Response to reviewers’ comments

Reviewer #1:

This study provided an insightful analysis of the pros and cons of multi-sensor soil moisture
data assimilation source on a global and regional basis. Using multi-sensor soil moisture
remote sensing seems like a valuable and generally more robust approach based on the results
provided in the study. The authors also clearly outlined the limitations of the multi-sensor
approach and ways to improve it in the future. The findings are interesting because they avoid
relying on blended soil moisture datasets, also allowing for a more precise evaluation of each
individual soil moisture product.

I found the paper well-structured and informative, though the frequent use of acronyms made it
a bit harder to follow at times. That said, it's understandable given the models and datasets that
were used. My review focuses primarily on how certain results are framed and interpreted in
relation to the study’s overarching theme. I also included a few line-specific comments aimed
at improving the clarity of specific passages.

Dear Reviewer #1:

My co-authors and I would like to thank you for your time and valuable feedback, which
we have addressed in the revised manuscript. We have enhanced the overall clarity of the
document, with all revisions marked in red text for ease of identification. Below, we provide
comprehensive responses to your comments. We appreciate your consideration and look
forward to your feedback.

Regards,

Yonghwan Kwon and co-authors

General comments

1. The study presents the robustness of SG_AT and SG_SP in the TCA section, but MT ATSP
was excluded due to the restrictions of TCA. However, the added value of multi-sensor DA
being the main theme of the study, this makes it difficult to fully interpret the TCA results in
the broader context of the study. The TCA results, particularly in Figure 3, are valuable and
suggest that SG_SP is generally the more robust option for single-sensor DA. Still, the authors
should clarify how these results relate to the overall narrative of the study, given that
MT_ATSP is the preferred DA method despite its absence from the TCA.

Response) Evaluating soil moisture improvements through multi-sensor soil moisture DA is
indeed important, as the reviewer pointed out. However, global-scale soil moisture evaluations
are inherently challenging due to limited reference data. Although we employed the TCA
method as an alternative evaluation approach, it has limitations, particularly in constructing
TCA triplets without violating underlying assumptions. Because the primary objective of this



study is to improve atmospheric forecasts by assimilating soil moisture data from multiple
sources, we placed greater emphasis on assessing the added value of multi-sensor DA for
atmospheric variables. Although soil moisture evaluation results were presented only for the
single-sensor DA experiments, the overall benefit of assimilating both sensors simultaneously
can be inferred from the single-sensor results and the atmospheric evaluation. Nevertheless, we
acknowledge the reviewer’s concern. Accordingly, we revised the last paragraph of Section 7.1
(Lines 714-722 in the revised manuscript) for clarity, and added new sentences in the
conclusion (Lines 1002—1011 in the revised manuscript) to highlight the limitation of our study
regarding the evaluation of soil moisture estimates from multi-sensor DA.

*Lines 714—722 (Section 7.1):
“As shown in Figure 2, soil moisture performance gains and losses by each single-
sensor soil moisture DA are locally dependent. Thus, some previous studies (e.g.,
Draper et al., 2012; Kolassa et al., 2017) have shown that simultaneously
assimilating soil moisture retrievals from both passive and active sensors achieves
higher model soil moisture accuracy than assimilating a single product. However,
because soil moisture triplets that fully satisfy the TCA assumptions (see Section
6.1) are difficult to obtain over the global domain for the multi-sensor soil moisture
DA experiment, the combined effects of ASCAT and SMAP DA are discussed
only in terms of atmospheric variables, which are the ultimate objective of this
study, in the subsequent sections.”

*Lines 1002—1011 (Section 9, Conclusions):
“It should be noted that although this study employs the TCA method as an
alternative global-scale soil moisture evaluation approach, it has limitations,
particularly in constructing TCA triplets for the multi-sensor soil moisture DA
experiment without violating underlying assumptions. Therefore, we applied TCA
only to the single-sensor DA experiments, and the overall benefit of assimilating
both sensors simultaneously can only be inferred from the single-sensor results and
the atmospheric evaluation. Future studies should address this limitation to enable a
more complete and robust assessment of the impact of multi-sensor soil moisture
DA by implementing instrumental variable (IV)-based methods for estimating
cross-correlated soil moisture errors, which require only two independent soil
moisture datasets (Dong et al., 2020).”

2. The effect of SM DA on precipitation forecast skill is not clearly explained, which makes it
difficult to understand the reasoning behind evaluating precipitation forecast. To improve
coherence, the authors should clarify how SM DA is expected to influence precipitation
forecasts and why these metrics are relevant to assessing the performance of the assimilation
methods.

Response) Thank you for your comment. In response, we have added the following paragraph
to the revised manuscript (Lines 587-605).

“Local variations in soil moisture modify boundary-layer heat and moisture fluxes,
thereby altering water—energy budgets and influencing convective triggering
(Findell and Eltahir, 2003; Pal and Eltahir, 2003) and subsequently influence large-
scale dynamics (Cook et al., 2006; Pal and Eltahir, 2003), both of which play key



roles in determining precipitation processes. A number of studies have investigated
the complex interaction mechanisms between soil moisture and precipitation,
referred to as the ‘soil moisture-precipitation feedback’, using observational
analyses (e.g., Catalano et al., 2016; Yang et al., 2018) and computational
modeling systems (e.g., Beljaars et al., 1996; Bosilovich and Sun, 1999;
Hohenegger et al., 2009; Lin et al., 2023; Pal and Eltahir, 2003). Although these
studies generally agree on a predominant positive feedback, the sign and strength
vary depending on modeling systems and spatiotemporal scales (Hohenegger et al.,
2009; Lin et al., 2023). Differences in the sign of soil moisture-precipitation
feedback can be attributed to the complexity of representing the soil moisture-
evapotranspiration relationship (Yang et al., 2018) and convective development
(Hohenegger et al., 2009). Considerable debate and uncertainty remain regarding
the physical mechanisms determining the sign of the feedback (Hohenegger et al.,
2009). Nevertheless, there is no doubt that soil moisture and precipitation are
reciprocally linked, implying that better characterization of soil moisture conditions
through soil moisture DA can enhance precipitation forecasts in land-atmosphere
coupled systems.”
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3. There appears to be a slight disconnect between the presentation of results in Sections 7.1—
7.2 and Section 7.3. While the earlier sections highlight the relative performance of SM DA
methods compared to the control scenario, the precipitation results are presented in absolute
terms, which makes it harder to assess the added value of each method. In Figure 7, the relative
performance has to be inferred visually rather than being directly quantified. Is it more
important here to show the absolute forecast metrics, or to compare them against the control
baseline? Presenting AFB and AETS scores could make these comparisons clearer and more
consistent with the rest of the paper. Boxplots similar to those in Figure 3 might be a good way
to present these results more intuitively.

Response) Following the reviewer’s suggestion, we replaced Figure 7 with AFB and AETS
scores, and moved the original figure to the supplementary material (Figure S2). Section 7.3
has been revised accordingly, as shown below (Lines 821-882).

“7.3. Precipitation

The potential added value of multi-sensor soil moisture DA for precipitation
forecasts is assessed using categorical skill score metrics, including the FB and
ETS, as detailed in Section 6.3. Daily precipitation rates (mm day ') are computed
from the KIM forecasts at 0-24 h, 24-48 h, and 48-72 h lead times, and compared
against reference data using seven conventional thresholds (0.5, 1.0, 5.0, 10.0, 15.0,
20.0, and 25.0 mm day '). The numbers of model grid points classified as Hits,
FalseAlarms, Misses, and CorrectNegatives in the contingency table (Table 4) are
then counted, and FB and ETS are calculated for six domains (i.e., global domain,
Northern Hemisphere, Southern Hemisphere, Asia, Europe, and tropical area).
Figure S2 presents the FB and ETS of daily precipitation forecasts from KIM,
averaged over the three lead times, for CTL and the three soil moisture DA
experiments (SG_AT, SG_SP, and MT ATSP) during the 00 UTC cycle in July
2022. The corresponding differences (AFB = |FBgxp — 1| — |FBcr, — 1|, AETS =
ETSgxp — ETSct1,) are shown in Figure 7.

In the global domain, CTL (without soil moisture DA) tends to overestimate
precipitation frequency (FB > 1.0), simulating excessive precipitation events,
except for the precipitation threshold of 25.0 mm day ' (Figure S2a). The model
significantly overestimates precipitation at the 5.0 mm day ' threshold and exhibits
an FB close to 1 for heavier precipitation events (20.0 and 25.0 mm day ') (Figure
S2a), with regional variations (Figures S2b to S2f). Both the smallest FB (close to
1.0) and the largest FB (> 2.5) are observed in the Southern Hemisphere for the
lightest (0.5 mm day ') and heaviest (25.0 mm day ') precipitation events,
respectively (Figure S2c).

Unlike FB, ETS is higher (indicating better skill in predicting precipitation
events) at lower precipitation thresholds while ETS decreases as the precipitation
intensity thresholds increase in the global domain (Figure S2g) and in the Northern
Hemisphere (Figure S2h), including Asia (Figure S2j), Europe (Figure S2k), and
tropical areas (Figure S21). In the Southern Hemisphere, CTL shows the highest
ETS skill at the precipitation threshold of 10.0 mm day ' and the lowest at 1.0 mm



day ™! (Figure S2i). The different model performance patterns (in both FB and ETS)
between the Northern and Southern Hemispheres across the range of precipitation
intensity thresholds may be attributed to different weather regimes associated with
cyclones and monsoons (Dare and Ebert, 2017), along with additional impacts
from seasonal variations.

Overall, soil moisture DA improves the prediction of precipitation events (i.e.,
better ETS; Figure 7g) while its contribution to precipitation frequency (FB)
remains neutral (Figure 7a). MT ATSP demonstrates higher ETS skill than CTL
(by up to 1.8%) and single-sensor soil moisture DA (by up to 2.4% and 0.6%
relative to SG_ AT and SG_SP, respectively) (Figure 7g). The impacts of
MT_ATSP on the global FB are marginal, showing negligible improvements at the
0.5, 1.0, 5.0, and 25.0 mm day ' thresholds and slight overpredictions at the 10.0,
15.0, and 20.0 mm day ! thresholds (Figure 7a, Figure S2a). Similar soil moisture
DA performance patterns are observed in the Northern Hemisphere (Figures 7b and
7h) and Asia (Figures 7d and 7j). In the Southern Hemisphere, MT ATSP slightly
improves FB for heavy precipitation events (precipitation thresholds > 15.0 mm
day™!) while relatively obvious improvements in ETS by MT ATSP are witnessed
at lower thresholds (< 1.0 mm day ') (Figures 7c and 7i). Compared to CTL and
SG_AT, multi-sensor soil moisture DA enhances ETS across precipitation
thresholds in tropical areas, although it is slightly less effective than SG_SP at
thresholds < 5.0 mm day ' (Figure 71). For FB, MT_ATSP shows improvements
over CTL and SG_AT in tropical areas, except at thresholds of 5.0 and 10.0 mm
day !, where SG_SP performs better (Figure 7f). In contrast, MT ATSP is
generally ineffective in Europe (Figures 7e and 7k), except for ETS at precipitation
thresholds of 5.0 mm day ! or lower. The overprediction of precipitation in Europe
(Figure 7e, Figure S2e), especially for heavy precipitation events (= 15.0 mm
day '), may lead to a decrease in ETS (Figure 7k, Figure S2k).”
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Figure 7. Differences in frequency bias (AFB = |FBgxp — 1| — |FBcrL — 1]; a to f) and
equitable threat score (AETS = ETSgxp — ETSctL; g to 1) between EXP (MT _ATSP, SG_AT,
and SG_SP) and CTL, averaged over 24-72 h precipitation forecasts from the 00 UTC cycle in
July 2022, for six domains [i.e., global domain (GLOB; a and g), Northern Hemisphere (NH; b

and h), Southern Hemisphere (SH; c and 1), Asia (ASIA; d and j), Europe (EU; e and k), and
tropical area (TROP; f and 1)]. The skill metrics are computed for seven conventional
thresholds (i.e., 0.5, 1.0, 5.0, 10.0, 15.0, 20.0, and 25.0 mm day ). Negative AFB and positive
AETS values indicate improvements from soil moisture DA.



4. In the conclusion, the authors should reiterate that a strength of the study is its use of
multiple independent SM datasets, rather than relying on blended products, and briefly explain
why it matters.

Response) In accordance with the reviewer’s suggestion, we have included the following
sentences in the conclusion section of the revised manuscript (Lines 1046—1053).

“To conclude, a key aspect of this study is the joint assimilation of individual
radar- and radiometer-based soil moisture products. Compared to assimilating pre-
blended soil moisture data, this approach is advantageous because (1) it accounts
for the relative uncertainties of both sensors, which vary across space and time; (2)
it provides a flexible framework for incorporating various combinations of soil
moisture data sources within DA systems; and (3) it is more suitable for near-real
time operational forecast systems, the focus of this study, since soil moisture data
blending processes may increase latency and thereby reduce data availability for
operational use.”

Specific comments

1. Line 164: a proper minus sign should be used to prevent the line break with the following
number (this applies to the instances afterwards as well).

Response) A proper minus sign has been used consistently throughout the revised manuscript.

2. Line 166: unclear what “and restart files at 0 h” means, could you clarify?

Response) The phrase ‘and restart files at 0 h’ indicates that LIS generates a restart file at 0 h
in the current UTC cycle. A restart file contains the full set of model state variables at that time,
allowing the model to be seamlessly restarted from that point. In our case, the restart file
created at 0 h is used to initialize LIS-LSM in the next UTC cycle.

To improve clarity, we have modified the related sentences in the revised manuscript
(Lines 201-206; Lines 213-215) as follows:

[Original] “This sequential EnKF procedure (i.e., SM forecast and analysis) is
performed from —6 h to 0 h in the current UTC cycle, and LIS writes land outputs
every 3 hours (i.e., =3 h and 0 h) and restart files at 0 h.”

[Revised] “This sequential EnKF procedure (i.e., soil moisture forecast and
analysis) is performed from —6 h to 0 h in the current UTC cycle. LIS writes land
outputs every 3 hours (i.e., at =3 h and 0 h) and generates a restart file at 0 h. The
restart file contains the complete set of model state variables at that time, enabling
LIS-LSM to be consistently re-initialized in the subsequent UTC cycle.”

[Original] “KIM is further run without DA until +9 h, and the KIM
analysis/forecasts from 0 h to +6 h and the LIS-LSM restart file at 0 h in the
current UTC cycle are then used for the next UTC cycle LIS implementation.”



[Revised] “KIM is further run without DA until +9 h, and the KIM
analysis/forecasts from 0 h to +6 h in the current UTC cycle are then used for the
next UTC cycle LIS implementation.”

3. Line 179: what are the advantages of the KIM-LIS coupled system mentioned here?

Response) We modified the sentence (Lines 219—222 in the revised manuscript) to provide
clearer information regarding the reviewer’s question, as follows:

“In addition, the KIM-LIS coupled system, which employs the LIS-based land DA,
has several advantages: (1) it can readily leverage the existing land DA functions of
LIS, and (2) it allows straightforward implementation of new land DA
developments due to LIS’s extensible framework.”

4. Line 227: please state the specific DA assumption being cited.

Response) The specific DA assumption has already been briefly described at the beginning of
the paragraph (Lines 269-270 in the revised manuscript), as shown below:

“Typical DA algorithms are designed to correct random errors under the
assumption of unbiased state estimates between models and observations (Dee and
da Silva, 1998).”

However, to enhance clarity, we have revised the sentence noted by the reviewer as follows
(Lines 274-277 in the revised manuscript):

“Therefore, soil moisture DA systems essentially employ appropriate bias
correction strategies to remove these systematic biases prior to assimilation, and
thus to comply with the DA assumption of unbiased models and observations
(Kolassa et al., 2017; Reichle and Koster, 2004)”

5. Line 232: I think that the reasoning for using different bias correction methods for the two
SM datasets should be clearly stated here.

Response) Following the reviewer’s suggestion, we have added the following sentences to the
revised manuscript (Lines 281-287) to clarify the application of different bias correction
methods for ASCAT and SMAP.

“The use of the anomaly correction method for SMAP follows our previous
investigations (Kwon et al., 2022, 2024) aiming to minimize the loss of useful
information from the original data through bias correction. In contrast, traditional
CDF matching is applied to ASCAT, since the anomaly correction method is not
applicable due to difference in soil moisture data type between ASCAT (soil
wetness index) and the model (volumetric soil moisture in m* m™>). Further details
are provided in the following two paragraphs.”



6. Line 409: please change to “March 1% 2022” or an equivalent format.

Response) Based on the reviewer’s suggestion, “1 March 2022” has been changed to “March 1,
2022 (Line 473 in the revised manuscript), and the same change has been applied consistently
throughout the manuscript.

7. Line 458: I think the formulation for fMSE) should be presented the same way as equations
2 to 4 for consistency.

Response) The equation for fMSE) has been modified to ensure consistency with other
equations. Accordingly, the associated sentences have been revised in the manuscript (Lines
522-528) as follows:

“In this study, the fractional mean-square error (f MSE},, Draper et al., 2013),
ranging from 0 (free-of-noise soil moisture data) to 1 (no meaningful soil moisture
signal), is computed using Equation (5). This metric is employed as a TCA-based
global soil moisture evaluation measure, following procedures implemented by
Kim et al. (2020 and 2021a) and Kwon et al. (2024).

o?
fMSE, = —X (5)”

O

8. Lines 488-492: more information to justify the timestep of the LSM outputs that were used
would improve clarity.

Response) To enhance clarity, the following sentences have been added to the revised
manuscript (Lines 563—-568).

“We select model outputs at the approximate midpoint time (e.g., 04:00) between
the overpass times of two other satellite-based soil moisture triplet components
(e.g., 01:30 AMSR2 and 06:00 SMOS) for a fair comparison. While some errors
may still arise due to sampling-time mismatches between the triplet components,
we assume these errors are acceptable since the same sampling time was applied to
both CTL and DA experimental outputs to evaluate their relative performance.”

9. Line 616: “RMSD difference” is used here, but later, in tables 5 and 6, ARMSD is used.
Please choose one for consistency.

Response) For consistency, we have revised the title of Table 5 as follows:

“Table 5. Domain-averaged RMSD differences (ARMSD = RMSDgxp — RMSDcrr)
for the 2-m specific humidity and air temperature analyses and (5-day) forecasts
across six domains ...”



10. Lines 628-632: the statement that MT ATSP results in a more “balanced improvement”
than single-sensor DA methods needs clarification. What does it mean in this context?

Response) To improve clarity, we have revised the sentence as follows (Lines 738—742 in the
revised manuscript):

“Although MT ATSP exhibits somewhat reduced performance in the air
temperature (Figure 5c) and specific humidity analyses (Figure 5b) compared to
SG AT and SG_SP, respectively, it achieves a more balanced improvement,
meaning that neither variable is degraded while both show moderate gains
compared to CTL, by assimilating radar- and radiometer-based soil moisture data
together.”

11. Line 713: I assume that the FB and ETS were computed for the 00 UTC cycles for all the
days in July? The methodology to compute the precipitation amounts is a bit unclear.

Response) To enhance clarity, we revised the following paragraph (Lines 824834 in the
revised manuscript).

“Daily precipitation rates (mm day ') are computed from the KIM forecasts at 0-24
h, 24-48 h, and 48-72 h lead times, and compared against reference data using
seven conventional thresholds (0.5, 1.0, 5.0, 10.0, 15.0, 20.0, and 25.0 mm day ).
The numbers of model grid points classified as Hits, FalseAlarms, Misses, and
CorrectNegatives in the contingency table (Table 4) are then counted, and FB and
ETS are calculated for six domains (i.e., global domain, Northern Hemisphere,
Southern Hemisphere, Asia, Europe, and tropical area). Figure S2 presents the FB
and ETS of daily precipitation forecasts from KIM, averaged over the three lead
times, for CTL and the three soil moisture DA experiments (SG_AT, SG_SP, and
MT _ATSP) during the 00 UTC cycle in July 2022. The corresponding differences
(AFB = |FBgxp — 1| — |FBerL — 1|, AETS = ETSgxp — ETSc1) are shown in
Figure 7.”

12. Line 820: Please clarify if Figures S4 and S1c come from Kim et al. (2025) as well.

Response) To avoid confusion regarding the figure sources, we have revised the sentence as
follows (Lines 951-953):

“... and croplands in South Asia (Figure S6) [see Figure S3c for the land-cover
type map generated in this study using the MODIS-IGBP global land-cover
classification (Friedl et al., 2002)].”



