scheme based on machine learning is also constructed usingbased-en three months of
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observational data. The impact of direct MWRGMWR assimilation is then investigated through a series of ten-day experiments
conducted in Southwest China, a region shaped by the influence of the Tibetan Plateau and characterized by complex terrain.
The remainder of this paper is organized as follows. Section 2 describes the data, the implementation of RTTOV-gb in WRFDA,
and the model configuration. Section 3 evaluates the performance of the bias correction scheme.feHowed-by SectionSeet 4
presenting-presents the impacts of MWRGMWR assimilation on the initial and forecast fields. The conclusions and discussion

are presented in Sect. 5.

2 Methodology
2.1 Data

Two types of MWRGMWR sensors were assimilated in this study, as shown in Fig. 1: the MP3000A and the Humidity And
Temperature Profiler (HATPRO). Atmospheric radiance is measured as brightness temperatures in 14 channels for HATPRO
and 22 channels for MP3000A (Table 1). For HATPRO, channels 1-7 are in the k-bandK-band, while channels 8—14 are in
the V-bandV-band. Similarly—fer-For MP3000A, channels 1-8 are in the K-bandK-band, and channels 9-22 are in the ¥
bandV-band. The K—-bandK-band channels correspond to humidity-sensitive water vapor absorption lines, whereas the ¥
bandV-band channels correspond to temperature-sensitive oxygen absorption lines.

The Fengyun-4B (FY-4B) Advanced Geosynchronous Radiation Imager (AGRI) cloud mask (CLM) is used to identify
MWRGMWR-observed brightness temperatures under clear-sky conditions. The AGRI-based CLM product has a temporal
resolution of 15 minutes and a horizontal resolution of 4 km, categorizing conditions as confidently cloudy, probably cloudy,
probably clear, or confidently clear, with corresponding values of 0, 1, 2, and 3, respectively (Min et al., 2017). Due to its high
quality, this cloud mask product is widely applied in satellite data assimilation (Yin et al., 2020, 2021; Xu et al., 2023; Shen
et al., 2024).

The National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis data (FNL) (0.25° x 0.25°, 6-
hourly) were used to establish the initial and boundary conditions for regional NWP. Conventional observations from the
Global Telecommunications System (GTS) were assimilated and evaluated, including land surface, marine surface, radiosonde,
and aircraft reports. The hourly precipitation analysis product from the China Meteorological Administration Multisource
Precipitation Analysis System (Shen et al., 2014) was used for evaluation. This dataset has been widely used in precipitation
studies (Xia et al., 2019; Su et al., 2020; Sun and Xu, 2021; Wang et al., 2021; Li et al., 2023; Zheng et al., 2024).

Table 1. Central frequency for MWRGMWRSs

Frequencies for K—bandK-band Frequencies for V-bandV-band
(GHz) (GHz)

Sensor

22.240;23.040;23.840;25.440;  51.260;52.280;53.860;54.940;

HATPRO  56240;27.840;31.400 56.660:57.300;58.000
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51.248;51.760;52.280;52.804;
22.234;22.500;23.034;23.834;  53.336;53.848;54.400;54.940;
25.000;26.234;28.000;30.000 55.500;56.020;56.660;57.288;
57.964;58.800

MP3000A

2.2 Assimilation system and observation operator

The WRFDA system, developed by the National Center for Atmospheric Research (NCAR), is designed for data assimilation
and includes three-dimensional variational (3DVAR), four-dimensional variational (4DVAR), and hybrid data assimilation
algorithms. In this study, version 4.5 of the WRFDA system with 3DV AR is used for the direct assimilation of MWRGMWRs

radiances. The 3DVAR algorithm produces the analysis by minimizing a scalar objective cost function:
J@) =2 (x = x)"B7(x = x) + 5 (y —H®)) R (y — H(x)) , (1)

where x and x}, represents the analysis and background fields of the model variables, y is the vector of the observations, and
B and R represent the background and observation error covariance matrices, respectively. The covariance matrices matrix
determines the weights assigned to the background and observations in the analysis, dictates how localized observation
information is distributed vertically and horizontally in the model space, and maintains the balance among the model's control
variables. H is the non-linear observation operator, that transforms model variables to the observed quantities. The observation
operator works slightly differently for different types of observations. For conventional observations (e.g., temperature), its
the-primary role-efthe-ebservation-eperator is to perform spatiotemporal interpolation of model grid values to the observation
space. For unconventional observations (e.g., reflectivity and radiance), where the model state cannot be directly compared
with the observations, the observation operator must also convert model variables into observed variables.

The static background error covariance for the variational experiments is estimated using the National Meteorological Center

(NMC) method (Parrish and Derber, 1992). which uses the difference between WRF forecasts at lead times of 24 hand 12 h

(T +24 h minus T + 12 h) valid at the same time over a specified period. Control variables option 5 (CV5) is adopted for the

background error covariance used in 3DVAR. CVS5 is domain-dependent and therefore must be generated based on forecast or

ensemble data over the same domain. It utilizes streamfunction, unbalanced velocity potential, unbalanced temperature,

unbalanced surface pressure, and pseudo relative humidity. In this study, the background error covariance matrix was generated

using the Generalized Background Error Covariance Matrix Model (GEN_BE v2.0) (Descombes et al., 2015) based on one

month of WRF forecasts. Observation-error correlations are typically assumed to be zero in WRFDA, resulting in a diagonal

observation-error covariance matrix. Observation errors were specified based on the standard deviation of O—B.

RTMs serve as observation operators for assimilating radiance data by mapping model variables (e.g., temperature and water

vapor) into radiance space. RTTOV, a fast RTM, is widely used for assimilating satellite radiance data;—which—invelves
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downward-looking-ebservations. However, MWRGMWR radiances are upward-looking microwave observations, differing

from the downward-looking measurements of satellite-borne microwave radiometerswhich-differ from-the-dewnward-looking
observation-ofsatelites. This difference in direction makes RTTOV difficult to apply in MWRGMWR radiances assimilation.

Fortunately, RTTOV-gb can simulate brightness temperatures from MWRGMWRs, and serves as the observation operator in
this study. The weighting function (WF) quantifies the contribution of emissions from each atmospheric layer, and the
maximum WF height indicates which atmospheric layer contributes most to the measured radiance (Carrier et al., 2008).
According to Cui et al. (2020), WFs are calculated as the derivative of transmittance with respect to the natural logarithm of

pressure. The vertical distribution of WFs for HATPRO and MP3000A, calculated using RTTOV-gb, is shown in Fig. 2. The

WFs reach their maximum at 1000 hPa and decrease monotonically with height. These results confirm that the lower
atmosphere contributes most to the observed radiation across all channels, consistent with the findings of Shu et al. (2012).

It should be noted that RTTOV-gb is not included in the publicly available version of WRFDA. To address this limitation, a
GMWR direct assimilation module was developed within WRFDAanMWRdireet-assimiation—module—was—developed;

exi ithi . Results

from the single-observation assimilation experiment confirm that the MWRGMWR direct assimilation module performs
funetions—correctly. The temperature and water vapor increments are horizontally isotropic and show a maximum at lower

atmospheric levels vertically (Fig. 2)._It should also be noted that this experiment was conducted to verify the correct

performance of the GMWR direct assimilation module and to provide valuable insights into the characteristics of GMWR

assimilation. However, it is not representative of the subsequent multi-observation, multi-channel assimilation experiments.

2.3 Model configuration and experimental design

In this study, version 4.5 of the Weather Research and Forecasting (WRF) model (Skamarock et al., 2021) is used to simulate
atmospheric evolution. The simulation employs a single domain (Fig. 1) with a horizontal resolution of 3 km, comprising
1,261 x 811 grid points and 51 vertical levels, with the top boundary at 10 hPa. The model physics configuration includes the
Morrison two-moment microphysics scheme (Morrison et al., 2009), the Yonsei University PBL scheme (Hong et al., 20006),
the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) shortwave and longwave radiation schemes
(Tacono et al., 2008), and the unified Noah land-surface model (Chen and Dudhia, 2001). Cumulus parameterization was

excluded due to the convection-permitting horizontal resolution of 3 km (Li et al., 2023; Moker et al., 2018).

Similar to previous studies (Jiang et al., 2017; Nie and Sun, 2023), the target region of Southwest China in this study is defined

as the area within the rectangular domain 22°-35°N, 93°~110°E (Fig. 1). This region encompasses the Hengduan Mountains

the Yunnan—Guizhou Plateau, and the Sichuan Basin, and is generally consistent with Chinese administrative divisions.

Based on the model configuration described above, four parallel experiments were conducted to investigate the impact of
MWRGMWR assimilation (Table 2). Each experiment started at 12:00 UTC daily, incorporating 12 hours of data assimilation

followed by a 24 h forecast. The primary differences among these experiments lie in the assimilated data and assimilation
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intervals. The CNTL experiment assimilated GTS data with a 6 h interval, while the MWRGMWR 6H experiment added
MWRGMWR assimilation to the CNTL setup, enabling an evaluation of MWRGMWR assimilation's impact. The other two
experiments, MWRGMWR 3H and MWRGMWR 1H, assimilated both GTS and MWRGMWR data with 3 h and 1 h
intervals, respectively, to assess the effects of observation frequency in MWRGMWR assimilation.

The assimilation experiments were conducted under clear-sky conditions due to the uncertainties in the model and observation

operators under cloudy or rainy conditions. All experiments were conducted over a ten-day period from 13 to 22 October

202313-October2023-to22 October2023. Among the available GMWR observations from August to October 2023, this period

exhibited a notably higher frequency of clear-sky data, which was more favorable for demonstrating the role and potential of

GMWR assimilation. Before implementing bias correction, clear-sky screening, first-guess departure check, and whitelist

check were sequentially applied to improve measurement quality. Subsequently, a relative departure check was applied prior

to minimization. For the 6 h, 3 h, and 1 h assimilation intervals, 34 (0.91%), 70 (1.42%), and 76 (0.72%) observations were

rejected, respectively. The detailed procedure prior to a single assimilation cycle is as follows:

(1) Observation Selection: The observation nearest to the analysis time within =10 minutes is selected.

(2) Clear-sky Screening: Clear-sky GMWR observations were screened using the AGRI-based CLM, with background-

simulated cloud liquid water path equal to zero.

(3) First-Guess Departure Check: Observations with (O—B) values greater than 20 K are excluded.

(4) Whitelist Check: Remove observations from stations identified as unreliable or displaying abnormal behavior.

(5) Bias Correction: a machine learning bias correction scheme was applied (see Section 3.2).

(6) Relative Departure Check: Applied when the absolute value of the O—B exceeds three times the standard deviation of the

observational error, further rejecting questionable data.
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Figure 1: Computation domain(shaded). The shaded denotes topography (units: m). The green rectangle denotes the target region
of Southwest China. The blue empty circle denotes radiosonde. The 'x' and '+' symbols denote HATPRO and MP3000A, respectively.
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Table 2 Experimental design

Exberiment Assimilated Assimilation
perime Data Interval
CNTL GTS 6-hour
GTS and
MWRGMWR 6H MWRGMWR 6-hour
GTS and
MWRGMWR 3H MWRGMWR 3-hour
GTS and
MWRGMWR 1H MWRGMWR 1-hour

3 Machine learning based bias correction for MWRGMWR
3.1 Bias characteristics

Variational assimilation assumes that both observation and background errors follow an unbiased Gaussian distribution.
However, due to instrument errors, limitations of the RTMs, and errors in the NWP model background, observed radiances (O)
and simulated radiances (B) inherently contain errors (denoted as u° and u”), which may exhibit a biased distribution. Bias
correction is a crucial process in radiance data assimilation, aiming to identify and remove these biases (Auligné et al., 2007;

Dee, 2005). In the real atmosphere, O and B are regarded as the true value (T) plus their respective deviations y, as shown in

Eq. (2):

0-B=0-TD-B-T)=p"—p>, 2

It shows that the statistical expectation value of O—B can represent the systematic deviation (u® — u?) Therefore, it is critical
to evaluate the bias characteristics of O—B and correct them.

To estimate the bias and develop a bias correction scheme for MWRGMWR direct assimilation, a three-menthlong-term
experiment- was conducted from August to October 2023, tyielding a three-month sample dataset.e-ebtain-atarsenumberof
samples: In this experiment, the WRF model was initialized every 6 hours using NCEP FNL data, and WRFDA operated

hourly in monitoring mode (only calculate O—B). After a cloud check using the AGRI-based CLM and a gross check (O—B <
20 K), the bias of O—B for HATPRO and MP3000A was estimated.

A comparative scatterplot analysis of observed and simulated brightness temperatures was conducted. For most channels, the

scatter points are closely aligned along the diagonal and exhibit high correlation coefficients, indicating strong agreement

between the simulations and observations. However, the scatter for some channels forms two distinct clusters. To further

investigate, representative channels from the K-band (water vapor absorption lines) and the V-band (temperature-sensitive

oxygen absorption lines) were selected. Figure 3 presents scatterplots for channel 1 (K-band) and channel 13 (V-band) of

HATPRO, and channel 1 (K-band) and channel 14 (V-band) of MP3000A. Results for the remaining channels are shown in
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Figures Al and A2. For HATPRO, more than 6,000 samples are analyzed for channels 1 and 13. The O—B biases are 1.25 K

for channel 1 and 2.14 K for channel 13, with standard deviations (STD) of 3.35 K and 2.82 K, respectively. Additionally, the
scatter distribution for channel 13 is not centered, showing a cluster shifted to the right of the diagonal (Fig. 3b). For MP3000A,

more than 2.000 samples are analyzed for channels 1 and 14, with O—B biases of 3.06 K for channel 1 and —0.54 K for channel
14. The O—B STDs are 3.94 K and 3.08 K, respectively. Similar to the results for HATPRO channel 13 (V-band), the scatter

for MP3000A channel 14 (V-band) also shows a cluster offset from the diagonal, but to the left (Fig. 3d). Based on these

results, significant O—B biases are detected in GMWR observations, with their characteristics varying across different sensors

and channels. However, the correlation coefficients between observed and simulated brightness temperatures are high, at least

0.95, suggesting that these biases can be effectively corrected.

10
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Figure 3: Scatter plot of observed brightness temperature (Tb) versus simulated Th, based on samples collected from August to
October 2023. The top and bottom rows correspond to the HATPRO and MP3000A sensors, and the left and right columns represent
the K-bandK-band and V-bandV-band, respectively. Each panel displays the number of samples (num), the O—B mean (bias), O—-B
standard deviation (STD), and the correlation coefficient (r) between observed and simulated Tb.

To further analyze the O—B bias characteristics at each station and investigate the reasons for the band shifting from the
diagonal (Fig. 3b and d), the statistics for each station are presented in Fig. 4. For HATPRO, the O—B bias varies among
stations. Stations near complex topography (e.g., 56312, 56137, 56029, and 55664) exhibit notable positive O—B biases in
channels 8 to 13 (Fig. 4a), leading to a rightward shift of the band relative to the diagonal (Fig. 3b). These positive biases may
result from biases in the background field over the topographic region, the limited applicability of RTTOV-gb coefficients, or
calibration issues in the observations. Consistent with results for all stations, each-station-shows-that-the O—B STD at each
station for the K-bandK-band is larger than that for the VbandV-band (Fig. 4b). The correlation coefficients between observed

and simulated brightness temperatures are high across all channels (typically above 0.90), although they are slightly lower for

channels 4 to 9.Rega

values-are-high-but-slightly lowerfor-channels4-te-9- For MP3000A, station 57461 exhibits a negative O—B bias in channels
9 to 14 (Fig. 4d), contributing to the band shifting to the left of the diagonal (Fig. 3d). Similar to the results for HATPRO, the

11



O—B STD in the K-bandK-band is generally larger than that in the V-bandV-band (Fig. 4e), and the correlation coefficients

are also overall higher, typically exceeding 0.9 (Fig. 4f).
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|250 Figure 4: Statistics at each station based on samples collected from August to October 2023.Statistiesfor-each-station- O—B (a) bias
and (b) standard deviations (STD) for HATPRO; (c) correlation coefficient (r) between observed and simulated brightness
temperatures for HATPRO; (d—f) same as (a—c) but for MP3000A. Some stations did not provide observations for specific channels;
the corresponding missing data are displayed in grey in the figure.

3.2 Bias correction

255 Based on the results above, noticeable O—B biases were observed, varying across sensors, channels, and the geographical
locations of stations. It is essential to remove these biases before assimilation. Static bias correction (Harris and Kelly, 2001)
and variational bias correction (Dee, 2005) are commonly used in radiance data assimilation. These methods typically assume
a linear correlation between the biases and seme-selected predictors. However, nonlinear sources of bias are common, and
Zhang et al. (2023) demonstrated that the-nonlinear scheme outperforms the-linear scheme in reducing systematic biases.

260 Following Zhang et al. (2023), this study developed a machine learning-based bias correction scheme, using the Random

Forest (RF) technique (Breiman, 2001).
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Following Yin et al. (2020), the predictors include 1,000—300hPa thickness, 200—50hPa thickness, model surface skin
temperature (TS) and total precipitable water (PW). Considering that MWRGMWRs are sensitive to the lowerlew-level
atmosphere, the predictors also include 1,000-700hPa thickness, 700—500hPa thickness, 500-300hPa thickness, 2m
temperature (T2), 2m water vapor mixing ratio (Q2), 10m zonal wind (U10), 10m meridional wind (V10), and surface pressure
(PS). Finally, latitude, longitude, and observed brightness temperatures (Tb) are included added-as predictors due to their
potential pessible-importance (Zhang et al., 2023). The O—B biases vary across sensors and channels. Therefore, a separate
model is trained for each type of instrument and channel. Biases also vary across the geographical locations of stations,
potentially influenced by the large-scale topography of the Tibetan Plateau. As predictors, 2 m temperature, surface pressure,
and latitude and longitude are important for explaining these biases.

There are two types of parameters in machine learning models: model parameters and hyperparameters. Model parameters are
initialized and updated during the learning process. Hyperparameters, on the other hand, cannot be directly estimated from the
data. They must be configured before training because they define the model's architecture. Building an optimal machine
learning model requires exploring a range of possibilities. The process of determining the ideal model architecture and
hyperparameter configuration is known as hyperparameter tuning. Fhis—-hHyperparameter tuning is a key component of
developing an effective machine learning model (Yang and Shami, 2020).

The RF model has four key hyperparameters: the number of trees in the forest (n_estimators), the maximum depth of the tree
(max_depth), the minimum number of samples required to split an internal node (min_samples_split), and the minimum
number of samples required to be at a leaf node (min_samples leaf). These hyperparameters were tuned using scikit-learn’s

GridSearchCV (Pedregosa et al., 2011) with 5-fold cross-validation (CV), which exhaustively searches over a predefined range

of hyperparameters, training and evaluating the model for each configuration. The flowchart illustrating the training and

evaluation process of the bias correction (BC) model is shown in Fig. 5b. The three-month sample dataset (described in Section

3.1) dataset-was randomly split into a training set (70 %) and a test set (30 %). During training, GridSearchCV constructed a
large grid of possible hyperparameter configurations, iteratively trained and evaluated the model for each, and calculated a

score. Finally, the optimized model was trained using the configuration with the highest score.
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Figure 5: Flowchart of the training and evaluation for bias correction model

To investigate the impact of hyperparameters on model training time and performance, the fit time and score of the RF model
under various hyperparameter settings were analyzed (figure not shown). Overall, the fit time and score demonstrated a positive
correlation. As the min_samples leaf and min_samples split parameters increased, both fit time and score decreased
monotonically. Conversely, increasing the max_depth and n_estimators parameters resulted in a monotonic increase in both
fit time and score. Notably, max_depth had the most significant impact on the score, while n_estimators primarily affected the
fit time. For n_estimators, the score increased logarithmically, while the fit time grew linearly. These findings suggest that
selecting a moderately small value for the n_estimators parameter can achieve better results while reducing computational
time.

Using the above bias correction model, the corrected O—B is obtained by subtracting the predicted O—B from the original O—B.

The effectiveness of the BC model was assessed based on the probability density functions (PDFs) of the O—B distribution

using the test set. For most channels, the PDFs exhibit a unimodal pattern, with peak positions deviating from zero, indicating

that the O—B values are biased. For some channels, the distributions are multimodal, characterized by a secondary peak

superimposed on the primary one. Although these issues are present in the original distributions, after bias correction, the PDFs

approximate an unbiased distribution, and the secondary peaks are effectively suppressed, demonstrating the effectiveness of

the correction. From the scatter plots in Fig. 3, the O—B distribution appears bimodal—an issue that may affect 3D-Var, which

typically assumes the errors to be unimodal (Gaussian). Similar to Fig. 3, channel 1 (K-band) and channel 13 (V-band) of
HATPRO, as well as channel 1 (K-band) and channel 14 (V-band) of MP3000A, are selected for detailed analysis (Fig. 6).
Results for the remaining channels are presented in Figures B1 and B2. The biases for HATPRO channel 1, HATPRO channel

13, MP3000A channel 1, and MP3000A channel 14 are 1.24 K, 2.21 K, 3.00 K, and —0.64 K, respectively, with corresponding
STDs of 3.38 K., 2.90 K, 3.89 K, and 3.08 K. The differences between the test set and the full dataset (shown in Fig. 3) are
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negligible, with a maximum bias difference of 0.10 K and a maximum STD difference of 0.08 K, highlighting the strong

representativeness of the test set. From the PDF distributions of O—B, both instruments exhibit a positive bias in the K-band

310 with a unimodal distribution. In contrast, a bimodal distribution is observed in the V-band: the second peak appears on the

right for HATPRO and on the left for MP3000A. These results are consistent with the scattering patterns shown in Fig. 3.

After the bias correction is applied, both the bias and STD are reduced, and the O—B distribution becomes more sharply

concentrated around zero, accompanied by an increase in kurtosis. For example, in channel 1 of MP3000A, the bias and STD

decrease from 1.24 K and 3.38 K t0 0.03 K and 1.44 K, respectively, while the kurtosis increases markedly from 1.53 to 9.44.

315 It is also noteworthy that the bimodal distributions in the V-band for both instruments become unimodal after the correction.

Meanwhile, the skewness decreases from 1.04 and 1.54 to 0.55 and 1.05, respectively, indicating a more symmetrical O-B

distribution. These results demonstrate that the proposed bias correction scheme effectively reduces bias and STD. addresses

bimodal distribution, and shifts the O—B distribution closer to a Gaussian shape.
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Figure 6: Probability density functions (PDFs) of the O—B distributions, based on a test set randomly selected from 30% of the

325 three-month sample dataset collected from August to October 2023. The top and bottom rows correspond to the HATPRO and
MP3000A sensors, respectively, while the left and right columns represent the K-band and V-band. Each panel displays the
number of samples (num), the mean (bias), standard deviation (STD), skewness, and kurtosis of the distributions.

Figure 6-7 illustrates the bias and STD of the O—B for each HATPRO channel. Before BC, the O—B bias e£0=B-for HATPRO
330 ranged from 0 to 2 K, with the bias in the K-bandK-band (particularly channels 4 to 7) being smaller than that in the ¥-bandV-
band. After bias correction, the bias for each channel is approximately 0 K. In terms of the O—B STD, the-values for HATPRO
ranged from 2 to 4 K without BC, with channels 4 to 7 exhibiting smaller values compared to other channels. After BC, the

STD of O—B oscillates between 0.5 and 1.5 K. The application of this BC model significantly reduced both the bias and STD
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of O—B, with reductions of 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. Meanwhile, the corrected O—B distributions
335 display Gaussian characteristics centered around zero, indicating the-effective removal of systematic biases.
Diagnosing the contributions of each predictor is crucial. Figure 6e-7c illustrates the feature importance of several predictors
for HATPRO. The model normalized the feature importance scores so that their sum equals 1. A higher score reflects a stronger
correlation between predictors and O—B biases. Observed brightness temperature, total precipitable water, and surface pressure
are significant contributors to BC for the K-—bandK-band (water vapor channel). For the ¥bardV-band (temperature channel),
340 observed brightness temperature, latitude, and surface pressure are the most influential predictors. The contributions of
atmospheric thickness predictors are smaller compared to the other predictors; however, the 1,000—700 hPa thickness predictor
has a relatively larger contribution among them. This may be because MWRGMWR primarily observes radiation from the
lower atmosphere. Notably, surface pressure plays a critical role in BC for the temperature channels, which may account for

the positive bias in O—B observed at plateau stations (Fig. 4a).
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Figure 76: (a) Bias and (b) standard deviation (STD) of O—B, based on a test set randomly selected from 30% of the three-month
sample dataset collected from August to October 2023. (¢) Feature importance of the predictors used in the bias correction (BC)
model. The shaded regions and solid lines represent the range and mean feature importance for the K-bandK-band and V-bandV-
band, respectively.
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4 Direct assimilation of MWRGMWR radiance observations
4.1 Assimilation impacts on initial condition

The performance of MWRGMWR assimilation in the observation space was evaluated. Figure 78 summarizes the bias and
STD of the O—B and observation minus analysis (O—A) statistics, aggregated over time and across different channels. The bias
of O—A was reduced compared to O—B, particularly in the ¥bandV-band. Specifically, for channel 11 of MM RGMWR 1H
(1 h assimilation interval), O—B was —0.40 K and O—A was —0.13 K. When MWRGMWR observations were assimilated, the
simulated brightness temperatures became closer to the observations, resulting in smaller STD. Moreover, as the frequency of
MWRGMWR observation assimilation increases, the bias and STD of the O—B gradually converge closer to zero. For channel
3, the O—B STD in MWRGMWR 6H, MWRGMWR 3H, and MWRGMWR 1H significantly decreased from 1.03 K, 0.92
K, and 0.56 K to O—A STD values of 0.36 K, 0.34 K, and 0.34 K, respectively. Although the differences in O—A are less
noticeable, the improvement of O—B suggests that increasing the frequency in cycling assimilation accumulates the impact of
the MWRGMWRSs, producing a higher-quality first-guess field for the final cycle. The assimilation of MWRGMWR
observations effectively influences the brightness temperatures, demonstrating the successful processing of MWRGMWR data

by the 3DV AR system.

—O0-A -
——0-B (GMWR_3H) — O-A (GMWR_3H) AN
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Figure 87: Verification of the initial conditions against M—WLRGMWR observatlons, based on the ten-day assimilation experiment

conducted from 13 to 22 October 2023 _-(a) Bias and (b) standard
deviation (STD) of the observation minus background (O—B) and observation minus analys1s (O—A) for the MWRGMWR
assimilation in the target region of Southwest China (blue box in Fig. 1).
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The above evaluation demonstrates the successful implementation of the newly introduced MWRGMWR radiance direct
assimilation in WRFDA. However, compared to brightness temperature simulations, greater attention should be given to the
model state variables in the initial field, as they directly influence subsequent model forecasts. To this end, radiosonde
observations in the target region of Southwest China were used to evaluate the impact of MWRGMWR assimilation. The root-
mean-square error (RMSE) was calculated, and the RMSE differences between CNTL and other assimilation experiments are
shown in Fig. 89.

Results indicate that assimilating MWRGMWR radiances enhances low-level temperature and humidity fields, with higher
assimilation frequencies offering the potential for additional improvements. MWRGMWR assimilation has a neutral impact
on atmospheric temperature above 1 km AGL, where the RMSE difference is minimal. However, it positively impacts lower
atmospheric temperature, with the RMSE for temperature decreasing below 1 km AGL. Specifically, the average RMSE
improvements below 1 km are 3.67 %, 5.28 %, and 6.32 % for MW RGMWR 6H, MWRGMWR 3H, and MWRGMWR 1H,
respectively. This indicates that increasing assimilation frequency enhances observational impacts and further improves the
initial field. The improvement phenemenen—becomes more pronounced with decreasing altitude, with 100 m RMSE
improvements of 0.10 K (6.25 %), 0.13 K (7.90 %), and 0.19 K (11.34 %) in MW RGMWR 6H, MWRGMWR 3H, and
MWRGMWR_ 1H, respectively. For the water vapor mixing ratio (QVAPOR), MWRGMWR assimilation demonstrates a
positive impact that extends into the middle atmosphere, with average RMSE improvements below 5 km of 2.30 %, 2.20 %,
and 1.98 % for MWRGMWR 6H, MWRGMWR 3H, and MWRGMWR 1H, respectively. The impact of MWRGMWR
assimilation and the effect of assimilation frequency become more pronounced in the lower atmosphere, with average RMSE
improvements below 300 m of 3.01 % for MWRGMWR 1H, compared to 2.43 % for MWRGMWR 6H and 2.05 % for
MWRGMWR 3H.

It is noted that the GMWR assimilation has negative impacts on the wind fields. The RMSE for zonal and meridional winds

exhibits a slight negative effect when GMWR is assimilated, with meridional winds even showing an increase in RMSE. These
negative impacts on the wind field caused by GMWR assimilation may be attributed to two factorsitis-neted-that-the MMWR

the-wind-field-by-MWR-assimilation-may-be-due-to-two-facters: (1) When assimilating observed brightness temperature, the

adjoint model of the observation operator directly adjusts temperature and humidity to optimize the simulation, while changes

in the wind field are indirectly driven by these adjustments through the background error covariance. (2) MWRGMWR
assimilation primarily improves the lower atmosphere, while changes in the upper atmosphere are also governed by the
background error covariance. The static background error covariance used here is climatological and isotropic, which does not

fully align with evolving weather conditions, potentially resulting in ineffective wind field improvements.
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Figure 98: Verification of the initial condltlons agalnst radlosonde observatlons, based on the ten-day assimilation experiment

conducted from 13 to 22 October 2023-, in-th : ; : ae-bexinFis—b-Root mean square error (RMSE)
for-of (a) temperature, (b) water vapor mixing ratio (QVAPOR), (c) zonal w1nd and (d) meridional wind _in the target region of
Southwest China (blue box in Fig. 1).-

Based on the evaluation against radiosonde observations, the assimilation of MWRGMWR data improves the initial fields of
temperature and humidity, aligning them more closely with observations, particularly in the lower atmosphere. Additionally,
the initial fields are validated against surface station observations, including measurements of 2m temperature, 2m humidity,
and 10m wind (Fig. 910).

The RMSE differences indicate that MWRGMWR assimilation effectively enhances the 2m temperature and humidity fields.
Under 6-hourly MWRGMWR assimilation, the temperature RMSE generally increased on the southern side of the basin,
whereas other regions showed a positive effect with reduced RMSE values. Moreover, the temperature RMSE reduction in
these positively affected areas further improved as the assimilation frequency increased, with overall differences ranging from
—0.008 K (—0.3 %) to —0.099 K (—4.1 %). For humidity, MWRGMWR assimilation shows a negative impact on relative
humidity (RH) at a 6 h assimilation frequency. However, the RMSE over the plateau decreases as the assimilation frequency
increases, with the RMSE difference shifting from positive to negative. In the MWRGMWR _1H experiment, the RH RMSE
is reduced by 0.276 (1.3 %).

Unlike the temperature and humidity RMSEs, the improvement in the wind field RMSE does not exhibit a distinct spatial
pattern. Compared to the CNTL experiment, the RMSE differences for zonal wind are —0.005 ms™' (=0.3 %), —0.017 m s
(-1.0 %), and —0.019 m s ' (1.2 %) in MWRGMWR 6H, MWRGMWR 3H, and MWRGMWR 1H, respectively. Similarly,
the RMSE differences for meridional wind are —0.008 ms™! (0.5 %), —0.011 ms™! (0.7 %), and —0.009 ms™! (0.5 %) in
MWRGMWR 6H, MWRGMWR 3H, and MWRGMWR 1H, respectively. While the changes in wind RMSE are relatively
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small, the results indicate that assimilating MWRGMWR data improves the initial field, with higher assimilation frequencies

offering potential for further enhancement.
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425  Figure 109: Verification of the initial conditions against surface station observations, based on the ten-day assimilation experiment
conducted from 13 to 22 October 2023-in-the-targetregion—of Seuthwest China(blue-box—inFig—1. The percentage in RMSE
differences (scatter) fer-of temperature (T), relative humidity (RH), zonal wind (U), and meridional wind (V)_in the target region of
Southwest China (blue box in Fig. 1). The grey solid line representsis the topography height (m).

4.2 Assimilation impacts on forecast field

430 After presenting the improvements in the initial condition, this section investigated the impact of MWRGMWR assimilation

on the 24 h forecasts. The time series of RMSE for the CNTL experiment and RMSE differences (assimilation experiments

minus the CNTL experiment) against surface station observations for 2 m temperature, 2 m relative humidity, and 10 m wind
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fields are shown in Fig. 4011. In the CNTL experiment, the RMSE of temperature and relative humidity initially decreases

and then increases with lead time, while the RMSE of the wind field exhibits the opposite trend, increasing at first and then

decreasing. The mean RMSEs over the 24-hour forecast period are 2.32 K for temperature, 16.26% for relative humidity,

1.92ms™" for zonal wind, and 2.08 ms™ for meridional wind. Regarding assimilation impacts, Fer-temperature,—the-the

negative RMSE reduction differenee-for temperature gradually decreasesinereases, approaching zero at a lead time of 6 hours,
with higher assimilation frequency (MWRGMWR 1H) achieving a greater RMSE reduction. Similar results are observed for
relative humidity, where the RMSE reduction differenee-also decreases inereases-and approaches zero at a lead time of 12

hours. MWRGMWR 1H consistently demonstrates the largest RMSE reduction for relative humidity. However, it should be

noted that the direct assimilation of GMWR data caused a negative effectimpact on relative humidity at a lead time of 12 hours.

The degradation of wind fields (Fig. 9) and the model’s inherent nonlinearity may be responsible. For the wind field, no

increase in the RMSE difference with lead time was observed, as previously described. However, the RMSE differences
between the assimilation experiments and the CNTL experiment remain overall negative, indicating that MWRGMWR
assimilation improves wind forecasts. Additionally, MWRGMWR 1H demonstrates the largest RMSE reduction in meridional
wind, suggesting that increasing the frequency of MWRGMWR assimilation may lead to further improvements. The
quantitative statistics are presented in Table 3. The temperature RMSE differences between MWRGMWR 6H and CNTL are
—0.012, —0.005, and —0.004 K for lead time of 1-6 hours, 1-12 hours, and 1-24 hours, respectively. This gradual decrease in
RMSE differences with increasing forecast time is also observed in other experiments and variables, indicating a weakening
of the positive impact of MWRGMWR assimilation as the forecast period extends;tikelydue-to-a-gradual-inerease-in-model
error. When the impact of MWRGMWR assimilation is most pronounced (at a lead time of 1—6 hours), the temperature RMSE
differences range from —0.012 K in MWRGMWR_ 6H to —0.019 K in MWRGMWR 3H, and —0.030 K in MWRGMWR_1H.
The temperature RMSE reduction increases with the frequency of MWRGMWR assimilation, a trend also observed in relative
humidity and wind, suggesting that increasing the assimilation frequency can further improve the short-term forecasts.
Although these differences are small, the results reflect the potential for improved model forecasts with MWRGMWR

assimilation.
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Figure 1110: Verification of the forecast against surface station observations, based on the ten-day assimilation experiment
460 conducted from 13 to 22 October 2023. RMSE (black line) for the CNTL experiment and RMSE differences (colored lines) between

the assimilation experiments and the CNTL experiment for (a) temperature, (b) relative humidity, (¢) zonal wind, and (d) meridional
wind' nyel on-a ho nOroe in 1on-obse 1on RN\ i H arancao 0 ammnae O h O voh mids 0on
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Table 3 RMSE difference against surface station observations.
EXP Lead Temperature Relative Zonal Meridional
time X) Humidity wind wind

(hour) (%) (ms') (ms™
MWRGM 1-6 —-0.012 —0.011 —0.006  —0.005
WR 6H 1-12  —0.005 —0.027 —0.003  —0.006

minus
1-24  —0.004 0.046 —0.003  —0.003

CNTL
MWRGM 1-6 —-0.019 —0.042 —0.007  —0.006
WR 3H 1-12 -0.010 —0.036 —0.006  —0.007

minus
1-24  —-0.003 0.072 —0.005 -0.003

CNTL
MWRGM 1-6 —-0.030 —0.153 —0.008 -0.013
WR IH 1-12  -0.012 —0.087 —0.006 —0.013

minus
1-24  —0.005 0.065 —0.006  —0.009

CNTL

470

Verification against surface station observations indicated that assimilating MWRGMWR radiances improves near-surface

forecasts, with higher assimilation frequencies offering potential for further enhancement. To further examine the impact of
MWRGMWR assimilation, Fig. +-12 presents the forecast verification against radiosonde measurements. Unlike the RMSE
differences for the initial condition (Fig. 89), the MWRGMWR assimilation did not reduce the RMSE for lower atmospheric
475 temperature and water vapor mixing ratio, indicating a neutral impact of MWRGMWR assimilation on forecasts. Similarly,
the wind field verification results did not show significant improvements with MWRGMWR assimilation. While the RMSE
of zonal wind was reduced in the MWRGMWR 1H experiment, the RMSE differences for the wind field in other experiments

were close to or greater than zero, suggesting a neutral to slightly negative impact of MWRGMWR assimilation on wind
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forecasting. According to the verifications against radiosonde data, limited improvements are-were found in the forecasts

through MWRGMWR assimilation. The limited improvement shown in this figure could be related to the relatively long

forecast lead times (12 and 24 hours), during which model errors tend to accumulate and weaken the benefits of improved

initial conditions from GMWR assimilation. Verification against surface station observations indicates that the improvements

were primarily confined to the first few hours, particularly for temperature and humidity. After 12 hours, the impact declined

noticeably, with some cases even exhibiting negative effects (Fig.
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Figure 1211: Same as Fig. 89, but for forecast at lead time of 12 and 24 hours.

To further explore the role of MWRGMWR assimilation in precipitation forecasting, the fractions skill score (FSS) of 3 h
accumulated precipitation forecasts was calculated. The radius of influence for the FSS was set to 18 km, equivalent to six
times the grid spacing (Ha and Snyder, 2014; Zheng et al., 2024). Figure +2-13 presents the time series of FSS for the CNTL
experiment and FSS differences (assimilation experiments minus the CNTL experiment)between-the-assimilation-experiments
and-the-CNTL-experiment. The assimilation experiments were conducted during a period characterized by a higher frequency

of clear-sky observations. Cloud cover and precipitation were limited throughout the 10-day period, resulting in the absence

of frequent heavy rainfall events. Consequently, the FSS was calculated using small precipitation thresholds. In the CNTL

experiment, the FSS for 3 h accumulated precipitation shows an initial decline followed by a subsequent increase with lead

time, with relatively low FSS values observed around the 9 h forecast period. Moreover, the FSS generally decreases as the
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precipitation threshold increases. The time mean FSS values are 0.47, 0.45, 0.42. and 0.39 for thresholds of 3 mm, 4mm, Smm,

and 6 mm, respectively. Regarding the role of GMWR assimilation in precipitation forecasting, the results indicate that

assimilating GMWR radiances enhances precipitation forecasts, with FSS differences increasing progressively at higher

precipitation thresholds.

—Additionally, increasing assimilation frequencyies
shows the potential to further enhance forecast performance. When assimilating MWRGMWR data at a 1 h frequency, the
time-averaged FSS improvements for 3 h accumulated precipitation are 0.84-02 (483.2-9 %) for the 63 mm threshold,
0.98-02 (234.5-7 %) for 9-mm-4 mm threshold, 0.44-03 (467.8-3 %) for +24mm-5 mm threshold, and 0.44-04 (5810.4-2 %) for
+5-mm-6 mm threshold precipitation. For 3 h accumulated precipitation with a threshold of +5+mm6 mm, the time-averaged
FSS improvements are 0.9301, 0.86602, and 0.-4-03 for MWRGMWR 6H, MWRGMWR 3H, and MWRGMWR 1H,

respectively. These findings are consistent with the above verification against radiosonde and surface station observations,

suggesting that MWRGMWR assimilation can improve forecasts and that higher-frequency assimilation leads to further

enhancements.
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Figure 1312: The time series of fraetions—skill-seere(FSS_(black line) for CNTL experiment and FSS differences_(colored lines)

between the assimilation experiments and the CNTL experiment(assimilation—experiments—minus—the CNTL-experiment). These
experiments were conducted from 13 to 22 October 2023.The FSS was calculated for 3 h accumulated precipitation for thresholds

of (a) 6-3 mm, (b) 94 mm, (c) 42-5 mm, and (d) +5-6 mm.
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5 Conclusions and Discussion

To investigate the impact of directly assimilating MWRGMWRSs in Southwest China, MWRGMWR assimilation module is
has been built in WRFDA-4.5, where RTTOV-gb is used as the observation operator. Based on this module, three-month O—B
statistic sample was calculated to evaluate the bias for O—B and developed a BC model. Furthermore, 10-days assimilation
experiments (Table 2) were conducted using this MWRGMWR assimilation module and BC model are—eendueted—to
investigate the impact of the-direct assimilation MWRGMWR and the effects of assimilation frequency. The main findings
are as follows:

1.Based on three months of hourly samples, noticeable O—B biases were observed, varying across sensors, channels, and
geographical locations. The machine learning-based bias correction scheme, employing an RF model, effectively reduced these
systematic biases. After applying this BC model, both the bias and STD of the O—B were substantially reduced. Specifically,
the bias and STD decreased by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. The corrected O—B distributions exhibited
Gaussian characteristics centered around zero, indicating the successful mitigation of systematic biases.

2.Assimilating MWRGMWR enhances the accuracy of initial atmospheric conditions, with higher assimilation frequencies
amplifying the positive impact, particularly for temperature and humidity in the lower atmosphere. Evaluation against
radiosonde observations shows that the temperature RMSE below 1 km AGL decreases by 3.67 % to 6.32 %, with
improvements below 100 m AGL ranging from 6.25 % to 11.34 % for 6 h, 3 h, and 1 h assimilation frequencies, respectively.
For the water vapor mixing ratio, positive impacts extend up to 5 km AGL, with average RMSE improvements ranging from
1.98 % to 2.30 %. Verification against surface station observations further supports these findings, indicating that the RMSE
for 2 m temperature decreases by up to 4.1 %, while the RMSE for 2 m relative humidity decreases by up to 1.3 % at the 1 h
assimilation frequency.

3. The assimilation of MW RGMWR observations leads to improvements in forecasts, and increasing assimilation frequencies
has potential to get further improvement. In the first 6 hours of the forecast, the temperature RMSE decrease by 0.012 K, 0.019
K, and 0.030 K with 6 h, 3 h and 1 h MWRGMWR assimilation frequency, respectively. Similar trends are observed for
relative humidity, the experiment with 1 h MWRGMWR assimilation frequency showing the largest decrease in RMSE.
MWRGMWR assimilation also improves precipitation forecasts, with further enhancements seen as assimilation frequency
increases. For 1 h MWRGMWR assimilation, time-averaged FSS improvements reach 0.64-02 for both the 6-3 mm and
4dmmthreshold, 0.08-03 for 9-5 mm, and 0.14-04 for beth-12-mm-and-156 mm thresholds.

In the three-month O—B statistics, the STD in the kK—bandK-band is larger than that in the ¥-bandV-band, consistent with the
findings-of(Vural et al. (-2023) and ¢Cao et al. (-2023). This phenomenon may be attributed to the K-band's sensitivity to
water vapor and the V-band's sensitivity to temperature, with model temperature accuracy being better than that of water vapor.
The O—B bias varies across sensors, channels, and geographical locations, with a notable positive bias observed at high-altitude
stations. This positive bias is potentially caused by large-scale topographical effects on the Tibetan Plateau;-. In this region,
model simulations may contain errors, and RTTOV-gb coefficients may be inapplicablewhere—modelsimulations—may
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atmospheric profiles, which may differ significantly from the climatic conditions of plateau regions, potentially affecting

simulation accuracy.

A machine learning-based bias correction scheme using the RF technique was developed, demonstrating strong performance.

The number of trees is a critical hyperparameter that must be predetermined. Training time increases linearly with the number
of trees, while performance gradually plateaus. Thus, a modest number of trees, such as 50, can balance efficiency and accuracy.
Feature importance analysis for BC predictors revealed observed brightness temperature, atmospheric precipitable water, and
surface pressure as key factors for correcting biases. The importance of brightness temperatures aligns with findings in satellite
data bias correction_(Liu et al., 2022; Zhang et al., 2023). Atmospheric precipitable water is essential for the K-bandK-band, a
humidity-sensitive channel. Surface pressure plays a key role in temperature channels, thereby accounting for the positive bias
observed in plateau regions. Although atmospheric thickness predictors contributed less overall, the 1,000-700 hPa thickness
was relatively significant, likely due to MWRGMWRSs primarily sensing radiation from the lower atmosphere.

In this study, direct assimilation of assimilatine MWRGMWR radiance enhances both the initial conditions and the forecasts,

showing a great-potential in improving ABL and precipitation simulations. However, it should be noted that the assimilation

of GMWR data generally has a negative impact on the wind fields in the initial conditions. The background error covariance

may contribute to this negative impact, as it determines the response of the wind fields to the adjustments in temperature and

humidity made by RTTOV-gb. As an initial study primarily focused on the direct variational assimilation of GMWR data with

machine learning-based bias correction, it is admitted that this study has some limitations. The GMWR assimilation was

implemented using 3DV AR, based on RTTOV-gb and WRFDA, and only static background-error covariances were employed

in this study. The background error covariance matrix plays an important role in variational data assimilation, but this type of

covariance is climatological, spatially homogeneous, and isotropic. This may limit the impact of GMWR assimilation, and

flow-dependent error covariances should be considered in future work. Moreover, However—as—a-preliminary-attempt—itis

only clear-sky MWRGMWRs were assimilated in this

study. Since precipitation processes are often accompanied by extensive cloud cover, few clear-sky MWRGMWRs were

available. To better explore the potential of MWRGMWR assimilation, experiments feeused-were conducted duringes periods

with abundant clear-sky MWRGMWRSs (e.g., a ten-day period in October 2023), which coincided with minimal heavy

precipitation. Studies on satellite all-sky assimilation have shown that incorporating inelading-cloud- and precipitation-affected
data improves forecasts_(Ma et al., 2022; Xian et al., 2019), highlighting the need for future research on all-sky assimilation

of MWRGMWRs. Under such conditions, assimilation experiments could be conducted during a different or longer period
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given that assimilated GMWR observations would be relatively more abundant. It is noted that GMWRs exhibit higher

sensitivity and provide more valuable observations of the lower troposphere and planetary boundary layer compared to

satellite-based microwave radiometers

590

(Shi et al.,
2023)._Building on this study, future research could explore the joint direct assimilation of satellite-based and ground-based
microwave radiometers. By leveraging their complementary observational capabilities, this approach has the potential to
further enhance the accuracy of atmospheric analysis and improve forecasting across multiple layers of the atmosphere.
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Figure Al: Scatter plot of observed brightness temperature (Tb) versus simulated Tb for HATPRO. Same as Fig. 3 but for

additional channels.
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Figure A2: Scatter plot of observed brightness temperature (Tb) versus simulated Tb for MP3000A. Same as Fig. 3 but for

600 additional channels.
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Appendix B: PDF distributions of O-B
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Figure B1: Probability density functions (PDFs) of the O—B distributions for HATPRO. Same as Fig. 6 but for additional

channels.
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Figure B2 : Probability density functions (PDFs) of the O—B distributions for MP3000A. Same as Fig. 6 but for additional

channels.
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