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Dear Editors and Reviewers: 

We deeply appreciate your helpful comments and suggestions, which 

enabled us to improve the quality of our present study. We have made revisions 

and replied to all the comments. Please find the point-by-point responses to the 

comments below. The comments are given below in black, our responses are in 

blue, and proposed changes to the manuscript are in red. 

 

Reply to Reviewer #1: 

1. Firstly, I'd like to have more details about the 10-day period over which the 

assimilation experiments were conducted. Unless I'm mistaken, it's implicitly 

understood that this is a clear-sky period (especially when the cloud cover 

mask is mentioned), but this is explicitly stated only at the end of the article. 

On the other hand, I think it would have been nice to provide more 

justification for this particular period. 

Response: 

Thanks for your comments. The assimilation experiment was conducted 

under clear-sky conditions. Figure R1 illustrates clear-sky observation counts in 

the target region of Southwest China from the microwave radiometer (MWR). 

Among the available MWR observations spanning August to October 2023, a 

ten-day period (highlighted in blue in Figure R1c) from 13 October 2023 to 22 

October 2023 exhibited a notably higher frequency of clear-sky MWR 

observations. As an initial study that mainly focused on direct assimilation of 

clear-sky MWRs, this period can better evaluate the impact of MWR 

assimilation. More details about the 10-day period over which the assimilation 

experiments have been added in the manuscript as below. 

“The assimilation experiments were conducted under clear-sky conditions 

due to the uncertainties in the model and observation operators under cloudy or 

rainy conditions. All experiments were conducted over a ten-day period from 13 

to 22 October 2023. Among the available GMWR observations from August to 

October 2023, this period exhibited a notably higher frequency of clear-sky data, 

which was more favorable for demonstrating the role and potential of GMWR 
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assimilation. Before implementing bias correction, clear-sky screening, first-

guess departure check, and whitelist check were sequentially applied to improve 

measurement quality. Subsequently, a relative departure check was applied prior 

to minimization. For the 6 h, 3 h, and 1 h assimilation intervals, 34 (0.91%), 70 

(1.42%), and 76 (0.72%) observations were rejected, respectively. The detailed 

procedure prior to a single assimilation cycle is as follows: 

(1) Observation Selection: The observation nearest to the analysis time within 

±10 minutes is selected. 

(2) Clear-sky Screening: Clear-sky GMWR observations were screened using 

the AGRI-based CLM, with background-simulated cloud liquid water path equal 

to zero. 

(3) First-Guess Departure Check: Observations with (O−B) values greater than 

20 K are excluded. 

(4) Whitelist Check: Remove observations from stations identified as unreliable 

or displaying abnormal behavior. 

(5) Bias Correction: a machine learning bias correction scheme was applied (see 

Section 3.2). 

(6) Relative Departure Check: Applied when the absolute value of the O−B 

exceeds three times the standard deviation of the observational error, further 

rejecting questionable data.” 
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Figure R1. Clear-sky observation counts in the target region of Southwest China 

from the microwave radiometer (MWR) for (a) August, (b) September, and (c) October 

2023. The blue line depicts hourly MWR counts, and the red line represents the 6-hour 

rolling average. The blue shaded region marks the 10-day period selected for 

assimilation experiments. 

 

2. Still on the subject of this 10-day period, I'd like to know if you've carried 

out assimilation experiments over other periods? If so, what were the results 

equivalent? Why wasn't a longer period considered? 

Response: 

Due to cloud cover and rainfall, the number of clear-sky observations 

during other periods is small, except for this ten-day period. This study primarily 

focuses on implementing RTTOV-gb within WRFDA and conducting clear-sky 

assimilation based on machine learning bias correction. To this end, we mainly 

concentrate on assimilation during this specific period. As demonstrated in this 

paper, clear-sky assimilation of MWRs has significant potential to improve 

numerical forecasts. It would be interesting to implement cloudy-region 

assimilation for MWRs in the next step, as it could incorporate more MWR 
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observations than clear-sky assimilation. Under such conditions, assimilation 

experiments would be conducted over other periods or extended to a longer 

period, given that assimilated MWR observations would be relatively more 

abundant. Nevertheless, a discussion about experiment periods has been added 

in the discussion as below. 

“Moreover, only clear-sky GMWRs were assimilated in this study. Since 

precipitation processes are often accompanied by extensive cloud cover, few 

clear-sky GMWRs were available. To better explore the potential of GMWR 

assimilation, experiments were conducted during periods with abundant clear-

sky GMWRs (e.g., a ten-day period in October 2023), which coincided with 

minimal heavy precipitation. Studies on satellite all-sky assimilation have shown 

that incorporating cloud- and precipitation-affected data improves forecasts (Ma 

et al., 2022; Xian et al., 2019), highlighting the need for future research on all-

sky assimilation of GMWRs. Under such conditions, assimilation experiments 

could be conducted during a different or longer period, given that assimilated 

GMWR observations would be relatively more abundant.” 

 

3. Regarding the single observation experiment, I'd like to know why the 

specific humidity analysis increments aren't totally isotropic (although 

they're close) as they are for temperature. 

Response: 

In the single observation experiment, the background error covariance used 

in WRFDA is CV5. Pseudo relative humidity (RHs) is the control variable in 

CV5 and is minimized during assimilation. However, RHs is not a model 

variable, and its analysis increment is transformed into model variables (e.g., 

water vapor mixing ratio). During this transformation, the water vapor mixing 

ratio may not remain fully isotropic. As shown in Figure R2, while the analysis 

increment of RH appears isotropic, this is not the case for the water vapor mixing 

ratio. 
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Figure R2 The horizontal analysis increments for (a) water vapor mixing ratio and 

(b) relative humidity in single-observation assimilation experiment. 

 

4. My final comment concerns Figures 10 and 12. I think it would have been 

clearer to present the RMSE or FSS values directly, rather than the 

differences with the control experiment. I understand that this removes a 

curve from the graphs and perhaps improves readability. But having the 

RMSE values would be informative about the errors made by the model. 

Response: 

The RMSE and FSS for the CNTL experiment are shown as black solid 

lines in Figures 10 and 12. The corresponding changes we have implemented are 

as follows: 

“ The time series of RMSE for the CNTL experiment and RMSE 

differences (assimilation experiments minus the CNTL experiment) against 

surface station observations for 2 m temperature, 2 m relative humidity, and 10 

m wind fields are shown in Fig. 11. In the CNTL experiment, the RMSE of 

temperature and relative humidity initially decreases and then increases with lead 

time, while the RMSE of the wind field exhibits the opposite trend, increasing at 

first and then decreasing. The mean RMSEs over the 24-hour forecast period are 

2.32 K for temperature, 16.26% for relative humidity, 1.92 m s⁻¹ for zonal wind, 

and 2.08 m s⁻¹ for meridional wind. Regarding assimilation impacts, the RMSE 
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reduction for temperature gradually decreases, approaching zero at a lead time 

of 6 hours, with higher assimilation frequency (GMWR_1H) achieving a greater 

RMSE reduction. 

 

Figure 1: Verification of the forecast against surface station observations, based on 

the ten-day assimilation experiment conducted from 13 to 22 October 2023. RMSE 

(black line) for the CNTL experiment and RMSE differences (colored lines) between 

the assimilation experiments and the CNTL experiment for (a) temperature, (b) relative 

humidity, (c) zonal wind, and (d) meridional wind.  

 

Figure 13 presents the time series of FSS for the CNTL experiment and FSS 

differences (assimilation experiments minus the CNTL experiment). The 

assimilation experiments were conducted during a period characterized by a 

higher frequency of clear-sky observations. Cloud cover and precipitation were 

limited throughout the 10-day period, resulting in the absence of frequent heavy 

rainfall events. Consequently, the FSS was calculated using small precipitation 

thresholds. In the CNTL experiment, the FSS for 3 h accumulated precipitation 

shows an initial decline followed by a subsequent increase with lead time, with 

relatively low FSS values observed around the 9 h forecast period. Moreover, 

the FSS generally decreases as the precipitation threshold increases. The time 
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mean FSS values are 0.47, 0.45, 0.42, and 0.39 for thresholds of 3 mm, 4mm, 

5mm, and 6 mm, respectively. Regarding the role of GMWR assimilation in 

precipitation forecasting, the results indicate that assimilating GMWR radiances 

enhances precipitation forecasts, with FSS differences increasing progressively 

at higher precipitation thresholds. 

 

Figure 13: The time series of FSS (black line) for CNTL experiment and FSS 

differences (colored lines) between the assimilation experiments and the CNTL 

experiment. These experiments were conducted from 13 to 22 October 2023.The FSS 

was calculated for 3 h accumulated precipitation for thresholds of (a) 3 mm, (b) 4 mm, 

(c) 5 mm, and (d) 6 mm. 
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Reply to Reviewer #2: 

General Comments 

1. Could you please include a few more details about the assimilation 

framework. Specifically: 

-Timing of Observations: Do you select the observation that most closely 

matches the analysis time, or do you integrate over a broader time window? 

-Data Processing Before Bias Correction: Aside from using the cloud mask, 

do you apply any additional procedures to improve measurement quality before 

performing bias correction? 

-QC: Do you use any quality-control checks (e.g., discarding observations based 

on O−B thresholds), and if so, how many observations are rejected? 

Response: 

The observation nearest to the analysis time within ±10 minutes will be 

selected. 

Before implementing bias correction, we sequentially applied cloud and 

precipitation detection, O−B (observation-minus-background) checks, and 

quality control using a whitelist. Cloud and precipitation detection were based 

on the FY-4B cloud mask and rain gauge data from MWRs. The O−B check 

served as a preliminary screening step that excluded observations with absolute 

O−B values greater than 15 K. The whitelist was established to identify reliable 

station observations based on the correlation between simulated and observed 

brightness temperatures (BTs). Specifically, we evaluated the correlation 

between observed and simulated BTs at each station. Stations where observed 

BTs did not vary consistently with simulated BTs—indicated by low correlation 

coefficients—were classified as “problematic stations.” Some of these 

problematic stations returned to normal after specific dates, and observations 

from those periods were retained. 

After bias correction, additional quality control based on O−B was 

conducted, including a three-sigma observational error check. For the six-hour, 

three-hour, and one-hour assimilation intervals, the total numbers of 

observations were 3,724, 4,946, and 10,619, respectively. Following a three-
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sigma observational error check, 34 (0.91%), 70 (1.42%), and 76 (0.72%) 

observations were rejected. The corresponding changes we have implemented 

are as follows: 

“Before implementing bias correction, clear-sky screening, first-guess 

departure check, and whitelist check were sequentially applied to improve 

measurement quality. Subsequently, a relative departure check was applied prior 

to minimization. For the 6 h, 3 h, and 1 h assimilation intervals, 34 (0.91%), 70 

(1.42%), and 76 (0.72%) observations were rejected, respectively. The detailed 

procedure prior to a single assimilation cycle is as follows: 

(1) Observation Selection: The observation nearest to the analysis time within 

±10 minutes is selected. 

(2) Clear-sky Screening: Clear-sky MWR observations were screened using the 

AGRI-based CLM, with background-simulated cloud liquid water path is zero. 

(3) First-Guess Departure Check: Observations with (O−B) values greater than 

20 K are excluded. 

(4) Whitelist Check: Remove observations from stations identified as unreliable 

or displaying abnormal behavior. 

(5) Bias Correction: a machine learning bias correction scheme was applied (see 

Section 3.2). 

(6) Relative Departure Check: Applied when the absolute value of the O−B 

exceeds three times the standard deviation of the observational error, further 

rejecting questionable data.” 

 

2. In Chapter 3, the O−B statistics are examined in detail. From the scatter plots, 

it appears that the K-band O−B distribution may be bimodal for both radiometer 

types—a potential issue for 3D-Var, which typically assumes unimodal 

(Gaussian) errors. After showing the initial scatter plots of BT(sim) vs. BT(obs), 

the paper primarily focuses on bias and standard deviation. It would be very 

interesting to see if the bias correction addresses this bimodality. I encourage you 

to present histograms or PDFs of the O−B errors before and after the bias 

correction is applied. I would also encourage you to comment briefly on the skew 
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and kurtosis of the distributions.  

Response: 

The bimodality in the O−B distribution has been addressed to some extent 

through bias correction. The probability density functions (PDFs) of the O−B 

have been included in the manuscript, along with the skewness and kurtosis of 

the distributions. The corresponding changes we have implemented are as 

follows:  

“From the scatter plots in Fig. 3, the O−B distribution appears bimodal—

an issue that may affect 3D-Var, which typically assumes the errors to be 

unimodal (Gaussian). Similar to Fig. 3, channel 1 (K-band) and channel 13 (V-

band) of HATPRO, as well as channel 1 (K-band) and channel 14 (V-band) of 

MP3000A, are selected for detailed analysis (Fig. 6). Results for the remaining 

channels are presented in Figures B1 and B2. The biases for HATPRO channel 

1, HATPRO channel 13, MP3000A channel 1, and MP3000A channel 14 are 1.24 

K, 2.21 K, 3.00 K, and –0.64 K, respectively, with corresponding STDs of 3.38 

K, 2.90 K, 3.89 K, and 3.08 K. The differences between the test set and the full 

dataset (shown in Fig. 3) are negligible, with a maximum bias difference of 0.10 

K and a maximum STD difference of 0.08 K, highlighting the strong 

representativeness of the test set. From the PDF distributions of O–B, both 

instruments exhibit a positive bias in the K-band with a unimodal distribution. 

In contrast, a bimodal distribution is observed in the V-band: the second peak 

appears on the right for HATPRO and on the left for MP3000A. These results 

are consistent with the scattering patterns shown in Fig. 3. After the bias 

correction is applied, both the bias and STD are reduced, and the O–B 

distribution becomes more sharply concentrated around zero, accompanied by 

an increase in kurtosis. For example, in channel 1 of MP3000A, the bias and 

STD decrease from 1.24 K and 3.38 K to 0.03 K and 1.44 K, respectively, while 

the kurtosis increases markedly from 1.53 to 9.44. It is also noteworthy that the 

bimodal distributions in the V-band for both instruments become unimodal after 

the correction. Meanwhile, the skewness decreases from 1.04 and 1.54 to 0.55 

and 1.05, respectively, indicating a more symmetrical O–B distribution. These 
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results demonstrate that the proposed bias correction scheme effectively reduces 

bias and STD, addresses bimodal distribution, and shifts the O–B distribution 

closer to a Gaussian shape. 

 
Figure 6: Probability density functions (PDFs) of the O−B distributions, based on a test 

set randomly selected from 30% of the three-month sample dataset collected from 

August to October 2023. The top and bottom rows correspond to the HATPRO and 

MP3000A sensors, respectively, while the left and right columns represent the K-band 

and V-band. Each panel displays the number of samples (num), the mean (bias), 

standard deviation (STD), skewness, and kurtosis of the distributions.” 

 

3. The FSS improvements of rain rate seem impressive to say that the only 

change here is ground based radiometers. I suppose that the reason any impact 

is visible is only after 9 hours is because cloudy data is excluded. It may be 

interesting to show some statistics of the rainfall events in the 10-day period. Is 

one heavy precipitation event responsible for this improvement in forecast skill? 
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Do you intend to repeat the experiment including cloudy data? 

Response: 

Thank you for your valuable suggestion. Upon re-checking the FSS 

calculation, we found that the improvement reported in the manuscript may not 

be as substantial as initially perceived. 

The assimilation experiment period was selected to coincide with more 

frequent clear-sky conditions to maximize the availability of GMWR 

observations. During this period, precipitation was minimal, with no particularly 

intense precipitation events. Furthermore, during the phase of substantial FSS 

improvement (after 9 hours), observed precipitation was nearly absent. Although 

simulated precipitation exceeded observed amounts, it remained low overall, 

with false alarms being the primary source of error. The limited amounts of both 

observed and simulated precipitation led to a small sample size in the FSS 

calculation, resulting in the division of two small values. This mathematical 

characteristic amplified fluctuations in FSS scores, producing an apparent and 

pronounced improvement. 

To mitigate the effect of small sample sizes in the FSS calculation described 

above, the thresholds for calculating FSS scores were lowered from 6–15 mm to 

3–6 mm. The GMWR assimilation in this study, which is limited to clear-sky 

areas, does not utilize information from cloudy regions, resulting in reduced data 

usage—particularly during precipitation events. In future work, assimilation 

techniques for cloudy areas will be developed and focus on improving forecasts 

of heavy precipitation processes. 

We revised the thresholds for FSS and provided clarification. The 

corresponding text has been revised as follows:  

“ The assimilation experiments were conducted during a period 

characterized by a higher frequency of clear-sky observations. Cloud cover and 

precipitation were limited throughout the 10-day period, resulting in the absence 

of frequent heavy rainfall events. Consequently, the FSS was calculated using 

small precipitation thresholds. In the CNTL experiment, the FSS for 3 h 

accumulated precipitation shows an initial decline followed by a subsequent 
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increase with lead time, with relatively low FSS values observed around the 9 h 

forecast period. Moreover, the FSS generally decreases as the precipitation 

threshold increases. The time mean FSS values are 0.47, 0.45, 0.42, and 0.39 for 

thresholds of 3 mm, 4mm, 5mm, and 6 mm, respectively. Regarding the role of 

GMWR assimilation in precipitation forecasting, the results indicate that 

assimilating GMWR radiances enhances precipitation forecasts, with FSS 

differences increasing progressively at higher precipitation thresholds. 

Additionally, increasing assimilation frequency shows the potential to further 

enhance forecast performance. When assimilating GMWR data at a 1 h 

frequency, the time-averaged FSS improvements for 3 h accumulated 

precipitation are 0.02 (3.9 %) for the 3 mm threshold, 0.02 (4.7 %) for 4 mm 

threshold, 0.03 (7.3 %) for 5 mm threshold, and 0.04 (10.2 %) for 6 mm threshold 

precipitation. For 3 h accumulated precipitation with a threshold of 6 mm, the 

time-averaged FSS improvements are 0.01, 0.02, and 0.03 for GMWR_6H, 

GMWR_3H, and GMWR_1H, respectively. These findings are consistent with 

the above verification against radiosonde and surface station observations, 

suggesting that GMWR assimilation can improve forecasts and that higher-

frequency assimilation leads to further enhancements. 

 

Figure 13: The time series of FSS (black line) for CNTL experiment and FSS 

differences (colored lines) between the assimilation experiments and the CNTL 
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experiment. These experiments were conducted from 13 to 22 October 2023.The FSS 

was calculated for 3 h accumulated precipitation for thresholds of (a) 3 mm, (b) 4 mm, 

(c) 5 mm, and (d) 6 mm.” 

 

4. Could you add some information about how the background error covariance 

matrix was generated? Was any testing done to optimise this? Similarly, it would 

be helpful to know how you specified the observation-error covariances—for 

instance, the assumed observation-error standard deviations or correlations. 

Response: 

The background error covariance matrix was generated using the 

Generalized Background Error Covariance Matrix Model (GEN_BE v2.0) with 

the National Meteorological Center (NMC) method. Specifically, CV5, which is 

commonly used in WRFDA, was employed in this study, and the length scale 

was tuned using a single-observation experiment. Observation-error correlations 

are typically assumed to be zero in WRFDA, resulting in a diagonal observation-

error covariance matrix. Observation errors were specified based on the standard 

deviation of O–B. More information about background error and observation 

error have been added in the manuscript as below. 

“The static background error covariance for the variational experiments is 

estimated using the National Meteorological Center (NMC) method (Parrish and 

Derber, 1992), which uses the difference between WRF forecasts at lead times 

of 24 h and 12 h (T + 24 h minus T + 12 h) valid at the same time over a specified 

period. Control variables option 5 (CV5) is adopted for the background error 

covariance used in 3DVAR. CV5 is domain-dependent and therefore must be 

generated based on forecast or ensemble data over the same domain. It utilizes 

streamfunction, unbalanced velocity potential, unbalanced temperature, 

unbalanced surface pressure, and pseudo relative humidity. In this study, the 

background error covariance matrix was generated using the Generalized 

Background Error Covariance Matrix Model (GEN_BE v2.0) (Descombes et al., 

2015) based on one month of WRF forecasts. Observation-error correlations are 

typically assumed to be zero in WRFDA, resulting in a diagonal observation-
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error covariance matrix. Observation errors were specified based on the standard 

deviation of O–B.” 

 

Specific Comments 

5. Figure 1: Was the south-west China domain pre-defined in advance of the 

study? Were these conditions defined from the border of the computation domain 

or otherwise? Please justify. 

Response: 

“Similar to previous studies (Jiang et al., 2017; Nie and Sun, 2023), the 

target region of Southwest China in this study is defined as the area within the 

rectangular domain 22°–35°N, 93°–110°E (Fig. 1). This region encompasses the 

Hengduan Mountains, the Yunnan–Guizhou Plateau, and the Sichuan Basin, and 

is generally consistent with Chinese administrative divisions.” 

 

6. line 106: “However, MWR radiances are upward-looking microwave 

observations, which differ from the downward-looking observation of satellites.” 

I find this sentence quite jarring. Before in the article you refer to “ground-based 

MWRs”, so when you state that “MWR radiances are upward-looking” it seems 

like you refer to the microwave radiometer instrument in general, not simply 

ground based microwave radiometers. I would change the sentence to refer 

simply to the platform (ground-based vs satellite) and not contrast microwave 

radiometer with satellite as this doesn’t make sense. 

Response: 

To avoid confusion between ground-based microwave radiometers and 

microwave radiometers (MWRs) in general, the term “ground-based microwave 

radiometers (GMWRs)” is now used throughout this study. Accordingly, the 

sentence has been revised: 

“RTTOV, a fast RTM, is widely used for assimilating satellite radiance data. 

However, GMWR radiances are upward-looking microwave observations, 

differing from the downward-looking measurements of satellite-borne 

microwave radiometers.” 
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7. Line 134: Could you say (at some point in the paper, not necessarily here) 

when the three month training data for your bias correction algorithm was taken? 

Response: 

“To estimate the bias and develop a bias correction scheme for GMWR 

direct assimilation, a long-term experiment was conducted from August to 

October 2023, yielding a three-month sample dataset.” 

“The flowchart illustrating the training and evaluation process of the bias 

correction (BC) model is shown in Fig. 5b. The three-month sample dataset 

(described in Section 3.1) was randomly split into a training set (70 %) and a test 

set (30 %).” 

 

8. Figure 2: Could you explain the plot axis label d Tans/ d ln P, I am not familiar 

with weighting functions of this type. Are the temperature/humidity increments 

representative of all data assimilation experiments? If not, please elaborate in the 

text. For plot c,d,e and f please label the colourbars and make the magnitude 

(1eX) more evident. 

Response: 

Transmittance 𝜏 varies monotonically with pressure 𝑝. The downwelling 

emission term can be expressed as: 

𝐿 = ∫ 𝐵
1

𝜏𝑡

(𝑇)𝑑𝜏 = ∫ 𝐵
𝑝𝑠

𝑝𝑡

(𝑇)
𝜕𝜏

𝜕𝑙𝑛𝑝
𝑑𝑙𝑛𝑝 

where 𝐿 is the radiance at the ground, B is the Planck function, T is temperature, 

𝜏𝑡 is the transmittance from the surface to the top of the atmosphere, 𝑝𝑡 is the 

pressure at the top of the atmosphere, 𝑝𝑠 is the surface pressure. 

The weighting function, 
𝜕𝜏

𝜕𝑙𝑛𝑝
, which is the derivative of transmittance with 

respect to height (pressure), describes the relative contribution of each 

atmospheric layer to the total radiation emitted to the surface (Cui et al. 2020; 

Thépaut, 2023). In figure 2, the axis label “d Tans/ d ln P” denote derivative of 

transmittance with respect to vertical coordinate, d(transmittance) / d(log(p)). 
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The temperature and humidity increments are obtained from single-observation 

assimilation experiments, which are conducted to confirm that the GMWR direct 

assimilation module performs correctly. Although this experiment is not 

representative of all data assimilation experiments, they provide valuable 

insights into the characteristics of GMWR assimilation. Figure 2 and the 

corresponding text have been revised to improve clarity. 

“According to Cui et al. (2020), WFs are calculated as the derivative of 

transmittance with respect to the natural logarithm of pressure. 

It should also be noted that this experiment was conducted to verify the 

correct performance of the GMWR direct assimilation module and to provide 

valuable insights into the characteristics of GMWR assimilation. However, it is 

not representative of the subsequent multi-observation, multi-channel 

assimilation experiments. 

 

Figure 2: Normalized weighting functions of (a) HATPRO and (b) MP3000A calculated 

using the RTTOV-gb. The (c, d) horizontal and (e, f) vertical analysis increments for (c, 

e) temperature and (d, f) water vapor mixing ratio in single-observation assimilation 

experiment. The vertical increments are cross-sections along the green lines shown in 

the horizontal increments. The colorbar tick labels for temperature and water vapor 

mixing ratio are expressed in scientific notation as 1×10⁻² and 1×10⁻⁴, respectively.” 

 

Thépaut, J. N., 2003: Satellite data assimilation in numerical weather prediction: 
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An overview. Proc. ECMWF Seminar on Recent Developments in Data 

Assimilation for Atmosphere and Ocean, Reading, UK, ECMWF, 75–96. 

Cui, X., Z. Yao, Z. Zhao, Y. Zhai, Z. Sun, W. Cheng, and C. Gu, 2020: Use of 

Double Channel Differences for Reducing the Surface Emissivity 

Dependence of Microwave Atmospheric Temperature and Humidity 

Retrievals. Earth and Space Science, 7, e2019EA000854, 

https://doi.org/10.1029/2019EA000854. 

 

9. Line 160: “For HATPRO, more than 6,000 samples are analyzed. The O−B 

biases are 1.25 K for the K band (channel 1) and 2.14 K for the V band (channel 

13)”. Are these statistics the average for the whole band or that particular channel? 

If they are for the whole band, make this explicit on Figure 3. If not, then these 

results should not be generalised to the whole band. 

Response: 

These statistics are for particular channel and the corresponding text have 

been revised. 

 

10. Figure 3: Why were these particular channels selected. Could you comment 

in the text about whether these plots are representative of the whole band? It 

would also be nice if you could include the same plots for the other channels in 

the appendix. 

Response: 

These plots are not representative of the whole band. The same plots for the 

other channels are added in the appendix. And the corresponding text have been 

revised as following: 

“A comparative scatterplot analysis of observed and simulated brightness 

temperatures was conducted. For most channels, the scatter points are closely 

aligned along the diagonal and exhibit high correlation coefficients, indicating 

strong agreement between the simulations and observations. However, the 

scatter for some channels forms two distinct clusters. To further investigate, 

representative channels from the K-band (water vapor absorption lines) and the 

https://doi.org/10.1029/2019EA000854
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V-band (temperature-sensitive oxygen absorption lines) were selected. Figure 3 

presents scatterplots for channel 1 (K-band) and channel 13 (V-band) of 

HATPRO, and channel 1 (K-band) and channel 14 (V-band) of MP3000A. 

Results for the remaining channels are shown in Figures A1 and A2. For 

HATPRO, more than 6,000 samples are analyzed for channels 1 and 13. The 

O−B biases are 1.25 K for channel 1 and 2.14 K for channel 13, with standard 

deviations (STD) of 3.35 K and 2.82 K, respectively. Additionally, the scatter 

distribution for channel 13 is not centered, showing a cluster shifted to the right 

of the diagonal (Fig. 3b). For MP3000A, more than 2,000 samples are analyzed 

for channels 1 and 14, with O−B biases of 3.06 K for channel 1 and −0.54 K for 

channel 14. The O−B STDs are 3.94 K and 3.08 K, respectively. Similar to the 

results for HATPRO channel 13 (V-band), the scatter for MP3000A channel 14 

(V-band) also shows a cluster offset from the diagonal, but to the left (Fig. 3d). 

Based on these results, significant O−B biases are detected in GMWR 

observations, with their characteristics varying across different sensors and 

channels. However, the correlation coefficients between observed and simulated 

brightness temperatures are high, at least 0.95, suggesting that these biases can 

be effectively corrected. 

 
Figure A1: Scatter plot of observed brightness temperature (Tb) versus simulated 

Tb for HATPRO. Same as Fig. 3 but for additional channels. 
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Figure A2: Scatter plot of observed brightness temperature (Tb) versus simulated Tb 

for MP3000A. Same as Fig. 3 but for additional channels.” 

 

11. With respect to the apparent two clusters in the V band, were the (clustered) 

offset values consistently from the same radiometers. Do the offsets also 

correspond to a particular time period (e.g. before vs after calibration) or weather 

condition (after rain, in direct sunlight)? 

Response: 

The apparent two clusters in the V band correspond to a cluster shifted to 

the right of the diagonal for channel 13 in HATPRO, and a cluster shifted to the 

left of the diagonal for channel 14 in MP3000A. These offsets correspond to 
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positive and negative O–B deviations, respectively. According to Figure 4, the 

positive O–B values originate from GMWRs at stations 56312, 56029, and 

55664, while the negative O–B values are primarily from station 57461. The 

offset was consistently present and did not correspond to a particular time period. 

 

12. line 182: “Regarding the correlation coefficients between observed and 

simulated brightness temperatures, the overall values are high but slightly lower 

for channels 4 to 9.” What is high? Please be more precise. 

Response: 

This sentence was revised as following. 

“The correlation coefficients between observed and simulated brightness 

temperatures are high across all channels (typically above 0.90), although they 

are slightly lower for channels 4 to 9.” 

 

13. Figure 4: Please add colourbar axis label and units for all sub plots. For 

HATPRO channel 14, values are mainly white, but this colour is not included in 

the colourbar- does that mean that the values are out of range, missing or 

otherwise? 

Response: 

The colorbar axis label and units have been added. At some stations, 

HATPRO did not observe channel 14, resulting in missing data that originally 

appeared as white areas in the figure and were not represented in the colorbar. 

These areas have been changed to grey, with an explanatory note added 

accordingly. 

“ 
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Figure 4: Statistics at each station based on samples collected from August 

to October 2023. O−B (a) bias and (b) standard deviations (STD) for HATPRO; 

(c) correlation coefficient (r) between observed and simulated brightness 

temperatures for HATPRO; (d–f) same as (a–c) but for MP3000A. Some stations 

did not provide observations for specific channels; the corresponding missing 

data are displayed in grey in the figure.” 

 

14. Line 215: “These hyperparameters were tuned using GridSearchCV” 

Please properly reference scikit learn (or the library in question) when refering 

to this. 

Response: 

The reference for scikit-learn has been added. 
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15. Line 235: “. Furthermore, some individual channels, such as channel 10, 

display bimodal distributions.” 

As stated above, it would be interesting to see these plots. 

Response: 

These plots have been added in appendix. 

“For most channels, the PDFs exhibit a unimodal pattern, with peak 

positions deviating from zero, indicating that the O−B values are biased. For 

some channels, the distributions are multimodal, characterized by a secondary 

peak superimposed on the primary one. Although these issues are present in the 

original distributions, after bias correction, the PDFs approximate an unbiased 

distribution, and the secondary peaks are effectively suppressed, demonstrating 

the effectiveness of the correction. From the scatter plots in Fig. 3, the O−B 

distribution appears bimodal—an issue that may affect 3D-Var, which typically 

assumes the errors to be unimodal (Gaussian). Similar to Fig. 3, channel 1 (K-

band) and channel 13 (V-band) of HATPRO, as well as channel 1 (K-band) and 

channel 14 (V-band) of MP3000A, are selected for detailed analysis (Fig. 6). 

Results for the remaining channels are presented in Figures B1 and B2. 

 
Figure B1: Probability density functions (PDFs) of the O−B distributions for 
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HATPRO. Same as Fig. 6 but for additional channels. 

 
Figure B2: Probability density functions (PDFs) of the O−B distributions for 

MP3000A. Same as Fig. 6 but for additional channels.” 
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16. Figure 6: temperatrure and water vapour bands are labelled the wrong way 

around. I’m not sure if a continuous line plot is the most appropriate for the 

unlinked variables (bottom plot). 

Response: 

Corrected 

 

17. Line 415: “The RTTOV-gb coefficient files are trained on global profiles and 

are not tailored to the plateau region; consequently, their vertical coordinates 

extend up to 1050 hPa, while surface pressure in the plateau region typically 

exceeds 700 hPa.” 

Could you please clarify why having the RTTOV-gb coefficient files only extend 

down to 1050 hPa creates an issue at high-altitude stations? Conceptually, if the 

sensor is located in a region where the surface pressure is around 700 hPa, that 

site is “above” the portion of the atmosphere from 1050–700 hPa (which would 

presumably be below ground in the plateau setting). How does this mismatch in 

the vertical extent of the RTTOV-gb coefficient files lead to biases for sensors 

effectively well above 1050 hPa? In other words, why does the “upper pressure 

limit” become problematic when the actual surface is located at a pressure lower 

(i.e., a higher altitude) than the coefficient file’s assumed maximum pressure? 

Response: 

RTTOV-gb is trained on global atmospheric profile datasets, where profiles 

are interpolated onto 101 pressure levels to derive regression coefficients 

between optical depths and predictors, thereby producing the coefficient files. 

These global profiles extend to high surface pressures, up to approximately 1050 

hPa, enabling the vertical coordinate of the coefficient files to reach this level. 

However, in plateau regions, surface pressures typically fall below 700 hPa, 

indicating a substantial climatic difference between the training profiles and 

those required for simulations in high-altitude areas. This discrepancy may 

introduce simulation biases when RTTOV-gb is applied over plateaus. Indeed, in 

satellite data assimilation, efforts have already been made to enhancing fast 

radiative transfer model using local training profiles (Di et al. 2018). To clarify, 
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our intention is not to highlight a mismatch in vertical pressure coordinates, but 

to suggest that the applicability of globally trained coefficients in plateau regions 

may be limited due to the pronounced climatic divergence. This sentence has 

been revised accordingly to avoid misunderstanding. 

“The RTTOV-gb coefficients are based on global atmospheric profiles, 

which may differ significantly from the climatic conditions of plateau regions, 

potentially affecting simulation accuracy.” 

 

18. Line 435: “It is noted that satellite-based microwave radiometers are 

primarily sensitive to the middle and upper atmosphere...” 

This isn't technically correct. In atmospheric science, the middle atmosphere 

generally refers to the stratosphere + mesosphere, i.e. from the tropopause 

(roughly 8–17 km, depending on latitude) up to ~80–85 km. The upper 

atmosphere is often taken to be the thermosphere and above. Many operational 

satellite microwave sensors (e.g., AMSU, MHS, ATMS) retrieve temperature 

and humidity by sounding channels peaked in the troposphere and lower 

stratosphere, though they can extend somewhat upward. Their highest sensitivity 

is thus often in the mid- to upper troposphere, not solely above it. 

Response: 

This sentence has been revised as following： 

“It is noted that GMWRs exhibit higher sensitivity and provide more 

valuable observations of the lower troposphere and planetary boundary layer 

compared to satellite-based microwave radiometers (Shi et al., 2023).”  
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Reply to Reviewer #3: 

1. Fig. 8:(1) Suggest adding the 95% significance area of the differences to the 

figure. Similarly, for all other relevant figures,  

Response: 

Thank you for your suggestion. To the best of the authors’ knowledge, the 

t-test is commonly used to assess the significance of differences between two 

independent samples. In previous studies, the difference in mean RMSE was 

evaluated for statistical significance using a t-test, based on two independent 

sample sets, each comprising a large number of RMSE values (Lei and Anderson, 

2014a; Privé et al., 2014).  

As an initial study primarily focused on the direct variational assimilation 

of GMWR data, the assimilation was limited to clear-sky conditions. All 

experiments were conducted over a ten-day period from 13 to 22 October 2023. 

Among the available GMWR observations from August to October 2023, this 

period exhibited a notably higher frequency of clear-sky data, which was more 

favorable for demonstrating the role and potential of GMWR assimilation.  

In Privé et al. (2014), the RMSE difference profile was calculated by 

averaging RMSE values from different analysis times over a two-month OSSE 

experiment. As a result, a large number of RMSE values were available, allowing 

for the application of a t-test. However, in this study, RMSE was computed over 

all analysis times as a single aggregated value, rather than being calculated at 

each analysis time. Therefore, a t-test could not be performed due to the lack of 

multiple independent samples. On the other hand, due to the limited number of 

experiments, even if RMSE were calculated at each analysis time, only 10 

samples would be available, which could render the test results volatile and 

statistically unreliable. The all-sky assimilation technique will be the focus of 

our upcoming study, in which GMWRs from cloudy regions will also be 

assimilated. At that stage, three-month experiments will be conducted, which 

will provide a sufficiently large number of samples to enable statistical 

significance testing of RMSE differences. 
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Lei, L., and J. L. Anderson, 2014a: Empirical Localization of Observations for 

Serial Ensemble Kalman Filter Data Assimilation in an Atmospheric 

General Circulation Model, https://doi.org/10.1175/MWR-D-13-00288.1. 

——, and ——, 2014b: Impacts of Frequent Assimilation of Surface Pressure 

Observations on Atmospheric Analyses, https://doi.org/10.1175/MWR-D-

14-00097.1. 

Privé, N. C., R. M. Errico, and K.-S. Tai, 2014: The Impact of Increased 

Frequency of Rawinsonde Observations on Forecast Skill Investigated with 

an Observing System Simulation Experiment, 

https://doi.org/10.1175/MWR-D-13-00237.1. 

 

2. (2) It is clear that the MWR data assimilation mostly brings negative impacts 

to the wind fields. The manuscript needs to cover this fact. The reason for the 

degradation, as mentioned in the manuscript, may be that the background error 

covariance does not spread the observation information to the wind field well. 

Using ensemble covariance may mitigate this. 

Response: 

In the verification of the initial conditions against radiosonde observations, 

the assimilation of GMWR data generally exhibits a negative impact on the wind 

fields. In 3DVAR, the adjoint of RTTOV-gb only updates temperature and 

humidity in observation space, while adjustments to the wind fields rely on the 

background error covariance. This suggests that the background error covariance 

may be a contributing factor to the negative impact on wind field analysis. 

Therefore, improving the background error covariance (e.g., by incorporating 

ensemble-based covariances) could potentially mitigate this limitation. As an 

initial study primarily focused on the direct variational assimilation of GMWR 

data with machine learning-based bias correction, it is admitted that this study 

has some limitations. The MWR assimilation was implemented only using 

3DVAR, based on RTTOV-gb and WRFDA. Future work could explore the 

implementation of MWR assimilation using EnVar, EnKF, or 4DVAR. 

https://doi.org/10.1175/MWR-D-13-00288.1
https://doi.org/10.1175/MWR-D-14-00097.1
https://doi.org/10.1175/MWR-D-14-00097.1
https://doi.org/10.1175/MWR-D-13-00237.1
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The negative impacts to the wind fields has been cover in the results and 

discussion section of the manuscript, as shown below. 

“It is noted that the GMWR assimilation has negative impacts on the wind 

fields. The RMSE for zonal and meridional winds exhibits a slight negative 

effect when GMWR is assimilated, with meridional winds even showing an 

increase in RMSE.” 

“However, it should be noted that the assimilation of GMWR data generally 

has a negative impact on the wind fields in the initial conditions. The background 

error covariance may contribute to this negative impact, as it determines the 

response of the wind fields to the adjustments in temperature and humidity made 

by RTTOV-gb. As an initial study primarily focused on the direct variational 

assimilation of GMWR data with machine learning-based bias correction, it is 

admitted that this study has some limitations. The GMWR assimilation was 

implemented using 3DVAR, based on RTTOV-gb and WRFDA, and only static 

background-error covariances were employed in this study. The background 

error covariance matrix plays an important role in variational data assimilation, 

but this type of covariance is climatological, spatially homogeneous, and 

isotropic. This may limit the impact of GMWR assimilation, and flow-dependent 

error covariances should be considered in future work.” 

 

3. Figures: Suggest adding the time period, when each figures are generated, to 

the figure captions. 

Response: 

Added. 

 

4. Figure 10: This figure shows verifications against surface station observations, 

right? Suggest changing "station observations" to "surface stations observations", 

changing subplot titles to "2m Temperature", etc. 

Response: 

This figure and the corresponding text have been revised 
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5. Line 328-329: "the nagavife RMSE differences gradually increase" -> "the 

RMSE reduction gradually decreases" 

Response: 

Corrected 

 

6. Line 330:  The RMS difference "decreases" instead of "increases". Consider 

revising accordingly for all relevant parts. 

Response: 

The corresponding text have been revised 

 

7. Fig. 10b: The manuscript is expected to cover the fact that the verification 

against the surface RH field shows a negative impact from the MWR data 

assimilation after 12h and explain why. 

Response: 

In the verification against surface station observations, the improvement in 

RH due to GMWR assimilation gradually decreases with increasing lead time 

and becomes negative after 12 hours. Several factors may be responsible. On one 

hand, in the verification of initial conditions against radiosonde observations, the 

assimilation of GMWR data generally exerts a negative impact on the wind fields. 

The degradation in wind fields may, through model processes, affect the relative 

humidity. In addition, the model is highly nonlinear, and its errors do not evolve 

linearly. 

However, the evolution of model errors is complex and difficult to 

investigate. As this study primarily focuses on the implementation of variational 

direct assimilation of GMWR data with nonlinear bias correction and provides a 

preliminary assessment of its potential impact, the cause of the negative impact 

on relative humidity after 12 hours will be addressed in detail in future study. 

Thanks to the reviewer's suggestion, we have covered this fact in the 

manuscript as following. 

“Similar results are observed for relative humidity, where the RMSE 

reduction also decreases and approaches zero at a lead time of 12 hours. 
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GMWR_1H consistently demonstrates the largest RMSE reduction for relative 

humidity. However, it should be noted that the direct assimilation of GMWR 

data caused a negative impact on relative humidity at a lead time of 12 hours. 

The degradation of wind fields (Fig. 9) and the model’s inherent nonlinearity 

may be responsible.” 

 

 

8. Line 338-339: "likely due to a gradual increase in model error".  This is not 

accurate, as this happens to both CNTL and MWR.  

Response: 

As integration time increases, systematic model errors accumulate. The 

atmosphere is highly nonlinear, and initial and model errors may not combine 

linearly, potentially filtering out improvements in the initial state. In addition, 

the assimilation algorithm is imperfect and does not improve all variables across 

all regions (e.g., the wind field shown in Fig. 9), while multivariate interactions 

may further diminish the overall effect. The explanation previously provided in 

the manuscript may not be sufficiently accurate. As this aspect is not the focus 

of this study, this sentence has been removed to avoid potential misinterpretation. 

 

9. Line 342:  "can further improve forecasts" -> "can further improve the short-

term forecasts". 

Response: 

Corrected 

 

10. Line 362-366: "This may be attributed to … the first 12 hours".  This logic 

in this part does not read good, and it looks like they can be removed. 

Response: 

We appreciate the reviewer’s comment and agree that the original sentence 

lacked clarity and was prone to misinterpretation. The primary point we intended 

to convey is that the relatively limited improvements observed in the figure could 

be related to the long forecast lead times (12 and 24 hours), during which model 
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errors tend to accumulate and diminish the benefits of improved initial 

conditions provided by GMWR assimilation. The sentences have been revised 

as follows:  

“The limited improvement shown in this figure could be related to the 

relatively long forecast lead times (12 and 24 hours), during which model errors 

tend to accumulate and weaken the benefits of improved initial conditions from 

GMWR assimilation. Verification against surface station observations indicates 

that the improvements were primarily confined to the first few hours, particularly 

for temperature and humidity. After 12 hours, the impact declined noticeably, 

with some cases even exhibiting negative effects (Fig. 11).” 

 

11. There are quite a few locations where articles "the/a" are missing (some of 

them are mentioned below). Consider a thorough proofreading of the manuscript. 

Response: 

We have thoroughly proofread the manuscript and corrected all identified 

instances where articles ("the/a") were missing. We also performed an additional 

grammar check to ensure clarity and correctness throughout the text. 

 

Edits: 

12. Line 50: The first appearance of "RTTOV", please define this acronym. 

Response: 

The full name of RTTOV has been defined at its first occurrence in the 

revised manuscript. 

 

13. Fig. 1: The legend says "SOUND", suggest changing to "SONDE” or 

"SOUNDING" 

Response: 

Corrected. The legend label has been changed from "SOUND" to " 

SONDE".  

 

14. Line 73: remove "Similarly, " 
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Response: 

Corrected. 

 

15. Line 105:  change to "into the radiance space" 

Response: 

Corrected. 

 

16. Fig 2:  Suggest removing the thumbnail figures in Fig. 2e and 2f; put the 

green lines into Fig. 2c and 2d 

Response: 

Corrected. 

 

17. Fig. 116-157: Shortening this sentence to “an MWR direct assimilation 

module was developed within WRFDA” 

Response: 

Corrected. 

 

18. Line232： change to "the above bias correction model," 

Response: 

Corrected. 

 

19. Line 354:  "against station observations" -> "against surface station 

observations". Change other occurrences of "station observations" throughout 

the manuscript. 

Response: 

Revised as suggested. All instances of "station observations" have been 

changed to "surface station observations". 

 

20. Line 416:  "typically exceeds 700 hPa" ->  "is typically lower than 700 

hPa" 

Response: 
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Corrected. 

 

21. Line 429: "This type covariances" -> "This type of covariances" 

Response: 

Corrected. 
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