Appendix D: Derivation of apparent correlation between ¹⁸O-KIE and K_m(O₂)

To reconcile the apparent correlation between $^{18}\text{O-KIEs}$ and $K_m(O_2)$ as shown in Fig. 4, we consider a simple twostep enzymatic reaction involving a reversible O_2 binding step and an irreversible reaction step converting enzymebound O_2 into products (either H_2O_2 or hydroxylated organic substrate) as shown in Eq. D1,

$$\begin{array}{ccc}
k_1 & k_3 \\
0_2 \leftrightarrow \text{E-} \ 0_2 \rightarrow \text{P} \\
k_2
\end{array} \tag{D1}$$

where E-O₂ is the enzyme-bound O₂, P represents the reaction products, and k_1 , k_2 , and k_3 are elementary reaction rate constants of the forward and backward reactions. In this case, the measured ¹⁸O-KIE is related to the intrinsic equilibrium and kinetic isotope effects of the two elementary steps through the forward commitment to catalysis, k_3/k_2 , as shown in Eq. D2 (Cleland 2005),

$$^{18}\text{O-KIE}_{\text{measured}} = \frac{\text{EIE}_{1}\text{KIE}_{3} + {}^{k_{3}}/{}_{k_{2}}\text{KIE}_{1}}{{}^{1} + {}^{k_{3}}/{}_{k_{2}}} \tag{D2}$$

where EIE₁ is the equilibrium isotope effect of the O₂ binding step and KIE₁ and KIE₃ are the kinetic isotope effects of the O₂ binding and reaction steps associated with rates k_1 and k_3 , respectively. From Eq. D2, two extreme cases can be derived. If O₂ binding alone is rate-limiting ($k_3 >> k_2$), the measured ¹⁸O-KIE will approximate KIE₁. If the second reaction step is rate-limiting ($k_3 << k_2$), the measured ¹⁸O-KIE will approximate the product of EIE₁ and KIE₃. When we start with the latter case, which has a small k_3/k_2 , and increase the forward commitment gradually, the measured ¹⁸O-KIE will slowly decrease assuming KIE₁ is smaller than EIE₁KIE₃. For such a reaction, plotting measured ¹⁸O-KIEs vs. k_3/k_2 will yield a similar (apparently linear) trend as shown in Fig. 4 as long as the commitment factor (k_3/k_2) is below 1. As shown in Eq. D3, k_3/k_2 can be related to K_m(O₂), if we consider K_m(O₂) to be ($k_3 + k_2$)/ k_1 and K_d, the dissociation constant of O₂, to be k_2/k_1 . The trend observed in Fig. 4 can thus be explained if K_d varies much less than K_m(O₂) for this set of enzymes.

$$\frac{k_3}{k_2} = \frac{k_3}{k_2} + \frac{k_2}{k_2} - 1 = \frac{k_3 + k_2}{k_2} - 1 = \frac{K_{\rm m}(O_2)}{K_{\rm d}} - 1 \tag{D3}$$