Dear Editors and Reviewers:

We deeply appreciate your helpful comments and suggestions, which
enabled us to improve the quality of our present study. We have made revisions
and replied to all the comments. Please find the point-by-point responses to the
comments below. The comments are given below in black, our responses are in

blue, and proposed changes to the manuscript are in red.

Reply to Reviewer #1:

1. Firstly, I'd like to have more details about the 10-day period over which the
assimilation experiments were conducted. Unless I'm mistaken, it's implicitly
understood that this is a clear-sky period (especially when the cloud cover
mask is mentioned), but this is explicitly stated only at the end of the article.
On the other hand, I think it would have been nice to provide more
justification for this particular period.

Response:

Thanks for your comments. The assimilation experiment was conducted
under clear-sky conditions. Figure R1 illustrates clear-sky observation counts in
the target region of Southwest China from the microwave radiometer (MWR).
Among the available MWR observations spanning August to October 2023, a
ten-day period (highlighted in blue in Figure R1c) from 13 October 2023 to 22
October 2023 exhibited a notably higher frequency of clear-sky MWR
observations. As an initial study that mainly focused on direct assimilation of
clear-sky MWRs, this period can better evaluate the impact of MWR
assimilation. More details about the 10-day period over which the assimilation
experiments have been added in the manuscript as below.

“The assimilation experiments were conducted under clear-sky conditions
due to the uncertainties in the model and observation operators under cloudy or
rainy conditions. All experiments were conducted over a ten-day period from 13
to 22 October 2023. Among the available GMWR observations from August to
October 2023, this period exhibited a notably higher frequency of clear-sky data,

which was more favorable for demonstrating the role and potential of GMWR



assimilation. Before implementing bias correction, clear-sky screening, first-
guess departure check, and whitelist check were sequentially applied to improve
measurement quality. Subsequently, a relative departure check was applied prior
to minimization. For the 6 h, 3 h, and 1 h assimilation intervals, 34 (0.91%), 70
(1.42%), and 76 (0.72%) observations were rejected, respectively. The detailed
procedure prior to a single assimilation cycle is as follows:

(1) Observation Selection: The observation nearest to the analysis time within
+10 minutes is selected.

(2) Clear-sky Screening: Clear-sky GMWR observations were screened using
the AGRI-based CLM, with background-simulated cloud liquid water path equal
to zero.

(3) First-Guess Departure Check: Observations with (O—B) values greater than
20 K are excluded.

(4) Whitelist Check: Remove observations from stations identified as unreliable
or displaying abnormal behavior.

(5) Bias Correction: a machine learning bias correction scheme was applied (see
Section 3.2).

(6) Relative Departure Check: Applied when the absolute value of the O—B
exceeds three times the standard deviation of the observational error, further

rejecting questionable data.”
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Figure R1. Clear-sky observation counts in the target region of Southwest China
from the microwave radiometer (MWR) for (a) August, (b) September, and (c) October
2023. The blue line depicts hourly MWR counts, and the red line represents the 6-hour
rolling average. The blue shaded region marks the 10-day period selected for

assimilation experiments.

2. Still on the subject of this 10-day period, I'd like to know if you've carried
out assimilation experiments over other periods? If so, what were the results
equivalent? Why wasn't a longer period considered?

Response:

Due to cloud cover and rainfall, the number of clear-sky observations
during other periods is small, except for this ten-day period. This study primarily
focuses on implementing RTTOV-gb within WRFDA and conducting clear-sky
assimilation based on machine learning bias correction. To this end, we mainly
concentrate on assimilation during this specific period. As demonstrated in this
paper, clear-sky assimilation of MWRs has significant potential to improve
numerical forecasts. It would be interesting to implement cloudy-region

assimilation for MWRs in the next step, as it could incorporate more MWR



observations than clear-sky assimilation. Under such conditions, assimilation
experiments would be conducted over other periods or extended to a longer
period, given that assimilated MWR observations would be relatively more
abundant. Nevertheless, a discussion about experiment periods has been added
in the discussion as below.

“Moreover, only clear-sky GMWRs were assimilated in this study. Since

precipitation processes are often accompanied by extensive cloud cover, few
clear-sky GMWRs were available. To better explore the potential of GMWR
assimilation, experiments were conducted during periods with abundant clear-
sky GMWRs (e.g., a ten-day period in October 2023), which coincided with
minimal heavy precipitation. Studies on satellite all-sky assimilation have shown
that incorporating cloud- and precipitation-affected data improves forecasts (Ma
et al., 2022; Xian et al., 2019), highlighting the need for future research on all-
sky assimilation of GMWRs. Under such conditions, assimilation experiments
could be conducted during a different or longer period, given that assimilated

GMWR observations would be relatively more abundant. ”

3. Regarding the single observation experiment, I'd like to know why the
specific humidity analysis increments aren't totally isotropic (although
they're close) as they are for temperature.

Response:

In the single observation experiment, the background error covariance used
in WRFDA is CV5. Pseudo relative humidity (RHs) is the control variable in
CV5 and i1s minimized during assimilation. However, RHs is not a model
variable, and its analysis increment is transformed into model variables (e.g.,
water vapor mixing ratio). During this transformation, the water vapor mixing
ratio may not remain fully isotropic. As shown in Figure R2, while the analysis
increment of RH appears isotropic, this is not the case for the water vapor mixing

ratio.
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Figure R2 The horizontal analysis increments for (a) water vapor mixing ratio and

(b) relative humidity in single-observation assimilation experiment.

4. My final comment concerns Figures 10 and 12. I think it would have been
clearer to present the RMSE or FSS values directly, rather than the
differences with the control experiment. I understand that this removes a
curve from the graphs and perhaps improves readability. But having the
RMSE values would be informative about the errors made by the model.

Response:

The RMSE and FSS for the CNTL experiment are shown as black solid
lines in Figures 10 and 12. The corresponding changes we have implemented are
as follows:

“ The time series of RMSE for the CNTL experiment and RMSE

differences (assimilation experiments minus the CNTL experiment) against
surface station observations for 2 m temperature, 2 m relative humidity, and 10
m wind fields are shown in Fig. 11. In the CNTL experiment, the RMSE of
temperature and relative humidity initially decreases and then increases with lead
time, while the RMSE of the wind field exhibits the opposite trend, increasing at
first and then decreasing. The mean RMSEs over the 24-hour forecast period are
2.32 K for temperature, 16.26% for relative humidity, 1.92 m s™* for zonal wind,

and 2.08 m s™! for meridional wind. Regarding assimilation impacts, the RMSE



reduction for temperature gradually decreases, approaching zero at a lead time

of 6 hours, with higher assimilation frequency (GMWR 1H) achieving a greater

RMSE reduction.
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Figure 1: Verification of the forecast against surface station observations, based on
the ten-day assimilation experiment conducted from 13 to 22 October 2023. RMSE
(black line) for the CNTL experiment and RMSE differences (colored lines) between
the assimilation experiments and the CNTL experiment for (a) temperature, (b) relative

humidity, (c) zonal wind, and (d) meridional wind.

Figure 13 presents the time series of FSS for the CNTL experiment and FSS
differences (assimilation experiments minus the CNTL experiment). The
assimilation experiments were conducted during a period characterized by a
higher frequency of clear-sky observations. Cloud cover and precipitation were
limited throughout the 10-day period, resulting in the absence of frequent heavy
rainfall events. Consequently, the FSS was calculated using small precipitation
thresholds. In the CNTL experiment, the FSS for 3 h accumulated precipitation
shows an initial decline followed by a subsequent increase with lead time, with
relatively low FSS values observed around the 9 h forecast period. Moreover,

the FSS generally decreases as the precipitation threshold increases. The time



mean FSS values are 0.47, 0.45, 0.42, and 0.39 for thresholds of 3 mm, 4mm,

S5mm, and 6 mm, respectively. Regarding the role of GMWR assimilation in

precipitation forecasting, the results indicate that assimilating GMWR radiances

enhances precipitation forecasts, with FSS differences increasing progressively

at higher precipitation thresholds.
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Figure 13: The time series of FSS (black line) for CNTL experiment and FSS

differences (colored lines) between the assimilation experiments and the CNTL

experiment. These experiments were conducted from 13 to 22 October 2023.The FSS

was calculated for 3 h accumulated precipitation for thresholds of (a) 3 mm, (b) 4 mm,

(c) 5 mm, and (d) 6 mm.



Reply to Reviewer #2:

General Comments

1. Could you please include a few more details about the assimilation
framework. Specifically:

-Timing of Observations: Do you select the observation that most closely
matches the analysis time, or do you integrate over a broader time window?
-Data Processing Before Bias Correction: Aside from using the cloud mask,
do you apply any additional procedures to improve measurement quality before
performing bias correction?

-QC: Do you use any quality-control checks (e.g., discarding observations based
on O—B thresholds), and if so, how many observations are rejected?

Response:

The observation nearest to the analysis time within =10 minutes will be
selected.

Before implementing bias correction, we sequentially applied cloud and
precipitation detection, O—B (observation-minus-background) checks, and
quality control using a whitelist. Cloud and precipitation detection were based
on the FY-4B cloud mask and rain gauge data from MWRs. The O—B check
served as a preliminary screening step that excluded observations with absolute
O—B values greater than 15 K. The whitelist was established to identify reliable
station observations based on the correlation between simulated and observed
brightness temperatures (BTs). Specifically, we evaluated the correlation
between observed and simulated BTs at each station. Stations where observed
BTs did not vary consistently with simulated BTs—indicated by low correlation
coefficients—were classified as “problematic stations.” Some of these
problematic stations returned to normal after specific dates, and observations
from those periods were retained.

After bias correction, additional quality control based on O—-B was
conducted, including a three-sigma observational error check. For the six-hour,
three-hour, and one-hour assimilation intervals, the total numbers of

observations were 3,724, 4,946, and 10,619, respectively. Following a three-



sigma observational error check, 34 (0.91%), 70 (1.42%), and 76 (0.72%)
observations were rejected. The corresponding changes we have implemented
are as follows:

“Before implementing bias correction, clear-sky screening, first-guess

departure check, and whitelist check were sequentially applied to improve
measurement quality. Subsequently, a relative departure check was applied prior
to minimization. For the 6 h, 3 h, and 1 h assimilation intervals, 34 (0.91%), 70
(1.42%), and 76 (0.72%) observations were rejected, respectively. The detailed
procedure prior to a single assimilation cycle is as follows:

(1) Observation Selection: The observation nearest to the analysis time within
+10 minutes is selected.

(2) Clear-sky Screening: Clear-sky MWR observations were screened using the
AGRI-based CLM, with background-simulated cloud liquid water path is zero.
(3) First-Guess Departure Check: Observations with (O—B) values greater than
20 K are excluded.

(4) Whitelist Check: Remove observations from stations identified as unreliable
or displaying abnormal behavior.

(5) Bias Correction: a machine learning bias correction scheme was applied (see
Section 3.2).

(6) Relative Departure Check: Applied when the absolute value of the O—B
exceeds three times the standard deviation of the observational error, further

rejecting questionable data.”

2. In Chapter 3, the O—B statistics are examined in detail. From the scatter plots,
it appears that the K-band O—B distribution may be bimodal for both radiometer
types—a potential issue for 3D-Var, which typically assumes unimodal
(Gaussian) errors. After showing the initial scatter plots of BT(sim) vs. BT(obs),
the paper primarily focuses on bias and standard deviation. It would be very
interesting to see if the bias correction addresses this bimodality. I encourage you
to present histograms or PDFs of the O—B errors before and after the bias

correction is applied. I would also encourage you to comment briefly on the skew



and kurtosis of the distributions.
Response:

The bimodality in the O—B distribution has been addressed to some extent
through bias correction. The probability density functions (PDFs) of the O—B
have been included in the manuscript, along with the skewness and kurtosis of
the distributions. The corresponding changes we have implemented are as
follows:

“From the scatter plots in Fig. 3, the O—B distribution appears bimodal—

an issue that may affect 3D-Var, which typically assumes the errors to be
unimodal (Gaussian). Similar to Fig. 3, channel 1 (K-band) and channel 13 (V-
band) of HATPRO, as well as channel 1 (K-band) and channel 14 (V-band) of
MP3000A, are selected for detailed analysis (Fig. 6). Results for the remaining
channels are presented in Figures B1 and B2. The biases for HATPRO channel
1, HATPRO channel 13, MP3000A channel 1, and MP3000A channel 14 are 1.24
K, 2.21 K, 3.00 K, and —0.64 K, respectively, with corresponding STDs of 3.38
K, 2.90 K, 3.89 K, and 3.08 K. The differences between the test set and the full
dataset (shown in Fig. 3) are negligible, with a maximum bias difference of 0.10
K and a maximum STD difference of 0.08 K, highlighting the strong
representativeness of the test set. From the PDF distributions of O-B, both
instruments exhibit a positive bias in the K-band with a unimodal distribution.
In contrast, a bimodal distribution is observed in the V-band: the second peak
appears on the right for HATPRO and on the left for MP3000A. These results
are consistent with the scattering patterns shown in Fig. 3. After the bias
correction is applied, both the bias and STD are reduced, and the O-B
distribution becomes more sharply concentrated around zero, accompanied by
an increase in kurtosis. For example, in channel 1 of MP3000A, the bias and
STD decrease from 1.24 K and 3.38 K to 0.03 K and 1.44 K, respectively, while
the kurtosis increases markedly from 1.53 to 9.44. It is also noteworthy that the
bimodal distributions in the V-band for both instruments become unimodal after
the correction. Meanwhile, the skewness decreases from 1.04 and 1.54 to 0.55

and 1.05, respectively, indicating a more symmetrical O—B distribution. These

10



results demonstrate that the proposed bias correction scheme effectively reduces
bias and STD, addresses bimodal distribution, and shifts the O—B distribution

closer to a Gaussian shape.
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Figure 6: Probability density functions (PDFs) of the O—B distributions, based on a test
set randomly selected from 30% of the three-month sample dataset collected from
August to October 2023. The top and bottom rows correspond to the HATPRO and
MP3000A sensors, respectively, while the left and right columns represent the K-band
and V-band. Each panel displays the number of samples (num), the mean (bias),

standard deviation (STD), skewness, and kurtosis of the distributions.”

3. The FSS improvements of rain rate seem impressive to say that the only
change here is ground based radiometers. I suppose that the reason any impact
is visible is only after 9 hours is because cloudy data is excluded. It may be
interesting to show some statistics of the rainfall events in the 10-day period. Is

one heavy precipitation event responsible for this improvement in forecast skill?

11



Do you intend to repeat the experiment including cloudy data?
Response:

Thank you for your valuable suggestion. Upon re-checking the FSS
calculation, we found that the improvement reported in the manuscript may not
be as substantial as initially perceived.

The assimilation experiment period was selected to coincide with more
frequent clear-sky conditions to maximize the availability of GMWR
observations. During this period, precipitation was minimal, with no particularly
intense precipitation events. Furthermore, during the phase of substantial FSS
improvement (after 9 hours), observed precipitation was nearly absent. Although
simulated precipitation exceeded observed amounts, it remained low overall,
with false alarms being the primary source of error. The limited amounts of both
observed and simulated precipitation led to a small sample size in the FSS
calculation, resulting in the division of two small values. This mathematical
characteristic amplified fluctuations in FSS scores, producing an apparent and
pronounced improvement.

To mitigate the effect of small sample sizes in the FSS calculation described
above, the thresholds for calculating FSS scores were lowered from 6—15 mm to
3—6 mm. The GMWR assimilation in this study, which is limited to clear-sky
areas, does not utilize information from cloudy regions, resulting in reduced data
usage—particularly during precipitation events. In future work, assimilation
techniques for cloudy areas will be developed and focus on improving forecasts
of heavy precipitation processes.

We revised the thresholds for FSS and provided clarification. The
corresponding text has been revised as follows:

“ The assimilation experiments were conducted during a period

characterized by a higher frequency of clear-sky observations. Cloud cover and
precipitation were limited throughout the 10-day period, resulting in the absence
of frequent heavy rainfall events. Consequently, the FSS was calculated using
small precipitation thresholds. In the CNTL experiment, the FSS for 3 h

accumulated precipitation shows an initial decline followed by a subsequent

12



increase with lead time, with relatively low FSS values observed around the 9 h
forecast period. Moreover, the FSS generally decreases as the precipitation
threshold increases. The time mean FSS values are 0.47, 0.45, 0.42, and 0.39 for
thresholds of 3 mm, 4mm, Smm, and 6 mm, respectively. Regarding the role of
GMWR assimilation in precipitation forecasting, the results indicate that
assimilating GMWR radiances enhances precipitation forecasts, with FSS
differences increasing progressively at higher precipitation thresholds.
Additionally, increasing assimilation frequency shows the potential to further
enhance forecast performance. When assimilating GMWR data at a 1 h
frequency, the time-averaged FSS improvements for 3 h accumulated
precipitation are 0.02 (3.9 %) for the 3 mm threshold, 0.02 (4.7 %) for 4 mm
threshold, 0.03 (7.3 %) for 5 mm threshold, and 0.04 (10.2 %) for 6 mm threshold
precipitation. For 3 h accumulated precipitation with a threshold of 6 mm, the
time-averaged FSS improvements are 0.01, 0.02, and 0.03 for GMWR_6H,
GMWR 3H, and GMWR 1H, respectively. These findings are consistent with
the above verification against radiosonde and surface station observations,

suggesting that GMWR assimilation can improve forecasts and that higher-

frequency assimilation leads to further enhancements.
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Figure 13: The time series of FSS (black line) for CNTL experiment and FSS

differences (colored lines) between the assimilation experiments and the CNTL
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experiment. These experiments were conducted from 13 to 22 October 2023.The FSS
was calculated for 3 h accumulated precipitation for thresholds of (a) 3 mm, (b) 4 mm,

(¢) 5 mm, and (d) 6 mm.”

4. Could you add some information about how the background error covariance
matrix was generated? Was any testing done to optimise this? Similarly, it would
be helpful to know how you specified the observation-error covariances—for
instance, the assumed observation-error standard deviations or correlations.
Response:

The background error covariance matrix was generated using the
Generalized Background Error Covariance Matrix Model (GEN_BE v2.0) with
the National Meteorological Center (NMC) method. Specifically, CVS5, which is
commonly used in WRFDA, was employed in this study, and the length scale
was tuned using a single-observation experiment. Observation-error correlations
are typically assumed to be zero in WRFDA, resulting in a diagonal observation-
error covariance matrix. Observation errors were specified based on the standard
deviation of O-B. More information about background error and observation
error have been added in the manuscript as below.

“The static background error covariance for the variational experiments is

estimated using the National Meteorological Center (NMC) method (Parrish and
Derber, 1992), which uses the difference between WRF forecasts at lead times
of24hand 12 h (T + 24 h minus T + 12 h) valid at the same time over a specified
period. Control variables option 5 (CV5) is adopted for the background error
covariance used in 3DVAR. CVS5 is domain-dependent and therefore must be
generated based on forecast or ensemble data over the same domain. It utilizes
streamfunction, unbalanced velocity potential, unbalanced temperature,
unbalanced surface pressure, and pseudo relative humidity. In this study, the
background error covariance matrix was generated using the Generalized
Background Error Covariance Matrix Model (GEN_BE v2.0) (Descombes et al.,
2015) based on one month of WRF forecasts. Observation-error correlations are

typically assumed to be zero in WRFDA, resulting in a diagonal observation-

14



error covariance matrix. Observation errors were specified based on the standard

deviation of O-B.”

Specific Comments

5. Figure 1: Was the south-west China domain pre-defined in advance of the
study? Were these conditions defined from the border of the computation domain
or otherwise? Please justify.

Response:

“Similar to previous studies (Jiang et al., 2017; Nie and Sun, 2023), the

target region of Southwest China in this study is defined as the area within the
rectangular domain 22°-35°N, 93°-110°E (Fig. 1). This region encompasses the
Hengduan Mountains, the Yunnan—Guizhou Plateau, and the Sichuan Basin, and

is generally consistent with Chinese administrative divisions.”

6. line 106: “However, MWR radiances are upward-looking microwave
observations, which differ from the downward-looking observation of satellites.”
I find this sentence quite jarring. Before in the article you refer to “ground-based
MWRs”, so when you state that “MWR radiances are upward-looking” it seems
like you refer to the microwave radiometer instrument in general, not simply
ground based microwave radiometers. I would change the sentence to refer
simply to the platform (ground-based vs satellite) and not contrast microwave
radiometer with satellite as this doesn’t make sense.

Response:

To avoid confusion between ground-based microwave radiometers and
microwave radiometers (MWRs) in general, the term “ground-based microwave
radiometers (GMWRs)” is now used throughout this study. Accordingly, the
sentence has been revised:

“RTTOV, a fast RTM, is widely used for assimilating satellite radiance data.
However, GMWR radiances are upward-looking microwave observations,
differing from the downward-looking measurements of satellite-borne

microwave radiometers.”
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7. Line 134: Could you say (at some point in the paper, not necessarily here)
when the three month training data for your bias correction algorithm was taken?
Response:

“To estimate the bias and develop a bias correction scheme for GMWR
direct assimilation, a long-term experiment was conducted from August to
October 2023, yielding a three-month sample dataset.”

“The flowchart illustrating the training and evaluation process of the bias
correction (BC) model is shown in Fig. 5b. The three-month sample dataset
(described in Section 3.1) was randomly split into a training set (70 %) and a test

set (30 %).”

8. Figure 2: Could you explain the plot axis label d Tans/ d In P, I am not familiar
with weighting functions of this type. Are the temperature/humidity increments
representative of all data assimilation experiments? If not, please elaborate in the
text. For plot c,d,e and f please label the colourbars and make the magnitude
(1eX) more evident.
Response:

Transmittance t varies monotonically with pressure p. The downwelling
emission term can be expressed as:

ot

—dl
dlnp P

L= LIB (T)dr = f:sB )

where L 1isthe radiance at the ground, B is the Planck function, 7'is temperature,
T, 1s the transmittance from the surface to the top of the atmosphere, p; is the

pressure at the top of the atmosphere, p, is the surface pressure.

L : ] S o : .
The weighting function, ﬁ, which is the derivative of transmittance with

respect to height (pressure), describes the relative contribution of each
atmospheric layer to the total radiation emitted to the surface (Cui et al. 2020;
Thépaut, 2023). In figure 2, the axis label “d Tans/ d In P”” denote derivative of

transmittance with respect to vertical coordinate, d(transmittance) / d(log(p)).
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The temperature and humidity increments are obtained from single-observation
assimilation experiments, which are conducted to confirm that the GMWR direct
assimilation module performs correctly. Although this experiment is not
representative of all data assimilation experiments, they provide valuable
insights into the characteristics of GMWR assimilation. Figure 2 and the
corresponding text have been revised to improve clarity.

“According to Cui et al. (2020), WFs are calculated as the derivative of
transmittance with respect to the natural logarithm of pressure.

It should also be noted that this experiment was conducted to verify the
correct performance of the GMWR direct assimilation module and to provide
valuable insights into the characteristics of GMWR assimilation. However, it is
not representative of the subsequent multi-observation, multi-channel

assimilation experiments.
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Figure 2: Normalized weighting functions of (a) HATPRO and (b) MP3000A calculated
using the RTTOV-gb. The (c, d) horizontal and (e, f) vertical analysis increments for (c,
e) temperature and (d, f) water vapor mixing ratio in single-observation assimilation
experiment. The vertical increments are cross-sections along the green lines shown in
the horizontal increments. The colorbar tick labels for temperature and water vapor

mixing ratio are expressed in scientific notation as 1x1072 and 1x1074, respectively.”

Thépaut, J. N., 2003: Satellite data assimilation in numerical weather prediction:
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An overview. Proc. ECMWF Seminar on Recent Developments in Data
Assimilation for Atmosphere and Ocean, Reading, UK, ECMWEF, 75-96.
Cui, X., Z. Yao, Z. Zhao, Y. Zhai, Z. Sun, W. Cheng, and C. Gu, 2020: Use of
Double Channel Differences for Reducing the Surface Emissivity
Dependence of Microwave Atmospheric Temperature and Humidity
Retrievals.  Earth and Space Science, 7, €2019EA000854,
https://doi.org/10.1029/2019EA000854.

9. Line 160: “For HATPRO, more than 6,000 samples are analyzed. The O—B
biases are 1.25 K for the K band (channel 1) and 2.14 K for the V band (channel
13)”. Are these statistics the average for the whole band or that particular channel?
If they are for the whole band, make this explicit on Figure 3. If not, then these
results should not be generalised to the whole band.
Response:

These statistics are for particular channel and the corresponding text have

been revised.

10. Figure 3: Why were these particular channels selected. Could you comment
in the text about whether these plots are representative of the whole band? It
would also be nice if you could include the same plots for the other channels in
the appendix.

Response:

These plots are not representative of the whole band. The same plots for the
other channels are added in the appendix. And the corresponding text have been
revised as following:

“A comparative scatterplot analysis of observed and simulated brightness
temperatures was conducted. For most channels, the scatter points are closely
aligned along the diagonal and exhibit high correlation coefficients, indicating
strong agreement between the simulations and observations. However, the
scatter for some channels forms two distinct clusters. To further investigate,

representative channels from the K-band (water vapor absorption lines) and the
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V-band (temperature-sensitive oxygen absorption lines) were selected. Figure 3
presents scatterplots for channel 1 (K-band) and channel 13 (V-band) of
HATPRO, and channel 1 (K-band) and channel 14 (V-band) of MP3000A.
Results for the remaining channels are shown in Figures Al and A2. For
HATPRO, more than 6,000 samples are analyzed for channels 1 and 13. The
O—B biases are 1.25 K for channel 1 and 2.14 K for channel 13, with standard
deviations (STD) of 3.35 K and 2.82 K, respectively. Additionally, the scatter
distribution for channel 13 is not centered, showing a cluster shifted to the right
of the diagonal (Fig. 3b). For MP3000A, more than 2,000 samples are analyzed
for channels 1 and 14, with O—B biases of 3.06 K for channel 1 and —0.54 K for
channel 14. The O—B STDs are 3.94 K and 3.08 K, respectively. Similar to the
results for HATPRO channel 13 (V-band), the scatter for MP3000A channel 14
(V-band) also shows a cluster offset from the diagonal, but to the left (Fig. 3d).
Based on these results, significant O—B biases are detected in GMWR
observations, with their characteristics varying across different sensors and
channels. However, the correlation coefficients between observed and simulated
brightness temperatures are high, at least 0.95, suggesting that these biases can

be effectively corrected.
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Figure A1l: Scatter plot of observed brightness temperature (Tb) versus simulated

Tb for HATPRO. Same as Fig. 3 but for additional channels.
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Figure A2: Scatter plot of observed brightness temperature (Tb) versus simulated Tb
for MP3000A. Same as Fig. 3 but for additional channels.”

11. With respect to the apparent two clusters in the V band, were the (clustered)

offset values consistently from the same radiometers. Do the offsets also

correspond to a particular time period (e.g. before vs after calibration) or weather

condition (after rain, in direct sunlight)?

Response:

The apparent two clusters in the V band correspond to a cluster shifted to

the right of the diagonal for channel 13 in HATPRO, and a cluster shifted to the

left of the diagonal for channel 14 in MP3000A. These offsets correspond to
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positive and negative O—B deviations, respectively. According to Figure 4, the
positive O—B values originate from GMWRs at stations 56312, 56029, and
55664, while the negative O—B values are primarily from station 57461. The

offset was consistently present and did not correspond to a particular time period.

12. line 182: “Regarding the correlation coefficients between observed and
simulated brightness temperatures, the overall values are high but slightly lower
for channels 4 to 9.” What is high? Please be more precise.
Response:

This sentence was revised as following.

“The correlation coefficients between observed and simulated brightness
temperatures are high across all channels (typically above 0.90), although they

are slightly lower for channels 4 to 9.”

13. Figure 4: Please add colourbar axis label and units for all sub plots. For
HATPRO channel 14, values are mainly white, but this colour is not included in
the colourbar- does that mean that the values are out of range, missing or
otherwise?
Response:

The colorbar axis label and units have been added. At some stations,
HATPRO did not observe channel 14, resulting in missing data that originally
appeared as white areas in the figure and were not represented in the colorbar.
These areas have been changed to grey, with an explanatory note added

accordingly.

[13
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Figure 4: Statistics at each station based on samples collected from August

data are displayed in grey in the figure.”

14. Line 215: “These hyperparameters were tuned using GridSearchCV”

to this.

Response:

The reference for scikit-learn has been added.

to October 2023. O—B (a) bias and (b) standard deviations (STD) for HATPRO;
(c) correlation coefficient (r) between observed and simulated brightness
temperatures for HATPRO; (d—f) same as (a—c) but for MP3000A. Some stations

did not provide observations for specific channels; the corresponding missing

Please properly reference scikit learn (or the library in question) when refering
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15. Line 235: . Furthermore, some individual channels, such as channel 10,
display bimodal distributions.”

As stated above, it would be interesting to see these plots.

Response:

These plots have been added in appendix.

“For most channels, the PDFs exhibit a unimodal pattern, with peak
positions deviating from zero, indicating that the O—B values are biased. For
some channels, the distributions are multimodal, characterized by a secondary
peak superimposed on the primary one. Although these issues are present in the
original distributions, after bias correction, the PDFs approximate an unbiased
distribution, and the secondary peaks are effectively suppressed, demonstrating
the effectiveness of the correction. From the scatter plots in Fig. 3, the O—B
distribution appears bimodal—an issue that may affect 3D-Var, which typically
assumes the errors to be unimodal (Gaussian). Similar to Fig. 3, channel 1 (K-
band) and channel 13 (V-band) of HATPRO, as well as channel 1 (K-band) and
channel 14 (V-band) of MP3000A, are selected for detailed analysis (Fig. 6).

Results for the remaining channels are presented in Figures B1 and B2.
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Figure B1: Probability density functions (PDFs) of the O—B distributions for
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HATPRO. Same as Fig. 6 but for additional channels.
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Figure B2: Probability density functions (PDFs) of the O—B distributions for
MP3000A. Same as Fig. 6 but for additional channels.”
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16. Figure 6: temperatrure and water vapour bands are labelled the wrong way
around. I’m not sure if a continuous line plot is the most appropriate for the
unlinked variables (bottom plot).

Response:

Corrected

17. Line 415: “The RTTOV-gb coefficient files are trained on global profiles and
are not tailored to the plateau region; consequently, their vertical coordinates
extend up to 1050 hPa, while surface pressure in the plateau region typically
exceeds 700 hPa.”

Could you please clarify why having the RTTOV-gb coefficient files only extend
down to 1050 hPa creates an issue at high-altitude stations? Conceptually, if the
sensor is located in a region where the surface pressure is around 700 hPa, that

site is “above”  the portion of the atmosphere from 1050-700 hPa (which would

presumably be below ground in the plateau setting). How does this mismatch in
the vertical extent of the RTTOV-gb coefficient files lead to biases for sensors
effectively well above 1050 hPa? In other words, why does the “upper pressure
limit” become problematic when the actual surface is located at a pressure lower
(i.e., a higher altitude) than the coefficient file’s assumed maximum pressure?
Response:

RTTOV-gb is trained on global atmospheric profile datasets, where profiles
are interpolated onto 101 pressure levels to derive regression coefficients
between optical depths and predictors, thereby producing the coefficient files.
These global profiles extend to high surface pressures, up to approximately 1050
hPa, enabling the vertical coordinate of the coefficient files to reach this level.
However, in plateau regions, surface pressures typically fall below 700 hPa,
indicating a substantial climatic difference between the training profiles and
those required for simulations in high-altitude areas. This discrepancy may
introduce simulation biases when RTTOV-gb is applied over plateaus. Indeed, in
satellite data assimilation, efforts have already been made to enhancing fast

radiative transfer model using local training profiles (Di et al. 2018). To clarify,
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our intention 1s not to highlight a mismatch in vertical pressure coordinates, but
to suggest that the applicability of globally trained coefficients in plateau regions
may be limited due to the pronounced climatic divergence. This sentence has
been revised accordingly to avoid misunderstanding.

“The RTTOV-gb coefficients are based on global atmospheric profiles,
which may differ significantly from the climatic conditions of plateau regions,

potentially affecting simulation accuracy.”

18. Line 435: “It is noted that satellite-based microwave radiometers are
primarily sensitive to the middle and upper atmosphere...”

This isn't technically correct. In atmospheric science, the middle atmosphere
generally refers to the stratosphere + mesosphere, i.e. from the tropopause
(roughly 8-17km, depending on latitude) up to ~80-85km. The upper
atmosphere is often taken to be the thermosphere and above. Many operational
satellite microwave sensors (e.g., AMSU, MHS, ATMS) retrieve temperature
and humidity by sounding channels peaked in the troposphere and lower
stratosphere, though they can extend somewhat upward. Their highest sensitivity
is thus often in the mid- to upper troposphere, not solely above it.

Response:

This sentence has been revised as following:
“It is noted that GMWRs exhibit higher sensitivity and provide more

valuable observations of the lower troposphere and planetary boundary layer

compared to satellite-based microwave radiometers (Shi et al., 2023).”
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Reply to Reviewer #3:

1. Fig. 8:(1) Suggest adding the 95% significance area of the differences to the
figure. Similarly, for all other relevant figures,

Response:

Thank you for your suggestion. To the best of the authors’ knowledge, the
t-test i1s commonly used to assess the significance of differences between two
independent samples. In previous studies, the difference in mean RMSE was
evaluated for statistical significance using a t-test, based on two independent
sample sets, each comprising a large number of RMSE values (Lei and Anderson,
2014a; Privé et al., 2014).

As an initial study primarily focused on the direct variational assimilation
of GMWR data, the assimilation was limited to clear-sky conditions. All
experiments were conducted over a ten-day period from 13 to 22 October 2023.
Among the available GMWR observations from August to October 2023, this
period exhibited a notably higher frequency of clear-sky data, which was more
favorable for demonstrating the role and potential of GMWR assimilation.

In Privé et al. (2014), the RMSE difference profile was calculated by
averaging RMSE values from different analysis times over a two-month OSSE
experiment. As a result, a large number of RMSE values were available, allowing
for the application of a t-test. However, in this study, RMSE was computed over
all analysis times as a single aggregated value, rather than being calculated at
each analysis time. Therefore, a t-test could not be performed due to the lack of
multiple independent samples. On the other hand, due to the limited number of
experiments, even if RMSE were calculated at each analysis time, only 10
samples would be available, which could render the test results volatile and
statistically unreliable. The all-sky assimilation technique will be the focus of
our upcoming study, in which GMWRs from cloudy regions will also be
assimilated. At that stage, three-month experiments will be conducted, which
will provide a sufficiently large number of samples to enable statistical

significance testing of RMSE differences.
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Let, L., and J. L. Anderson, 2014a: Empirical Localization of Observations for
Serial Ensemble Kalman Filter Data Assimilation in an Atmospheric

General Circulation Model, https://doi.org/10.1175/MWR-D-13-00288.1.

, and ——, 2014b: Impacts of Frequent Assimilation of Surface Pressure
Observations on Atmospheric Analyses, https://doi.org/10.1175/MWR-D-
14-00097.1.

Privé, N. C., R. M. Errico, and K.-S. Tai, 2014: The Impact of Increased

Frequency of Rawinsonde Observations on Forecast Skill Investigated with
an Observing System Simulation Experiment,

https://doi.org/10.1175/MWR-D-13-00237.1.

2. (2) It is clear that the MWR data assimilation mostly brings negative impacts
to the wind fields. The manuscript needs to cover this fact. The reason for the
degradation, as mentioned in the manuscript, may be that the background error
covariance does not spread the observation information to the wind field well.
Using ensemble covariance may mitigate this.

Response:

In the verification of the initial conditions against radiosonde observations,
the assimilation of GMWR data generally exhibits a negative impact on the wind
fields. In 3DVAR, the adjoint of RTTOV-gb only updates temperature and
humidity in observation space, while adjustments to the wind fields rely on the
background error covariance. This suggests that the background error covariance
may be a contributing factor to the negative impact on wind field analysis.
Therefore, improving the background error covariance (e.g., by incorporating
ensemble-based covariances) could potentially mitigate this limitation. As an
initial study primarily focused on the direct variational assimilation of GMWR
data with machine learning-based bias correction, it is admitted that this study
has some limitations. The MWR assimilation was implemented only using
3DVAR, based on RTTOV-gb and WRFDA. Future work could explore the
implementation of MWR assimilation using EnVar, EnKF, or 4DVAR.
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The negative impacts to the wind fields has been cover in the results and
discussion section of the manuscript, as shown below.

“It 1s noted that the GMWR assimilation has negative impacts on the wind
fields. The RMSE for zonal and meridional winds exhibits a slight negative
effect when GMWR is assimilated, with meridional winds even showing an
increase in RMSE.”

“However, it should be noted that the assimilation of GMWR data generally
has a negative impact on the wind fields in the initial conditions. The background
error covariance may contribute to this negative impact, as it determines the
response of the wind fields to the adjustments in temperature and humidity made
by RTTOV-gb. As an initial study primarily focused on the direct variational
assimilation of GMWR data with machine learning-based bias correction, it is
admitted that this study has some limitations. The GMWR assimilation was
implemented using 3DVAR, based on RTTOV-gb and WRFDA, and only static
background-error covariances were employed in this study. The background
error covariance matrix plays an important role in variational data assimilation,
but this type of covariance is climatological, spatially homogeneous, and
isotropic. This may limit the impact of GMWR assimilation, and flow-dependent

error covariances should be considered in future work.”

3. Figures: Suggest adding the time period, when each figures are generated, to
the figure captions.
Response:

Added.

4. Figure 10: This figure shows verifications against surface station observations,
right? Suggest changing "station observations" to "surface stations observations",
changing subplot titles to "2m Temperature", etc.

Response:

This figure and the corresponding text have been revised
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5. Line 328-329: "the nagavife RMSE differences gradually increase" -> "the
RMSE reduction gradually decreases"
Response:

Corrected

6. Line 330: The RMS difference "decreases" instead of "increases". Consider
revising accordingly for all relevant parts.
Response:

The corresponding text have been revised

7. Fig. 10b: The manuscript is expected to cover the fact that the verification
against the surface RH field shows a negative impact from the MWR data
assimilation after 12h and explain why.

Response:

In the verification against surface station observations, the improvement in
RH due to GMWR assimilation gradually decreases with increasing lead time
and becomes negative after 12 hours. Several factors may be responsible. On one
hand, in the verification of initial conditions against radiosonde observations, the
assimilation of GMWR data generally exerts a negative impact on the wind fields.
The degradation in wind fields may, through model processes, affect the relative
humidity. In addition, the model is highly nonlinear, and its errors do not evolve
linearly.

However, the evolution of model errors is complex and difficult to
investigate. As this study primarily focuses on the implementation of variational
direct assimilation of GMWR data with nonlinear bias correction and provides a
preliminary assessment of its potential impact, the cause of the negative impact
on relative humidity after 12 hours will be addressed in detail in future study.

Thanks to the reviewer's suggestion, we have covered this fact in the
manuscript as following.

“Similar results are observed for relative humidity, where the RMSE

reduction also decreases and approaches zero at a lead time of 12 hours.
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GMWR _1H consistently demonstrates the largest RMSE reduction for relative
humidity. However, it should be noted that the direct assimilation of GMWR
data caused a negative impact on relative humidity at a lead time of 12 hours.
The degradation of wind fields (Fig. 9) and the model’s inherent nonlinearity

may be responsible.”

8. Line 338-339: "likely due to a gradual increase in model error". This is not
accurate, as this happens to both CNTL and MWR.
Response:

As integration time increases, systematic model errors accumulate. The
atmosphere is highly nonlinear, and initial and model errors may not combine
linearly, potentially filtering out improvements in the initial state. In addition,
the assimilation algorithm is imperfect and does not improve all variables across
all regions (e.g., the wind field shown in Fig. 9), while multivariate interactions
may further diminish the overall effect. The explanation previously provided in
the manuscript may not be sufficiently accurate. As this aspect is not the focus

of this study, this sentence has been removed to avoid potential misinterpretation.

9.Line 342: "can further improve forecasts" -> "can further improve the short-
term forecasts".
Response:

Corrected

10. Line 362-366: "This may be attributed to ... the first 12 hours". This logic
in this part does not read good, and it looks like they can be removed.
Response:

We appreciate the reviewer’s comment and agree that the original sentence
lacked clarity and was prone to misinterpretation. The primary point we intended
to convey is that the relatively limited improvements observed in the figure could

be related to the long forecast lead times (12 and 24 hours), during which model
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errors tend to accumulate and diminish the benefits of improved initial
conditions provided by GMWR assimilation. The sentences have been revised
as follows:

“The limited improvement shown in this figure could be related to the
relatively long forecast lead times (12 and 24 hours), during which model errors
tend to accumulate and weaken the benefits of improved initial conditions from
GMWR assimilation. Verification against surface station observations indicates
that the improvements were primarily confined to the first few hours, particularly
for temperature and humidity. After 12 hours, the impact declined noticeably,

with some cases even exhibiting negative effects (Fig. 11).”

11. There are quite a few locations where articles "the/a" are missing (some of
them are mentioned below). Consider a thorough proofreading of the manuscript.
Response:

We have thoroughly proofread the manuscript and corrected all identified
instances where articles ("the/a") were missing. We also performed an additional

grammar check to ensure clarity and correctness throughout the text.

Edits:
12. Line 50: The first appearance of "RTTOV", please define this acronym.
Response:

The full name of RTTOV has been defined at its first occurrence in the

revised manuscript.

13. Fig. 1: The legend says "SOUND", suggest changing to "SONDE” or
"SOUNDING"
Response:

Corrected. The legend label has been changed from "SOUND" to "
SONDE".

14. Line 73: remove "Similarly, "
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Response:

Corrected.

15. Line 105: change to "into the radiance space"
Response:

Corrected.

16. Fig 2: Suggest removing the thumbnail figures in Fig. 2e and 2f; put the
green lines into Fig. 2¢c and 2d
Response:

Corrected.

17. Fig. 116-157: Shortening this sentence to “an MWR direct assimilation
module was developed within WRFDA”
Response:

Corrected.

18. Line232: change to "the above bias correction model,"

Response:

Corrected.

19. Line 354: '"against station observations" -> "against surface station
observations". Change other occurrences of "station observations" throughout
the manuscript.
Response:

Revised as suggested. All instances of "station observations" have been

changed to "surface station observations".

20. Line 416: "typically exceeds 700 hPa" -> "is typically lower than 700
hPa"

Response:
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Corrected.

21. Line 429: "This type covariances" -> "This type of covariances"
Response:

Corrected.
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