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Abstract. Predicting the future contributions of the ice sheets to sea level rise remains a significant challenge due to our
limited understanding of key physical processes (e.g., basal friction, ice rheology) and the lack of observations of critical
model inputs (e.g., bed topography). Traditional numerical models typically rely on data assimilation methods to estimate
these variables by solving inverse problems based on conservation laws of mass, momentum, and energy. However, these
methods are not versatile and require extensive code development to incorporate new physics. Moreover, their dependence
on data alignment within computational grids hampers their adaptability, especially in the context of sparse data availability
in space and time. To address these limitations, we developed PINNICLE (Physics-Informed Neural Networks for Ice and
CLimatE), an open-source Python library dedicated to ice sheet modeling. PINNICLE seamlessly integrates observational
data and physical laws, facilitating the solution of both forward and inverse problems within a single framework. PINNICLE
currently supports a variety of conservation laws, including the Shelfy-Stream Approximation (SSA), Mono-Layer Higher-
Order (MOLHO) models, and mass conservation equations, for both time-independent and time-dependent simulations. The
library is user-friendly, requiring only the setting of a few hyperparameters for standard modeling tasks, while advanced users
can define custom models within the framework. Additionally, PINNICLE is based on the DeepXDE library, which supports
widely-used machine learning packages such as TensorFlow, PyTorch, and JAX, enabling users to select the backend that best
fits their hardware. We describe here the implementation of PINNICLE and showcase this library with examples across the

Greenland and Antarctic ice sheets for a range of forward and inverse problems.

1 Introduction

Ice sheet modeling is essential for projecting future sea level rise and understanding the complex dynamics that drive ice sheet
behavior under changing climate conditions (e.g., Larour et al., 2012; Aschwanden et al., 2019; Goelzer et al., 2020; Seroussi
et al., 2020). These numerical models provide insights into fundamental glaciological processes, advancing our understanding
of ice flow and its response to and interactions with the climate system (e.g., Schoof, 2007; Joughin et al., 2021; Morlighem
et al., 2024). However, developing models that accurately capture current ice sheet behavior and mass change remains challeng-
ing, further complicated by limited observational data and an incomplete understanding of critical physical processes. Despite
decades of development, significant uncertainties persist in ice sheet models, impacting the accuracy of sea-level projections

(Robel et al., 2019; Edwards et al., 2019; Aschwanden et al., 2021). A major source of uncertainty in models comes from pa-
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rameters that are challenging to measure directly in the field, such as the bed topography (Morlighem et al., 2017, 2020), basal
conditions (Gagliardini et al., 2007; Morlighem et al., 2013; Wernecke et al., 2023), and material properties of ice, including
its rheology and thermal structure (e.g., Furst et al., 2015; Colgan et al., 2021).

Traditionally, these parameters are estimated by solving inverse problems, often framed as partial differential equation
(PDE) constrained optimization problems (MacAyeal, 1993; Morlighem et al., 2010; Goldberg and Sergienko, 2011). These
inverse problems are difficult to solve because they require customized numerical algorithms that depend on the specific PDEs
governing the system (Goldberg and Heimbach, 2013; Cheng and Lotstedt, 2020) and often demand regularization to avoid
overfitting and facilitate convergence due to their inherent ill-posedness (Tikhonov, 1943). As data availability and quality
continue to improve, integrating these data into traditional inverse frameworks presents new challenges, both in terms of
computational demands and the complexity of the required numerical methods. This increase in data complexity calls for new
approaches that can flexibly integrate observational data while remaining computationally efficient.

Recent advances in machine learning offer promising alternatives for handling the shortcomings of traditional ice sheet
models, particularly when dealing with sparse or noisy data (Karniadakis et al., 2021). In particular, Physics-Informed Neural
Networks (PINNs) have gained attention as a powerful tool for combining physical laws with observational data (Raissi et al.,
2019; Karniadakis et al., 2021; Lu et al., 2021). Unlike conventional approaches that require extensive customization for each
specific problem, PINNs allow for the flexible integration of various physical constraints, making them highly adaptable to dif-
ferent modeling scenarios. In glaciology, PINNs have been applied to a range of challenging modeling tasks recently, including
inferring basal conditions, simulating complex ice flow dynamics, and testing novel hypotheses about physical processes in ice
shelves (Riel et al., 2021; Wang et al., 2022; Jouvet and Cordonnier, 2023; Iwasaki and Lai, 2023; Cheng et al., 2024). The
incorporation of physical knowledge within the neural network structure has the potential to introduce a regularizing effect,
which is particularly beneficial for handling sparse and noisy observational data, supporting mesh-free modeling, and enabling
flexible constraints beyond standard boundary conditions (Seo, 2024). This framework provides a balance between model
complexity and accuracy, making it a robust tool for advancing ice sheet modeling (Raissi et al., 2020; Cheng et al., 2024).

In this context, we describe here PINNICLE (Physics-Informed Neural Networks for Ice and CLimatE), an open-source
Python library for ice sheet modeling designed to facilitate the solution of both forward and inverse problems using PINNs.
PINNICLE provides a unified framework to integrate observational data directly with the governing physical laws. Leveraging
the DeepXDE library (Lu et al., 2021), PINNICLE supports machine learning platforms like TensorFlow, PyTorch, and JAX,
giving users the flexibility to choose the backend that best suits their hardware and computational resources. This paper outlines
the methodological framework of PINNICLE and illustrates its capabilities through applications on glaciers in the Greenland

and Antarctic Ice Sheets.

2 Physics Informed Neural Networks

In recent years, physics-informed machine learning techniques have become increasingly popular in the field of ice sheet

modeling (e.g., Riel et al., 2021; Brinkerhoff, 2022; Jouvet and Cordonnier, 2023; Bolibar et al., 2023; He et al., 2023). Ice
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flow is governed by a set of PDEs derived from fundamental conservation laws. The extent to which these governing equations
are satisfied in different machine learning frameworks varies across studies. For example, the approaches described in He et al.
(2023); Bolibar et al. (2023); Koo et al. (2024) employ neural networks as emulators or surrogate models, learning internal
relationships derived from numerical solutions of the governing PDEs, with minimal enforcement of physical constraints. In
Jouvet and Cordonnier (2023), the neural network also acts as an emulator but incorporates the PDE residual directly into the
training loss function, embedding physical principles into the optimization process for a more physically consistent model.
Similarly, Riel et al. (2021) combines observational data with physics-inspired constraints, such as smoothness and sign of the
basal drag, though without explicitly enforcing physical laws on the model’s outputs.

This study takes an alternative approach by leveraging neural networks to directly learn the physical constraints and re-
lationships governing ice dynamics, aiming for a more comprehensive integration of data and physics. The architecture of
PINNICLE follows the same framework as in Raissi et al. (2019); Wang et al. (2022); Iwasaki and Lai (2023); Cheng et al.
(2024), where a neural network is trained under the constraints of data misfit and PDE loss. The inputs of the neural network
are the independent variables of the PDEs, which can be the spatial coordinates (x, y, z) and/or the time variable (¢), depending
on the governing equations. The outputs of the neural network are all the dependent variables of the PDEs. This architecture
enables the neural network, through backpropagation, to compute the required spatial and temporal derivatives of these depen-
dent variables for evaluating the PDEs. The loss function of the PINN consists of two parts, data and physical loss, which are
both constructed using these output variables. The data loss measures the misfit between the data and the corresponding output
variable at the location and time of the data acquired. The physical loss is computed by evaluating the residual of the PDEs
on a set of randomly generated collocation points. Then, the training procedure is to minimize the loss function, such that the
output of the neural network satisfies the governing PDEs and also matches the data provided. However, it is important to note
that this formulation represents an idealized scenario. In practice, the residuals typically do not reach zero, nor does the data

misfit, as discussed in Cheng et al. (2024).

3 Physics

PINNICLE is designed to be flexible so that diverse physical laws along with relevant observational data can be easily inte-
grated. In ice sheet modeling, conservation of mass and momentum form the governing equation of ice dynamics. PINNICLE
currently supports these laws by implementing widely used stress balance approximations. Users can readily apply or extend

the framework to include additional physical constraints as required by specific modeling objectives.
3.1 Conservation of mass

In ice sheet modeling, the large aspect ratio of the horizontal dimensions (z,y) to the vertical dimension (z) leads most dy-
namics to occur in the x-y plane. Therefore, it is common practice to model the ice sheet using a depth-averaged approach that
effectively captures horizontal behavior, simplifying the model by considering a two-dimensional domain (x,y) and focusing

on the horizontal ice velocity components, denoted by u = (u,v)”.



95

100

105

110

115

Mass conservation is fundamental to simulating ice sheet dynamics, as it controls the variations in ice thickness over time.
Since ice behaves as an incompressible fluid, the rate of change in ice thickness, H, is equal to the sum of the flux divergence

in the horizontal direction and vertical mass exchange processes:

OH 0O(uH) O(vH)

ot ox dy

—a, (1)

where a represents the net mass balance field from surface and basal processes, such as surface accumulation (e.g., snowfall)

and losses like surface or basal melting.
3.2 Conservation of momentum

We describe here two approximations of the conservation of momentum that are widely used in glaciology. First, the Shelfy-
Stream Approximation (SSA), provides a simplified form of the full Stokes equations by neglecting vertical shear stresses
(MacAyeal, 1989). SSA is an excellent approximation of ice sheet flow in regions of fast sliding, such as ice streams, and
floating ice shelves. This reduction allows us to describe the horizontal motion of ice through a system of PDEs, which

balances gravitational driving forces with internal stress gradients and basal drag as follows:
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where s is the ice surface elevation, p; denotes ice density, g is gravitational acceleration, 7, is the basal shear stress, and
denotes the ice viscosity, which follows Glen’s flow law (Glen, 1958), reflecting the non-linear behavior of ice deformation:
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where n = 3 is the flow-law exponent, and B is a temperature dependent pre-factor (Cuffey and Paterson, 2010).

To characterize the relationship between basal shear stress and sliding velocity, we use Weertman’s friction law (Weertman,

1957; Fowler, 1981; Cuffey and Paterson, 2010) as an example:
= C?|u|™, “4)

where C is a spatially varying friction coefficient, and m = 1/3.

In regions where vertical deformation significantly influences ice flow, such as in the ice sheet interior, we incorporate
a MOno-Layer Higher-Order (MOLHO) model into PINNICLE, following the approach in dos Santos et al. (2022). This
formulation represents ice velocity w as the sum of a basal component u® and a shear velocity u*", modulated by a normalized

depth factor ( as follows:

’U/:’U/b—f—’U,Sh(l—CTH_l), (5)



where ((z) = *7* scales with depth with z varying between the ice base b and the ice surface s.

Both basal and shear velocities are defined on a 2D domain, with vertical variations accounted for by the polynomial in (.

The MOLHO model extends the SSA equations by accounting for vertical deformation, expressed as:
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where efj and ef}’ represent the strain rate components for basal and shear velocities, respectively. These components are

detailed by
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and the vertically integrated viscosities are calculated as follows:
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where 1 is the effective viscosity defined as in Eq. (3).
The basal shear stress 7, is defined using Weertman’s friction law (Weertman, 1957), as in the SSA model. Alternative
friction laws exist (Budd et al., 1979; Gagliardini et al., 2007), and PINNICLE can be easily adjusted to support these friction

laws.

130 4 Data

PINNICLE supports a variety of data formats, including CSV, NetCDF, and MATLAB data files. These files can contain
scattered data or structured data, such as the model struct from the Ice-sheet and Sea-level System Model (ISSM). The spatial
and temporal coordinates of the data can be different between different variables, offering flexibility to accommodate any
complex situations. Depending on the underlying problem to solve, users can specify the amount of data needed for training.

135 The selected data contribute to the calculation of the data misfit component within the loss function.
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Table 1. Data misfit functions implemented in PINNICLE.

Key Formula Description

MAE BEaae(d,d) = % z"; |d; — di mean absolute error

MSE Fuss (ci, d) = % il(czl — d¢)2 mean square error

MAPE Fiars (cf, d) = % é di ;Z di ' mean absolute percentage error
VEL_LOG EVLOG(cZ, d) = 1 i M mean relative logarithmic error

n-
i=1

In(|d;| +¢)

N 1< N 2
MEAN_SQUARE_LOG  Fustos(d,d) = — > (ln(|di| +1) —1In(|d:| + 1)) mean squared logarithmic error
i=1

To evaluate the data misfit, PINNICLE provides multiple metrics, integrating both the built-in data misfit functions from
the DeepXDE package (Lu et al., 2021) and commonly employed functions from other machine learning libraries. Table 1
summarizes the data misfit functions currently available in PINNICLE. In the table, d represents the predicted solution from
PINNICLE, d denotes the ‘reference solution’ from the data, and € = 2.2204 x 1016 corresponds to the machine epsilon
for double precisions. For advanced users, PINNICLE also provides a flexible interface to define custom misfit functions to

specific modeling needs.

5 Neural Networks

The fundamental neural network architecture implemented in PINNICLE is the fully connected neural network (FNN), which
takes spatial and temporal coordinates as input, and the dependent variables of the PDEs as output, through one single neural
network. This architecture allows the neural network to implicitly capture the internal relationship among the dependent vari-
ables, and has been widely used in many applications (Raissi et al., 2019; Iwasaki and Lai, 2023; Wang et al., 2022; Lu et al.,
2021; Karniadakis et al., 2021; Teisberg et al., 2021). However, in some cases, the training process may not converge, as the
relationship between some dependent variables may be too complex for the neural network to capture (Cheng et al., 2024). To
address these problems when they occur, we also provide a parallel fully connected neural network (PFNN) (Lu et al., 2021).
The PFNN uses multiple FNNs, each for one dependent variable with the same independent variables as input. In this case,
each neural network only needs to learn its corresponding dependent variable from the data and the PDE constraints.

By default, we use the hyperbolic tangent function as the activation function for the neural network. To accommodate
different physical problems, PINNICLE applies min-max normalization before the input layer and a min-max denormalization

after the output layer. These normalization processes are strictly limited to the inputs and outputs of the neural network, while
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the governing PDE residuals and data misfit terms are all defined and calculated in the International System of Units (SI).
Consequently, there is no need for the user to scale the physical equations or data misfit functions themselves.

While glacier ice typically exhibits low-pass filtering behavior, some variables, such as surface elevation, contain high-
frequency components. To capture these variations accurately, we implemented Fourier Feature Transform (FFT) (Tancik et al.,
2020; Wang et al., 2021) in PINNICLE. Assuming the dimension of the input variables x is d, the FFT for m features is written
as f(x) = [cos(Bzx),sin(Bx)]?, where B € R™*? is sampled from a Gaussian distribution A/(0, ), the functions cos(-) and
sin(-) are applied coordinate-wise on the vector Bz. This transformation is applied between the min-max normalization and

the input layer of the neural network.

6 Loss function

The loss function in PINNICLE integrates both data misfit and physical constraints. The general form of the loss function is

given by:
L=Lg+ Ly, )

where L4 and L, represent the weighted sum of data misfit and PDE residual, respectively. The specific formulation of the
loss function depends on the underlying physical problem, the data, and the misfit functions (Table 1) employed. Examples of
detailed loss function formulations are provided in Section 8, specifically in Equations (10), (11), and (12).

Physical variables in glaciological applications span multiple orders of magnitude, for example, ice velocity is typically
around 10~° m/s, ice thickness around 10® m, and driving stress of a glacier is approximately 10° Pa. These differences can
lead to imbalanced contributions in the optimization process, where certain variables dominate the loss function while others
are underrepresented. To address this issue, PINNICLE applies weights to each individual term in the loss function, ensuring
balanced contributions from different data sources and governing equations. The impact of weighting strategies on ice sheet
modeling problems has been examined in previous studies (Iwasaki and Lai, 2023; Cheng et al., 2024). While no theoretical
guidelines exist for determining optimal weights, an extensive set of over 15,000 numerical experiments described in Cheng
et al. (2024), including an L-curve analysis, demonstrated that the best performance is achieved when the contributions of
all terms are weighted to approximately the same order of magnitude (i.e., around order 1). Based on this empirical finding,
PINNICLE assigns default weights for each term in the loss function accordingly. The default weights and their corresponding
typical values are provided in Table 2. For greater flexibility, users can modify the weights to meet their specific modeling

requirements. Examples of loss function construction and weight selection strategies are provided in Section 8.

7 Structure of the package

PINNICLE is configured by the user based on a nested dictionary to define the neural network architecture, governing equa-
tions, computational domains, data, and other experiment-specific settings. This design ensures flexibility for incorporating

new functionalities, allowing the model to evolve alongside future advances in physics-informed machine learning. To ensure



Table 2. Default weights and typical values of physical variables in PINNICLE

name weight  default value variable typical value of the variable
Velocity Yuu 1078 x (31536000%) m™2s*  w,v,|u|  10*myr*

Thickness Y 1075 m™? H 10® m

Surface elevation Vs 1079 m™2 s 10° m

Mass balance Ya 31536000% m~?s? a Imyr !

Friction coefficient ¢ 1078 Pa~tm!/3s71/3 C 10* Pat/2m~1/651/6
Rheology pre-factor g 10718 pa—2572/3 B 10° Pas'/®

Driving stress Yr 10710 pa—2 pgH|Vs| 10° Pa

Dynamic thinning 7z, 10" m=2s? ot 10% m/31536000 s

Configuration Setup

Physics Domain

Neural Network

PINN

Figure 1. Flowchart illustrating the structure of PINNICLE, with arrows representing the flow of information between modules.

reproducibility, all user-defined configurations are saved in a JSON file, which can be reloaded to replicate simulations with

the same parameters.
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The core structure of PINNICLE is built upon five key modules: Physics, Neural Network, Data, Domain, and PINN. The
interconnected structure of these modules is depicted in Figure 1. The Physics module constructs the PDE constraints, gathering
independent and dependent variables from the governing equations. These variables are unified to establish a well-defined
mapping between inputs and outputs for the PINN framework. The module assigns these variables to the Neural Network and
Data modules, enabling integration of physics-based constraints into the computational pipeline.

The Neural Network module constructs the architecture for the neural network based on user configurations. It supports
several popular machine learning libraries, including TensorFlow (Abadi et al., 2015), PyTorch (Paszke et al., 2019), and
JAX (Bradbury et al., 2018). To enable seamless transitions between these libraries without altering the codebase, the module
employs the DeepXDE framework (Lu et al., 2021) as its backend. PINNICLE supports Python 3.8 or higher and requires
minimal library versions, including TensorFlow 2.11.0, PyTorch 2.5, and JAX 0.4, ensuring compatibility with current machine
learning standards.

The Data module manages data integration by loading datasets and assigning them to the model with specific loss functions
as described in Section 4. Users can control the volume of training data, enabling the PINNICLE to handle forward or inverse
problems based on the combination of data and PDEs provided. To prevent overfitting and generalization, PINNICLE employs
a random sampling strategy to automatically load data from the data file depending on their types, which also acts as a form
of implicit regularization in the optimization problem. For mesh data (e.g., ISSM or NetCDF), it applies uniform random
sampling, while scattered data is downsampled using Cartesian grids to maintain spatial coverage and avoid over-clustering
before random sampling.

The Domain module defines the computational domain by generating a polygon based on a list of user-defined vertices.
Using Hammersley sequence sampling (Wong et al., 1997), it produces quasi-random collocation points within the domain.
These points are then utilized during training to evaluate residuals of the governing PDEs.

After configuring all four modules, the PINN module integrates them using the DeepXDE package, which provides a com-
prehensive framework for compiling and training PINNs. By leveraging DeepXDE’s built-in capabilities, PINNICLE stream-
lines the training process, allowing users to focus on model setup and interpretation rather than low-level implementation

details.

8 Example of Applications
8.1 Example 1: an SSA inverse problem on Helheim Glacier

In this example, we use PINNICLE to reproduce results of the inverse problem described in Cheng et al. (2024). The problem
involves solving the 2D SSA equation outlined in Eq. (2) for the fast-flowing region of Helheim Glacier in Southeast Greenland.
We use a 6-layer fully connected neural network, with 20 neurons per layer. A schematic representation of the problem,
including the data used for training, is shown in Figure 2 and the corresponding Python implementation is provided in Listing
1. We configure PINNICLE to randomly sample N, = Ny = N = 4000 data points for each input variables (line 19 to 22),

including ice velocities, surface elevation, ice thickness, along with N, = 9000 collocation points over the entire basin of
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Figure 2. The PINNICLE framework for Example 1: inverse problem on Helheim Glacier. The training data include ice velocity, ice thick-

ness, and surface elevation. The friction coefficient C, highlighted in the red box, represents the numerical solution from ISSM and is used

only on the domain boundary as a boundary condition. It also serves as

the box of Physics is the vector form of the SSA in Eq. (2).

the ’reference solution’ for comparison. The governing equation in

Helheim Glacier for evaluating the PDE residuals (line 12 to 13). The unknown friction coefficient is inferred by specifying

"C" :None in the data section (line 20), ensuring that only boundary data is used to constrain the inversion. It is important to

note that the friction coefficient within the red box in Figure 2 is not included in the training processes but is retained as the

‘reference solution’ for validation purposes in Figures 3(b) and 3(f).

Once the setup is complete, PINNICLE assembles the loss function based on these user-defined inputs. In this case, the

complete formulation of the loss function is written as
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1. import pinnicle

2

# General parameters
4 hp = {}
5: hp["epochs"] = 100000

7. # NN
8: hp["num_neurons"] = 20

9 hp["num_layers"] = 6

1: # domain
122 hp["shapefile"] = "Helheim.exp"

13: hp["num_collocation_points"] = 9000

15 # physics
16: hp["equations"] = {"SSA":{}}

18 # data

190 issm = {}

20: issm["data_size"] = {"u":4000, "v":4000, "s":4000, "H":4000, "C":None}
21 issm["data_path"] = "Helheim.mat"

2: hp["data"] = {"ISSM":issm}

2% # create experiment
25 experiment = pinnicle.PINN (hp)

26 experiment.compile ()

28 # Train

2. experiment.train ()

Listing 1. Python code of Example 1: inverse problem on Helheim Glacier.

11
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where the weights v(.) are the default weights in PINNICLE as shown in Table 2, and N¢ = 541 is the number of boundary
points used for constraining friction coefficient C. The terms L, Lg, and L are the weighted MSE of the data misfit for
ice velocity |ul, ice thickness H, and surface elevation s, respectively. The term L accounts for the MSE of the boundary
condition imposed on the friction coefficient. However, it is possible treat C' as a free parameter in the inversion. In such cases,
users can exclude C from the dataset by removing the entry "C" :None from issm["data_size"] configuration (e.g.,
line 20 in Listing 1). PINNICLE will then automatically omit the L term from the loss function in Eq. (10). The PDE residual,
denoted as L, is expressed in the vector form of the SSA in Eq. (2) and is weighted according to the driving stress to ensure
balanced contributions in the loss function.

After training for 100,000 epochs (line 5 in Listing 1), the solution is presented in Figure 3. The root mean square error
(RMSE) for each variable comparing to the ‘reference solution’ is as follows: velocity at 273.86 m/a, surface elevation at
22.21 m, ice thickness at 29.07 m, and friction coefficient at 1101.96 Pa!/2m—1/6s'/6 These results closely align with those
reported in Cheng et al. (2024), with similar spatial patterns of errors. However, our errors are approximately twice as large, due
to training for only one-tenth of the epochs compared to Cheng et al. (2024). Despite this, the overall consistency demonstrates

the capability of PINNICLE to reproduce and approximate inverse problem results effectively.

101 103 0 5000 0 500 1000 1500 0 1000 2000
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Figure 3. The PINNICLE predictions and the misfit of Example 1. (a)-(d) The predictions of surface velocity, friction coefficient, ice
thickness, and surface elevation. (e)-(h) The misfit between the ‘reference solution’ in Figure 2 and the corresponding PINNICLE predictions

in (a)-(d).
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8.2 [Example 2: Simultaneous Inference of Basal Friction and Ice Rheology for Pine Island Glacier

This second example demonstrates PINNICLE’s capability to simultaneously infer two spatially varying parameters: the basal
friction coefficient beneath grounded ice and the ice rheology, described by the flow-law pre-factor, within the floating ice
shelf. We employ the SSA in Eq. (2) on Pine Island Glacier, Antarctica. To capture ice rheology variations, we incorporate
a spatially varying pre-factor B in Eq. (3). The Python implementation of this example is provided in Listing 2. The neural
network architecture consists of a 6-layer fully connected network with 40 neurons per layer. To effectively capture high-
frequency variations, we apply a Fourier Feature Transformation with ¢ =10 and m = 30, as described in Section 5 (line
10 to 12 in Listing 2). Given the larger domain compared to Example 1 in Section 8.1, we utilize Ny, = Ny = N, = 8000
data points and N, = 18000 collocation points to ensure comprehensive spatial coverage and resolution. The training dataset
comprises surface velocity, surface elevation, and ice thickness data across the entire domain from PIG.mat. To constrain
the model, we impose Dirichlet boundary conditions: setting C' = 0 on the floating ice shelf with N = 4000 and prescribing
B = 1.41 x 10%Pa s!/3 for grounded ice with N = 4000, corresponding to ice at -10°C (Cuffey and Paterson, 2010). These
two boundary conditions are imposed using a separate data file BC .mat, which contains scatter data points of C' and B, and
their corresponding coordinates.
In this case, the loss function is formulated as
> 2 N 2
£:£“+£H+£S+J%Z(Ci_ci) +£Z(Bi—3i) Ly, (1)

N
i=1 B3

ﬁc L:B

where Ly, Ly, L, and L, have the same formulation as in Eq. (10). The additional terms L£¢ and £p account for the data
misfit of the friction coefficient C' on the floating ice shelf and the ice rheology pre-factor B on the grounded ice, respectively.

After 1,000,000 training epochs, the results are presented in Figure 4. The RMSE for each variable, compared to the ‘refer-
ence solution’ is as follows: surface velocity at 173.13 m/a, surface elevation at 18.28 m, ice thickness at 24.38 m, basal friction
coefficient at 1242.05 Pa'/?m~1/65/6_and ice rheology pre-factor at 3.81 x 107Pa s'/3. The magnitudes of these errors are
consistent with those observed in Example 1. Larger misfits are observed in two areas: the friction coefficient in slow-moving
regions and the rheology near the ice front. Despite these localized discrepancies, the overall performance demonstrates PIN-

NICLE'’s capacity to simultaneously infer multiple variables.
8.3 Example 3: Time-Dependent Forward Modeling of Helheim Glacier

In this final example, we demonstrate PINNICLE’s capability to solve a transient problem by modeling the evolution of ice
thickness over time using the mass transport equation in Eq. (1). Specifically, we simulate the dynamics of Helheim Glacier
from 2008 to 2009. The framework for this example is illustrated in Figure 5, and the corresponding Python implementation
is provided in Listing 3. Since the problem is defined as time-dependent (line 8 to 10), PINNICLE automatically constructs a

spatiotemporal domain and sets the input variables of the neural network to include spatial coordinates x,y and time ¢.
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. import pinnicle

# hyperparameters
4 hp = {}
5. hp["epochs"] = 1000000

7. # NN

8 hp["num_neurons"] = 40

9 hp["num_layers"] = 6

0 hp["fft"] = True

1. hp['sigma']l = 10

122 hp['num_fourier_ feature'] = 30

4. # domain
15 hp["shapefile"] = "PIG.exp"
16: hp["num_collocation_points”] = 18000

1&: # physics
190 hp["equations"] = {"SSA_VB": {}}

21 # data
2: issm = {}

23 issm["data_size"] = {"u":8000, "v":8000, "s":8000, "H":8000}

2. issm["data_path"] "PIG.mat"
5. BC = {}

2. BC["data_size"] = {"C":4000, "B":4000}

27 BC["data_path"] = "BC.mat"
28 BC["source"] = "mat"
2: hp["data"] = {"ISSM":issm, "BC":BC}

31: # create experiment
3: experiment = pinnicle.PINN (hp)

33: experiment.compile ()

35: # Train

6. experiment.train ()

Listing 2. Python code of example 2: Inferring basal friction and ice rheology for Pine Island Glacier.
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Figure 4. The comparison of the ‘reference solution’, PINNICLE predictions and misfit of example 2, to infer the basal friction coefficient
and ice rheology simultaneously for Pine Island Glacier. (a)-(e) The ‘reference solution’ of surface velocity, friction coefficient, ice thickness,
surface elevation, and the temperature dependent pre-factor. (f)-(j) The PINNICLE predictions of surface velocity, friction coefficient, ice
thickness, surface elevation, and the temperature dependent pre-factor. (k)-(0) The misfit between the ‘reference solution’ and the corre-

sponding PINNICLE predictions.

To drive the forward model, we provide a time series of ice velocity and surface mass balance at 0.1 year intervals (/V; = 11),
with each time slice containing N,, = N, = 3000 data points for each variable. The initial condition of the ice thickness is
specified at ¢ = 2008 also using Ny = 3000 data points. These data are extracted from the transient simulation results of

275 Cheng et al. (2022). Additionally, we randomly select N, = 10000 collocation points distributed across the spatiotemporal
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Figure 5. The PINNICLE framework for Example 3: the forward time-dependent problem. The training data consist of the initial ice
thickness, a time series of ice velocity and apparent mass balance. Notably, the neural network inputs are automatically adapted to incorporate

both spatial and temporal variables.

domain to enforce the governing equation. The loss function is written as

~ Ny Ny v Ny 9 ~ N; N, ,
u R 9 R 9 R . R
L= 5. 222 (= + (b = viy) )+N_HZ<Hi—Hi) v 2o 2 (@i = aiy)
uttt i1 i=1 = Nt =
Ly LH c.
N, )
VH/t OH B
+N;ZE+V'(’UH)—CL , (12)
P
£‘F

where £,, and £, represent the weighted data misfit functions of ice velocity and mass balance across the entire spatial and
temporal domain, £y accounts for the misfit in the initial ice thickness, and £, corresponds to the PDE residual of the mass
conservation in Eq. (1).

After training for 800,000 epochs using a fully connected neural network with 6 layers and 32 neurons per layer, the results
at the initial time step (¢ = 2008) are shown in Figure 6, while those at the final time step (¢t = 2009) are presented in Figure

7. The RMSE for each variable over the entire simulation period (2008-2009), compared to the ‘reference solution’ are as
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I: import pinnicle

2 import numpy as np

3 # hyperparameters

+ hp = {}

5. hp["epochs"] = 800000

7. # time dependent problem

8 hp["time_dependent"] = True

9 hp["start_time"] = 2008
10: hp["end_time"] = 2009
11

122 # NN

13: hp["num_neurons"] = 32

14 hp["num_layers"] = 6

16: # domain
17 hp["shapefile"] = "Helheim Basin.exp"

18 hp["num_collocation_points"] = 10000

2. # physics

21: hp["equations"] = {"Mass transport":{}}

23: # data

2. hp["data"] = {}

25 for t in np.linspace (2008,2009,11):

26 issm = {}

27 if t == 2008:

28 issm["data_size"] = {"u":3000, "v":3000, "a":3000, "H":3000}
29 else:

30 issm["data_size"] = {"u":3000, "v":3000, "a":3000, "H":None}
31

32 issm["data_path"] = "Helheim_Transient_" + "%g"%t + ".mat"
33 issm["default_time"] =t

34, issm["source"] = "ISSM"

35 hp["data"] ["ISSM"+"$g"%t] = issm

37. # create experiment

3% experiment = pinnicle.PINN (hp)
3. experiment.compile ()

40:

41: # Train

4. experiment.train ()

Listing 3. Python code of example 3: time-dependent problem of Helheim Glacier.

17
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follows: surface velocity at 186.18 m/a, surface mass balance at 0.03 m/a, and ice thickness at 53.11 m. These errors remain
within the same order of magnitude as the other two examples, demonstrating PINNICLE’s performance in solving transient

problems.

9 Performance

We present the performance of the examples in Table 3. All experiments were conducted on the Texas Advanced Computing
Center Lonestar6 system, using nodes equipped with NVIDIA A100 GPUs with 40 GB of high bandwidth memory each. The
reported wall time (in hours) represents the average of five identical runs for each numerical experiment. The computational
cost is influenced by the number of epochs, neural network parameters, data points, and collocation points, among other
factors. It is essential to recognize that problems similar to Examples 1 and 3 typically can be resolved more quickly with
traditional numerical models, such as ISSM (Larour et al., 2012), often within just a few minutes on multi-core CPUs to
achieve comparable accuracy (Cheng et al., 2024, 2022). However, solving complex mixed inverse problems, like the one
presented in Example 2, using traditional adjoint methods is non-trivial, since it would include the derivation of new adjoint
equations with respect to the two unknown variables, simultaneously. Furthermore, we highlight that PINNICLE’s current
computational performance has not been fully optimized yet, and rapid advances in hardware technology will help further
increase its performance. For example, migrating our experiments from NVIDIA V100 GPUs (Cheng et al., 2024) to NVIDIA
A100 GPUs has led to at least a twofold reduction in computation time.

Additionally, direct comparisons between machine learning frameworks (on GPU) and traditional data assimilation methods
(on CPU) remain limited even in broader climate science community. Lai et al. (2024), for example, points out critical differ-
ences between PINNSs and conventional ensemble-based data assimilation methods, such as Ensemble Kalman Filters (Bauer
et al., 2015). PINNSs offer the distinct advantage of simultaneously addressing forward and inverse problems, significantly re-
ducing computational demands compared to ensemble methods, which require multiple simulation runs. Conversely, ensemble
methods, despite being computationally intensive, provide explicit uncertainty quantification through ensemble spread. Rel-
ative to classical adjoint methods, PINNs demonstrate enhanced robustness to noisy observational data, effectively resolving
inversion problems with smoother, physically consistent solutions (Wang et al., 2022; Cheng et al., 2024).

For the current version of PINNICLE, all spatial, temporal, and parameter derivatives are computed using reverse-mode au-
tomatic differentiation (AD) as implemented in the DeepXDE backend. Although it has been shown that using forward-mode
AD for spatial derivatives (e.g., with respect to ¢, x, and y) and reverse-mode AD for network parameters can significantly
improve memory and computational efficiency Cho et al. (2023), the current version of DeepXDE does not yet support this
separable AD approach. We are actively following the ongoing development of this feature and plan to integrate it into PINNI-
CLE as soon as it becomes available. We anticipate that the incorporation of this strategy in future versions of PINNICLE will

further enhance the scalability and efficiency, particularly for large scale simulations.
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Figure 6. The comparison of the ‘reference solution’, PINNICLE predictions and misfits of the transient simulation in example 3 at the initial
time step ¢t = 2008. (a)-(c) The ‘reference solution’ of surface velocity, mass balance, and ice thickness. (d)-(f) The PINNICLE predictions.
(g)-(i) The misfit between the ‘reference solution’ and the corresponding PINNICLE predictions.
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Table 3. Performance of the examples in PINNICLE

Name Equations Neural Network  Epochs  # Parameters  # Data  # Collocation points ~ Average wall time
Example 1 SSA 6x20 10° 2,286 4,000 9,000 0.48 h
Example 2 SSA_VB 6x40 10° 10,886 8,000 18,000 1497 h
Example 3 ~ Mass transport 6x32 8 x 10° 5540 33,000 10,000 422h

10 Conclusions

In this study, we introduced PINNICLE, a flexible and robust framework designed to solve a wide range of glaciological prob-
lems using Physics-Informed Neural Networks. PINNICLE integrates observational data with physical laws, enabling both
inverse and forward modeling across diverse spatial and temporal scales. The framework demonstrates consistent performance
in inferring spatially and temporally varying parameters. PINNICLE’s flexibility allows users to customize neural network ar-
chitectures, incorporate various types of data, and apply different physical constraints, making it suitable for complex modeling
tasks in glaciology. Additionally, we emphasize that the PINNICLE framework is not intended to replace traditional numerical
methods for solving standard forward or inverse problems. Instead, it is best viewed as a complementary tool, especially useful
in scenarios involving the integration of diverse physical processes and the exploration of innovative scientific concepts. PIN-
NICLE'’s ability to seamlessly integrate observational data with physical laws within a unified framework enhances flexibility
and can significantly simplify the implementation and evaluation of new physical models. Future developments will focus
on incorporating more advanced neural network architectures, optimization techniques, and additional physical constraints to
further enhance accuracy and computational efficiency. PINNICLE’s modular design ensures adaptability to evolving machine

learning methodologies and glaciological challenges, positioning it as a valuable tool for the cryosphere community.

Code and data availability. The source code and development history are hosted on GitHub at https://github.com/ISSMteam/PINNICLE.
The specific version of PINNICLE used in this study, including all examples, input data used for training, and neural network weights
after training, has been archived on Zenodo and is available at: https://doi.org/10.5281/zenodo.15643042 (Cheng et al., 2025). All examples
mentioned in this study are organized in the folder: PINNICLE /examples/. The code used in this work is available as a Python package
on PyPL It can be installed using: pip install pinnicle. This software is licensed under the GNU Lesser General Public License v2

(LGPLv2).

Author contributions. GC, MK and MM designed the study. GC did the numerical computations. GC wrote the manuscript with input from
MK and MM.

Competing interests. The authors declare that they have no conflict of interest.

20


https://github.com/ISSMteam/PINNICLE
https://doi.org/10.5281/zenodo.15643042

Acknowledgements. This work was supported by the National Science Foundation #2118285 and #2147601. GC acknowledges support from
the Novo Nordisk Foundation under the Challenge Programme 2023 (Grant NNF230C00807040). The authors gratefully acknowledge the
340 data and models obtained from projects supported by the Heising-Simons Foundation under Grants 2019-1161 and 2021-3059.

21



345

350

355

360

365

370

375

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Good-
fellow, L., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous
systems, https://www.tensorflow.org, software available from tensorflow.org, 2015.

Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, K., Mottram, R., and Khan, S. A.: Contribution of
the Greenland Ice Sheet to sea level over the next millennium, Science Advances, 5, https://doi.org/10.1126/sciadv.aav9396, 2019.

Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J., and Truffer, M.: Brief communication: A roadmap towards credible projections of
ice sheet contribution to sea level, Cryosphere, 15, 5705-57135, https://doi.org/10.5194/tc-15-5705-2021, 2021.

Bauer, P, Thorpe, A., and Brunet, G..: The Quiet Revolution of Numerical Weather Prediction, Nature, 525, 47-55,
https://doi.org/10.1038/nature 14956, 2015.

Bolibar, J., Sapienza, F., Maussion, F., Lguensat, R., Wouters, B., and Pérez, F.: Universal differential equations for glacier ice flow modelling,
Geoscientific Model Development, 16, 6671-6687, https://doi.org/10.5194/gmd-16-6671-2023, 2023.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne,
S., and Zhang, Q.: JAX: composable transformations of Python+NumPy programs, http://github.com/jax-ml/jax, 2018.

Brinkerhoff, D. J.: Variational inference at glacier scale, Journal of Computational Physics, https://doi.org/10.1016/j.jcp.2022.111095, 2022.

Budd, W. E, Keage, P. L., and Blundy, N. A.: Empirical studies of ice sliding, J. Glaciol., 23, 157-170, 1979.

Cheng, G. and Lotstedt, P.: Parameter sensitivity analysis of dynamic ice sheet models - numerical computations, CRYOSPHERE, 14,
673-691, https://doi.org/10.5194/tc-14-673-2020, 2020.

Cheng, G., Morlighem, M., Mouginot, J., and Cheng, D.: Helheim Glacier’s Terminus Position Controls Its Seasonal and Inter-Annual Ice
Flow Variability, Geophys. Res. Lett., 49, €2021GL097 085, https://doi.org/10.1029/2021GL097085, 2022.

Cheng, G., Morlighem, M., and Francis, S.: Forward and Inverse Modeling of Ice Sheet Flow Using Physics-Informed Neural Net-
works: Application to Helheim Glacier, Greenland, J. Geophys. Res. Machine Learning and Computation, 1, €2024JH000 169,
https://doi.org/10.1029/2024JH000169, 2024.

Cheng, G., Krishna, M., and Francis, S.: ISSMteam/PINNICLE: Official release version of PINNICLE,
https://doi.org/10.5281/zenodo.15643042, 2025.

Cho, J., Nam, S., Yang, H., Yun, S.-B., Hong, Y., and Park, E.: Separable Physics-Informed Neural Networks, https://arxiv.org/abs/2306.
15969, 2023.

Colgan, W., MacGregor, J. A., Mankoff, K. D., Haagenson, R., Rajaram, H., Martos, Y. M., Morlighem, M., Fahnestock, M. A., and Kjeld-
sen, K. K.: Topographic Correction of Geothermal Heat Flux in Greenland and Antarctica, J. Geophys. Res., 126, e2020JF005 598,
https://doi.org/10.1029/2020JF005598, 2021.

Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, 4th Edition, Elsevier, Oxford, 2010.

dos Santos, T. D., Morlighem, M., and Brinkerhoff, D.: A new vertically integrated, MOno-Layer Higher-Order ice flow model (MOLHO),
Cryosphere, 16, 179-195, https://doi.org/10.5194/tc-16-179-2022, 2022.

Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R., Holden, P. B, Nias, I. J., Payne, A. J., Ritz, C., and Wernecke,
A.: Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature, https://doi.org/10.1038/s41586-019-0901-4, 2019.

22


https://www.tensorflow.org
https://doi.org/10.1126/sciadv.aav9396
https://doi.org/10.5194/tc-15-5705-2021
https://doi.org/10.1038/nature14956
https://doi.org/10.5194/gmd-16-6671-2023
http://github.com/jax-ml/jax
https://doi.org/10.1016/j.jcp.2022.111095
https://doi.org/10.5194/tc-14-673-2020
https://doi.org/10.1029/2021GL097085
https://doi.org/10.1029/2024JH000169
https://doi.org/10.5281/zenodo.15643042
https://arxiv.org/abs/2306.15969
https://arxiv.org/abs/2306.15969
https://arxiv.org/abs/2306.15969
https://doi.org/10.1029/2020JF005598
https://doi.org/10.5194/tc-16-179-2022
https://doi.org/10.1038/s41586-019-0901-4

380

385

390

395

400

405

410

Fowler, A. C.: A theoretical treatment of the sliding of glaciers in the absence of cavitation, Phil. Trans R. Soc. A, 298, 637-685,
https://doi.org/10.1098/rsta.1981.0003, 1981.

Furst, J. J., Durand, G., Gillet-Chaulet, F., Merino, N., Tavard, L., Mouginot, J., Gourmelen, N., and Gagliardini, O.: Assimilation of Antarctic
velocity observations provides evidence for uncharted pinning points, Cryosphere, 9, 1427-1443, https://doi.org/10.5194/tc-9-1427-2015,
2015.

Gagliardini, O., Cohen, D., Raback, P., and Zwinger, T.: Finite-element modeling of subglacial cavities and related friction law, J. Geophys.
Res. - Earth Surface, 112, 1-11, https://doi.org/10.1029/2006JF000576, 2007.

Glen, J. W.: The flow law of ice: A discussion of the assumptions made in glacier theory, their experimental foundations and consequences,
IASH Publ, 47, 171-183, 1958.

Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E.,
Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., C., D., Edwards, T., Felikson,
D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec’h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P.,
Morlighem, M., Nias, 1., Quiquet, A., Riickamp, M., Schlegel, N.-J.and Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal,
R., and van den Broeke, M.: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6,
Cryosphere, https://doi.org/10.5194/tc-14-3071-2020, 2020.

Goldberg, D. N. and Heimbach, P.: Parameter and state estimation with a time-dependent adjoint marine ice sheet model, Cryosphere, 17,
1659-1678, http://www.the-cryosphere-discuss.net/7/2845/2013/tcd-7-2845-2013.pdf, 2013.

Goldberg, D. N. and Sergienko, O. V.: Data assimilation using a hybrid ice flow model, Cryosphere, 5, 315-327, https://doi.org/10.5194/tc-
5-315-2011, 2011.

He, Q., Perego, M., Howard, A. A., Karniadakis, G. E., and Stinis, P.: A hybrid deep neural operator/finite element method for ice-sheet
modeling, Journal of Computational Physics, 492, https://doi.org/10.1016/j.jcp.2023.112428, 2023.

Iwasaki, Y. and Lai, C.-Y.: One-dimensional ice shelf hardness inversion: Clustering behavior and collocation resampling in physics-informed
neural networks, J. Comput. Phys., 492, https://doi.org/10.1016/j.jcp.2023.112435, 2023.

Joughin, 1., Shapero, D., Dutrieux, P., and Smith, B.: Ocean-induced melt volume directly paces ice loss from Pine Island Glacier, Sci. Adv.,
7, https://doi.org/10.1126/sciadv.abi5738, 2021.

Jouvet, G. and Cordonnier, G.: Ice-flow model emulator based on physics-informed deep learning, Journal of Glaciology, pp. 1-15,
https://doi.org/10.1017/jo0g.2023.73, 2023.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L.: Physics-informed machine learning, Nat. Rev. Phys., 3,
422-440, https://doi.org/10.1038/s42254-021-00314-5, 2021.

Koo, Y., Cheng, G., Morlighem, M., and Rahnemoonfar, M.: Calibrating calving parameterizations using graph neural network emulators:
Application to Helheim Glacier, East Greenland, EGUsphere, 2024, 1-25, https://doi.org/10.5194/egusphere-2024-1620, 2024.

Lai, C.-Y., Hassanzadeh, P., Sheshadri, A., Sonnewald, M., Ferrari, R., and Balaji, V.: Machine Learning for Climate Physics and Simulations,
Annual Review of Condensed Matter Physics, 16, null, https://doi.org/10.1146/annurev-conmatphys-043024-114758, 2024.

Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale, high order, high spatial resolution, ice sheet modeling using the
Ice Sheet System Model (ISSM), J. Geophys. Res., 117, 1-20, https://doi.org/10.1029/2011JF002140, 2012.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E.: DeepXDE: A Deep Learning library for solving differential equations, SIAM Rev., 63,
208-228, https://doi.org/10.1137/19M 1274067, 2021.

23


https://doi.org/10.1098/rsta.1981.0003
https://doi.org/10.5194/tc-9-1427-2015
https://doi.org/10.1029/2006JF000576
https://doi.org/10.5194/tc-14-3071-2020
http://www.the-cryosphere-discuss.net/7/2845/2013/tcd-7-2845-2013.pdf
https://doi.org/10.5194/tc-5-315-2011
https://doi.org/10.5194/tc-5-315-2011
https://doi.org/10.5194/tc-5-315-2011
https://doi.org/10.1016/j.jcp.2023.112428
https://doi.org/10.1016/j.jcp.2023.112435
https://doi.org/10.1126/sciadv.abi5738
https://doi.org/10.1017/jog.2023.73
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.5194/egusphere-2024-1620
https://doi.org/10.1146/annurev-conmatphys-043024-114758
https://doi.org/10.1029/2011JF002140
https://doi.org/10.1137/19M1274067

415

420

425

430

435

440

445

450

MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream B, Antarctica, J. Geophys. Res.,
94, 40714087, 1989.

MacAyeal, D. R.: A tutorial on the use of control methods in ice-sheet modeling, J. Glaciol., 39, 91-98, 1993.

Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry, D.: Spatial patterns of basal drag inferred using
control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 37, 1-6,
https://doi.org/10.1029/2010GL043853, 2010.

Morlighem, M., Seroussi, H., Larour, E., and Rignot, E.: Inversion of basal friction in Antarctica using exact and incomplete adjoints of a
higher-order model, J. Geophys. Res., 118, 1746-1753, https://doi.org/10.1002/jgrf.20125, 2013.

Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B.,
Fenty, 1., Hogan, K., Howat, 1., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Nogl, B.
P. Y., O’Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W.,
Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multi-
beam echo sounding combined with mass conservation, Geophys. Res. Lett., 44, 11,051-11,061, https://doi.org/10.1002/2017GL074954,
2017GL074954, 2017.

Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel,
V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S.,
Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D.,
Sun, B., Broeke, M. R. v. d., Ommen, T. D. v., Wessem, M. v., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled
beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132—137, https://doi.org/10.1038/s41561-019-0510-8, 2020.

Morlighem, M., Goldberg, D., Barnes, J. M., Bassis, J. N., Benn, D. I., Crawford, A. J., Gudmundsson, G. H., and Seroussi, H.: The
West Antarctic Ice Sheet may not be vulnerable to marine ice cliff instability during the 21st century, Science Advances, 10, eado7794,
https://doi.org/10.1126/sciadv.ado7794, 2024.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative
Style, High-Performance Deep Learning Library, Advances in Neural Information Processing Systems, 32, https://proceedings.neurips.
cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740- Abstract.html, 2019.

Raissi, M., Perdikaris, P., and Karniadakis, G. E.: Physics-informed neural networks: A deep learning framework for solv-
ing forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707,
https://doi.org/10.1016/j.jcp.2018.10.045, 2019.

Raissi, M., Yazdani, A., and Karniadakis, G. E.: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations,
SCIENCE, 367, 1026+, https://doi.org/10.1126/science.aaw4741, 2020.

Riel, B., Minchew, B., and Bischoff, T.: Data-driven inference of the sechanics of slip slong glacier beds using physics-informed neural
networks: case study on Rutford Ice Stream, Antarctica, J. Adv. Model. Earth Syst., 13, https://doi.org/10.1029/2021MS002621, 2021.
Robel, A. A., Seroussi, H., and Roe, G. H.: Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise,

PNAS, https://doi.org/10.1073/pnas.1904822116, 2019.

Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, 1-19,

https://doi.org/10.1029/2006JF000664, 2007.

24


https://doi.org/10.1029/2010GL043853
https://doi.org/10.1002/jgrf.20125
https://doi.org/10.1002/2017GL074954
https://doi.org/10.1038/s41561-019-0510-8
https://doi.org/10.1126/sciadv.ado7794
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1029/2021MS002621
https://doi.org/10.1073/pnas.1904822116
https://doi.org/10.1029/2006JF000664

455

460

465

470

Seo, J.: Solving real-world optimization tasks using physics-informed neural computing, Sci. Rep., 14, https://doi.org/10.1038/s41598-023-
49977-3, 2024.

Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel,
A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T.,
Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P, Little, C. M., Morlighem,
M., Pattyn, F,, Pelle, T., Price, S. F,, Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S.,
Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a
multi-model ensemble of the Antarctic ice sheet evolution over the 21* century, Cryosphere, 14, 3033-3070, https://doi.org/10.5194/tc-
14-3033-2020, 2020.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J., and Ng, R.: Fourier
features let networks learn high frequency functions in low dimensional domains, Advances in neural information processing systems, 33,
7537-7547, 2020.

Teisberg, T. O., Schroeder, D. M., and MacKie, E. J.: A machine learning approach to mass-conserving ice thickness interpolation, in: 2021
IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 8664-8667, IEEE, 2021.

Tikhonov, A. N.: On the stability of inverse problems, C. R. (Doklady) Acad. Sci. SSSR (N.S.), 39, 176-179, 1943.

Wang, S., Teng, Y., and Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks, SIAM
Journal on Scientific Computing, 43, A3055-A3081, 2021.

Wang, Y., Lai, C.-Y., and Cowen-Breen, C.: Discovering the rheology of Antarctic Ice Shelves via physics-informed deep learning,
https://doi.org/doi.org/10.21203/rs.3.rs-2135795/v1, 2022.

Weertman, J.: On the sliding of glaciers, J. Glaciol., 3, 33-38, 1957.

Wernecke, A., Edwards, T. L., Holden, P. B., Edwards, N. R., and Cornford, S. L.: Quantifying the Impact of Bedrock Topography Uncertainty
in Pine Island Glacier Projections for This Century, Geophys. Res. Lett., 49, https://doi.org/10.1029/2021GL096589, 2023.

Wong, T.-T., Luk, W.-S., and Heng, P.-A.: Sampling with Hammersley and Halton points, Journal of graphics tools, 2, 9-24, 1997.

25


https://doi.org/10.1038/s41598-023-49977-3
https://doi.org/10.1038/s41598-023-49977-3
https://doi.org/10.1038/s41598-023-49977-3
https://doi.org/10.5194/tc-14-3033-2020
https://doi.org/10.5194/tc-14-3033-2020
https://doi.org/10.5194/tc-14-3033-2020
https://doi.org/doi.org/10.21203/rs.3.rs-2135795/v1
https://doi.org/10.1029/2021GL096589

0 500 1000 1500

o
.2
)
=
2
>
=
5
<
o'
0 500 1000 1500
- |
.S ;
+~
5 (f)
&
o,
@
—
<
.
Z
ol
—1000 0 1000 =250 O 250
[ ess— ] [ ss— ]
(g) (h) wiv (1)
- ’
< ;
§ '
w2009 (m/yr) a0y (m/yr) Hop9 (m)

Figure 7. The comparison of the ‘reference solution’, PINNICLE predictions and misfits of the transient simulation in example 3 at the
final time step ¢t = 2009. (a)-(c) The ‘reference solution’ of surface velocity, mass balance, and ice thickness. Note that (c) is not exposed

to the training. (d)-(f) The PINNICLE predictions. (g)-(i) The misfit between the ‘reference solution’ and the corresponding PINNICLE

predictions.
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