Response to reviewers’ comments

Reviewer #2:

This manuscript evaluates the impact of assimilating ASCAT and SMAP soil moisture
retrievals, both individually and simultaneously, within the KIM-LIS weakly coupled land-
atmosphere data assimilation system. The aim is to assess the potential synergistic effects on
global soil moisture analysis and numerical weather prediction skill. This work has significant
prospects for application on related platforms and systems. The efforts made in this work are
highly commendable. However, the validity of the evaluation methodology and the
significance of the marginal improvements achieved are called into question. My suggestions
are as follows:

Dear Reviewer #2:

My co-authors and I would like to thank you for your time and valuable feedback, which
we have addressed in the revised manuscript. We have enhanced the overall clarity of the
document, with all revisions marked in red text for ease of identification. Below, we provide
comprehensive responses to your comments. We appreciate your consideration and look
forward to your feedback.

Regards,

Yonghwan Kwon and co-authors

Major comments:

1. The methodology used to quantify the improvement in accuracy from data assimilation
(reported as 4.0% and 10.5% for ASCAT and SMAP, respectively) raises serious concerns.
The approach of comparing TC-derived error estimates from two different triplets—
specifically, comparing the error of CTL in the [AMSR2, SMOS, CTL] triplet with the error of
the DA experiment (e.g., SG_AT) in the [AMSR2, SMOS, SG_AT] triplet—may not be fully
justified. Since TC computes errors relative to the entire triplet in which a dataset is embedded,
replacing one member (CTL with SG_AT) changes the reference framework and can lead to a
re-balancing of the error estimates for all three components. This means the error estimates for
CTL and the DA experiment may not be directly comparable across these two separate TC
configurations. Therefore, the reported percentage improvements could be influenced by
methodological artifacts rather than reflecting a true measure of performance.

Response) We agree with the reviewer’s concern. Based on your comment, we conducted
additional analyses and found that the fMSE calculation using different triplets does not
significantly alter the results. This is because the replaced model-based triplet members (i.e.,
SG_AT, SG_SP, and CTL) are generated by the same land surface modeling system and share
identical spatial grids, meteorological forcing, and climatology. In other words, each DA
experiment and its corresponding CTL case differ only in the assimilated satellite-based soil
moisture data, while the reference satellite products in each triplet (AMSR2-SMOS for SG_AT



and AMSR2-ASCAT for SG_SP) remain the same. Consequently, the large-scale statistical
relationships between the model-based and satellite-based soil moisture datasets are preserved,
and replacing the CTL member with its DA counterpart (SG_AT or SG_SP) does not
meaningfully alter the inter-dataset covariance structure or the fMSE estimates, as shown in
Figure S1. Therefore, the impact of triplet replacement on the TCA-based fMSE results is
negligible and does not affect the overall statistical conclusions or our main findings. We have
added the following sentence in the revised manuscript (Lines 659-667) and provided Figure
S1 in the supplementary material.

“Note that we use identical first and second triplet components for DA and CTL
(Table 3), replacing only the CTL soil moisture estimates with those from the DA
experiments (SG_AT and SG_SP) to assess the relative performance gain from soil
moisture DA. This approach (i.e., replacing one triplet member) may alter the
fMSE calculation of the other two triplet components and thus influence the
comparison results between DA and CTL. However, because the soil moisture
estimates from DA and CTL share the same spatial and temporal coverage and
climatology, as they are generated from the identical modeling system, the impact
of replacing the model-based triplet member is negligible, as shown in Figure S1.
Therefore, the fMSE comparison results (Figure 2) can be considered reliable.”
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Figure S1. fMSE differences of AMSR2, SMOS, and ASCAT soil moisture data between DA
and CTL experiments when used as triplet components to evaluate (a) ASCAT DA (SG_AT)
and (b) SMAP DA (SG_SP).



2. A critical issue lies in the very limited to negligible improvement in the forecasts of key
atmospheric variables. In some cases, negative skill increments are observed. These results
significantly undermine the practical justification and operational feasibility of the proposed
multi-sensor assimilation approach. Consequently, the study fails to provide readers with
quantifiable and meaningfully positive conclusions regarding the benefits of simultaneously
assimilating soil moisture retrievals for enhancing numerical weather prediction.

Response) We acknowledge that the overall domain-averaged improvements in atmospheric
estimates from multi-sensor soil moisture data assimilation (DA), compared to single-sensor
DA, are marginal. Nevertheless, we consider the findings of this study promising for several
reasons. First, clear synergistic local skill improvements through multi-sensor DA are evident,
particularly in regions and periods where both single-sensor experiments show positive impacts.
Second, the magnitude of forecast skill improvements from both single- and multi-sensor soil
moisture DA, relative to CTL, is comparable to those achieved in previous studies (e.g., Draper
and Reichle, 2019; Lin and Pu, 2019; Mufioz-Sabater et al., 2019; Reichle et al., 2023), with
multi-sensor DA yielding slightly better (though not statistically significant) performance.
Importantly, although the improvements in near-surface variables are modest, the small but
systematic gains in 2-m temperature and humidity directly contribute to better initialization of
convective processes and precipitation forecasts. In fact, our results show that precipitation
forecast skill was improved by the multi-sensor DA experiment. Finally, as emphasized in the
manuscript, simultaneous assimilation of ASCAT and SMAP produces a more balanced
improvement across atmospheric variables than single-sensor DA. These results highlight the
value of assimilating soil moisture observations from multiple sensors, even though some
trade-offs remain for certain variables in specific regions or periods where single-sensor
impacts are conflicting.

Meanwhile, the marginal improvements in atmospheric variables, despite relatively
significant improvements in soil moisture analysis through satellite-based DA, remain an
ongoing issue in land-atmosphere coupled systems. While many processes may contribute, one
potential factor is the soil moisture-latent heat flux coupling strength in land surface models, as
discussed in several studies (e.g., Crow et al., 2023; Kwon et al., 2024; Lei et al. 2018).

We have revised the conclusion of the manuscript (Lines 1029—-1067 in the revised
manuscript) to emphasize the promising aspects of this study, acknowledge its limitations, and
highlight the need for future studies to address these issues, in addition to our original
discussions.

“This study suggests that simultaneously assimilating the ASCAT and SMAP soil
moisture products within the KIM-LIS coupled system can leverage their
complementary advantages, as demonstrated for the estimates of specific humidity,
air temperature, and precipitation. The findings obtained in this study are
promising for three main reasons. First, clear synergistic local skill improvements
from multi-sensor DA are evident, particularly in regions and periods where both
single-sensor experiments show positive impacts. Second, the magnitude of
atmospheric forecast skill improvements from both single- and multi-sensor soil
moisture DA, relative to CTL, is comparable to improvements reported in previous
studies (e.g., Draper and Reichle, 2019; Lin and Pu, 2019; Mufioz-Sabater et al.,
2019; Reichle et al., 2023), with multi-sensor DA yielding slightly better (though
not statistically significant) performance. Achieving consistent improvements
across the globe remains challenging due to factors discussed in Section 8, which
can cause local skill degradations in atmospheric estimates. Finally, as emphasized



above, simultaneous assimilation of ASCAT and SMAP produces a more balanced
improvement across atmospheric variables than single-sensor DA. These results
highlight the value of assimilating soil moisture observations from multiple sensors,
even if trade-offs remain for certain variables in regions or periods where single-
sensor impacts conflict.

To conclude, a key aspect of this study is the joint assimilation of individual
radar- and radiometer-based soil moisture products. Compared to assimilating pre-
blended soil moisture data, this approach is advantageous because (1) it accounts
for the relative uncertainties of both sensors, which vary across space and time; (2)
it provides a flexible framework for incorporating various combinations of soil
moisture data sources within DA systems; and (3) it is more suitable for near-real
time operational forecast systems, the focus of this study, since soil moisture data
blending processes may increase latency and thereby reduce data availability for
operational use. However, it is acknowledged that overall domain-averaged
improvements in atmospheric estimates through multi-sensor soil moisture DA,
relative to single-sensor DA, are still marginal and statistically insignificant. The
following issues remain to be addressed in future studies to enhance future
performance. First, the impact of subsurface scattering on the quality of the
ASCAT soil moisture product under dry soil conditions needs to be considered in
quality control procedures. Second, an alternative soil moisture bias correction
method, especially for ASCAT data, should be explored. Lastly, more realistic
spatially or spatiotemporally distributed estimates of soil moisture observation
errors are required to maximize the benefits of multi-sensor soil moisture DA. In
addition, as discussed in several previous studies, addressing biases in the soil
moisture-latent heat flux coupling in LSMs (Crow et al., 2023; Kwon et al., 2024;
Lei et al. 2018), accounting for the background error covariance between
atmospheric and land variables during DA (Kwon et al., 2024), and assimilating
screen-level observations (de Rosnay et al., 2013; Lin and Pu, 2020) can improve
the positive impacts of soil moisture DA on atmospheric forecast in coupled
systems.”
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3. While the introduction outlines what the study does, it falls short in providing a
comprehensive literature review and a compelling justification for why this study is necessary.
Specifically, (1) the objective of enhancing soil moisture estimates by integrating satellite data
is clear. however, the introduction lacks a critical discussion on the broader landscape of
methodologies available to achieve this goal. Notably, it omits any mention of alternative
approaches, such as statistical fusion techniques or the rapidly advancing field of machine
learning, which have been extensively employed for soil moisture reconstruction, data fusion,
and even forecasting. (2) The introduction describes the applicability of data assimilation in
general (Lines 36-50), the use of ASCAT and SMAP in data assimilation (Lines 67-80), and
the combination of active and passive sensors (Lines 81-93). Yet, it fails to clearly articulate
the specific research gap and the novelty of this particular research. The reader is left
wondering: What is the unique contribution of this work? Is it the use of the specific KIM-LIS
coupled model platform? Is it the simultaneous assimilation of ASCAT and SMAP retrievals?
If it is the former, the authors should more clearly articulate what makes the KIM-LIS platform
itself a novel or particularly advantageous choice for this specific investigation, beyond merely
being the system used. If the latter case, how does this approach differ from and improve upon
previous studies that assimilate multi-source data?

Response) To address the reviewer’s valuable comments, we have incorporated the following
paragraphs into the revised manuscript.

*Lines 57-71:
“In addition to DA methods, a variety of alternative data fusion techniques have
been widely explored to integrate soil moisture information from different sources,
including remote sensing products, in-situ measurements, model simulations, and
reanalysis datasets. One group of approaches relies on statistical methods (e.g.,
Min et al., 2022; Wang et al., 2021; Xie et al., 2022), such as unweighted averaging,
linear weight fusion, and emergent constraint. Another group leverages machine
learning (e.g., Huang et al., 2023; Lamichhane et al., 2025; Long et al., 2019;
Zhang et al., 2022, Zeng et al., 2024) and deep learning techniques (e.g., Fuentes et



al., 2022; Huang et al., 2022; Jiang et al., 2025; Singh and Gaurav, 2023; van der
Schalie et al., 2018). These machine learning and deep learning approaches are
rapidly gaining prominence because of their ability to incorporate diverse data
sources and to capture complex, nonlinear relationships between datasets (Huang et
al, 2022; Zeng et al., 2024). While different fusion approaches have distinct
strengths and limitations, this study is devoted to DA methods, with the goal of
improving model-based soil moisture estimates that interact with atmospheric
processes in operational land-atmosphere coupled systems, thereby enhancing
weather forecasts.”
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*Lines 138—150:
“While several studies have explored the simultaneous use of radar and radiometer-
based soil moisture data in offline land DA systems, mainly to improve soil
moisture estimates and associated hydrological processes (e.g., Draper et al., 2012;
Khaki and Awange, 2019; Khaki et al., 2019, 2020; Kolassa et al., 2017; Kumar et
al., 2019; Nair and Indu, 2019; Renzullo et al., 2014; Seo et al., 2021;
Tangdamrongsub et al., 2020), only a few have investigated their impacts on
atmospheric forecasts in land-atmosphere coupled NWP systems (e.g., de Rosnay
et al., 2022; Draper and Reichle, 2019; Fairbairn et al., 2024). Even among studies
using coupled forecast systems, most assimilate only ASCAT and SMOS together,
despite evidence that SMAP provides high-quality soil moisture data (e.g., Bhuiyan
et al., 2018; Chan et al., 2018; Colliander et al., 2017) and often outperforms other
sensors (Kumar et al., 2018). In this regard, the novelty of this study is the
combined use of ASCAT and SMAP soil moisture products in the KIM-LIS-based
land-atmosphere coupled DA system, demonstrating their feasibility.”
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4. The manuscript is overloaded with abbreviations, making it exceedingly difficult to read.
This is particularly problematic in the Abstract and Figure Captions, where the pervasive use of
undefined acronyms obscures the authors' intended message and hinders comprehension. The
authors should prioritize clarity over brevity and significantly reduce the use of non-standard
abbreviations to ensure their work is accessible to a broad audience.

Response) The following abbreviations have been replaced with their full names to reduce
abbreviation usage in the revised manuscript. While abbreviations are retained for commonly
used terminologies, satellite missions and data product names, well-known institutions, and
specific systems, models, and algorithms, we have added a list of abbreviations in Appendix A
of the revised manuscript.

“SM” — “soil moisture”

“QC” — “quality control”

“KMA” — “Korea Meteorological Administration”
“NRT” — “near-real time”

“SWI” — “soil wetness index”

“CONUS” — “continental United States”
“GVF” — “green vegetation fraction”
“BEC” — “background error covariance”
“GC” — “Gaspari and Cohn”

“RTPP” — “relaxation-to-prior perturbation”
“1-D” — “l1-dimensional”

“SW” — “shortwave radiation”

“LW” — “longwave radiation”

“P” — “precipitation”

“ML” — “machine learning”

“TB” — “brightness temperature”

“H” — “horizontally”

“V” — “vertically”

Appendix A: Abbreviations

AMSR2 Advanced Microwave Scanning Radiometer 2
AMSU-A Advanced Microwave Sounding Unit-A
AMVs Atmospheric Motion Vectors

ASCAT Advanced SCATterometer

ATMS Advanced Technology Microwave Sounder
CDF Cumulative distribution function

CDR Climate Data Record

CPC Climate Prediction Center

CrIS Cross-track Infrared Sounder

CTL Control case serving as a baseline experiment
DA Data assimilation

DCA Dual Channel Algorithm

EASE Equal Area Scalable Earth

ECMWF European Centre for Medium-Range Weather Forecasts




EnKF Ensemble Kalman filter

ERAS Fifth generation of the ECMWF atmospheric reanalysis
ESA CCI European Space Agency Climate Change Initiative
ESME Estimated Soil Moisture Error

ETS Equitable threat score

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
FAO Food and Agriculture Organization

FB Frequency bias

fMSE Fractional mean-square error

GLDAS Global Land Data Assimilation System

GPS-RO Global Positioning System Radio Occultation

Hybrid 4DEnVar | Hybrid four-dimensional ensemble variational

IASI Infrared Atmosphere Sounding Interferometer

IFS Integrated Forecasting System

IGBP International Geosphere-Biosphere Programme

KIAPS Korea Institute of Atmospheric Prediction Systems
KIM Korean Integrated Model

KPOP KIM Package of Observation Processing

KVAR KIM VARiational

LETKF Local ensemble transform Kalman filter

LIS Land Information System

LPRM Land Parameter Retrieval Model

LSM Land surface model

LST Local solar time

L2 Level 2

MetOp Meteorological Operational

MHS Microwave Humidity Sounder

MODIS Moderate resolution imaging spectroradiometer
MT_ATSP Multi-sensor soil moisture data assimilation experiment
NASA National Aeronautics and Space Administration

NCEP National Centers for Environmental Prediction

NOAA National Oceanic and Atmospheric Administration
NSIDC National Snow and Ice Data Center

NWP Numerical weather prediction

RFI Radio Frequency Interference

RMSD Root mean square difference

SG_AT Single-sensor data assimilation experiment using the ASCAT soil moisture data
SG_Sp Single-sensor data assimilation experiment using the SMAP soil moisture data
SMAP Soil Moisture Active Passive

SMOS Soil Moisture and Ocean Salinity

SMOS-IC SMOS-INRA-CESBIO

SRTM Shuttle Radar Topography Mission

STATSGO State Soil Geographic

TCA Triple collocation analysis

TU Wien Vienna University of Technology




UTC Coordinated Universal Time

\'AY% Vertical transmit vertical receive

WMO World Meteorological Organization

4DIAU Four-dimensional incremental analysis update

In addition, we have revised the abstract to reduce abbreviations, and included full names
for certain abbreviations in figure and table captions to improve clarity. The revised abstract
and captions are shown below.

Abstract: “The combined use of independent soil moisture data from radar and
radiometer measurements in data assimilation (DA) systems is expected to yield
synergistic performance gains due to their complementary strengths. This study
evaluates the impact of simultaneously assimilating soil moisture retrievals from
ASCAT (Advanced SCATterometer) and SMAP (Soil Moisture Active Passive)
into the Korean Integrated Model (KIM) using a weakly coupled DA framework
based on the National Aeronautics and Space Administration’s Land Information
System (LIS). The Noah land surface model (LSM) within LIS, which is the same
as that used in KIM, is used to simulate land surface states and assimilate soil
moisture retrievals. The impact of soil moisture DA is evaluated using independent
reference datasets, assessing its influence on soil moisture analysis and numerical
weather prediction performance. Overall, assimilating ASCAT or SMAP soil
moisture data into the LSM improves global soil moisture analysis accuracy by 4.0%
and 10.5%, respectively, compared to the control case without soil moisture DA,
achieving the most significant enhancements in croplands. Relative to single-sensor
soil moisture DA, multi-sensor soil moisture DA yields more balanced skill
enhancements for both specific humidity and air temperature analyses and forecasts.
The most pronounced synergistic improvements by simultaneously assimilating
both soil moisture products are observed in the 2-m air temperature analysis and
forecast, especially when both soil moisture products have a positive impact. The
results also demonstrate that precipitation forecast skill, particularly in predicting
precipitation events, can be enhanced by constraining the modeled soil moisture
with multiple soil moisture retrievals from different sources. This paper discusses
remaining issues for future studies to further improve the weather prediction
performance of the KIM-LIS multi-sensor soil moisture DA system.”

“Figure 1. Schematic diagram of the KIM-LIS-based land-atmosphere weakly
coupled data assimilation (DA) system. The figure outlines the process flow
between KIM and LIS in one UTC cycle that is performed four times (i.e., 00, 06,
12, and 18 UTC cycles) a day. (IAU: incremental analysis update, QC: quality
control)”

“Figure 2. Global maps of the soil moisture triple collocation analysis (TCA)
results for (a) ASCAT (i.e., SG_AT) and (b) SMAP soil moisture data assimilation
(i.e., SG_SP). Upper panels show the fractional mean-square error (fMSE) of CTL
soil moisture at 04:00 am/pm local solar time (LST) (left panel) and 11:00 am/pm
LST (right panel), respectively. Lower panels show the soil moisture fMSE
difference between SG_AT and CTL (left panel) and between SG_SP and CTL




(right panel) where the negative fMSE difference indicates the improved soil
moisture estimates by ASCAT and SMAP soil moisture DA, respectively.”

“Figure 3. Differences in the soil moisture fractional mean-square error (fMSE)
between the single-sensor soil moisture data assimilation (i.e., SG_AT and SG_SP)
and control [without soil moisture data assimilation (DA); i.e., CTL] experiments
depending on land cover types. A dominant land cover type in each model grid is
obtained from the MODIS-IGBP land cover classifications (Friedl et al., 2002).
The asterisk symbol (*) indicates statistical significance at p < 0.05. Negative
values represent the improved soil moisture estimates by soil moisture DA. Results
are not plotted for closed shrublands and permanent wetlands because of missing
triplet data.”

“Figure 4. Vertical profile time series of RMSD differences in the specific
humidity analysis (left column) and air temperature analysis (right column)
between the soil moisture data assimilation (DA) and CTL experiments. The
RMSD is calculated using the ECMWF-IFS analysis as reference data. Negative
RMSD differences indicate improved estimates of the atmospheric variables by
assimilating the soil moisture retrievals.”

“Figure 5. Vertical profile time series of RMSD differences in the specific
humidity analysis (left column) and air temperature analysis (right column)
between the multi-sensor soil moisture data assimilation (DA) (MT_ATSP) and
single- sensor soil moisture DA [SG_AT (a and ¢) and SG_SP (b and d)]
experiments. The RMSD is calculated using the ECMWEF-IFS analysis as reference
data. Negative RMSD differences indicate improved estimates of the atmospheric
variables by additionally assimilating the SMAP or ASCAT soil moisture
retrievals.”

“Figure 6. Difference in the 2-m atmospheric analysis RMSD [i.e., specific
humidity (upper panels) and air temperature (lower panels)] between the soil
moisture data assimilation (DA) and CTL experiments. Evaluation results for the
12 UTC cycle from June to July 2022 (a two-month period) are presented with
domain-averaged values in parenthesis. The RMSD is calculated using the
ECMWEF-IFS analysis as reference data. Negative RMSD differences indicate
improved estimates of the atmospheric variables by assimilating the soil moisture
retrievals.”

“Figure 7. Differences in frequency bias (AFB = |FBgxp — 1| — |FBerL, — 1]; a to
f) and equitable threat score (AETS = ETSgxp — ETSctL; g to 1) between EXP
(MT_ATSP, SG_AT, and SG_SP) and CTL, averaged over 24-72 h precipitation
forecasts from the 00 UTC cycle in July 2022, for six domains [i.e., global domain
(GLOB; a and g), Northern Hemisphere (NH; b and h), Southern Hemisphere (SH;
c and 1), Asia (ASIA; d and j), Europe (EU; e and k), and tropical area (TROP;
and 1)]. The skill metrics are computed for seven conventional thresholds (i.e., 0.5,
1.0, 5.0, 10.0, 15.0, 20.0, and 25.0 mm day ). Negative AFB and positive AETS
values indicate improvements from soil moisture DA.”

“Figure 8. ASCAT soil moisture error standard deviations used for ASCAT soil
moisture data assimilation (DA) in this study. The spatially distributed ASCAT soil



moisture errors (m*> m~>) are derived by rescaling the constant 10% soil wetness
index using the ratio of the standard deviations of the Noah land surface model
(LSM) and ASCAT soil moisture time series.”

“Table 1. Perturbation parameter values used for autoregressive temporal
correlation and cross correlations between different variables (SW: shortwave
radiation, LW: longwave radiation, P: precipitation, SM1: top layer soil moisture,
SM2: second layer soil moisture, SM3: third layer soil moisture, and SM4: bottom
layer soil moisture).”

“Table 2. Summary of land-atmosphere coupled data assimilation (DA)
experiments conducted in this study (SM: soil moisture; see Appendix A for
additional abbreviations).”

“Table 3. Triple collocation analysis (TCA) triplet composition to quantify the
relative improvement in the soil moisture estimates by soil moisture data
assimilation (DA) as compared to CTL. The CTL soil moisture estimates are also
evaluated using the same satellite-based reference soil moisture products as used
for each single-sensor soil moisture DA experiment (EXP: SG_AT and SG_SP).”

“Table 5. Domain-averaged RMSD differences (ARMSD = RMSDgxp — RMSDcrtr)
for the 2-m specific humidity and air temperature analyses and (5-day) forecasts
across six domains [i.e., global domain (GLOB), Northern Hemisphere (NH),
Southern Hemisphere (SH), Asia (ASIA), Europe (EU), and tropical area (TROP)].
The RMSD is calculated for the 00 UTC cycle from April to July 2022 (whole
experimental period) using the ECMWEF-IFS analysis as reference data. Negative
ARMSD indicates improved estimates of the atmospheric variables by assimilating
the soil moisture retrievals.”

Minor comments:

1. Line 1: The abstract lacks a clear statement of the research motivation. It should briefly
highlight the importance of assimilating multi-sensor soil moisture data for improving
numerical weather prediction to better contextualize the study for reader.

Response) Based on the reviewer’s comment, the following sentence has been added in the
abstract of the revised manuscript (Lines 2—4).

“The combined use of independent soil moisture data from radar and radiometer
measurements in data assimilation (DA) systems is expected to yield synergistic
performance gains due to their complementary strengths.”



2. Lines 405-412: The choice to use GLDAS for LSM spin-up but ERAS for model
initialization may introduce inconsistencies. Although GLDAS is a land data assimilation
system and ERAS is reanalysis, both of them provide land surface data and atmospheric
forcing data. The authors should address whether this discrepancy in forcing data sources could
have impacted the results.

Response) We understand the reviewer’s concern but we believe that the impact of this
discrepancy on the experimental results is negligible for two reasons. First, as noted in the
manuscript, although the long-term offline spin-up (2008-2020) of the Noah LSM was driven
by GLDAS forcing fields, it was additionally run from 2020 to 2022 using the historical KIM
forcing data until March 1, 2022. This minimizes the discrepancy between KIM and LSM.
Second, we conducted an additional one-month spin-up (March 1-31, 2022) of the coupled
system. Because the atmospheric model does not require a long-term spin-up, this one-month
period is sufficient to ensure consistency between KIM and LSM.

3. Lines 421-422: “The four experiments (i.e., CTL, SG_AT, SG_SP, and MT ATSP) listed in
Table 1”. The experiments are listed in Table 2.

Response) We appreciate the reviewer’s careful reading. We have corrected “Table 1 to
“Table 2” in the revised manuscript (Line 451).



