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Abstract. The application of ground-based microwave radiometers (MWRGMWRs), which provide high-quality and 

continuous vertical atmospheric observations, has traditionally focused on the indirect assimilation of retrieved profiles. This 

study advanced this application by developing a direct assimilation capability for MWRGMWR radiance observations within 15 

the Weather Research and Forecasting model data assimilation (WRFDA) system, along with a bias correction scheme based 

on the random forest technique. The proposed bias correction scheme effectively reduced the observation-minus-background 

(O−B) biases and standard deviations by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. A series of ten-day-long 

experiments demonstrated that assimilating MWRGMWR radiances improves both the initial conditions and the forecasts, 

with additional benefits from higher assimilation frequencies. In the initial conditions, hourly assimilation significantly 20 

enhanced low-level temperature and humidity fields, reducing the root-mean-square -error (RMSE) for temperature and water 

vapor mixing ratio by 6.32 % below 1 km and 1.98 % below 5 km. These improvements extended to forecasts, where 2 m 

temperature and humidity showed sustained benefits for over 12 hours, and precipitation forecasts exhibited improvements to 

a certain extentnotable gains, particularly for higher intensity events. The time-averaged Fractions Skill Score (FSS) for 3 h 

accumulated precipitation within the 24 h forecasts increased by 0.0402–0.11 04 (103.29–5810.1 2 %) for thresholds of 63–25 

15 6 mm. 

1 Introduction 

Data assimilation (DA), a core component of numerical weather prediction (NWP), plays an important role in improving the 

forecast accuracy by integrating observational data to refine initial conditions (Bauer et al., 2015; Gustafsson et al., 2018). 

Among various types of observations, microwave radiance data are crucial for DA due to their ability to penetrate the 30 

atmosphere and their sensitivity to temperature, humidity, clouds, and precipitation. Correspondingly, satellite-borne 
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microwave radiance observations have been extensively studied and are considered among the most influential contributors to 

data assimilation systems (Geer et al., 2017; Kim et al., 2020; Candy and Migliorini, 2021). 

Unlike satellite-borne microwave radiometers, ground-based microwave radiometers (MWRGMWRs) offer unique 

advantages for DA, including high temporal resolution (minute-level) and greater sensitivity to the atmospheric boundary layer 35 

(ABL). Over the past two decades, the assimilation of MWRGMWRs has been increasingly studied, leading to improvements 

in the accuracy of NWP (Vandenberghe and Ware, 2002; Otkin, 2010; Hartung et al., 2011; Otkin et al., 2011; Caumont et al., 

2016; HE He et al., 2020; Qi et al., 2021, 2022; Lin et al., 2023). The assimilation of retrieved temperature and humidity 

profiles from MWRGMWRs has shown improvements in forecasting fog, storms, and precipitation. However, the reliance on 

indirect assimilation methods introduces uncertainties and complicates error quantification, which limits their overall 40 

effectiveness in enhancing forecast accuracy (Martinet et al., 2015; Caumont et al., 2016; Martinet et al., 2017; Lin et al., 

2023). 

Direct assimilation of MWRGMWR radiances, which bypasses the retrieval process, offers significant advantages by avoiding 

retrieval-related errors and improving the effective use of observations. This approach requires accurate observation operators 

and robust bias correction to address differences between radiance observations and model states. The direct assimilation of 45 

satellite-borne radiance observations is relatively mature (Geer et al., 2008; Bauer et al., 2010; Geer et al., 2010; Eyre et al., 

2020; Sun and Xu, 2021; Eyre et al., 2022) and utilizes fast radiative transfer models (RTMs) as observation-operator, such as 

the Radiative Transfer for Television and Infrared Observation Satellite (RTTOV) (Saunders et al., 2018). However, the unique 

characteristics of upward-looking MWRGMWR observations, such as sensitivity to near-surface conditions, require 

specialized RTMs and adaptation of existing techniques. It is noted that studies began to develop fast RTMs suitable for 50 

MWRGMWR, which provide a foundation for constructing observation operators for assimilation of MWRGMWR 

observations (De Angelis et al., 2016; Cimini et al., 2019; Shi et al., 20242025). The RTTOV-gb, a ground-based version of 

the RTTOV model, was used to simulate brightness temperature from MWRGMWRs, demonstrating high accuracy (De 

Angelis et al., 2016, 2017; Cimini et al., 2019). Recent studies have demonstrated the potential of direct MWRGMWR radiance 

assimilation using RTTOV-gb to improve temperature, humidity, and precipitation forecasts (Cao et al., 2023; Vural et al., 55 

2023). 

Despite these advancements, previous studies have typically relied on limited MWRGMWR networks or focused on specific 

case studies. Additionally, research conducted in regions with relatively simple terrain may not fully address the complexities 

of areas like the Tibetan Plateau, where the presence of complex topography often leads to significant model biases (Yang et 

al., 2020; Wei et al., 2021). These biases make accurate bias correction essential for improving the effectiveness of direct 60 

assimilation, while traditional bias correction approaches developed for satellite-borne microwave radiance observations are 

not directly applicable to ground-based MWRGMWRs. 

To address these issues, this study integrates the RTTOV-gb into the Weather Research and Forecasting Data Assimilation 

(WRFDA) (Barker et al., 2012) system (Barker et al., 2012) to develop a direct assimilation module for MWRGMWR 

radiances. A nonlinear bias correction scheme based on machine learning is also constructed usingbased on three months of 65 
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observational data. The impact of direct MWRGMWR assimilation is then investigated through a series of ten-day experiments 

conducted in Southwest China, a region shaped by the influence of the Tibetan Plateau and characterized by complex terrain. 

The remainder of this paper is organized as follows. Section 2 describes the data, the implementation of RTTOV-gb in WRFDA, 

and the model configuration. Section 3 evaluates the performance of the bias correction scheme., followed by SectionSect. 4 

presenting presents the impacts of MWRGMWR assimilation on the initial and forecast fields. The conclusions and discussion 70 

are presented in Sect. 5. 

2 Methodology 

2.1 Data 

Two types of MWRGMWR sensors were assimilated in this study, as shown in Fig. 1: the MP3000A and the Humidity And 

Temperature Profiler (HATPRO). Atmospheric radiance is measured as brightness temperatures in 14 channels for HATPRO 75 

and 22 channels for MP3000A (Table 1). For HATPRO, channels 1–7 are in the K bandK-band, while channels 8–14 are in 

the V bandV-band. Similarly, for For MP3000A, channels 1–8 are in the K bandK-band, and channels 9–22 are in the V 

bandV-band. The K bandK-band channels correspond to humidity-sensitive water vapor absorption lines, whereas the V 

bandV-band channels correspond to temperature-sensitive oxygen absorption lines. 

The Fengyun-4B (FY-4B) Advanced Geosynchronous Radiation Imager (AGRI) cloud mask (CLM) is used to identify 80 

MWRGMWR-observed brightness temperatures under clear-sky conditions. The AGRI-based CLM product has a temporal 

resolution of 15 minutes and a horizontal resolution of 4 km, categorizing conditions as confidently cloudy, probably cloudy, 

probably clear, or confidently clear, with corresponding values of 0, 1, 2, and 3, respectively (Min et al., 2017). Due to its high 

quality, this cloud mask product is widely applied in satellite data assimilation (Yin et al., 2020, 2021; Xu et al., 2023; Shen 

et al., 2024). 85 

The National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis data (FNL) (0.25° × 0.25°, 6-

hourly) were used to establish the initial and boundary conditions for regional NWP. Conventional observations from the 

Global Telecommunications System (GTS) were assimilated and evaluated, including land surface, marine surface, radiosonde, 

and aircraft reports. The hourly precipitation analysis product from the China Meteorological Administration Multisource 

Precipitation Analysis System (Shen et al., 2014) was used for evaluation. This dataset has been widely used in precipitation 90 

studies (Xia et al., 2019; Su et al., 2020; Sun and Xu, 2021; Wang et al., 2021; Li et al., 2023; Zheng et al., 2024). 

Table 1. Central frequency for MWRGMWRs 

Sensor 
Frequencies for K bandK-band 

(GHz) 

Frequencies for V bandV-band 

(GHz) 

HATPRO 
22.240;23.040;23.840;25.440; 

26.240;27.840;31.400 

51.260;52.280;53.860;54.940; 

56.660;57.300;58.000 
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MP3000A 
22.234;22.500;23.034;23.834; 

25.000;26.234;28.000;30.000 

51.248;51.760;52.280;52.804; 

53.336;53.848;54.400;54.940; 

55.500;56.020;56.660;57.288; 

57.964;58.800 

 

2.2 Assimilation system and observation operator 

The WRFDA system, developed by the National Center for Atmospheric Research (NCAR), is designed for data assimilation 95 

and includes three-dimensional variational (3DVAR), four-dimensional variational (4DVAR), and hybrid data assimilation 

algorithms. In this study, version 4.5 of the WRFDA system with 3DVAR is used for the direct assimilation of MWRGMWRs 

radiances. The 3DVAR algorithm produces the analysis by minimizing a scalar objective cost function:  

𝐽(𝒙) =
1

2
(𝒙 − 𝒙b)

𝑇𝐁−1(𝒙 − 𝒙b) +
1

2
(𝒚 − 𝐇(𝒙))T𝐑−1(𝒚 − 𝐇(𝒙)) ,      (1) 

where 𝒙 and 𝒙b represents the analysis and background fields of the model variables, 𝐲 is the vector of the observations, and 100 

𝐁 and 𝐑 represent the background and observation error covariance matrices, respectively. The covariance matrices matrix 

determines the weights assigned to the background and observations in the analysis, dictates how localized observation 

information is distributed vertically and horizontally in the model space, and maintains the balance among the model's control 

variables. 𝐇 is the non-linear observation operator, that transforms model variables to the observed quantities. The observation 

operator works slightly differently for different types of observations. For conventional observations (e.g., temperature), its 105 

the primary role of the observation operator is to perform spatiotemporal interpolation of model grid values to the observation 

space. For unconventional observations (e.g., reflectivity and radiance), where the model state cannot be directly compared 

with the observations, the observation operator must also convert model variables into observed variables. 

The static background error covariance for the variational experiments is estimated using the National Meteorological Center 

(NMC) method (Parrish and Derber, 1992), which uses the difference between WRF forecasts at lead times of 24 h and 12 h 110 

(T + 24 h minus T + 12 h) valid at the same time over a specified period. Control variables option 5 (CV5) is adopted for the 

background error covariance used in 3DVAR. CV5 is domain-dependent and therefore must be generated based on forecast or 

ensemble data over the same domain. It utilizes streamfunction, unbalanced velocity potential, unbalanced temperature, 

unbalanced surface pressure, and pseudo relative humidity. In this study, the background error covariance matrix was generated 

using the Generalized Background Error Covariance Matrix Model (GEN_BE v2.0) (Descombes et al., 2015) based on one 115 

month of WRF forecasts. Observation-error correlations are typically assumed to be zero in WRFDA, resulting in a diagonal 

observation-error covariance matrix. Observation errors were specified based on the standard deviation of O–B. 

 

RTMs serve as observation operators for assimilating radiance data by mapping model variables (e.g., temperature and water 

vapor) into radiance space. RTTOV, a fast RTM, is widely used for assimilating satellite radiance data, which involves 120 
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downward-looking observations. However, MWRGMWR radiances are upward-looking microwave observations, differing 

from the downward-looking measurements of satellite-borne microwave radiometerswhich differ from the downward-looking 

observation of satellites. This difference in direction makes RTTOV difficult to apply in MWRGMWR radiances assimilation. 

Fortunately, RTTOV-gb can simulate brightness temperatures from MWRGMWRs, and serves as the observation operator in 

this study. The weighting function (WF) quantifies the contribution of emissions from each atmospheric layer, and the 125 

maximum WF height indicates which atmospheric layer contributes most to the measured radiance (Carrier et al., 2008). 

According to Cui et al. (2020), WFs are calculated as the derivative of transmittance with respect to the natural logarithm of 

pressure. The vertical distribution of WFs for HATPRO and MP3000A, calculated using RTTOV-gb, is shown in Fig. 2. The 

WFs reach their maximum at 1000 hPa and decrease monotonically with height. These results confirm that the lower 

atmosphere contributes most to the observed radiation across all channels, consistent with the findings of Shu et al. (2012).  130 

It should be noted that RTTOV-gb is not included in the publicly available version of WRFDA. To address this limitation, a 

GMWR direct assimilation module was developed within WRFDAan MWR direct assimilation module was developed, 

modeled after the satellite direct assimilation module, allowing RTTOV and RTTOV-gb to coexist within WRFDA. Results 

from the single-observation assimilation experiment confirm that the MWRGMWR direct assimilation module performs 

functions correctly. The temperature and water vapor increments are horizontally isotropic and show a maximum at lower 135 

atmospheric levels vertically (Fig. 2). It should also be noted that this experiment was conducted to verify the correct 

performance of the GMWR direct assimilation module and to provide valuable insights into the characteristics of GMWR 

assimilation. However, it is not representative of the subsequent multi-observation, multi-channel assimilation experiments. 

 

2.3 Model configuration and experimental design 140 

In this study, version 4.5 of the Weather Research and Forecasting (WRF) model (Skamarock et al., 2021) is used to simulate 

atmospheric evolution. The simulation employs a single domain (Fig. 1) with a horizontal resolution of 3 km, comprising 

1,261 × 811 grid points and 51 vertical levels, with the top boundary at 10 hPa. The model physics configuration includes the 

Morrison two-moment microphysics scheme (Morrison et al., 2009), the Yonsei University PBL scheme (Hong et al., 2006), 

the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) shortwave and longwave radiation schemes 145 

(Iacono et al., 2008), and the unified Noah land-surface model (Chen and Dudhia, 2001). Cumulus parameterization was 

excluded due to the convection-permitting horizontal resolution of 3 km (Li et al., 2023; Moker et al., 2018). 

Similar to previous studies (Jiang et al., 2017; Nie and Sun, 2023), the target region of Southwest China in this study is defined 

as the area within the rectangular domain 22°–35°N, 93°–110°E (Fig. 1). This region encompasses the Hengduan Mountains, 

the Yunnan–Guizhou Plateau, and the Sichuan Basin, and is generally consistent with Chinese administrative divisions.  150 

Based on the model configuration described above, four parallel experiments were conducted to investigate the impact of 

MWRGMWR assimilation (Table 2). Each experiment started at 12:00 UTC daily, incorporating 12 hours of data assimilation 

followed by a 24 h forecast. The primary differences among these experiments lie in the assimilated data and assimilation 
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intervals. The CNTL experiment assimilated GTS data with a 6 h interval, while the MWRGMWR_6H experiment added 

MWRGMWR assimilation to the CNTL setup, enabling an evaluation of MWRGMWR assimilation's impact. The other two 155 

experiments, MWRGMWR_3H and MWRGMWR_1H, assimilated both GTS and MWRGMWR data with 3 h and 1 h 

intervals, respectively, to assess the effects of observation frequency in MWRGMWR assimilation.  

The assimilation experiments were conducted under clear-sky conditions due to the uncertainties in the model and observation 

operators under cloudy or rainy conditions. All experiments were conducted over a ten-day period from 13 to 22 October 

202313 October 2023 to 22 October 2023. Among the available GMWR observations from August to October 2023, this period 160 

exhibited a notably higher frequency of clear-sky data, which was more favorable for demonstrating the role and potential of 

GMWR assimilation. Before implementing bias correction, clear-sky screening, first-guess departure check, and whitelist 

check were sequentially applied to improve measurement quality. Subsequently, a relative departure check was applied prior 

to minimization. For the 6 h, 3 h, and 1 h assimilation intervals, 34 (0.91%), 70 (1.42%), and 76 (0.72%) observations were 

rejected, respectively. The detailed procedure prior to a single assimilation cycle is as follows: 165 

(1) Observation Selection: The observation nearest to the analysis time within ±10 minutes is selected. 

(2) Clear-sky Screening: Clear-sky GMWR observations were screened using the AGRI-based CLM, with background-

simulated cloud liquid water path equal to zero. 

(3) First-Guess Departure Check: Observations with (O−B) values greater than 20 K are excluded. 

(4) Whitelist Check: Remove observations from stations identified as unreliable or displaying abnormal behavior. 170 

(5) Bias Correction: a machine learning bias correction scheme was applied (see Section 3.2). 

(6) Relative Departure Check: Applied when the absolute value of the O−B exceeds three times the standard deviation of the 

observational error, further rejecting questionable data. 

 

 175 
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Figure 1: Computation domain(shaded). The shaded denotes topography (units: m). The green rectangle denotes the target region 

of Southwest China. The blue empty circle denotes radiosonde. The 'x' and '+' symbols denote HATPRO and MP3000A, respectively. 
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 180 

Figure 2: Normalized Weighting weighting functions of (a) HATPRO and (b) MP3000A calculated using by the RTTOV-gb. The (c, 

d) horizontal and (e, f) vertical analysis increments for (c, e) temperature and (d, f) water vapor mixing ratio in single-observation 

assimilation experiment. The vertical increments are cross-sections along the green lines shown in the horizontal incrementsThe 

main figures show vertical cross-sections of the increments along the green line shown in the inset figures. The inset figures show the 

horizontal increments at the model level with the maximum increment.The colorbar tick labels for temperature and water vapor 185 
mixing ratio are expressed in scientific notation as 1×10⁻² and 1×10⁻⁴, respectively. 
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Table 2 Experimental design 

Experiment 
Assimilated 

Data 

Assimilation 

Interval 

CNTL GTS 6-hour 

MWRGMWR_6H 
GTS and 

MWRGMWR 
6-hour 

MWRGMWR_3H 
GTS and 

MWRGMWR 
3-hour 

MWRGMWR_1H 
GTS and 

MWRGMWR 
1-hour 

3 Machine learning based bias correction for MWRGMWR 

3.1 Bias characteristics 190 

Variational assimilation assumes that both observation and background errors follow an unbiased Gaussian distribution. 

However, due to instrument errors, limitations of the RTMs, and errors in the NWP model background, observed radiances (O) 

and simulated radiances (B) inherently contain errors (denoted as 𝜇𝑜 and 𝜇𝑏), which may exhibit a biased distribution. Bias 

correction is a crucial process in radiance data assimilation, aiming to identify and remove these biases (Auligné et al., 2007; 

Dee, 2005). In the real atmosphere, O and B are regarded as the true value (T) plus their respective deviations μ, as shown in 195 

Eq. (2): 

O − B̅̅ ̅̅ ̅̅ ̅̅ = (O − T) − (B − T)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = μ𝑜 − μ𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ,         (2) 

It shows that the statistical expectation value of O−B can represent the systematic deviation (μ𝑜 − μ𝑏) Therefore, it is critical 

to evaluate the bias characteristics of O−B and correct them. 

To estimate the bias and develop a bias correction scheme for MWRGMWR direct assimilation, a three-monthlong-term 200 

experiment  was conducted from August to October 2023, tyielding a three-month sample dataset.o obtain a large number of 

samples. In this experiment, the WRF model was initialized every 6 hours using NCEP FNL data, and WRFDA operated 

hourly in monitoring mode (only calculate O−B). After a cloud check using the AGRI-based CLM and a gross check (O−B < 

20 K), the bias of O−B for HATPRO and MP3000A was estimated. 

A comparative scatterplot analysis of observed and simulated brightness temperatures was conducted. For most channels, the 205 

scatter points are closely aligned along the diagonal and exhibit high correlation coefficients, indicating strong agreement 

between the simulations and observations. However, the scatter for some channels forms two distinct clusters. To further 

investigate, representative channels from the K-band (water vapor absorption lines) and the V-band (temperature-sensitive 

oxygen absorption lines) were selected. Figure 3 presents scatterplots for channel 1 (K-band) and channel 13 (V-band) of 

HATPRO, and channel 1 (K-band) and channel 14 (V-band) of MP3000A. Results for the remaining channels are shown in 210 
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Figures A1 and A2. For HATPRO, more than 6,000 samples are analyzed for channels 1 and 13. The O−B biases are 1.25 K 

for channel 1 and 2.14 K for channel 13, with standard deviations (STD) of 3.35 K and 2.82 K, respectively. Additionally, the 

scatter distribution for channel 13 is not centered, showing a cluster shifted to the right of the diagonal (Fig. 3b). For MP3000A, 

more than 2,000 samples are analyzed for channels 1 and 14, with O−B biases of 3.06 K for channel 1 and −0.54 K for channel 

14. The O−B STDs are 3.94 K and 3.08 K, respectively. Similar to the results for HATPRO channel 13 (V-band), the scatter 215 

for MP3000A channel 14 (V-band) also shows a cluster offset from the diagonal, but to the left (Fig. 3d). Based on these 

results, significant O−B biases are detected in GMWR observations, with their characteristics varying across different sensors 

and channels. However, the correlation coefficients between observed and simulated brightness temperatures are high, at least 

0.95, suggesting that these biases can be effectively corrected. 

Figure 3 shows the scatter of observed and simulated brightness temperatures for K band (water-vapor absorption lines) and 220 

V band (temperature-sensitive oxygen absorption lines). For HATPRO, more than 6,000 samples are analyzed. The O−B biases 

are 1.25 K for the K band (channel 1) and 2.14 K for the V band (channel 13), with standard deviations (STD) of 3.35 K and 

2.82 K, respectively. Additionally, the scatter distribution of the V band is not centered, showing a band shifted to the right of 

the diagonal (Fig. 3b). For MP3000A, more than 2,000 samples are analyzed, with O−B biases of 3.06 K for the K band 

(channel 1) and −0.54 K for the V band (channel 14). The O−B STD are 3.94 K and 3.08 K, respectively. Similar to the 225 

HATPRO V band results, the scatter for the MP3000A V band also shows bands offset from the diagonal, but to the left (Fig. 

3d). Based on the above results, the O−B STD of K band is larger than that of V band. Moreover, significant O−B biases are 

detected in MWR observations, with their characteristics varying across different sensors and channels. However, the 

correlation coefficients between observed and simulated brightness temperatures are high, at least 0.95, suggesting that these 

biases can be effectively corrected. 230 
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Figure 3: Scatter plot of observed brightness temperature (Tb) versus simulated Tb, based on samples collected from August to 

October 2023. The top and bottom rows correspond to the HATPRO and MP3000A sensors, and the left and right columns represent 

the K bandK-band and V bandV-band, respectively. Each panel displays the number of samples (num), the O−B mean (bias), O−B 

standard deviation (STD), and the correlation coefficient (r) between observed and simulated Tb. 235 

To further analyze the O−B bias characteristics at each station and investigate the reasons for the band shifting from the 

diagonal (Fig. 3b and d), the statistics for each station are presented in Fig. 4. For HATPRO, the O−B bias varies among 

stations. Stations near complex topography (e.g., 56312, 56137, 56029, and 55664) exhibit notable positive O−B biases in 

channels 8 to 13 (Fig. 4a), leading to a rightward shift of the band relative to the diagonal (Fig. 3b). These positive biases may 

result from biases in the background field over the topographic region, the limited applicability of RTTOV-gb coefficients, or 240 

calibration issues in the observations. Consistent with results for all stations, each station shows that the O−B STD at each 

station for the K bandK-band is larger than that for the V bandV-band (Fig. 4b). The correlation coefficients between observed 

and simulated brightness temperatures are high across all channels (typically above 0.90), although they are slightly lower for 

channels 4 to 9.Regarding the correlation coefficients between observed and simulated brightness temperatures, the overall 

values are high but slightly lower for channels 4 to 9. For MP3000A, station 57461 exhibits a negative O−B bias in channels 245 

9 to 14 (Fig. 4d), contributing to the band shifting to the left of the diagonal (Fig. 3d). Similar to the results for HATPRO, the 
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O−B STD in the K bandK-band is generally larger than that in the V bandV-band (Fig. 4e), and the correlation coefficients 

are also overall higher, typically exceeding 0.9 (Fig. 4f). 

 

Figure 4: Statistics at each station based on samples collected from August to October 2023.Statistics for each station. O−B (a) bias 250 
and (b) standard deviations (STD) for HATPRO; (c) correlation coefficient (r) between observed and simulated brightness 

temperatures for HATPRO; (d–f) same as (a–c) but for MP3000A. Some stations did not provide observations for specific channels; 

the corresponding missing data are displayed in grey in the figure. 

3.2 Bias correction 

Based on the results above, noticeable O−B biases were observed, varying across sensors, channels, and the geographical 255 

locations of stations. It is essential to remove these biases before assimilation. Static bias correction (Harris and Kelly, 2001) 

and variational bias correction (Dee, 2005) are commonly used in radiance data assimilation. These methods typically assume 

a linear correlation between the biases and some selected predictors. However, nonlinear sources of bias are common, and 

Zhang et al. (2023) demonstrated that the nonlinear scheme outperforms the linear scheme in reducing systematic biases. 

Following Zhang et al. (2023), this study developed a machine learning-based bias correction scheme, using the Random 260 

Forest (RF) technique (Breiman, 2001). 
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Following Yin et al. (2020), the predictors include 1,000–300hPa thickness, 200–50hPa thickness, model surface skin 

temperature (TS) and total precipitable water (PW). Considering that MWRGMWRs are sensitive to the lowerlow-level 

atmosphere, the predictors also include 1,000–700hPa thickness, 700–500hPa thickness, 500–300hPa thickness, 2m 

temperature (T2), 2m water vapor mixing ratio (Q2), 10m zonal wind (U10), 10m meridional wind (V10), and surface pressure 265 

(PS). Finally, latitude, longitude, and observed brightness temperatures (Tb) are included added as predictors due to their 

potential possible importance (Zhang et al., 2023). The O−B biases vary across sensors and channels. Therefore, a separate 

model is trained for each type of instrument and channel. Biases also vary across the geographical locations of stations, 

potentially influenced by the large-scale topography of the Tibetan Plateau. As predictors, 2 m temperature, surface pressure, 

and latitude and longitude are important for explaining these biases. 270 

There are two types of parameters in machine learning models: model parameters and hyperparameters. Model parameters are 

initialized and updated during the learning process. Hyperparameters, on the other hand, cannot be directly estimated from the 

data. They must be configured before training because they define the model's architecture. Building an optimal machine 

learning model requires exploring a range of possibilities. The process of determining the ideal model architecture and 

hyperparameter configuration is known as hyperparameter tuning. This hHyperparameter tuning is a key component of 275 

developing an effective machine learning model (Yang and Shami, 2020).  

The RF model has four key hyperparameters: the number of trees in the forest (n_estimators), the maximum depth of the tree 

(max_depth), the minimum number of samples required to split an internal node (min_samples_split), and the minimum 

number of samples required to be at a leaf node (min_samples_leaf). These hyperparameters were tuned using scikit-learn’s 

GridSearchCV (Pedregosa et al., 2011) with 5-fold cross-validation (CV), which exhaustively searches over a predefined range 280 

of hyperparameters, training and evaluating the model for each configuration. The flowchart illustrating the training and 

evaluation process of the bias correction (BC) model is shown in Fig. 5b. The three-month sample dataset (described in Section 

3.1) dataset was randomly split into a training set (70 %) and a test set (30 %). During training, GridSearchCV constructed a 

large grid of possible hyperparameter configurations, iteratively trained and evaluated the model for each, and calculated a 

score. Finally, the optimized model was trained using the configuration with the highest score. 285 
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Figure 5: Flowchart of the training and evaluation for bias correction model 

To investigate the impact of hyperparameters on model training time and performance, the fit time and score of the RF model 

under various hyperparameter settings were analyzed (figure not shown). Overall, the fit time and score demonstrated a positive 

correlation. As the min_samples_leaf and min_samples_split parameters increased, both fit time and score decreased 290 

monotonically. Conversely, increasing the max_depth and n_estimators parameters resulted in a monotonic increase in both 

fit time and score. Notably, max_depth had the most significant impact on the score, while n_estimators primarily affected the 

fit time. For n_estimators, the score increased logarithmically, while the fit time grew linearly. These findings suggest that 

selecting a moderately small value for the n_estimators parameter can achieve better results while reducing computational 

time. 295 

Using the above bias correction model, the corrected O−B is obtained by subtracting the predicted O−B from the original O−B. 

The effectiveness of the BC model was assessed based on the probability density functions (PDFs) of the O−B distribution 

using the test set. For most channels, the PDFs exhibit a unimodal pattern, with peak positions deviating from zero, indicating 

that the O−B values are biased. For some channels, the distributions are multimodal, characterized by a secondary peak 

superimposed on the primary one. Although these issues are present in the original distributions, after bias correction, the PDFs 300 

approximate an unbiased distribution, and the secondary peaks are effectively suppressed, demonstrating the effectiveness of 

the correction. From the scatter plots in Fig. 3, the O−B distribution appears bimodal—an issue that may affect 3D-Var, which 

typically assumes the errors to be unimodal (Gaussian). Similar to Fig. 3, channel 1 (K-band) and channel 13 (V-band) of 

HATPRO, as well as channel 1 (K-band) and channel 14 (V-band) of MP3000A, are selected for detailed analysis (Fig. 6). 

Results for the remaining channels are presented in Figures B1 and B2. The biases for HATPRO channel 1, HATPRO channel 305 

13, MP3000A channel 1, and MP3000A channel 14 are 1.24 K, 2.21 K, 3.00 K, and –0.64 K, respectively, with corresponding 

STDs of 3.38 K, 2.90 K, 3.89 K, and 3.08 K. The differences between the test set and the full dataset (shown in Fig. 3) are 
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negligible, with a maximum bias difference of 0.10 K and a maximum STD difference of 0.08 K, highlighting the strong 

representativeness of the test set. From the PDF distributions of O–B, both instruments exhibit a positive bias in the K-band 

with a unimodal distribution. In contrast, a bimodal distribution is observed in the V-band: the second peak appears on the 310 

right for HATPRO and on the left for MP3000A. These results are consistent with the scattering patterns shown in Fig. 3. 

After the bias correction is applied, both the bias and STD are reduced, and the O–B distribution becomes more sharply 

concentrated around zero, accompanied by an increase in kurtosis. For example, in channel 1 of MP3000A, the bias and STD 

decrease from 1.24 K and 3.38 K to 0.03 K and 1.44 K, respectively, while the kurtosis increases markedly from 1.53 to 9.44. 

It is also noteworthy that the bimodal distributions in the V-band for both instruments become unimodal after the correction. 315 

Meanwhile, the skewness decreases from 1.04 and 1.54 to 0.55 and 1.05, respectively, indicating a more symmetrical O–B 

distribution. These results demonstrate that the proposed bias correction scheme effectively reduces bias and STD, addresses 

bimodal distribution, and shifts the O–B distribution closer to a Gaussian shape.  

The probability density function (PDF) of O−B for HATPRO was analyzed (figure not shown). Without BC, the O−B exhibits 

biases; for example, the PDF peak of channel 7 is located on the negative semi-axis, while the PDF peak of channel 13 is on 320 

the positive semi-axis. Furthermore, some individual channels, such as channel 10, display bimodal distributions. After bias 
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correction, the PDF distributions approximate Gaussian distributions with a mean value of 0, indicating that the bias has been 

corrected.  

Figure 6: Probability density functions (PDFs) of the O−B distributions, based on a test set randomly selected from 30% of the 

three-month sample dataset collected from August to October 2023. The top and bottom rows correspond to the HATPRO and 325 
MP3000A sensors, respectively, while the left and right columns represent the K-band and V-band. Each panel displays the 

number of samples (num), the mean (bias), standard deviation (STD), skewness, and kurtosis of the distributions. 

 

Figure 6 7 illustrates the bias and STD of the O−B for each HATPRO channel. Before BC, the O−B bias of O−B for HATPRO 

ranged from 0 to 2 K, with the bias in the K bandK-band (particularly channels 4 to 7) being smaller than that in the V bandV-330 

band. After bias correction, the bias for each channel is approximately 0 K. In terms of the O−B STD, the values for HATPRO 

ranged from 2 to 4 K without BC, with channels 4 to 7 exhibiting smaller values compared to other channels. After BC, the 

STD of O−B oscillates between 0.5 and 1.5 K. The application of this BC model significantly reduced both the bias and STD 



17 

 

of O−B, with reductions of 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. Meanwhile, the corrected O−B distributions 

display Gaussian characteristics centered around zero, indicating the effective removal of systematic biases. 335 

Diagnosing the contributions of each predictor is crucial. Figure 6c 7c illustrates the feature importance of several predictors 

for HATPRO. The model normalized the feature importance scores so that their sum equals 1. A higher score reflects a stronger 

correlation between predictors and O−B biases. Observed brightness temperature, total precipitable water, and surface pressure 

are significant contributors to BC for the K bandK-band (water vapor channel). For the V bandV-band (temperature channel), 

observed brightness temperature, latitude, and surface pressure are the most influential predictors. The contributions of 340 

atmospheric thickness predictors are smaller compared to the other predictors; however, the 1,000–700 hPa thickness predictor 

has a relatively larger contribution among them. This may be because MWRGMWR primarily observes radiation from the 

lower atmosphere. Notably, surface pressure plays a critical role in BC for the temperature channels, which may account for 

the positive bias in O−B observed at plateau stations (Fig. 4a). 

 345 

Figure 76: (a) Bias and (b) standard deviation (STD) of O−B, based on a test set randomly selected from 30% of the three-month 

sample dataset collected from August to October 2023. (c) Feature importance of the predictors used in the bias correction (BC) 

model. The shaded regions and solid lines represent the range and mean feature importance for the K bandK-band and V bandV-

band, respectively. 
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4 Direct assimilation of MWRGMWR radiance observations 350 

4.1 Assimilation impacts on initial condition 

The performance of MWRGMWR assimilation in the observation space was evaluated. Figure 7 8 summarizes the bias and 

STD of the O−B and observation minus analysis (O−A) statistics, aggregated over time and across different channels. The bias 

of O−A was reduced compared to O−B, particularly in the V bandV-band. Specifically, for channel 11 of MWRGMWR_1H 

(1 h assimilation interval), O−B was −0.40 K and O−A was −0.13 K. When MWRGMWR observations were assimilated, the 355 

simulated brightness temperatures became closer to the observations, resulting in smaller STD. Moreover, as the frequency of 

MWRGMWR observation assimilation increases, the bias and STD of the O−B gradually converge closer to zero. For channel 

3, the O−B STD in MWRGMWR_6H, MWRGMWR_3H, and MWRGMWR_1H significantly decreased from 1.03 K, 0.92 

K, and 0.56 K to O−A STD values of 0.36 K, 0.34 K, and 0.34 K, respectively. Although the differences in O−A are less 

noticeable, the improvement of O−B suggests that increasing the frequency in cycling assimilation accumulates the impact of 360 

the MWRGMWRs, producing a higher-quality first-guess field for the final cycle. The assimilation of MWRGMWR 

observations effectively influences the brightness temperatures, demonstrating the successful processing of MWRGMWR data 

by the 3DVAR system.  

 

Figure 87: Verification of the initial conditions against MWRGMWR observations, based on the ten-day assimilation experiment 365 
conducted from 13 to 22 October 2023 in the target region of Southwest China (blue box in Fig. 1).  (a) Bias and (b) standard 

deviation (STD) of the observation minus background (O−B) and observation minus analysis (O−A) for the MWRGMWR 

assimilation in the target region of Southwest China (blue box in Fig. 1). 
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The above evaluation demonstrates the successful implementation of the newly introduced MWRGMWR radiance direct 

assimilation in WRFDA. However, compared to brightness temperature simulations, greater attention should be given to the 370 

model state variables in the initial field, as they directly influence subsequent model forecasts. To this end, radiosonde 

observations in the target region of Southwest China were used to evaluate the impact of MWRGMWR assimilation. The root-

mean-square error (RMSE) was calculated, and the RMSE differences between CNTL and other assimilation experiments are 

shown in Fig. 89.  

Results indicate that assimilating MWRGMWR radiances enhances low-level temperature and humidity fields, with higher 375 

assimilation frequencies offering the potential for additional improvements. MWRGMWR assimilation has a neutral impact 

on atmospheric temperature above 1 km AGL, where the RMSE difference is minimal. However, it positively impacts lower 

atmospheric temperature, with the RMSE for temperature decreasing below 1 km AGL. Specifically, the average RMSE 

improvements below 1 km are 3.67 %, 5.28 %, and 6.32 % for MWRGMWR_6H, MWRGMWR_3H, and MWRGMWR_1H, 

respectively. This indicates that increasing assimilation frequency enhances observational impacts and further improves the 380 

initial field. The improvement phenomenon becomes more pronounced with decreasing altitude, with 100 m RMSE 

improvements of 0.10 K (6.25 %), 0.13 K (7.90 %), and 0.19 K (11.34 %) in MWRGMWR_6H, MWRGMWR_3H, and 

MWRGMWR_1H, respectively. For the water vapor mixing ratio (QVAPOR), MWRGMWR assimilation demonstrates a 

positive impact that extends into the middle atmosphere, with average RMSE improvements below 5 km of 2.30 %, 2.20 %, 

and 1.98 % for MWRGMWR_6H, MWRGMWR_3H, and MWRGMWR_1H, respectively. The impact of MWRGMWR 385 

assimilation and the effect of assimilation frequency become more pronounced in the lower atmosphere, with average RMSE 

improvements below 300 m of 3.01 % for MWRGMWR_1H, compared to 2.43 % for MWRGMWR_6H and 2.05 % for 

MWRGMWR_3H.  

It is noted that the GMWR assimilation has negative impacts on the wind fields. The RMSE for zonal and meridional winds 

exhibits a slight negative effect when GMWR is assimilated, with meridional winds even showing an increase in RMSE. These 390 

negative impacts on the wind field caused by GMWR assimilation may be attributed to two factorsIt is noted that the MWR 

assimilation shows limited improvement for the wind field. The RMSE for Zonal and Meridional winds exhibited a neutral 

impact when MWR was assimilated, with meridional winds even showing an increase in RMSE. The modest improvement in 

the wind field by MWR assimilation may be due to two factors: (1) When assimilating observed brightness temperature, the 

adjoint model of the observation operator directly adjusts temperature and humidity to optimize the simulation, while changes 395 

in the wind field are indirectly driven by these adjustments through the background error covariance. (2) MWRGMWR 

assimilation primarily improves the lower atmosphere, while changes in the upper atmosphere are also governed by the 

background error covariance. The static background error covariance used here is climatological and isotropic, which does not 

fully align with evolving weather conditions, potentially resulting in ineffective wind field improvements. 
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 400 

Figure 98: Verification of the initial conditions against radiosonde observations, based on the ten-day assimilation experiment 

conducted from 13 to 22 October 2023 . in the target region of Southwest China (blue box in Fig. 1). Root mean square error (RMSE) 

for of (a) temperature, (b) water vapor mixing ratio (QVAPOR), (c) zonal wind, and (d) meridional wind in the target region of 

Southwest China (blue box in Fig. 1).. 

Based on the evaluation against radiosonde observations, the assimilation of MWRGMWR data improves the initial fields of 405 

temperature and humidity, aligning them more closely with observations, particularly in the lower atmosphere. Additionally, 

the initial fields are validated against surface station observations, including measurements of 2m temperature, 2m humidity, 

and 10m wind (Fig. 910). 

The RMSE differences indicate that MWRGMWR assimilation effectively enhances the 2m temperature and humidity fields. 

Under 6-hourly MWRGMWR assimilation, the temperature RMSE generally increased on the southern side of the basin, 410 

whereas other regions showed a positive effect with reduced RMSE values. Moreover, the temperature RMSE reduction in 

these positively affected areas further improved as the assimilation frequency increased, with overall differences ranging from 

−0.008 K (−0.3 %) to −0.099 K (−4.1 %). For humidity, MWRGMWR assimilation shows a negative impact on relative 

humidity (RH) at a 6 h assimilation frequency. However, the RMSE over the plateau decreases as the assimilation frequency 

increases, with the RMSE difference shifting from positive to negative. In the MWRGMWR_1H experiment, the RH RMSE 415 

is reduced by 0.276 (1.3 %).  

Unlike the temperature and humidity RMSEs, the improvement in the wind field RMSE does not exhibit a distinct spatial 

pattern. Compared to the CNTL experiment, the RMSE differences for zonal wind are −0.005 m s−1 (−0.3 %), −0.017 m s−1 

(−1.0 %), and −0.019 m s−1 (−1.2 %) in MWRGMWR_6H, MWRGMWR_3H, and MWRGMWR_1H, respectively. Similarly, 

the RMSE differences for meridional wind are −0.008 m s−1 (−0.5 %), −0.011 m s−1 (−0.7 %), and −0.009 m s−1 (−0.5 %) in 420 

MWRGMWR_6H, MWRGMWR_3H, and MWRGMWR_1H, respectively. While the changes in wind RMSE are relatively 
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small, the results indicate that assimilating MWRGMWR data improves the initial field, with higher assimilation frequencies 

offering potential for further enhancement. 

 

Figure 109: Verification of the initial conditions against surface station observations, based on the ten-day assimilation experiment 425 
conducted from 13 to 22 October 2023 in the target region of Southwest China (blue box in Fig. 1). The percentage in RMSE 

differences (scatter) for of temperature (T), relative humidity (RH), zonal wind (U), and meridional wind (V) in the target region of 

Southwest China (blue box in Fig. 1). The grey solid line representsis the topography height (m). 

4.2 Assimilation impacts on forecast field 

After presenting the improvements in the initial condition, this section investigated the impact of MWRGMWR assimilation 430 

on the 24 h forecasts. The time series of RMSE for the CNTL experiment and RMSE differences (assimilation experiments 

minus the CNTL experiment) against surface station observations for 2 m temperature, 2 m relative humidity, and 10 m wind 
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fields are shown in Fig. 1011. In the CNTL experiment, the RMSE of temperature and relative humidity initially decreases 

and then increases with lead time, while the RMSE of the wind field exhibits the opposite trend, increasing at first and then 

decreasing. The mean RMSEs over the 24-hour forecast period are 2.32 K for temperature, 16.26% for relative humidity, 435 

1.92 m s⁻¹ for zonal wind, and 2.08 m s⁻¹ for meridional wind. Regarding assimilation impacts, For temperature, the the 

negative RMSE reduction difference for temperature gradually decreasesincreases, approaching zero at a lead time of 6 hours, 

with higher assimilation frequency (MWRGMWR_1H) achieving a greater RMSE reduction. Similar results are observed for 

relative humidity, where the RMSE reduction difference also decreases increases and approaches zero at a lead time of 12 

hours. MWRGMWR_1H consistently demonstrates the largest RMSE reduction for relative humidity. However, it should be 440 

noted that the direct assimilation of GMWR data caused a negative effectimpact on relative humidity at a lead time of 12 hours. 

The degradation of wind fields (Fig. 9) and the model’s inherent nonlinearity may be responsible. For the wind field, no 

increase in the RMSE difference with lead time was observed, as previously described. However, the RMSE differences 

between the assimilation experiments and the CNTL experiment remain overall negative, indicating that MWRGMWR 

assimilation improves wind forecasts. Additionally, MWRGMWR_1H demonstrates the largest RMSE reduction in meridional 445 

wind, suggesting that increasing the frequency of MWRGMWR assimilation may lead to further improvements. The 

quantitative statistics are presented in Table 3. The temperature RMSE differences between MWRGMWR_6H and CNTL are 

−0.012, −0.005, and −0.004 K for lead time of 1–6 hours, 1–12 hours, and 1–24 hours, respectively. This gradual decrease in 

RMSE differences with increasing forecast time is also observed in other experiments and variables, indicating a weakening 

of the positive impact of MWRGMWR assimilation as the forecast period extends, likely due to a gradual increase in model 450 

error. When the impact of MWRGMWR assimilation is most pronounced (at a lead time of 1–6 hours), the temperature RMSE 

differences range from −0.012 K in MWRGMWR_6H to −0.019 K in MWRGMWR_3H, and −0.030 K in MWRGMWR_1H. 

The temperature RMSE reduction increases with the frequency of MWRGMWR assimilation, a trend also observed in relative 

humidity and wind, suggesting that increasing the assimilation frequency can further improve the short-term forecasts. 

Although these differences are small, the results reflect the potential for improved model forecasts with MWRGMWR 455 

assimilation. 
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Figure 1110: Verification of the forecast against surface station observations, based on the ten-day assimilation experiment 

conducted from 13 to 22 October 2023. RMSE (black line) for the CNTL experiment and RMSE differences (colored lines) between 460 
the assimilation experiments and the CNTL experiment for (a) temperature, (b) relative humidity, (c) zonal wind, and (d) meridional 

wind. Verification of the forecast against station observations. RMSE differences for (a) temperature, (b) relative humidity, (c)zonal 

wind, and (d) meridional wind between the assimilation experiments and the CNTL experiment. 
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Table 3 RMSE difference against surface station observations. 

EXP Lead 

time 

(hour) 

Temperature 

(K) 

Relative  

Humidity 

 (%) 

Zonal 

wind 

(m s−1) 

Meridional  

wind 

(m s−1) 

MWRGM

WR_6H 

minus 

CNTL 

1–6 −0.012 −0.011 −0.006 −0.005 

1–12 −0.005 −0.027 −0.003 −0.006 

1–24 −0.004 0.046 −0.003 −0.003 

MWRGM

WR_3H 

minus 

CNTL 

1–6 −0.019 −0.042 −0.007 −0.006 

1–12 −0.010 −0.036 −0.006 −0.007 

1–24 −0.003 0.072 −0.005 −0.003 

MWRGM

WR_1H 

minus 

CNTL 

1–6 −0.030 −0.153 −0.008 −0.013 

1–12 −0.012 −0.087 −0.006 −0.013 

1–24 −0.005 0.065 −0.006 −0.009 

 470 

Verification against surface station observations indicated that assimilating MWRGMWR radiances improves near-surface 

forecasts, with higher assimilation frequencies offering potential for further enhancement. To further examine the impact of 

MWRGMWR assimilation, Fig. 11 12 presents the forecast verification against radiosonde measurements. Unlike the RMSE 

differences for the initial condition (Fig. 89), the MWRGMWR assimilation did not reduce the RMSE for lower atmospheric 

temperature and water vapor mixing ratio, indicating a neutral impact of MWRGMWR assimilation on forecasts. Similarly, 475 

the wind field verification results did not show significant improvements with MWRGMWR assimilation. While the RMSE 

of zonal wind was reduced in the MWRGMWR_1H experiment, the RMSE differences for the wind field in other experiments 

were close to or greater than zero, suggesting a neutral to slightly negative impact of MWRGMWR assimilation on wind 
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forecasting. According to the verifications against radiosonde data, limited improvements are were found in the forecasts 

through MWRGMWR assimilation. The limited improvement shown in this figure could be related to the relatively long 480 

forecast lead times (12 and 24 hours), during which model errors tend to accumulate and weaken the benefits of improved 

initial conditions from GMWR assimilation. Verification against surface station observations indicates that the improvements 

were primarily confined to the first few hours, particularly for temperature and humidity. After 12 hours, the impact declined 

noticeably, with some cases even exhibiting negative effects (Fig. 11).This may be attributed to increased model error with 

longer lead time, reducing the effectiveness of initial condition improvements from MWR assimilation. It should be noted that 485 

12 h and 24 h forecast fields were verified against radiosonde data. Moreover, verification against station observations indicates 

that temperature improvements were primarily concentrated within the first 6 hours, while humidity improvements extended 

to the first 12 hours. 

 

Figure 1211: Same as Fig. 89, but for forecast at lead time of 12 and 24 hours. 490 

 

To further explore the role of MWRGMWR assimilation in precipitation forecasting, the fractions skill score (FSS) of 3 h 

accumulated precipitation forecasts was calculated. The radius of influence for the FSS was set to 18 km, equivalent to six 

times the grid spacing (Ha and Snyder, 2014; Zheng et al., 2024). Figure 12 13 presents the time series of FSS for the CNTL 

experiment and FSS differences (assimilation experiments minus the CNTL experiment)between the assimilation experiments 495 

and the CNTL experiment. The assimilation experiments were conducted during a period characterized by a higher frequency 

of clear-sky observations. Cloud cover and precipitation were limited throughout the 10-day period, resulting in the absence 

of frequent heavy rainfall events. Consequently, the FSS was calculated using small precipitation thresholds. In the CNTL 

experiment, the FSS for 3 h accumulated precipitation shows an initial decline followed by a subsequent increase with lead 

time, with relatively low FSS values observed around the 9 h forecast period. Moreover, the FSS generally decreases as the 500 
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precipitation threshold increases. The time mean FSS values are 0.47, 0.45, 0.42, and 0.39 for thresholds of 3 mm, 4mm, 5mm, 

and 6 mm, respectively. Regarding the role of GMWR assimilation in precipitation forecasting, the results indicate that 

assimilating GMWR radiances enhances precipitation forecasts, with FSS differences increasing progressively at higher 

precipitation thresholds. The results indicate that assimilating MWR radiances improves precipitation forecasting, with FSS 

differences increasing progressively with higher precipitation intensities. Additionally, increasing assimilation frequencyies 505 

shows the potential to further enhance forecast performance. When assimilating MWRGMWR data at a 1 h frequency, the 

time-averaged FSS improvements for 3 h accumulated precipitation are 0.04 02 (103.2 9 %) for the 6 mm 3 mm threshold, 

0.08 02 (234.5 7 %) for 9 mm 4 mm threshold, 0.11 03 (407.8 3 %) for 12 mm 5 mm threshold, and 0.11 04 (5810.1 2 %) for 

15 mm 6 mm threshold precipitation. For 3 h accumulated precipitation with a threshold of 15 mm6 mm, the time-averaged 

FSS improvements are 0.0301, 0.0602, and 0.11 03 for MWRGMWR_6H, MWRGMWR_3H, and MWRGMWR_1H, 510 

respectively. These findings are consistent with the above verification against radiosonde and surface station observations, 

suggesting that MWRGMWR assimilation can improve forecasts and that higher-frequency assimilation leads to further 

enhancements. 
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 515 

Figure 1312: The time series of fractions skill score (FSS (black line) for CNTL experiment and FSS differences (colored lines) 

between the assimilation experiments and the CNTL experiment(assimilation experiments minus the CNTL experiment). These 

experiments were conducted from 13 to 22 October 2023.The FSS was calculated for 3 h accumulated precipitation for thresholds 

of (a) 6 3 mm, (b) 9 4 mm, (c) 12 5 mm, and (d) 15 6 mm. 
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5 Conclusions and Discussion 520 

To investigate the impact of directly assimilating MWRGMWRs in Southwest China, MWRGMWR assimilation module is 

has been built in WRFDA-4.5, where RTTOV-gb is used as the observation operator. Based on this module, three-month O−B 

statistic sample was calculated to evaluate the bias for O−B and developed a BC model. Furthermore, 10-days assimilation 

experiments (Table 2) were conducted using this MWRGMWR assimilation module and BC model are conducted to 

investigate the impact of the direct assimilation MWRGMWR and the effects of assimilation frequency. The main findings 525 

are as follows: 

1.Based on three months of hourly samples, noticeable O−B biases were observed, varying across sensors, channels, and 

geographical locations. The machine learning-based bias correction scheme, employing an RF model, effectively reduced these 

systematic biases. After applying this BC model, both the bias and STD of the O−B were substantially reduced. Specifically, 

the bias and STD decreased by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. The corrected O−B distributions exhibited 530 

Gaussian characteristics centered around zero, indicating the successful mitigation of systematic biases.  

2.Assimilating MWRGMWR enhances the accuracy of initial atmospheric conditions, with higher assimilation frequencies 

amplifying the positive impact, particularly for temperature and humidity in the lower atmosphere. Evaluation against 

radiosonde observations shows that the temperature RMSE below 1 km AGL decreases by 3.67 % to 6.32 %, with 

improvements below 100 m AGL ranging from 6.25 % to 11.34 % for 6 h, 3 h, and 1 h assimilation frequencies, respectively. 535 

For the water vapor mixing ratio, positive impacts extend up to 5 km AGL, with average RMSE improvements ranging from 

1.98 % to 2.30 %. Verification against surface station observations further supports these findings, indicating that the RMSE 

for 2 m temperature decreases by up to 4.1 %, while the RMSE for 2 m relative humidity decreases by up to 1.3 % at the 1 h 

assimilation frequency. 

3. The assimilation of MWRGMWR observations leads to improvements in forecasts, and increasing assimilation frequencies 540 

has potential to get further improvement. In the first 6 hours of the forecast, the temperature RMSE decrease by 0.012 K, 0.019 

K, and 0.030 K with 6 h, 3 h and 1 h MWRGMWR assimilation frequency, respectively. Similar trends are observed for 

relative humidity, the experiment with 1 h MWRGMWR assimilation frequency showing the largest decrease in RMSE. 

MWRGMWR assimilation also improves precipitation forecasts, with further enhancements seen as assimilation frequency 

increases. For 1 h MWRGMWR assimilation, time-averaged FSS improvements reach 0.04 02 for both the 6 3 mm and 545 

4mmthreshold, 0.08 03 for 9 5 mm, and 0.11 04 for both 12 mm and 156 mm thresholds. 

In the three-month O−B statistics, the STD in the K bandK-band is larger than that in the V bandV-band, consistent with the 

findings of (Vural et al. (, 2023) and (Cao et al. (, 2023). This phenomenon may be attributed to the K-band's sensitivity to 

water vapor and the V-band's sensitivity to temperature, with model temperature accuracy being better than that of water vapor. 

The O−B bias varies across sensors, channels, and geographical locations, with a notable positive bias observed at high-altitude 550 

stations. This positive bias is potentially caused by large-scale topographical effects on the Tibetan Plateau, . In this region, 

model simulations may contain errors, and RTTOV-gb coefficients may be inapplicablewhere model simulations may 
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introduce errors, and RTTOV-gb coefficients may be inapplicable. The RTTOV-gb coefficients are based on global 

atmospheric profiles, which may differ significantly from the climatic conditions of plateau regions, potentially affecting 

simulation accuracy. The RTTOV-gb coefficient files are trained on global profiles and are not tailored to the plateau region; 555 

consequently, their vertical coordinates extend up to 1050 hPa, while surface pressure in the plateau region typically exceeds 

700 hPa. 

A machine learning-based bias correction scheme using the RF technique was developed, demonstrating strong performance. 

The number of trees is a critical hyperparameter that must be predetermined. Training time increases linearly with the number 

of trees, while performance gradually plateaus. Thus, a modest number of trees, such as 50, can balance efficiency and accuracy. 560 

Feature importance analysis for BC predictors revealed observed brightness temperature, atmospheric precipitable water, and 

surface pressure as key factors for correcting biases. The importance of brightness temperatures aligns with findings in satellite 

data bias correction (Liu et al., 2022; Zhang et al., 2023). Atmospheric precipitable water is essential for the K bandK-band, a 

humidity-sensitive channel. Surface pressure plays a key role in temperature channels, thereby accounting for the positive bias 

observed in plateau regions. Although atmospheric thickness predictors contributed less overall, the 1,000–700 hPa thickness 565 

was relatively significant, likely due to MWRGMWRs primarily sensing radiation from the lower atmosphere. 

In this study, direct assimilation of assimilating MWRGMWR radiance enhances both the initial conditions and the forecasts, 

showing a great potential in improving ABL and precipitation simulations. However, it should be noted that the assimilation 

of GMWR data generally has a negative impact on the wind fields in the initial conditions. The background error covariance 

may contribute to this negative impact, as it determines the response of the wind fields to the adjustments in temperature and 570 

humidity made by RTTOV-gb. As an initial study primarily focused on the direct variational assimilation of GMWR data with 

machine learning-based bias correction, it is admitted that this study has some limitations. The GMWR assimilation was 

implemented using 3DVAR, based on RTTOV-gb and WRFDA, and only static background-error covariances were employed 

in this study. The background error covariance matrix plays an important role in variational data assimilation, but this type of 

covariance is climatological, spatially homogeneous, and isotropic. This may limit the impact of GMWR assimilation, and 575 

flow-dependent error covariances should be considered in future work. Moreover, However, as a preliminary attempt, it is 

admitted that the study has some limitations. Firstly, only static background-error covariances were used in this study. The 

background error covariance matrix plays an important role in variational data assimilation, and this type covariances are 

climatological, spatially homogeneous, and isotropic. This may limit the impact of MWR assimilation, and flow-dependent 

error covariances should be implemented in the future work. Second, only clear-sky MWRGMWRs were assimilated in this 580 

study. Since precipitation processes are often accompanied by extensive cloud cover, few clear-sky MWRGMWRs were 

available. To better explore the potential of MWRGMWR assimilation, experiments focused were conducted duringon periods 

with abundant clear-sky MWRGMWRs (e.g., a ten-day period in October 2023), which coincided with minimal heavy 

precipitation. Studies on satellite all-sky assimilation have shown that incorporating including cloud- and precipitation-affected 

data improves forecasts (Ma et al., 2022; Xian et al., 2019), highlighting the need for future research on all-sky assimilation 585 

of MWRGMWRs. Under such conditions, assimilation experiments could be conducted during a different or longer period, 



30 

 

given that assimilated GMWR observations would be relatively more abundant. It is noted that GMWRs exhibit higher 

sensitivity and provide more valuable observations of the lower troposphere and planetary boundary layer compared to 

satellite-based microwave radiometersIt is noted that satellite-based microwave radiometers are primarily sensitive to the 

middle and upper atmosphere, while ground-based MWRs provide valuable observations of the lower atmosphere (Shi et al., 590 

2023). Building on this study, future research could explore the joint direct assimilation of satellite-based and ground-based 

microwave radiometers. By leveraging their complementary observational capabilities, this approach has the potential to 

further enhance the accuracy of atmospheric analysis and improve forecasting across multiple layers of the atmosphere. 

Appendix A: Observed versus simulated Tb 

 595 

Figure A1: Scatter plot of observed brightness temperature (Tb) versus simulated Tb for HATPRO. Same as Fig. 3 but for 

additional channels. 
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Figure A2: Scatter plot of observed brightness temperature (Tb) versus simulated Tb for MP3000A. Same as Fig. 3 but for 

additional channels. 600 
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Appendix B: PDF distributions of O–B 

 

Figure B1: Probability density functions (PDFs) of the O−B distributions for HATPRO. Same as Fig. 6 but for additional 

channels. 
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Figure B2: Probability density functions (PDFs) of the O−B distributions for MP3000A. Same as Fig. 6 but for additional 

channels. 

 

Code availability 

The RTTOV-gb v1.0, WRF v4.5, WRFDA v4.5, along with the code for developing a direct assimilation module for GMWR 610 

radiances and training a machine learning-based GMWR bias correction model, are available on Zenodo 

(https://doi.org/10.5281/zenodo.14865778; Zheng et al., 2025a)The original RTTOV-gb v1.0 can be obtained via the request 

form on the NWPSAF website (https://nwp-saf.eumetsat.int/site/software/rttov-gb/). The WRF v4.5 and WRFDA v4.5 are 

open-source models and can be downloaded from https://github.com/wrf-model/WRF. Due to the ongoing operational testing 

of this technology and the licensing restrictions of RTTOV-gb, the developed versions of RTTOV-gb and WRFDA can be 615 

requested by contacting the corresponding author (sunwei@cma.gov.cn) or Qing Zheng (zq551379@outlook.com). 

Additionally, the code for training the machine learning-based MWR bias correction model is available on Zenodo 

(https://doi.org/10.5281/zenodo.14586317; Zheng et al., 2025a) 

Data availability 

The MWRGMWR data and precipitation analysis product are provided by the Chinese Meteorological Administration and can 620 

be obtained via request from https://www.cma.gov.cn/en/. The AGRI CLM used are available at 

https://satellite.nsmc.org.cn/portalsite/default.aspx?currentculture=en-US. The NCEP FNL data used are available at 

https://rda.ucar.edu/datasets/d083003/. The assimilated GTS data are available at https://rda.ucar.edu/datasets/d337000/. The 

model outputs for the single-observation assimilation experiment and the three-month sample dataset for the “Machine learning 

based bias correction for MWRGMWR” section is available on Zenodo (https://doi.org/10.5281/zenodo.14586346; Zheng et 625 

al., 2025b) 
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