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Dear Reviewers: 

We sincerely appreciate your valuable comments and suggestions, which 

have significantly improved the quality of our study. We have revised the 

manuscript accordingly and responded to all comments. Below are our point-by-

point responses. The reviewers' comments are presented in black, our responses 

in blue, and the proposed changes to the manuscript in red. 

 

Reply to Reviewer #1: 

Thanks for addressing previous comments. The latest version has been greatly 

improved. 

I have the following minor comments: 

1. Line 145: "and is generally consistent with Chinese administrative divisions": 

It looks like this sentence is not needed and can be removed. 

Response: 

Thank you for your comment. This sentence has been removed. 

 

2. Line 159: "34 (0.91%), 70 (1.42%), and 76 (0.72%) observations were 

rejected" -> why does a 6h window reject fewer observations with a larger 

percentage while a 1h window rejects more observations but with a smaller 

percentage? 

Response: 

Thank you for your comment. This study uses a 12-hour 3DVAR cycling 

assimilation framework, where the different experiments correspond to cycling 

intervals of 6 hours, 3 hours, and 1 hour for assimilating GMWR observations. 

In each assimilation cycle, only the MWR observations closest to the analysis 

time within ±10 minutes are selected. Therefore, the 1-hour cycling experiment 

includes a much larger number of available GMWR observations overall. As a 

result, although the total number of rejected observations increases, their 

proportion relative to all assimilated observations becomes smaller. For greater 

clarity, the corresponding revisions are as follows: 

“Each experiment started at 12:00 UTC daily, followed by a 12 h cycling 
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data assimilation period and a subsequent 24 h forecast. 

Although the experiment with a 1 h assimilation interval rejects the largest 

number of observations, its rejection rate remains the lowest because it has the 

highest assimilation frequency and assimilates the largest volume of GMWR 

data.” 

 

3. Line 443-44: GMWR DA mainly improves forecasts 0~6h, so it is NOT that 

we cannot find improvements in the upper air, but we don't have radiosonde 

data to do the verification during corresponding period from 0~6h. One 

possible option to check the upper air forecast impact is to verify against 

aircraft data. 

Response: 

Thanks for your suggestion. We agree that GMWR DA mainly benefits 0–

6 h forecasts, and the limited improvements indicated by the radiosonde-based 

evaluation should not be interpreted as “no improvement in the upper air.” As an 

initial study, we primarily focus on implementing the direct assimilation of 

GMWR observations and demonstrating its potential; therefore, this work has 

some limitations. In the next step, within our planned satellite–ground combined 

assimilation framework, we will conduct a more comprehensive evaluation of 

the upper-air impacts using additional independent observations, including 

aircraft reports and radio occultation data. Nevertheless, the corresponding 

revisions in the radiosonde verification and discussion sections are as follows: 

“Based on radiosonde-based verification at 12 and 24 h lead times, only 

limited improvements are evident after GMWR assimilation; however, this does 

not rule out larger impacts within 0–6 h, which cannot be robustly assessed here 

due to the limited temporal availability of radiosonde observations. 

A more comprehensive evaluation of upper-air impacts could also be 

performed using additional independent observations, including aircraft reports 

and radio occultation data.” 
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4. Line 450, Figure 12: Is this figure the average of forecasts at lead time of 12 

and 24 hours? If yes, please be more descriptive in the figure caption. 

Response: 

Thank you for your question. Figure 12 shows the overall RMSE computed 

from all 12-h and 24-h forecast samples combined, rather than an average of 

individual forecast RMSEs. For greater clarity, the corresponding revisions are 

as follows: 

“Figure 9. Verification of the initial conditions against radiosonde 

observations. RMSEs are computed from all samples over the ten-day 

assimilation experiment conducted from 13 to 22 October 2023. 

Figure 12. Same as Fig. 9, but for forecasts at lead times of 12 and 24 h, 

with RMSEs computed from all forecast samples during the ten-day experiment.” 

 

5. Line 459: "relatively low FSS values observed around the 9 h forecast period": 

should it be "around the forecast hour 12" (based on Fig. 13)? 

Response: 

Corrected. 

 

6. Fig. 13: Why is there a V shape in the FSS plots? Does it mean forecasts are 

dominated by another large scale feature? 

Response: 

Thank you for your comment. We re-checked the FSS calculation to clarify 

the origin of the V-shaped behavior. The V-shaped pattern is likely related to the 

diurnal variability of precipitation and a temporal phase mismatch between 

forecasts and observations (with the simulated precipitation occurring slightly 

earlier). Figure R1 shows the FSS together with the related diagnostic terms for 

the CNTL experiment. The FSS is defined as: 

FSS = 1 −
𝐹𝐵𝑆

𝑃𝐹𝑂 + 𝑃𝑂𝐵
 

In simple terms, PFO and POB indicate how prevalent/widespread the 

threshold-exceeding precipitation signal is in the forecast and observed fields, 
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respectively, while FBS measures how different the forecast and observed 

precipitation patterns are. Notably, POB reaches its minimum at the 12-h lead 

time, whereas PFO reaches its minimum at the 9-h lead time, indicating a lead-

time (phase) mismatch in fractional coverage between forecasts and observations. 

Around the 12-h lead time, the overall event signal is relatively weak (small 

PFO+POB) but the forecast–observation difference is relatively large (large 

FBS), so the ratio FBS/(PFO+POB) becomes largest and the FSS reaches its 

minimum.  

 

Figure R1. Time series of FSS, FBS, POB, and PFO from the CNTL experiment 

conducted from 13 to 22 October 2023. The scores were computed using 3-hour 

accumulated precipitation with a 3 mm threshold. 

 

7. Line 469-470: The forecast verification against radiosonde does not agree 

with the conclusions here or that against surface observations. 

Response: 

Thank you for your comment. This sentence has been revised as follows: 

“These findings are consistent with the above verification against surface 

station observations, suggesting that GMWR assimilation can improve forecasts 
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and that higher-frequency assimilation leads to further enhancements.” 

 

8. Line 503-509: This paragraph looks like some kind of duplicate with the 

paragraph in lines 482-487. 

Response: 

Thank you for pointing this out. Lines 503–509 partially overlapped with 

the results summarized in Lines 482–487. To avoid duplication, redundant 

content has been removed and the paragraph has been reorganized for clarity. 

The revised text is as follows: 

“In the three-month O−B statistics, the STD in the K-band is larger than 

that in the V-band, consistent with Vural et al. (2024) and Cao et al. (2023). A 

notable positive O−B bias is observed at high-altitude stations over the Tibetan 

Plateau, which may be related to large-scale topographic effects. In this region, 

model simulations may contain errors, and RTTOV-gb coefficients may be 

inapplicable. The RTTOV-gb coefficients are based on global atmospheric 

profiles, which may differ significantly from the climatic conditions of plateau 

regions, potentially affecting simulation accuracy.” 

 

 

9. "5 Conclusion and Discussion": The latest version added lots of good 

discussions. But the logic in section 5 can be further improved to make it 

easier to follow by readers. One possible revision is to do the discussion first 

and then conclude with the 3 main findings and the future plan about "doing 

satellite-based radiance and ground-based ones together". 

Response: 

Thank you for your helpful suggestion. Following your suggestion, we split 

Section 5 into two subsections—Section 5.1 (Discussion) and Section 5.2 

(Conclusions and future work)—to improve the logic and readability. The 

revised Section 5 is as follows: 

“ 

5 Discussion, conclusions, and future work  
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5.1 Discussion 

This section discusses (i) O−B characteristics and their potential sources, 

(ii) the effectiveness and physical interpretability of the RF-based bias correction 

(BC), and (iii) the impacts of direct GMWR radiance assimilation on analyses 

and forecasts. 

In the three-month O−B statistics, the STD in the K-band is larger than that 

in the V-band, consistent with Vural et al. (2024) and Cao et al. (2023). A notable 

positive O−B bias is observed at high-altitude stations over the Tibetan Plateau, 

which may be related to large-scale topographic effects. In this region, model 

simulations may contain errors, and RTTOV-gb coefficients may be inapplicable. 

The RTTOV-gb coefficients are based on global atmospheric profiles, which 

may differ significantly from the climatic conditions of plateau regions, 

potentially affecting simulation accuracy.  

To mitigate these systematic O−B biases, a machine learning-based BC 

scheme using the RF technique was developed. The number and depth of trees 

are critical hyperparameters that must be predetermined. Training time increases 

approximately linearly with the number of trees, while performance exhibits a 

logarithmic-like saturation trend. In terms of tree depth, both training time and 

performance increase approximately logarithmically with depth. Thus, selecting 

a modest number (n_estimators) and depth (max_depth) of trees, such as 50 and 

15, can balance efficiency and accuracy. Feature importance analysis for BC 

predictors revealed observed brightness temperature, atmospheric precipitable 

water, and surface pressure as key factors for correcting biases. The importance 

of brightness temperatures aligns with findings in satellite data bias correction 

(Liu et al., 2022; Zhang et al., 2023). Atmospheric precipitable water is essential 

for the K-band, a humidity-sensitive channel. Surface pressure plays a key role 

in temperature channels, thereby accounting for the positive bias observed in 

plateau regions. Although atmospheric thickness predictors contributed less 

overall, the 1,000–700 hPa thickness was relatively significant, likely due to 

GMWRs primarily sensing radiation from the lower atmosphere.  

The machine learning-based BC scheme effectively mitigated the bimodal 
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distribution and systematic errors in the O−B statistics. To assess its impact on 

the initial and forecast fields, a parallel experiment without bias correction was 

conducted, based on the 1-hour assimilation interval experiment (GMWR_1H). 

For the initial fields, as verified against radiosonde observations, the experiment 

without BC yielded only minor improvements in temperature and even degraded 

the water vapor field. As for the forecast fields, verification against surface 

station observations showed that the absence of BC led to a noticeable 

degradation in the forecast accuracy of 2 m temperature and relative humidity. 

These findings indicate that the machine learning-based BC scheme had a 

beneficial impact on both the initial conditions and the subsequent forecasts. 

Nevertheless, despite its demonstrated effectiveness, the scheme is subject to 

several limitations. Relying on offline O−B statistics, it implicitly assumes that 

all biases originate from the observations—an assumption that may not always 

hold and may, in some instances, mask model biases (Auligné et al., 2007; Eyre, 

2016). These limitations motivate further improvements in future work (Sect. 

5.2). 

In this study, direct assimilation of GMWR radiances enhances both the 

initial conditions and the forecasts, showing potential for improving ABL and 

precipitation simulations. Although the assimilation of GMWR radiances yields 

slight improvements in the forecast wind fields (Fig. 11), it exerts an overall 

negative impact on the wind fields in the initial conditions (Fig. 9). This 

discrepancy stems from the use of distinct observational datasets: the initial 

conditions are verified against radiosonde observations, while the forecasts are 

evaluated using surface station data. It should be noted that assimilating GMWR 

improves the wind fields below 500 m AGL in the initial conditions. This 

improvement is consistent with the verification of the forecast, which 

demonstrates enhancements in the 10 m wind fields. Regarding the degradation 

of wind fields above 500 m AGL, the background error covariance may 

contribute to this negative impact. On the one hand, it determines the response 

of the wind fields to temperature and humidity adjustments made by RTTOV-gb. 

On the other hand, since RTTOV-gb’s adjustments are primarily concentrated in 
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the ABL, the response above the ABL may be propagated through the 

background error covariance. 

 

5.2 Conclusions and future work 

To investigate the impact of directly assimilating GMWRs in Southwest 

China, a GMWR assimilation module has been developed in WRFDA-4.5, 

where RTTOV-gb is used as the observation operator. Based on this module, a 

three-month sample dataset of O−B was collected to evaluate the bias and 

develop a BC model. Furthermore, 10-day assimilation experiments (Table 2) 

were conducted using this GMWR assimilation module and BC model to 

investigate the impact of direct GMWR assimilation and the effects of 

assimilation frequency. The main findings are as follows: 

(1) Based on three months of hourly samples, noticeable O−B biases were 

observed, varying across sensors, channels, and geographical locations. The 

machine learning-based bias correction scheme, employing an RF model, 

effectively reduced these O−B systematic biases. After applying this BC model, 

both the bias and STD of the O−B were substantially reduced. Specifically, the 

bias and STD decreased by 0.83 K (97.1 %) and 1.63 K (64.6 %), respectively. 

For some channels, the original O−B distribution exhibited a bimodal pattern, 

which was transformed into a unimodal distribution after BC. The corrected O−B 

distributions exhibited Gaussian characteristics centered around zero. 

(2) Assimilating GMWR enhances the accuracy of initial conditions, with 

higher assimilation frequencies amplifying the positive impact, particularly for 

temperature and humidity in the lower atmosphere. Evaluation against 

radiosonde observations shows that the temperature RMSE below 1 km AGL 

decreases by 3.67 % to 6.32 % as the assimilation frequency increases from 6 h 

to 1 h. For the water vapor mixing ratio, positive impacts extend up to 5 km AGL, 

with average RMSE improvements ranging from 1.98 % to 2.30 %. Verification 

against surface station observations further supports these findings, indicating 

that the RMSE for 2 m temperature decreases by up to 4.1 %, while the RMSE 

for 2 m relative humidity decreases by up to 1.3 % at the 1 h assimilation 
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frequency. 

(3) The assimilation of GMWR observations leads to improvements in 

forecasts, and increasing assimilation frequencies have the potential to yield 

further improvements. In the first 6 hours of the forecast, the temperature RMSE 

decreases by 0.012 K, 0.014 K, and 0.019 K with 6 h, 3 h, and 1 h assimilation 

frequency, respectively. Similar trends are observed for relative humidity, the 

experiment with 1 h GMWR assimilation frequency shows the largest decrease 

in RMSE. GMWR assimilation also improves precipitation forecasts, with 

further enhancements seen as assimilation frequency increases. For 1 h GMWR 

assimilation, time-averaged FSS improvements reach 0.02 for both the 3 mm and 

4 mm, 0.03 for 5 mm, and 0.04 for 6 mm thresholds. 

Despite these encouraging results, this study has some limitations that 

motivate future work. Regarding bias correction, the offline scheme lacks 

anchoring observations, rendering the analysis fields more susceptible to model 

bias. Future efforts should consider bias correction strategies based on unbiased 

reference observations or adopt a constrained correction scheme, such as the 

constrained adaptive bias correction (Han and Bormann, 2016). The GMWR 

assimilation was implemented using 3DVAR, based on RTTOV-gb and WRFDA, 

and only static background-error covariances were employed in this study. The 

background error covariance matrix plays an important role in variational data 

assimilation, but this type of covariance is climatological, spatially 

homogeneous, and isotropic. This may limit the impact of GMWR assimilation, 

and flow-dependent error covariances should be considered in future work. 

Moreover, only clear-sky GMWRs were assimilated in this study. Since 

precipitation processes are often accompanied by extensive cloud cover, few 

clear-sky GMWRs were available. To better explore the potential of GMWR 

assimilation, experiments were conducted during periods with abundant clear-

sky GMWRs (e.g., a ten-day period in October 2023), which coincided with 

minimal heavy precipitation. Studies on satellite all-sky assimilation have shown 

that incorporating cloud- and precipitation-affected data improves forecasts (Ma 

et al., 2022; Xian et al., 2019), highlighting the need for future research on all-
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sky assimilation of GMWRs. Under such conditions, assimilation experiments 

could be conducted during a different or longer period, given that assimilated 

GMWR observations would be relatively more abundant. It is noted that 

GMWRs exhibit higher sensitivity and provide more valuable observations of 

the lower troposphere and planetary boundary layer compared to satellite-based 

microwave radiometers (Shi et al., 2023). Building on this study, future research 

could explore the joint direct assimilation of satellite-based and ground-based 

microwave radiometers. A more comprehensive evaluation of upper-air impacts 

could also be performed using additional independent observations, including 

aircraft reports and radio occultation data. By leveraging their complementary 

observational capabilities, this approach has the potential to further enhance the 

accuracy of atmospheric analysis and improve forecasting across multiple layers 

of the atmosphere.” 
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