
Response to reviewers’ comments 
 

Reviewer #2: 

 

This manuscript evaluates the impact of assimilating ASCAT and SMAP soil moisture 

retrievals, both individually and simultaneously, within the KIM-LIS weakly coupled land-

atmosphere data assimilation system. The aim is to assess the potential synergistic effects on 

global soil moisture analysis and numerical weather prediction skill. This work has significant 

prospects for application on related platforms and systems. The efforts made in this work are 

highly commendable. However, the validity of the evaluation methodology and the 

significance of the marginal improvements achieved are called into question. My suggestions 

are as follows: 

  

 

Dear Reviewer #2: 

 

My co-authors and I would like to thank you for your time and valuable feedback, which 

we have addressed in the revised manuscript. We have enhanced the overall clarity of the 

document, with all revisions marked in red text for ease of identification. Below, we provide 

comprehensive responses to your comments. We appreciate your consideration and look 

forward to your feedback.  

 

Regards, 

 

Yonghwan Kwon and co-authors 

 

 

Major comments: 

 

1. The methodology used to quantify the improvement in accuracy from data assimilation 

(reported as 4.0% and 10.5% for ASCAT and SMAP, respectively) raises serious concerns. 

The approach of comparing TC-derived error estimates from two different triplets—

specifically, comparing the error of CTL in the [AMSR2, SMOS, CTL] triplet with the error of 

the DA experiment (e.g., SG_AT) in the [AMSR2, SMOS, SG_AT] triplet—may not be fully 

justified. Since TC computes errors relative to the entire triplet in which a dataset is embedded, 

replacing one member (CTL with SG_AT) changes the reference framework and can lead to a 

re-balancing of the error estimates for all three components. This means the error estimates for 

CTL and the DA experiment may not be directly comparable across these two separate TC 

configurations. Therefore, the reported percentage improvements could be influenced by 

methodological artifacts rather than reflecting a true measure of performance. 

Response) We agree with the reviewer’s concern. Based on your comment, we conducted 

additional analyses and found that the fMSE calculation using different triplets does not 

significantly alter the results. This is because the replaced model-based triplet members (i.e., 

SG_AT, SG_SP, and CTL) are generated by the same land surface modeling system and share 

identical spatial grids, meteorological forcing, and climatology. In other words, each DA 

experiment and its corresponding CTL case differ only in the assimilated satellite-based soil 

moisture data, while the reference satellite products in each triplet (AMSR2-SMOS for SG_AT 



and AMSR2-ASCAT for SG_SP) remain the same. Consequently, the large-scale statistical 

relationships between the model-based and satellite-based soil moisture datasets are preserved, 

and replacing the CTL member with its DA counterpart (SG_AT or SG_SP) does not 

meaningfully alter the inter-dataset covariance structure or the fMSE estimates, as shown in 

Figure S1. Therefore, the impact of triplet replacement on the TCA-based fMSE results is 

negligible and does not affect the overall statistical conclusions or our main findings. We have 

added the following sentence in the revised manuscript (Lines 659–667) and provided Figure 

S1 in the supplementary material. 

 

“Note that we use identical first and second triplet components for DA and CTL 

(Table 3), replacing only the CTL soil moisture estimates with those from the DA 

experiments (SG_AT and SG_SP) to assess the relative performance gain from soil 

moisture DA. This approach (i.e., replacing one triplet member) may alter the 

fMSE calculation of the other two triplet components and thus influence the 

comparison results between DA and CTL. However, because the soil moisture 

estimates from DA and CTL share the same spatial and temporal coverage and 

climatology, as they are generated from the identical modeling system, the impact 

of replacing the model-based triplet member is negligible, as shown in Figure S1. 

Therefore, the fMSE comparison results (Figure 2) can be considered reliable.” 

 

 
Figure S1. fMSE differences of AMSR2, SMOS, and ASCAT soil moisture data between DA 

and CTL experiments when used as triplet components to evaluate (a) ASCAT DA (SG_AT) 

and (b) SMAP DA (SG_SP). 

 

 

 



2. A critical issue lies in the very limited to negligible improvement in the forecasts of key 

atmospheric variables. In some cases, negative skill increments are observed. These results 

significantly undermine the practical justification and operational feasibility of the proposed 

multi-sensor assimilation approach. Consequently, the study fails to provide readers with 

quantifiable and meaningfully positive conclusions regarding the benefits of simultaneously 

assimilating soil moisture retrievals for enhancing numerical weather prediction. 

Response) We acknowledge that the overall domain-averaged improvements in atmospheric 

estimates from multi-sensor soil moisture data assimilation (DA), compared to single-sensor 

DA, are marginal. Nevertheless, we consider the findings of this study promising for several 

reasons. First, clear synergistic local skill improvements through multi-sensor DA are evident, 

particularly in regions and periods where both single-sensor experiments show positive impacts. 

Second, the magnitude of forecast skill improvements from both single- and multi-sensor soil 

moisture DA, relative to CTL, is comparable to those achieved in previous studies (e.g., Draper 

and Reichle, 2019; Lin and Pu, 2019; Muñoz-Sabater et al., 2019; Reichle et al., 2023), with 

multi-sensor DA yielding slightly better (though not statistically significant) performance. 

Importantly, although the improvements in near-surface variables are modest, the small but 

systematic gains in 2-m temperature and humidity directly contribute to better initialization of 

convective processes and precipitation forecasts. In fact, our results show that precipitation 

forecast skill was improved by the multi-sensor DA experiment. Finally, as emphasized in the 

manuscript, simultaneous assimilation of ASCAT and SMAP produces a more balanced 

improvement across atmospheric variables than single-sensor DA. These results highlight the 

value of assimilating soil moisture observations from multiple sensors, even though some 

trade-offs remain for certain variables in specific regions or periods where single-sensor 

impacts are conflicting.  

   Meanwhile, the marginal improvements in atmospheric variables, despite relatively 

significant improvements in soil moisture analysis through satellite-based DA, remain an 

ongoing issue in land-atmosphere coupled systems. While many processes may contribute, one 

potential factor is the soil moisture-latent heat flux coupling strength in land surface models, as 

discussed in several studies (e.g., Crow et al., 2023; Kwon et al., 2024; Lei et al. 2018). 

   We have revised the conclusion of the manuscript (Lines 1029–1067 in the revised 

manuscript) to emphasize the promising aspects of this study, acknowledge its limitations, and 

highlight the need for future studies to address these issues, in addition to our original 

discussions. 

“This study suggests that simultaneously assimilating the ASCAT and SMAP soil 

moisture products within the KIM-LIS coupled system can leverage their 

complementary advantages, as demonstrated for the estimates of specific humidity, 

air temperature, and precipitation. The findings obtained in this study are 

promising for three main reasons. First, clear synergistic local skill improvements 

from multi-sensor DA are evident, particularly in regions and periods where both 

single-sensor experiments show positive impacts. Second, the magnitude of 

atmospheric forecast skill improvements from both single- and multi-sensor soil 

moisture DA, relative to CTL, is comparable to improvements reported in previous 

studies (e.g., Draper and Reichle, 2019; Lin and Pu, 2019; Muñoz-Sabater et al., 

2019; Reichle et al., 2023), with multi-sensor DA yielding slightly better (though 

not statistically significant) performance. Achieving consistent improvements 

across the globe remains challenging due to factors discussed in Section 8, which 

can cause local skill degradations in atmospheric estimates. Finally, as emphasized 



above, simultaneous assimilation of ASCAT and SMAP produces a more balanced 

improvement across atmospheric variables than single-sensor DA. These results 

highlight the value of assimilating soil moisture observations from multiple sensors, 

even if trade-offs remain for certain variables in regions or periods where single-

sensor impacts conflict.  

   To conclude, a key aspect of this study is the joint assimilation of individual 

radar- and radiometer-based soil moisture products. Compared to assimilating pre-

blended soil moisture data, this approach is advantageous because (1) it accounts 

for the relative uncertainties of both sensors, which vary across space and time; (2) 

it provides a flexible framework for incorporating various combinations of soil 

moisture data sources within DA systems; and (3) it is more suitable for near-real 

time operational forecast systems, the focus of this study, since soil moisture data 

blending processes may increase latency and thereby reduce data availability for 

operational use. However, it is acknowledged that overall domain-averaged 

improvements in atmospheric estimates through multi-sensor soil moisture DA, 

relative to single-sensor DA, are still marginal and statistically insignificant. The 

following issues remain to be addressed in future studies to enhance future 

performance. First, the impact of subsurface scattering on the quality of the 

ASCAT soil moisture product under dry soil conditions needs to be considered in 

quality control procedures. Second, an alternative soil moisture bias correction 

method, especially for ASCAT data, should be explored. Lastly, more realistic 

spatially or spatiotemporally distributed estimates of soil moisture observation 

errors are required to maximize the benefits of multi-sensor soil moisture DA. In 

addition, as discussed in several previous studies, addressing biases in the soil 

moisture-latent heat flux coupling in LSMs (Crow et al., 2023; Kwon et al., 2024; 

Lei et al. 2018), accounting for the background error covariance between 

atmospheric and land variables during DA (Kwon et al., 2024), and assimilating 

screen-level observations (de Rosnay et al., 2013; Lin and Pu, 2020) can improve 

the positive impacts of soil moisture DA on atmospheric forecast in coupled 

systems.” 
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3. While the introduction outlines what the study does, it falls short in providing a 

comprehensive literature review and a compelling justification for why this study is necessary. 

Specifically, (1) the objective of enhancing soil moisture estimates by integrating satellite data 

is clear. however, the introduction lacks a critical discussion on the broader landscape of 

methodologies available to achieve this goal. Notably, it omits any mention of alternative 

approaches, such as statistical fusion techniques or the rapidly advancing field of machine 

learning, which have been extensively employed for soil moisture reconstruction, data fusion, 

and even forecasting. (2) The introduction describes the applicability of data assimilation in 

general (Lines 36-50), the use of ASCAT and SMAP in data assimilation (Lines 67-80), and 

the combination of active and passive sensors (Lines 81-93). Yet, it fails to clearly articulate 

the specific research gap and the novelty of this particular research. The reader is left 

wondering: What is the unique contribution of this work? Is it the use of the specific KIM-LIS 

coupled model platform? Is it the simultaneous assimilation of ASCAT and SMAP retrievals? 

If it is the former, the authors should more clearly articulate what makes the KIM-LIS platform 

itself a novel or particularly advantageous choice for this specific investigation, beyond merely 

being the system used. If the latter case, how does this approach differ from and improve upon 

previous studies that assimilate multi-source data? 

Response) To address the reviewer’s valuable comments, we have incorporated the following 

paragraphs into the revised manuscript. 

*Lines 57–71: 

“In addition to DA methods, a variety of alternative data fusion techniques have 

been widely explored to integrate soil moisture information from different sources, 

including remote sensing products, in-situ measurements, model simulations, and 

reanalysis datasets. One group of approaches relies on statistical methods (e.g., 

Min et al., 2022; Wang et al., 2021; Xie et al., 2022), such as unweighted averaging, 

linear weight fusion, and emergent constraint. Another group leverages machine 

learning (e.g., Huang et al., 2023; Lamichhane et al., 2025; Long et al., 2019; 

Zhang et al., 2022, Zeng et al., 2024) and deep learning techniques (e.g., Fuentes et 



al., 2022; Huang et al., 2022; Jiang et al., 2025; Singh and Gaurav, 2023; van der 

Schalie et al., 2018). These machine learning and deep learning approaches are 

rapidly gaining prominence because of their ability to incorporate diverse data 

sources and to capture complex, nonlinear relationships between datasets (Huang et 

al, 2022; Zeng et al., 2024). While different fusion approaches have distinct 

strengths and limitations, this study is devoted to DA methods, with the goal of 

improving model-based soil moisture estimates that interact with atmospheric 

processes in operational land-atmosphere coupled systems, thereby enhancing 

weather forecasts.”  
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*Lines 138–150: 

“While several studies have explored the simultaneous use of radar and radiometer-

based soil moisture data in offline land DA systems, mainly to improve soil 

moisture estimates and associated hydrological processes (e.g., Draper et al., 2012; 

Khaki and Awange, 2019; Khaki et al., 2019, 2020; Kolassa et al., 2017; Kumar et 

al., 2019; Nair and Indu, 2019; Renzullo et al., 2014; Seo et al., 2021; 

Tangdamrongsub et al., 2020), only a few have investigated their impacts on 

atmospheric forecasts in land-atmosphere coupled NWP systems (e.g., de Rosnay 

et al., 2022; Draper and Reichle, 2019; Fairbairn et al., 2024). Even among studies 

using coupled forecast systems, most assimilate only ASCAT and SMOS together, 

despite evidence that SMAP provides high-quality soil moisture data (e.g., Bhuiyan 

et al., 2018; Chan et al., 2018; Colliander et al., 2017) and often outperforms other 

sensors (Kumar et al., 2018). In this regard, the novelty of this study is the 

combined use of ASCAT and SMAP soil moisture products in the KIM-LIS-based 

land-atmosphere coupled DA system, demonstrating their feasibility.” 
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4. The manuscript is overloaded with abbreviations, making it exceedingly difficult to read. 

This is particularly problematic in the Abstract and Figure Captions, where the pervasive use of 

undefined acronyms obscures the authors' intended message and hinders comprehension. The 

authors should prioritize clarity over brevity and significantly reduce the use of non-standard 

abbreviations to ensure their work is accessible to a broad audience. 

Response) The following abbreviations have been replaced with their full names to reduce 

abbreviation usage in the revised manuscript. While abbreviations are retained for commonly 

used terminologies, satellite missions and data product names, well-known institutions, and 

specific systems, models, and algorithms, we have added a list of abbreviations in Appendix A 

of the revised manuscript. 

“SM” → “soil moisture” 

“QC” → “quality control” 

“KMA” → “Korea Meteorological Administration” 

“NRT” → “near-real time” 

“SWI” → “soil wetness index” 

“CONUS” → “continental United States” 

“GVF” → “green vegetation fraction” 

“BEC” → “background error covariance” 

“GC” → “Gaspari and Cohn” 

“RTPP” → “relaxation-to-prior perturbation” 

“1-D” → “1-dimensional” 

“SW” → “shortwave radiation” 

“LW” → “longwave radiation” 

“P” → “precipitation” 

“ML” → “machine learning” 

“TB” → “brightness temperature” 

“H” → “horizontally” 

“V” → “vertically” 

 

Appendix A: Abbreviations 

AMSR2 Advanced Microwave Scanning Radiometer 2 

AMSU-A Advanced Microwave Sounding Unit-A 

AMVs Atmospheric Motion Vectors 

ASCAT Advanced SCATterometer 

ATMS Advanced Technology Microwave Sounder 

CDF Cumulative distribution function 

CDR Climate Data Record 

CPC Climate Prediction Center 

CrIS Cross-track Infrared Sounder 

CTL Control case serving as a baseline experiment 

DA Data assimilation 

DCA Dual Channel Algorithm 

EASE Equal Area Scalable Earth 

ECMWF European Centre for Medium-Range Weather Forecasts 



EnKF Ensemble Kalman filter 

ERA5 Fifth generation of the ECMWF atmospheric reanalysis 

ESA CCI European Space Agency Climate Change Initiative 

ESME Estimated Soil Moisture Error 

ETS Equitable threat score 

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 

FAO Food and Agriculture Organization 

FB Frequency bias 

fMSE Fractional mean-square error 

GLDAS Global Land Data Assimilation System 

GPS-RO Global Positioning System Radio Occultation 

Hybrid 4DEnVar Hybrid four-dimensional ensemble variational 

IASI Infrared Atmosphere Sounding Interferometer 

IFS Integrated Forecasting System 

IGBP International Geosphere-Biosphere Programme 

KIAPS Korea Institute of Atmospheric Prediction Systems 

KIM Korean Integrated Model 

KPOP KIM Package of Observation Processing 

KVAR KIM VARiational 

LETKF Local ensemble transform Kalman filter 

LIS Land Information System 

LPRM Land Parameter Retrieval Model 

LSM Land surface model 

LST Local solar time 

L2 Level 2 

MetOp Meteorological Operational 

MHS Microwave Humidity Sounder 

MODIS Moderate resolution imaging spectroradiometer 

MT_ATSP Multi-sensor soil moisture data assimilation experiment 

NASA National Aeronautics and Space Administration 

NCEP National Centers for Environmental Prediction 

NOAA National Oceanic and Atmospheric Administration 

NSIDC National Snow and Ice Data Center 

NWP Numerical weather prediction 

RFI Radio Frequency Interference 

RMSD Root mean square difference 

SG_AT Single-sensor data assimilation experiment using the ASCAT soil moisture data 

SG_SP Single-sensor data assimilation experiment using the SMAP soil moisture data 

SMAP Soil Moisture Active Passive 

SMOS Soil Moisture and Ocean Salinity 

SMOS-IC SMOS-INRA-CESBIO 

SRTM Shuttle Radar Topography Mission 

STATSGO State Soil Geographic 

TCA Triple collocation analysis 

TU Wien Vienna University of Technology 



UTC Coordinated Universal Time 

VV Vertical transmit vertical receive 

WMO World Meteorological Organization 

4DIAU Four-dimensional incremental analysis update 

 

   In addition, we have revised the abstract to reduce abbreviations, and included full names 

for certain abbreviations in figure and table captions to improve clarity. The revised abstract 

and captions are shown below. 

Abstract: “The combined use of independent soil moisture data from radar and 

radiometer measurements in data assimilation (DA) systems is expected to yield 

synergistic performance gains due to their complementary strengths. This study 

evaluates the impact of simultaneously assimilating soil moisture retrievals from 

ASCAT (Advanced SCATterometer) and SMAP (Soil Moisture Active Passive) 

into the Korean Integrated Model (KIM) using a weakly coupled DA framework 

based on the National Aeronautics and Space Administration’s Land Information 

System (LIS). The Noah land surface model (LSM) within LIS, which is the same 

as that used in KIM, is used to simulate land surface states and assimilate soil 

moisture retrievals. The impact of soil moisture DA is evaluated using independent 

reference datasets, assessing its influence on soil moisture analysis and numerical 

weather prediction performance. Overall, assimilating ASCAT or SMAP soil 

moisture data into the LSM improves global soil moisture analysis accuracy by 4.0% 

and 10.5%, respectively, compared to the control case without soil moisture DA, 

achieving the most significant enhancements in croplands. Relative to single-sensor 

soil moisture DA, multi-sensor soil moisture DA yields more balanced skill 

enhancements for both specific humidity and air temperature analyses and forecasts. 

The most pronounced synergistic improvements by simultaneously assimilating 

both soil moisture products are observed in the 2-m air temperature analysis and 

forecast, especially when both soil moisture products have a positive impact. The 

results also demonstrate that precipitation forecast skill, particularly in predicting 

precipitation events, can be enhanced by constraining the modeled soil moisture 

with multiple soil moisture retrievals from different sources. This paper discusses 

remaining issues for future studies to further improve the weather prediction 

performance of the KIM-LIS multi-sensor soil moisture DA system.” 

“Figure 1. Schematic diagram of the KIM-LIS-based land-atmosphere weakly 

coupled data assimilation (DA) system. The figure outlines the process flow 

between KIM and LIS in one UTC cycle that is performed four times (i.e., 00, 06, 

12, and 18 UTC cycles) a day. (IAU: incremental analysis update, QC: quality 

control)” 

“Figure 2. Global maps of the soil moisture triple collocation analysis (TCA) 

results for (a) ASCAT (i.e., SG_AT) and (b) SMAP soil moisture data assimilation 

(i.e., SG_SP). Upper panels show the fractional mean-square error (fMSE) of CTL 

soil moisture at 04:00 am/pm local solar time (LST) (left panel) and 11:00 am/pm 

LST (right panel), respectively. Lower panels show the soil moisture fMSE 

difference between SG_AT and CTL (left panel) and between SG_SP and CTL 



(right panel) where the negative fMSE difference indicates the improved soil 

moisture estimates by ASCAT and SMAP soil moisture DA, respectively.” 

“Figure 3. Differences in the soil moisture fractional mean-square error (fMSE) 

between the single-sensor soil moisture data assimilation (i.e., SG_AT and SG_SP) 

and control [without soil moisture data assimilation (DA); i.e., CTL] experiments 

depending on land cover types. A dominant land cover type in each model grid is 

obtained from the MODIS-IGBP land cover classifications (Friedl et al., 2002). 

The asterisk symbol (*) indicates statistical significance at p < 0.05. Negative 

values represent the improved soil moisture estimates by soil moisture DA. Results 

are not plotted for closed shrublands and permanent wetlands because of missing 

triplet data.” 

“Figure 4. Vertical profile time series of RMSD differences in the specific 

humidity analysis (left column) and air temperature analysis (right column) 

between the soil moisture data assimilation (DA) and CTL experiments. The 

RMSD is calculated using the ECMWF-IFS analysis as reference data. Negative 

RMSD differences indicate improved estimates of the atmospheric variables by 

assimilating the soil moisture retrievals.” 

“Figure 5. Vertical profile time series of RMSD differences in the specific 

humidity analysis (left column) and air temperature analysis (right column) 

between the multi-sensor soil moisture data assimilation (DA) (MT_ATSP) and 

single- sensor soil moisture DA [SG_AT (a and c) and SG_SP (b and d)] 

experiments. The RMSD is calculated using the ECMWF-IFS analysis as reference 

data. Negative RMSD differences indicate improved estimates of the atmospheric 

variables by additionally assimilating the SMAP or ASCAT soil moisture 

retrievals.” 

“Figure 6. Difference in the 2-m atmospheric analysis RMSD [i.e., specific 

humidity (upper panels) and air temperature (lower panels)] between the soil 

moisture data assimilation (DA) and CTL experiments. Evaluation results for the 

12 UTC cycle from June to July 2022 (a two-month period) are presented with 

domain-averaged values in parenthesis. The RMSD is calculated using the 

ECMWF-IFS analysis as reference data. Negative RMSD differences indicate 

improved estimates of the atmospheric variables by assimilating the soil moisture 

retrievals.” 

“Figure 7. Differences in frequency bias (∆FB = |FBEXP − 1| − |FBCTL − 1|; a to 

f) and equitable threat score (∆ETS = ETSEXP − ETSCTL; g to l) between EXP 

(MT_ATSP, SG_AT, and SG_SP) and CTL, averaged over 24-72 h precipitation 

forecasts from the 00 UTC cycle in July 2022, for six domains [i.e., global domain 

(GLOB; a and g), Northern Hemisphere (NH; b and h), Southern Hemisphere (SH; 

c and i), Asia (ASIA; d and j), Europe (EU; e and k), and tropical area (TROP; f 

and l)]. The skill metrics are computed for seven conventional thresholds (i.e., 0.5, 

1.0, 5.0, 10.0, 15.0, 20.0, and 25.0 mm day−1). Negative ΔFB and positive ΔETS 

values indicate improvements from soil moisture DA.” 

“Figure 8. ASCAT soil moisture error standard deviations used for ASCAT soil 

moisture data assimilation (DA) in this study. The spatially distributed ASCAT soil 



moisture errors (m3 m−3) are derived by rescaling the constant 10% soil wetness 

index using the ratio of the standard deviations of the Noah land surface model 

(LSM) and ASCAT soil moisture time series.” 

“Table 1. Perturbation parameter values used for autoregressive temporal 

correlation and cross correlations between different variables (SW: shortwave 

radiation, LW: longwave radiation, P: precipitation, SM1: top layer soil moisture, 

SM2: second layer soil moisture, SM3: third layer soil moisture, and SM4: bottom 

layer soil moisture).” 

“Table 2. Summary of land-atmosphere coupled data assimilation (DA) 

experiments conducted in this study (SM: soil moisture; see Appendix A for 

additional abbreviations).” 

“Table 3. Triple collocation analysis (TCA) triplet composition to quantify the 

relative improvement in the soil moisture estimates by soil moisture data 

assimilation (DA) as compared to CTL. The CTL soil moisture estimates are also 

evaluated using the same satellite-based reference soil moisture products as used 

for each single-sensor soil moisture DA experiment (EXP: SG_AT and SG_SP).” 

“Table 5. Domain-averaged RMSD differences (ΔRMSD = RMSDEXP – RMSDCTL) 

for the 2-m specific humidity and air temperature analyses and (5-day) forecasts 

across six domains [i.e., global domain (GLOB), Northern Hemisphere (NH), 

Southern Hemisphere (SH), Asia (ASIA), Europe (EU), and tropical area (TROP)]. 

The RMSD is calculated for the 00 UTC cycle from April to July 2022 (whole 

experimental period) using the ECMWF-IFS analysis as reference data. Negative 

ΔRMSD indicates improved estimates of the atmospheric variables by assimilating 

the soil moisture retrievals.” 

 

 

 

Minor comments: 

 

1. Line 1: The abstract lacks a clear statement of the research motivation. It should briefly 

highlight the importance of assimilating multi-sensor soil moisture data for improving 

numerical weather prediction to better contextualize the study for reader. 

Response) Based on the reviewer’s comment, the following sentence has been added in the 

abstract of the revised manuscript (Lines 2–4). 

“The combined use of independent soil moisture data from radar and radiometer 

measurements in data assimilation (DA) systems is expected to yield synergistic 

performance gains due to their complementary strengths.” 

  

 

 

 

 



2. Lines 405-412: The choice to use GLDAS for LSM spin-up but ERA5 for model 

initialization may introduce inconsistencies. Although GLDAS is a land data assimilation 

system and ERA5 is reanalysis, both of them provide land surface data and atmospheric 

forcing data. The authors should address whether this discrepancy in forcing data sources could 

have impacted the results. 

Response) We understand the reviewer’s concern but we believe that the impact of this 

discrepancy on the experimental results is negligible for two reasons. First, as noted in the 

manuscript, although the long-term offline spin-up (2008–2020) of the Noah LSM was driven 

by GLDAS forcing fields, it was additionally run from 2020 to 2022 using the historical KIM 

forcing data until March 1, 2022. This minimizes the discrepancy between KIM and LSM. 

Second, we conducted an additional one-month spin-up (March 1–31, 2022) of the coupled 

system. Because the atmospheric model does not require a long-term spin-up, this one-month 

period is sufficient to ensure consistency between KIM and LSM. 

 

3. Lines 421-422: “The four experiments (i.e., CTL, SG_AT, SG_SP, and MT_ATSP) listed in 

Table 1”. The experiments are listed in Table 2. 

Response) We appreciate the reviewer’s careful reading. We have corrected “Table 1” to 

“Table 2” in the revised manuscript (Line 451). 


