

1 The changing mass of the Antarctic Ice Sheet during ENSO- 2 dominated periods in the GRACE era (2002-2022)

3 John Bright Ayabilah^{1,2}, Matt King^{1,2}, Danielle Udy², Tessa Vance³

5 ¹School of Geography, Planning, and Spatial Science, University of Tasmania, Hobart 7001, Tasmania, Australia

6 ²The Australian Centre for Excellence in Antarctic Science, Institute for Marine & Antarctic Studies, University
7 of Tasmania, Hobart 7001, Tasmania, Australia

8 ³Australian Antarctic Program Partnership, Institute for Marine & Antarctic Studies, University of Tasmania,
9 Hobart, TAS, 7001, Australia

10 *Correspondence to:* John Bright Ayabilah (johnbright.ayabilah@utas.edu.au)

13 **Abstract.** Large-scale modes of climate variability significantly influence Antarctic Ice Sheet (AIS) mass change.
14 Improved understanding of the relationship between these climate modes and AIS mass change can help reduce
15 uncertainties in future ice mass estimates and its contribution to sea level rise. However, the spatiotemporal
16 patterns of AIS mass variation driven by El Niño Southern Oscillation (ENSO)-induced atmospheric circulation
17 remain unclear. We investigated AIS mass variability during different ENSO periods using Gravity Recovery and
18 Climate Experiment (GRACE) observed mass changes and modelled surface mass balance (using RACMO2.4p1)
19 over the period 2002 to 2022. To allow comparison with GRACE, we used a cumulative sum indexing method to
20 define different ENSO-dominated ‘periods’ over 2002-2022. This method results in time periods that are
21 dominated by a particular phase of ENSO, that is not necessarily equivalent to specific events as derived from
22 canonical indices. The results show strong spatial variability in how the ENSO teleconnection cumulatively
23 manifests over the AIS. These differing spatial patterns are primarily driven by changes in the Amundsen Sea
24 Low strength, location, and extent, which alter circulation patterns and moisture flow in West Antarctica. In East
25 Antarctica, ice mass variability is largely influenced by the positioning of cyclonic and anticyclonic circulation
26 anomalies, primarily driven by the Southern Annular Mode; however, ENSO signals are also present. In both East
27 and West Antarctica, this study shows that the spatial impact of any given ENSO-dominant period can trigger
28 distinct circulation patterns which can variably influence surface mass balance and ice mass change. However,
29 uncertainties remain, as the mass variability observed during ENSO-dominant periods may not be solely attributed
30 to ENSO, due to teleconnections that may not have fully developed or may have been masked by other processes.

31 1. Introduction

32 The drivers of inter-annual to decadal Antarctic Ice Sheet (AIS) mass variability are complex and not yet fully
33 understood (IMBIE Team, 2018). External factors, such as episodic extreme precipitation events often linked to
34 atmospheric rivers (Wille et al., 2021), and internal factors, including ice dynamics (IMBIE Team, 2018), both
35 contribute to these variations. Understanding the mechanisms underlying AIS mass change and variability is
36 critical for improving future projections of ice mass changes and the Antarctic contribution to sea level rise.

37 The main determinants of the net AIS mass balance (MB) are ice discharge (D) from the continental margins of
38 Antarctica and Surface Mass Balance (SMB). SMB is further defined as accumulating precipitation and riming

39 onto the ice sheet, minus runoff, sublimation/evaporation and blowing snow erosion. The fluctuation of the AIS
40 mass balance and its subsequent contribution to sea level rise are based on the difference between ice discharge
41 and SMB (i.e., MB = SMB – D). The AIS SMB exhibits high variability on inter-annual to decadal timescales,
42 (Kim et al., 2020; Medley and Thomas, 2019; Van De Berg et al., 2006). Precipitation variability, driven by
43 atmospheric circulation, is a key determinant of Antarctic SMB and, over a wide range of timescales, including
44 interannual to decadal, is closely linked to modes of climate variability (Kim et al., 2020).

45 The Southern Annular Mode (SAM) is the dominant mode of extratropical variability in the Southern Hemisphere.
46 The SAM signal is driven by a combination of internal atmospheric dynamics and external forcings, including
47 stratospheric ozone depletion, increases in greenhouse gases, and tropical teleconnections (Fogt and Marshall,
48 2020a). It varies on timescales from weeks to decades, and its influence on Antarctic precipitation is regionally
49 dependent (Marshall et al., 2017). During the positive phase of SAM, the westerlies around 60° S strengthen, and
50 the overall impact on the AIS is a net decrease in SMB (Marshall et al., 2017; Medley and Thomas, 2019).
51 Conversely, the net influence of the negative phase of SAM on the AIS is an increase in SMB (Medley and
52 Thomas, 2019; Marshall et al., 2017). However, SAM related circulation patterns are not stationary and vary over
53 decades, meaning the regional impacts may shift over time (Marshall et al., 2013).

54 The El Niño Southern Oscillation (ENSO) is the dominant mode of inter-annual climate variability globally (2–
55 7-year timescales) and is defined by variations in sea surface temperature (SST) anomalies in the tropical Pacific
56 (Mcphaden et al., 2006). The ENSO pathway to Antarctica is modulated by the Amundsen Sea Low (ASL), which
57 lies at the poleward end of a Rossby wave train originating in the tropics (Hoskins and Karoly, 1981). This Rossby
58 wave train leads to the formation of the Pacific South American mode 1(PSA-1), an atmospheric anomaly pattern
59 that enables ENSO signals to reach Antarctica (Hoskins and Karoly, 1981). This creates a positive pressure
60 anomaly over the Amundsen-Bellingshausen sector (ABS) during El Niño events—the positive phase of PSA-1
61 and negative pressure anomaly during La Niña conditions—the negative phase of PSA-1 (Turner, 2004; Hoskins
62 and Karoly, 1981). The ASL represents a climatological area of low pressure in the South Pacific and is a key
63 component of the nonzonal climatological circulation (Raphael et al., 2016b). The teleconnection between ENSO
64 and the ASL is strongest during the austral spring (September-November; SON) but exerts influence throughout
65 the year (Schneider et al., 2012; Clem and Fogt, 2013; Fogt et al., 2011). The strength, extent, and location of the
66 ASL shows significant variability during different ENSO phases and individual ENSO events, resulting in varying
67 atmospheric circulation patterns that strongly influences moisture and temperature distribution in West Antarctica
68 (Raphael et al., 2016b; Hosking et al., 2013). The impact of ENSO on Antarctic climate is modulated by the phase
69 of SAM, with the signal amplified when SAM and ENSO are atmospherically in phase (positive SAM/La Niña
70 or negative SAM/El Niño) and reduced when they are atmospherically out of phase (positive SAM/El Niño or
71 negative SAM/La Niña) (Clem et al., 2016; Fogt et al., 2011). Positive SAM and La Niña conditions are associated
72 with a deepening (i.e. lower pressure anomaly) ASL, while negative SAM and El Niño conditions weaken the
73 ASL, and influence its longitudinal shift (Raphael et al., 2016b; Hosking et al., 2013). The deepening of the ASL
74 induces continental wind outflow on its western flank, reducing precipitation and SMB over the Antarctic
75 Peninsula and from the Bellingshausen Sea to the Ross Sea region in West Antarctica, whereas a weakened ASL
76 leads to onshore winds that enhance precipitation and SMB (Zhang et al., 2021; Li et al., 2022). The longitudinal
77 shift of the ASL modifies these impact zones.

78 The spatial patterns and magnitude of AIS mass variability due to large-scale modes of climate variability remain
79 unclear. Studies on the role of ENSO in Antarctic climate have mostly focused on precipitation derived from
80 reanalysis products or modelled SMB data (e.g., Medley and Thomas, 2019; Clem et al., 2016; Clem and Fogt,
81 2013; Fogt et al., 2011). Only a few studies have examined the relationship between large-scale modes of climate
82 variability and recent observed ice mass variation using Gravity Recovery and Climate Experiment (GRACE)
83 observed AIS ice mass change time series on timescales ranging from months to decades (e.g., Bodart and
84 Bingham, 2019; Zhang et al., 2021; King et al., 2023). Most of these studies have focused on single strong ENSO
85 events, such as the 2015-2016 El Niño (Bodart and Bingham, 2019), or on the mean impact of ENSO on the AIS.
86 In contrast, our study investigates the spatial impacts of multiple individual ENSO periods (as defined in our
87 study), enabling an assessment of how AIS mass variability differs between events and capturing the diverse
88 responses across the ice sheet, rather than a mean response.

89 The GRACE mission, launched in 2002, has contributed to our understanding of the redistribution of mass within
90 the Earth system, which is useful for observing changes of the Greenland and Antarctic ice sheets (Tapley et al.,
91 2004; Shepherd et al., 2012). GRACE-observed ice mass variability is related to atmospheric circulation-driven
92 snow accumulation and variation in ice discharge (Diener et al., 2021). Although mass loss from runoff and
93 sublimation is included in the GRACE signal, these components are relatively minor compared to discharge. Over
94 the interannual timescales, atmospheric variability dominates the observed mass changes (King et al. 2023).
95 Studies of ENSO's impact on AIS using GRACE-observed ice mass changes show that different ENSO events
96 result in varying climatic and surface weather effects, leading to different spatial patterns of AIS mass variability.
97 Bodart and Bingham (2019) demonstrated that during the 2015-2016 El Niño, the Antarctic Peninsula and West
98 Antarctica gained mass, while East Antarctica experienced a reduction in mass. This spatial pattern is also
99 consistent over a longer period, in line with Zhang et al. (2021) who found similar correlations. They observed a
100 bipolar spatial pattern: during El Niño events, there was a mass gain over the Antarctic Peninsula and West
101 Antarctica and a mass loss over East Antarctica, while the pattern reversed during La Niña events. The bipolar
102 spatial patterns are consistent with the results of King et al. (2023), based on a GRACE analysis for the period
103 2002-2021, and King and Christoffersen (2024), which used GRACE and altimetry data (2002-2020), despite
104 differences in approaches and study periods. However, other studies have suggested that specific ENSO events
105 and types of ENSO events have distinct impacts on Antarctic SMB that are not limited to a bipolar pattern (e.g.,
106 Macha et al., 2024; Sasgen et al., 2010).

107 This study aims to investigate the spatial patterns of ice mass change and the driving atmospheric circulation
108 conditions during various ENSO-dominated periods, as observed in GRACE-derived AIS mass variations
109 between 2002 and 2022. Since GRACE observes total mass change without distinguishing between the individual
110 components of the mass balance, we use SMB output from a regional climate model RACMO2.4p1 to assess the
111 contribution of SMB to the spatial patterns detected by GRACE. The results indicate that no two ENSO periods
112 have the same net effect on Antarctic ice mass, especially at regional scales, and the bipolar spatial pattern
113 observed in earlier studies is not consistent across all ENSO events. This variability suggests that the ENSO signal
114 in the AIS is shifted from its background pattern depending on event-specific atmospheric and oceanic factors.

115 **2. Data and Methods**

116 **2.1. AIS mass change**

117 We used the GRACE and GRACE Follow On data provided by the GFZ German Research Centre for Geosciences
118 (Landerer et al., 2020). The GRACE Follow-On mission, launched in May 2018, succeeded the GRACE mission,
119 which was decommissioned in October 2017 due to battery and fuel problems. This gap between the GRACE and
120 GRACE Follow-On missions resulted in the loss of data from July 2017 and May 2018. Our analysis involved
121 GRACE data spanning from April 2002 to Dec 2022 without gap filling. We used the COST-G release 1 version
122 3 (RL-01 V0003) gridded mass anomaly product, which combines GRACE/GRACE-FO solutions from multiple
123 GRACE analysis centres (Landerer et al., 2020). The data rea provided on 50 km grid products with approximately
124 monthly temporal sampling. However, GRACE data have an underlying spatial resolution of ~300km (Sasgen et
125 al., 2020; Dahle et al., 2024). This relatively coarse resolution limits GRACE's ability to resolve small-small mass
126 changes, particularly localised surface mass balance anomalies.

127 The various available GRACE data products differ based on the processing methods and background models used.
128 The gridded mass change product adopted here is initially derived by solving for spherical harmonic coefficients
129 and then computing mass anomalies for each grid cell across the entire ice sheet using tailored sensitivity kernels
130 that minimise both GRACE and leakage error (Groh and Horwath, 2016). Within this product, glacial isostatic
131 adjustment is corrected using the ICE6G_D model (Richard Peltier et al., 2018), although this has no bearing on
132 non-linear variability as studied here. Atmospheric and oceanic effects on mass redistribution are also modelled
133 as are spherical harmonic degree-1 terms based on the approach of Swenson et al. (2008). Further details about
134 the GRACE time series, post-processing techniques, and quality assessment can be found in Dahle et al. (2019).
135 It is worth noting that the GRACE-observed ice mass change time series is affected by systematic errors associated
136 with the GRACE orbital geometry and small unmodelled errors, evident in the (largely north-south) striping
137 pattern observed in some of the ice mass change results.

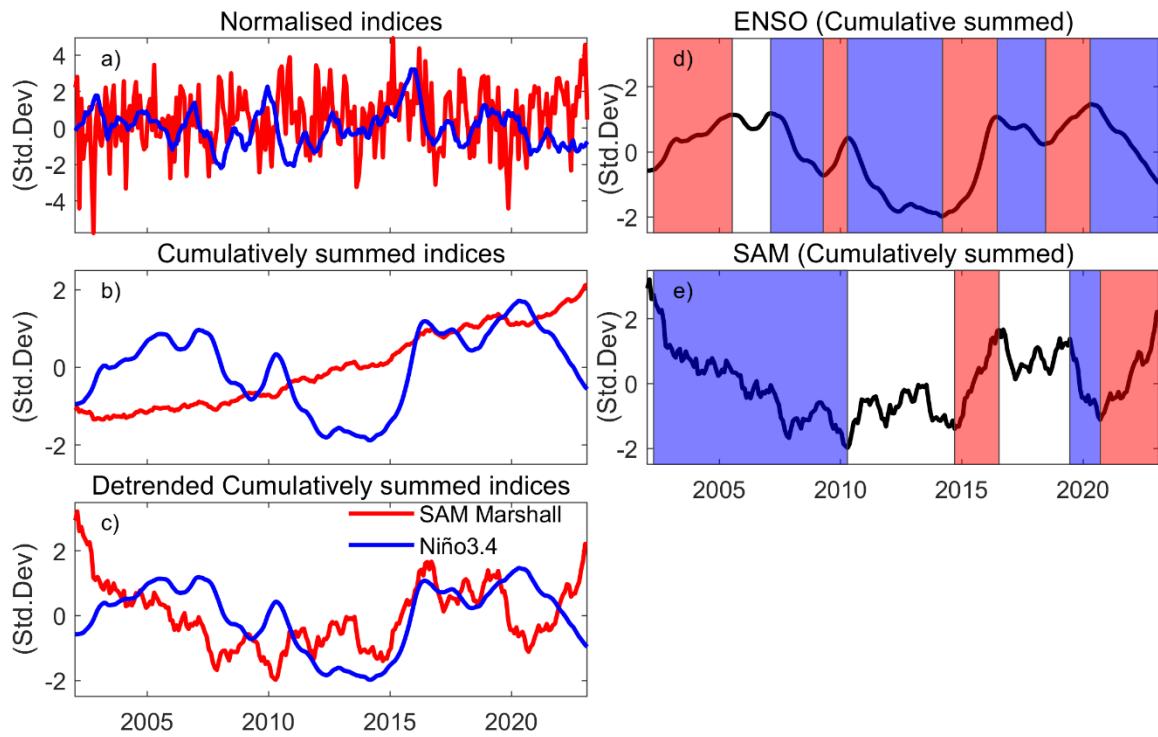
138 We focus our analysis on the ENSO signal in ice mass variation during different ENSO-dominated periods. First,
139 we removed short-term signal fluctuations in the GRACE data by applying a 7-month moving median smoother
140 to the GRACE time series. This filter choice, following King et al. (2023), is a subjective decision aimed at
141 dampening month-to-month noise without distorting longer-term variability. Since our focus is on GRACE-
142 observed ice mass variability, we subtracted the linear trend at each grid point, estimated using ordinary least
143 squares over the data span. This effectively produces mass anomalies with respect to the climatology of the entire
144 GRACE period.

145 To understand the relationship between ice mass changes and ENSO-dominated periods, we computed the rate of
146 ice mass change for each identified ENSO-dominated period. These rates represent the impact of ENSO during
147 each ENSO-dominated period. We calculated the rates for each grid cell of the gridded GRACE ice mass anomaly
148 data and generated spatial patterns of ice mass trends for each ENSO-dominated period.

149 **2.2. Climate indices**

150 To characterise ENSO variability, we used the Niño3.4 index, one of several metrics that measures the strength
151 and phase of ENSO based on sea surface temperature anomalies in the central and eastern tropical Pacific. This
152 index is obtained by tracking the running five-month mean SST based on the HadISST record over 5°N–5°S,
153 170°W–120°W (Rayner et al., 2003) and is normalised and shown in Fig. 1a. It is provided by the Climate
154 Prediction Centre (CPC) of the National Oceanic and Atmospheric Administration (NOAA) and can be accessed
155 at <https://psl.noaa.gov/data/timeseries/month/Nino34/>. The Niño3.4 temperature anomalies are standard for
156 detecting and monitoring ENSO events but cannot differentiate between eastern and central ENSO events. We
157 used the Niño3.4 index because our focus was on the spatial variability in AIS mass during all ENSO events,
158 rather than differentiating between eastern and central ENSO events.

159 For SAM, we used the station-derived index from Marshall (2003), available at <http://www.nerc-bas.ac.uk/icd/gjma/sam.html>, and shown in Fig. 1a. This index is based on the zonal pressure differences at 12
160 stations located between 40 °S and 65 °S.


162 To identify ENSO signatures in the GRACE data, we first identified El Niño- and La Niña-dominated periods
163 based on the cumulative summed indices, which act as a sort of low-pass filter of the raw indices. The cumulative
164 summed indices were derived from anomalies relative to their climatological mean using a reference window of
165 1971-1999. This period is a well observed period before the commencement of GRACE and is the same as that
166 chosen by King et al. (2023). After the indices were normalised using the mean and standard deviation computed
167 within the reference window, the normalised indices were restricted to the GRACE period, cumulatively summed,
168 detrended, and renormalised.

169 To investigate the potential linkage between large-scale climate variability and ice mass variation, we
170 cumulatively summed all the climate indices (Fig 1b) and detrended (Fig. 1c). The AIS mass reflects the
171 compound effect of surface mass fluxes over time. The cumulative mass flux observed by GRACE reflects the
172 cumulative climate indices (King et al., 2023) as opposed to raw indices, which relate to mass flux. These
173 cumulative indices are also captured by modelled cumulative SMB (Kim et al., 2020; Diener et al., 2021). The
174 alternative approach is to difference GRACE data in time, but this inflates the GRACE noise and reduces the
175 lower frequency signal and is hence undesirable (King et al., 2023).

176 In this study, we defined El Niño-dominated periods as intervals during which the positive phase of ENSO persists
177 and outweighs the negative phase, culminating in a positive peak in the cumulative ENSO index. Similarly, La
178 Niña-dominated periods are defined as intervals during which negative phase outweighs the positive phase,
179 culminating in a negative peak. Only ENSO periods with a minimum duration of 12 months were considered in
180 our analysis. In a cumulatively summed index, these are expressed as sustained periods of positive (El Niño) or
181 negative (La Niña) slope. Based on this criterion, we identified four El Niño-dominated periods over the GRACE
182 time steps: 2002-2005, 2009-2010, 2014-2016, and 2018-2020 (Fig. 1d). An equal number of La Niña-dominated
183 periods were found, covering 2007-2009, 2010-2014, 2016-2018, and 2020-2022. The strength of the expression
184 of the ENSO signal in the Antarctic climate is modulated by the phase of SAM (Fogt et al., 2011). During the
185 2002-2005 El Niño-dominated period, the cumulative SAM index was dominated by negative SAM until around

186 2008 (atmospherically in phase El Niño/-SAM). After 2008, the cumulative SAM index exhibited no notable
 187 trend, indicating a neutral phase. During the 2014-2016 El Niño, cumulative SAM and ENSO indices were
 188 atmospherically out of phase (El Niño/+SAM). SAM shifted to a neutral state during the 2016-2018 La Niña.
 189 SAM and ENSO were atmospherically in phase during the 2018-2020 El Niño (El Niño/-SAM) and 2020-2022
 190 La Niña (La Niña/+SAM), which is notable as the only time positive SAM and La Niña co-occurred over the
 191 GRACE period (Fig. 1d, e).

192 Note that we do not distinguish between Central Pacific (CP) and Eastern Pacific (EP) El Niño events in our
 193 analysis because our ENSO dominated periods frequently span multiple years. Indeed, examining the cumulative
 194 CP and EP indices shows they are very similar, aside from 2016-2018, and hard to distinguish in an analysis of
 195 GRACE data (Supplementary Fig. S1). Our method using the Niño3.4 index encapsulates variations in the tropical
 196 spatial pattern of SST anomalies.

197
 198 **Figure 1. Monthly climate indices of SAM (Marshall, 2003) and Niño3.4 from 2002-2022:** (a) normalised
 199 SAM and Niño3.4 indices; (b) normalised cumulatively summed SAM and Niño3.4 indices; (c) detrended,
 200 cumulatively summed SAM and Niño3.4 indices (normalised). Periods until positive and negative peaks
 201 are reached in the cumulatively summed Niño3.4 are defined as El Niño-dominated and La Niña-
 202 dominated periods, respectively, represented as red and blue shaded areas in (d). Similarly, periods until
 203 positive and negative peaks are reached in the cumulatively summed SAM index (Marshall, 2003) are
 204 defined as SAM-positive and SAM-negative dominated periods, respectively, denoted as red and blue
 205 shaded areas in (e). Neutral dominated periods are represented by white shading.

206 **2.3. SMB model outputs**

207 We used modelled SMB output from the Regional Atmospheric Climate Model RACMO2.4p1 model. This model
208 has a horizontal resolution of 11 km and a vertical resolution of 40 atmospheric levels. This version of SMB model
209 output is forced by ERA5 reanalysis data at its lateral boundaries and SST and sea ice extent at the sea surface
210 boundary, with data available from 1979 onward. Compared with previous releases, RACMO2.4p1 provides a
211 better representation of SMB process which agree with observation (Van Dalum et al., 2025; Van Dalum et al.,
212 2024). For our study, monthly SMB values truncated to the GRACE period were used, covering Apr 2002 to Dec
213 2022. To compare with GRACE data, we computed anomalies relative to the 2002-2022 mean and then
214 cumulatively summed them to obtain cumulative SMB anomalies in units of kg m^{-2} . These anomalies were then
215 interpolated to match the GRACE grid spacing and time steps. We detrended the cumulative SMB and performed
216 a regression analysis on these anomalies for each defined ENSO-dominated period.

217 **2.4. Reanalysis climate data**

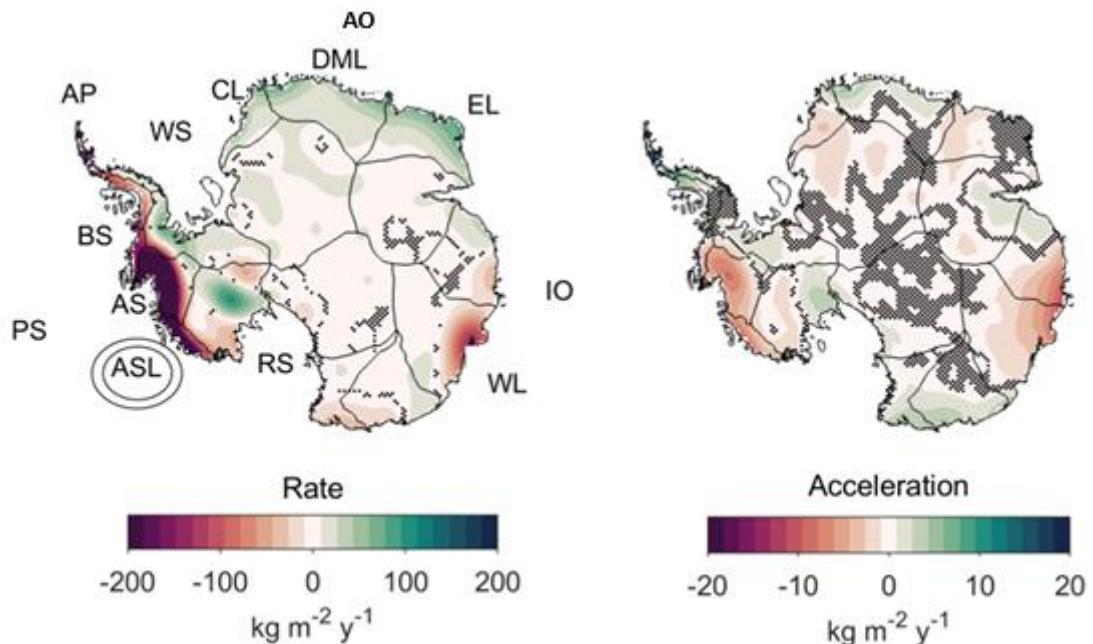
218 To explore the potential climatic forcing during an ENSO-dominated period, we examined monthly mean ERA5
219 reanalysis model 10 m winds and sea level pressure from 2002 to 2022, with a resolution of 0.25° by 0.25°
220 (Hersbach et al., 2020). Anomalies of 10 m zonal and meridional wind components, as well as sea level pressure,
221 were computed for each grid cell relative to the mean over the GRACE period, for all regions south of 40° S. We
222 then computed anomaly composite means for each ENSO-dominated period. We used ERA5 products instead of
223 RACMO outputs because ERA5 provides broader spatial coverage and is more suitable for capturing large-scale
224 atmospheric circulation patterns, which are critical for analysing ENSO-related teleconnections. Additionally,
225 RACMO is forced by ERA5.

226 **2.5. Definitions of events, periods and anomaly interpretations used in this study**

227 We acknowledge that we use multiple terminologies in this study to define both our results, and when comparing
228 to the literature. For example, we use the term ‘El Niño- or La Niña-dominated period’ or simply ‘period’ to define
229 the periods of time of sustained ENSO phase we define using our cumulatively summed index. In contrast, when
230 comparing to or describing other literature, we use the term ‘El Niño/ La Niña event’ which refers to the peak
231 phase of ENSO events. We also describe anomalies from the mean over the GRACE period. For the purposes of
232 this study, the pressure and wind fields, as well as SMB and GRACE mass change, depicted in the figures
233 represent anomalies from the climatology for each relevant variable. That is, for a given wind and pressure map,
234 the fields depict wind and pressure anomalies against the 2002-2022 mean (the GRACE data period). For example,
235 positive anomalies over the Antarctic continent reflect a relative strengthening of the mean Antarctic High, while
236 negative anomalies reflect a relative weakening of the Antarctic High (not the presence of a low). For SMB,
237 positive SMB and GRACE anomalies represent an increase in mass, whereas negative anomalies indicate a
238 reduction in mass relative to the climatology.

239 **2.6. Statistical significance of the results**

240 To quantify the significance of our regression trends at each grid point, we employed a two-tailed Student’s t-test.
241 The standard error of the slope at each grid point was calculated from the regression residuals and used to assess
242 whether the slope significantly differed from zero at the 5% significance level. For mean sea level pressure

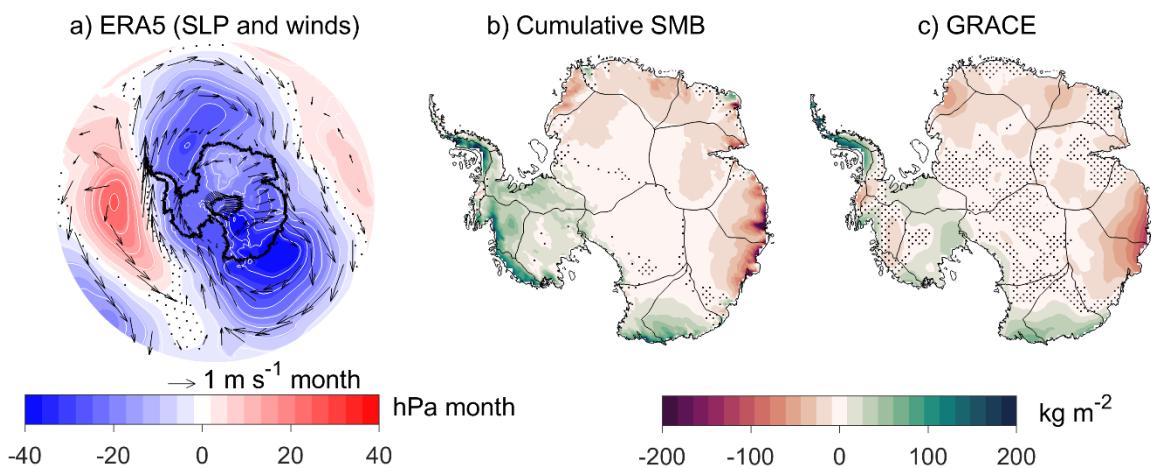

243 anomaly composites, statistical significance was assessed based on deviations from the climatological baseline
244 using a two-sample *t*-test assuming unequal variances, also at the 5% significance level.

245 **3. Results**

246 **3.1 Ice mass change**

247 We start by examining the long-term trend and acceleration in AIS mass change over the GRACE observational
248 period, represented by the linear and quadratic terms in the regression, respectively (Fig. 2). The spatial pattern
249 reveals strong regional variability, with areas of both positive and negative mass anomalies. While not identical,
250 the linear rate and acceleration exhibit closely aligned spatial patterns of mass change. In West Antarctica, the
251 rate of ice mass loss is most pronounced in the Amundsen Sea and Bellingshausen Sea sectors, where accelerated
252 ice discharge is well documented (Rignot et al., 2019; Gardner et al., 2018). The East Antarctic ice sheet shows
253 mass gain across Dronning Maud Land (and through to Enderby Land); conversely, the Wilkes Land sector has
254 experienced a decline in mass. The negative acceleration observed in the Amundsen Sea sector and Wilkes Land
255 indicates that the rate of mass loss in these regions is increasing over time.

256 While the long-term trend in AIS mass is primarily driven by ice dynamics, the interannual variability is more
257 closely linked to changes in precipitation (Kim et al., 2020). Short-term mass fluctuations can be influenced by
258 large-scale circulation modes. To explore the impact of ENSO on ice mass variability, we next examine how
259 atmospheric circulation and mass anomalies respond to ENSO forcing.



260
261 **Figure 2. Linear rate and acceleration of AIS mass change (2002-2022) based on GRACE data from using**
262 **univariate regression. Key Antarctic regions are labelled: Antarctic Peninsula (AP), Bellingshausen Sea**
263 **(BS), Amundsen Sea (AS), Amundsen Sea Low (ASL), Pacific Sector (PS), Ross Sea (RS), Indian Ocean**
264 **(IO), Atlantic Ocean (AO), Wilkes Land (WL), Enderby Land (EL), Dronning Maud Land (DML), Coats**

265 **Land (CL), and Weddell Sea (WS). Stippling indicates areas not statistically significant ($p<0.05$).**

266 **Significance tests do not reflect the effects of temporal correlations in these data (Williams et al., 2014).**

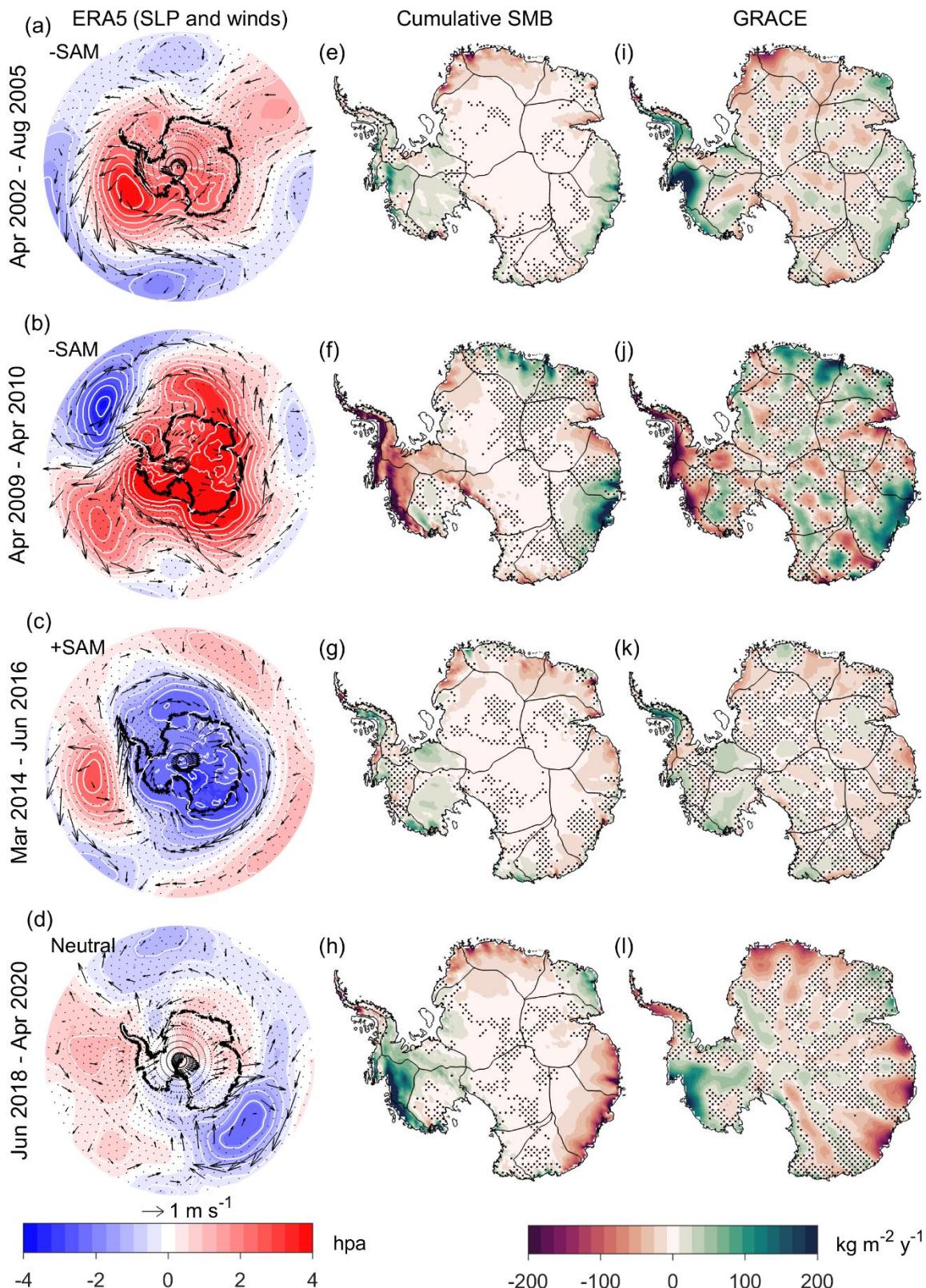
267 Figure 3 presents the regression results of cumulatively summed anomalies in ERA5 reanalysis climate variables
268 (sea level pressure and 10 m winds) and RACMO2.4p1 model SMB, along with GRACE-derived ice mass change
269 anomalies, against the cumulatively summed Niño3.4 index. All variables were detrended before regression to
270 focus on the variability. The results show that the cumulative ENSO is associated with shifts in atmospheric
271 circulation that supports the observed dipole SMB and ice mass anomaly between West and East Antarctica (Fig.
272 3a)

273 **Figure 3. Maps show the regression of cumulatively summed sea level pressure (shaded region and
274 contour) and 10 m wind anomalies (represented by reference vectors ($m s^{-1}$) from ERA5 reanalysis (a),
275 cumulatively summed RACMO2.4p1 model SMB anomalies (b), and GRACE ice mass change anomalies
276 (c) regressed against cumulatively summed Niño3.4. The u and v wind components were regressed
277 separately. All panels reflect regression anomalies over the period 2002-2022. All variables were linearly
278 detrended prior to regression using the full data periods. Stippling indicates regions where the regression
279 results are not statistically significant ($p<0.05$).**

281 We also compared the regression results presented in Figure 3 with El Niño and La Niña composites (see
282 supplementary Fig. S2) derived from annual accumulated SMB anomalies and annual mean Niño3.4 index, which
283 broadly agree with the cumulative approach spatial patterns observed in West and East Antarctica. From the
284 composite map (supplementary Fig. S2 covering 2002-2022), we observe that in West Antarctica, El Niño years
285 are associated with a positive mean SMB anomaly ($26.98 \text{ kg m}^{-2} \text{ yr}^{-1}$), while La Niña years correspond to a
286 negative mean anomaly ($-10.29 \text{ kg m}^{-2} \text{ yr}^{-1}$). In contrast, East Antarctica shows a negative mean SMB anomaly
287 ($-3.14 \text{ kg m}^{-2} \text{ yr}^{-1}$) during El Niño years and a positive anomaly ($5.28 \text{ kg m}^{-2} \text{ yr}^{-1}$) during La Niña years.

288 Our result shows that, spatially, SMB and ice mass increases in West Antarctica and decrease in East Antarctica
289 during El Niño-dominated periods, with the pattern reversing during La Niña-dominated periods (Fig. 3b, c). The
290 cumulative ENSO-induced changes in meridional flow are associated with the SMB variability (Fig. 3a, b). Since

291 changes in SMB are closely linked to ice mass change, the spatially coherent patterns between SMB and GRACE-
292 derived ice mass change (Fig. 3b–c).


293 However, in West Antarctica, the SMB signal differs from GRACE-derived ice mass changes, which indicate
294 relatively modest positive mass anomalies compared to the stronger SMB signal (Fig. 3b, c), whereas in East
295 Antarctica, the two signals are more closely aligned.

296 We next focus on the variability within ENSO-dominated periods and find that no two ENSO periods are identical.
297 We examine AIS mass change, SMB variability, and the atmospheric circulation driving these changes during
298 different ENSO-dominated periods we defined in this study (see section 2.2). The results reveal distinct spatial
299 patterns of ice mass change associated with individual El Niño and La Niña events. We remind the reader that the
300 GRACE signal is more reliable in the coastal regions and less reliable in the interior, where inherent systematic
301 errors in GRACE measurements in the form of north-south striping are more pronounced.

302 **3.2. El Niño-dominated periods**

303 Across the Antarctic continent, spatial pressure anomalies vary between El Niño-dominated periods, with both
304 positive and negative pressure anomalies observed (Fig. 4a-d). These pressure patterns reflect either a relative
305 intensification or relative weakening of the mean Antarctic High (Fig. 4a–b). These variations align with the
306 cumulatively summed SAM indices (Fig. 1e), where high-pressure anomalies correspond to prolonged negative
307 SAM phases, and low-pressure anomalies coincide with prolonged positive SAM phases. Mass anomalies
308 observed in both RACMO SMB and GRACE are most pronounced along the coastal regions, where the signals
309 are statistically significant. In this study, we focus on the absolute mass changes during each period, while relative
310 impacts are presented in the supplement (Fig. S3).

El Niño-dominated periods

311
312 **Figure 4. Atmospheric circulation anomalies relative to the GRACE period (2002–2022) (left), rate of**
313 **change in cumulative SMB anomalies from RACMO2.4p1 model (middle) and linear rate of GRACE-**

314 **derived ice mass anomalies (right) during El Niño-dominated period. Sea level pressure anomalies are**
315 **shown as shaded regions with contours (hPa), while wind anomalies are indicated by reference vectors**
316 **(m s⁻¹). SMB and GRACE maps (kg m⁻² y⁻¹) illustrate variability in AIS mass for each identified El Niño-**
317 **dominated period. The GRACE signal is more reliable in the coastal regions and less reliable in the**
318 **interior, where GRACE systematic error in the form of north-south striping is more evident. Non-**
319 **significant areas are stippled for the pressure anomalies and AIS mass trend at p-value<0.05.**

320 **3.2.1. West Antarctic anomalies during El Niño-dominated periods**

321 In West Antarctica, El Niño-dominated periods are characterised by a positive pressure anomaly in the Pacific
322 sector off the West Antarctic coastline (Fig. 4a–b). The position and strength of these positive pressure anomalies
323 vary for each El Niño-dominated period, which is also reflected in the variation of wind anomalies and spatial
324 patterns of SMB (Fig. 4e–h) and ice mass change (Fig. 4i–l). However, during the 2018–2020 period, no significant
325 pressure anomaly is observed, and in the 2009–2010 period, a significant pressure anomaly is located closer to the
326 continent, with a non-significant pressure anomaly further north (Fig. 4a–b).

327

328 During three out of four El Niño-dominated periods (2002–2005, 2014–2016, and 2018–2020), the Amundsen
329 Sea sector shows positive anomalies in both SMB (Fig. 4e, g–h) and ice mass anomalies (Fig. 4i, k–l), indicating
330 mass gain, despite variations in the location and strength of the positive pressure anomaly in the Pacific (Fig. 4a,
331 c–d). The positive mass anomalies are more widespread across the Amundsen Sea sector during the 2002–2005
332 period in GRACE (Fig. 4i) and in both SMB and GRACE during the 2018–2020 period (Fig. 4h, l). The positive
333 pressure anomaly in the Pacific which supports these mass gains, is significant during the 2002–2005 period.

334 For the 2014–2016 El Niño-dominated period, we observed weak and, in some regions, non-significant positive
335 SMB and ice mass anomalies in the Amundsen Sea sector and western Ross Sea (Fig. 4g, k). During this period,
336 our cumulative ENSO and SAM were out of phase (El Niño/+SAM), as evidenced by significant negative pressure
337 anomalies over the continent (Fig. 4c). The positive pressure anomaly in the Pacific was located away from the
338 coastline and was associated more with wind anomalies along the shore, rather than onshore.

339 The mass change pattern in the Amundsen Sea sector during the 2009–2010 El Niño-dominated period is distinct
340 from the other El Niño periods, with widespread significant negative SMB (Fig. 4f) and ice mass (Fig. 4j)
341 anomalies indicating a net mass reduction. In contrast to the other El Niño periods, a large area of significant
342 positive pressure anomaly extends offshore from the Antarctic continent, spanning from the Peninsula to beyond
343 the Ross Sea, and supports offshore wind anomalies in the Amundsen Sea sector (Fig. 4b).

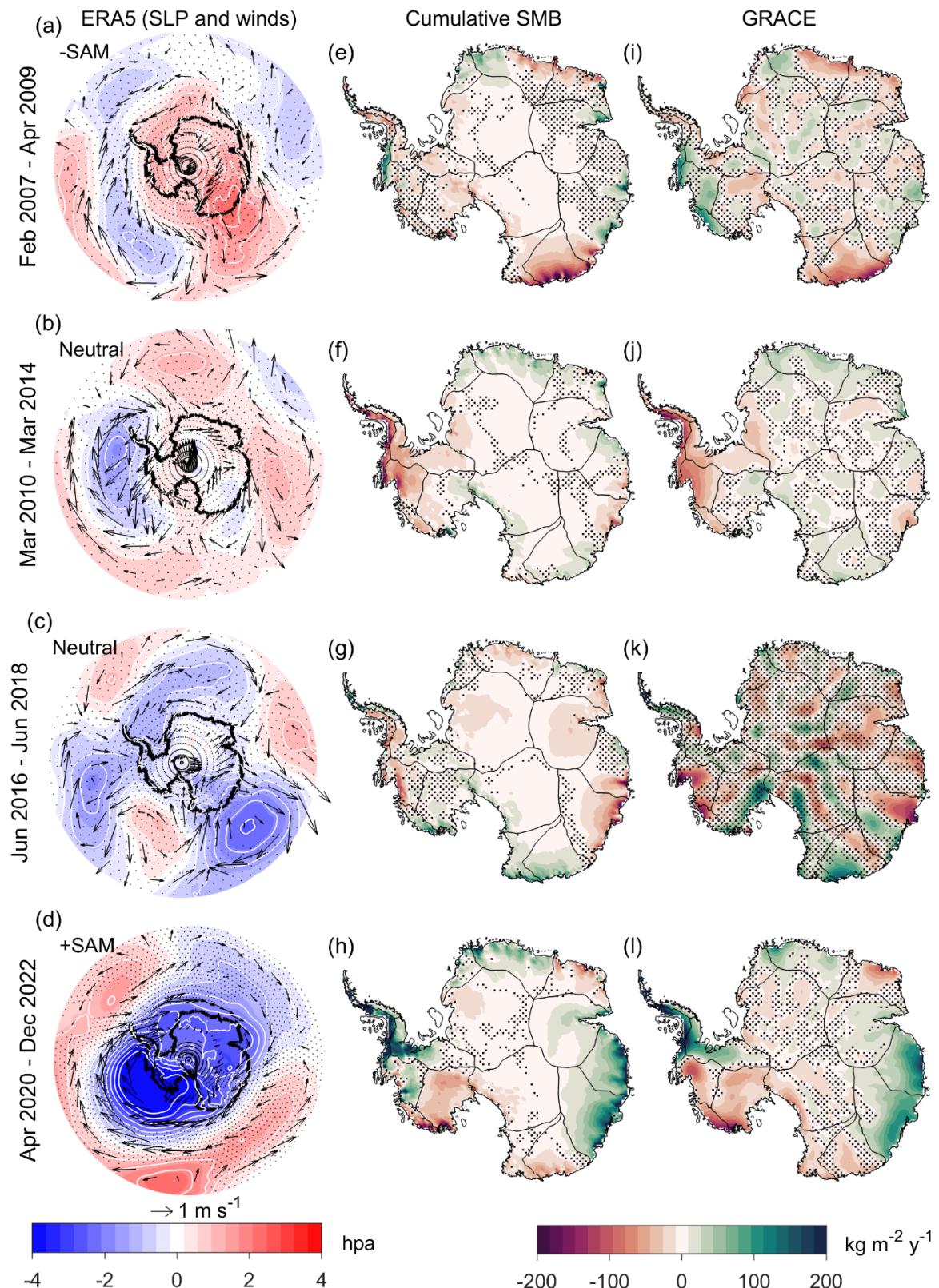
344 The Antarctic Peninsula exhibits contrasting mass change responses during El Niño-dominated periods (Fig. 4).
345 Positive SMB (Fig. 4e, g) and ice mass anomalies (Fig. 4j, l) are observed during the 2002–2005 and 2014–2016
346 El Niño periods, particularly in GRACE (Fig. 4i, k), whereas negative SMB (Fig. 4f, h) and ice mass anomalies
347 (Fig. 4j, l) are evident during the 2009–2010 and 2018–2020 periods. These mass change pattern align with
348 pressure anomaly distributions and are associated with onshore wind anomalies during the 2002–2005 and 2014–

349 2016 periods (Fig. 4a, c) and offshore wind anomalies for 2009–2010 and 2018–2020 (non-significant) periods
350 (Fig. 4b, d).

351 **3.2.2. East Antarctic anomalies during El Niño dominated periods**

352 In the Atlantic Ocean sector, three out of four El Niño-dominated periods (2002–2005, 2014–2016, and 2018–
353 2020) consistent with negative SMB (Fig. 4e, g–h) and ice mass (Fig. 4i, k–l) anomalies in Dronning Maud Land.
354 The reduction in mass is more extensive during the 2002–2005 and 2018–2020 El Niño periods, covering much
355 of Coats Land and Dronning Maud Land, with strong mass anomalies along the western edge of Dronning Maud
356 Land (Fig. 4e, h, i, l). The magnitude of mass reduction is lesser for the 2014–2016 El Niño period (Fig. 4g).
357 However, among these periods, the 2014–2016 El Niño period shows a significant pressure anomaly, which can
358 be directly associated with the observed mass reduction patterns.

359 Conversely, during the 2009–2010 El Niño period, we observed a significant anomalous mass gain in Dronning
360 Maud Land (Fig. 4f, j). This mass gain coincides with a significant positive pressure anomaly over the Atlantic,
361 which supports onshore wind anomalies into Dronning Maud Land.


362 Enderby Land shows positive mass anomalies, which in some instances are evident in GRACE but not in SMB,
363 and vice versa. For example, during the 2002–2005 El Niño period, positive mass anomalies are more pronounced
364 in GRACE than in SMB (Fig. 4e, i), whereas during the 2018–2020 El Niño period, the positive anomalies are
365 stronger in SMB than in GRACE (Fig. 4h, l). Atmospheric circulation anomalies during the 2009–2010 and 2014–
366 2016 El Niño periods are statistically significant and supports the observed mass change patterns. For the 2002–
367 2005 and 2018 El Niño periods, we cannot associate the observed mass patterns to circulation anomalies at the
368 0.05 significance level.

369 In the Indian Ocean sector/Wilkes Land, mass gain is broadly observed during the 2002–2005 and 2009–2010 El
370 Niño periods (Fig. 4e, f, i, j), and a reduction in mass during the 2014–2016 and 2018–2020 El Niño periods (Fig.
371 4g, h, k, l). During the periods with mass gain, positive pressure anomalies were present over Wilkes Land (Fig.
372 4a, b), with the anomaly more intense and statistically significant during the 2009–2010 El Niño period and
373 associated with a greater magnitude of mass gain in Wilkes Land (Fig. 4b, f, j). Conversely, during periods broadly
374 associated with mass reduction (Fig. 4g, h, k, l), negative pressure anomalies were observed around the Wilkes
375 Land region, aligned with offshore wind anomalies across much of the sector (Fig. 4c, d).

376 **3.3. La Niña-dominated periods**

377 Figure 5 presents atmospheric circulation patterns, SMB anomalies, and AIS mass changes during La Niña-
378 dominated periods. Absolute mass changes are shown in this section, while relative mass changes can be found
379 in the supplementary material (Fig. S3). The atmospheric circulation pattern anomalies during La Niña-dominated
380 periods (Fig. 5a–d) shows fewer areas of statistical significance compared to the El Niño periods (Fig. 4a–d).
381 Instrument malfunctions and the termination of the GRACE mission in 2017 introduced noise and data gaps,
382 affecting ice mass estimates. Therefore, we limit our discussion to the atmospheric circulation and SMB for the
383 2016–2018 La Niña-dominated period to avoid conclusions based on potentially unreliable data in GRACE.

La Niña-dominated periods

384
385 **Figure 5. Atmospheric circulation anomalies relative to the GRACE period (2002–2022) (left), rate of**
386 **change in cumulative SMB anomalies from the RACMO2.4p1 model (middle), and linear rate of**

387 **GRACE-derived ice mass anomalies (right) during La Niña-dominated period. Sea level pressure**
388 **anomalies are shown as shaded regions with contours (hPa), 10 m wind anomalies are indicated by**
389 **reference vectors (m s^{-1}). SMB and GRACE ($\text{kg m}^{-2} \text{y}^{-1}$) maps illustrate variability in ASI mass for each**
390 **identified La Niña-dominated period. The GRACE signal is strongest near the coastal regions and weaker**
391 **in the interior, where uncertainties are higher. The GRACE satellite malfunction during 2016-2018 is**
392 **apparent in the signal for that period, where instrument noise dominates over actual variability with**
393 **pronounce north-south striping. Non-significant areas are stippled for the pressure anomalies and AIS**
394 **mass trend at $p\text{-value} < 0.05$.**

395 **3.3.1. West Antarctic anomalies during La Niña-dominated periods**

396 Overall, during our La Niña-dominated periods, the Pacific sector exhibits a persistent negative pressure anomaly
397 (Fig. 5a-d), which appears more elongated than the positive pressure anomaly associated with El Niño periods.
398 This pressure anomaly is statistically significant for the 2020–2022 La Niña period; however, there are also
399 significant regions near the centre of the pressure anomaly during the 2010–2014 La Niña period.

400 Three out of the four La Niña periods (2010–2014, 2016–2018, and 2020–2022) are broadly associated with
401 negative SMB (Fig. 5f–h) and ice mass anomalies (Fig. 5j–l) across the Amundsen Sea sector. The reduction in
402 mass during the 2020–2022 and 2010–2014 La Niña periods aligns with a significant negative pressure anomaly
403 in the Pacific sector, and offshore wind anomalies (Fig. 5b, d).

405 In contrast, during the 2007–2009 La Niña period, a mass gain is prominently observed in GRACE (Fig. 5i), a
406 pattern more commonly associated with El Niño periods described earlier. However, the SMB and pressure
407 anomaly patterns during this period are not statistically significant at the 0.05 level.

408 Similar to the Amundsen Sea sector, the Antarctic Peninsula exhibits contrasting mass change responses during
409 La Niña-dominated periods. Broadly, negative mass anomalies are observed during the 2007–2009 and 2010–
410 2014 La Niña periods (Fig. 5i, j), whereas positive mass anomalies are evident during the 2016–2018 and 2020–
411 2022 La Niña periods (Fig. 5k, l). The magnitude of mass reduction is strongest during the 2010–2014 La Niña
412 period, while the mass gain is most pronounced during the 2020–2022 La Niña period.

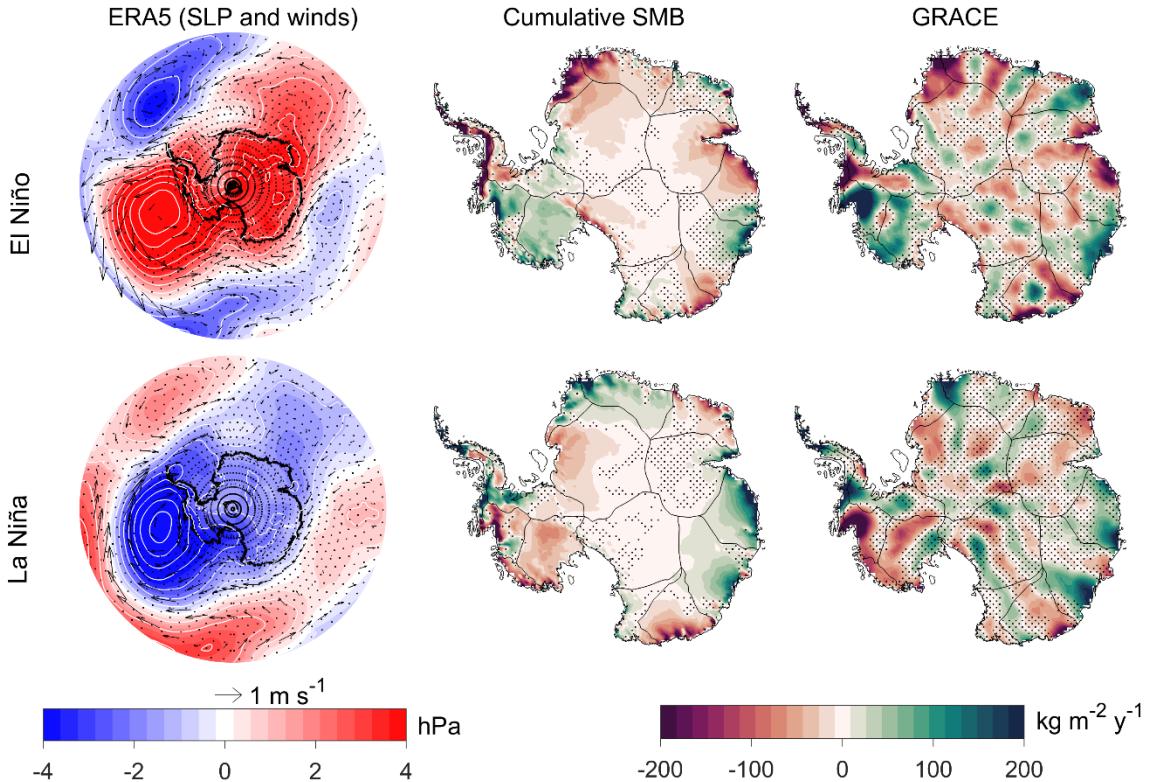
413 This contrasting mass change response between the two periods aligns with the position of the negative pressure
414 anomaly in the Pacific sector. In the 2010–2014 La Niña period, the pressure anomaly is centred over the
415 Bellingshausen Sea, accompanied by offshore wind anomalies over the Peninsula (Fig. 5b). In contrast, during
416 the 2020–2022 La Niña period, the negative pressure anomaly is centred in the Amundsen Sea, with onshore wind
417 anomalies directed into the Peninsula (Fig. 5d).

418 **3.3.2. East Antarctic anomalies during La Niña-dominated periods**

419 Along the Atlantic sector, a dipole-like mass anomaly pattern is present during the 2007–2009 and 2020–2022 La
420 Niña periods (Fig. 5e, h), whereas a more uniform response is observed during the 2010–2014 and 2016–2018 La
421 Niña periods (Fig. 5f, g). During the 2007–2009 La Niña period, positive SMB anomalies were observed over

422 Coats Land and negative SMB anomalies toward Enderby Land (Fig. 5e), with this spatial pattern reversed during
423 the 2020–2022 La Niña period (Fig. 5h).

424


425 Positive mass anomalies were also observed across the Atlantic region during the 2014–2016 La Niña period,
426 with a reversed pattern during the 2016–2018 La Niña period. Regionally, Dronning Maud Land shows consistent
427 positive SMB (Fig. 5f, h) and ice mass anomalies (Fig. 5j, l) during the 2010–2014 and 2020–2022 La Niña
428 periods.

429 The negative pressure anomaly during the 2020–2022 La Niña period aligns with the observed mass gain in
430 Dronning Maud Land. Conversely, during the 2016–2018 period, negative SMB anomalies were observed in
431 Dronning Maud Land, with no clear pressure anomaly pattern (Fig. 5g).

432 In the Indian Ocean sector/Wilkes Land we found no consistent mass response to La Niña-dominated periods.
433 During the 2020–2022 La Niña period, mass change in the Indian Ocean sector is spatially uniform, with positive
434 mass anomalies observed across the entire region (Fig. 4h, l). This contrasts with other La Niña periods, which
435 show more variable responses. The 2010–2014 and 2016–2018 La Niña periods are consistent with each other,
436 showing negative mass anomalies over Wilkes Land. For both periods, a negative pressure anomaly is present
437 adjacent to the Wilkes Land coast, with the 2016–2018 period showing a statistically significant anomaly and
438 stronger negative mass signals. In contrast, the 2007–2009 and 2020–2022 La Niña periods are associated with
439 positive mass anomalies in Wilkes Land (Fig. 5i, l), although the anomalies during 2007–2009 are weaker and
440 less spatially extensive (Fig. 5i). During the 2007–2009 La Niña period, a positive pressure anomaly marginally
441 significant at the centre of the anomaly extends offshore along the Wilkes Land coast, associated with onshore
442 wind anomalies (Fig. 5a).

443 **3.4. Mean Anomalies during ENSO-dominated periods**

444 Figure 6 presents the mean AIS response across El Niño- and La Niña-dominated periods, summarizing the
445 impacts of different ENSO periods. The figure is derived by averaging the maps presented in Figures 4 and 5.
446 While this mean response differs slightly from the regression results in Fig. 3b–c, certain regional patterns remain
447 consistent. The SMB results show a positive response during El Niño-dominated periods in the Amundsen Sea
448 sector and Marie Byrd Land, as well as in Enderby Land (Fig. 6c). In contrast, negative SMB anomalies are
449 observed in the Antarctic Peninsula, Coats Land, and Dronning Maud Land (Fig. 6c). During La Niña-dominated
450 periods, this pattern is broadly reversed (Fig. 6d). Wilkes Land shows positive SMB anomalies during both El
451 Niño- and La Niña-dominated periods; however, the anomalies are more spatially extensive during La Niña (Fig.
452 6c, d). The patterns in GRACE are broadly similar to the SMB results, however, north south stripping noise in
453 GRACE is maximised over short periods.

454

455 **Figure 6.** The composites are generated based on the results of the four defined ENSO-dominated periods
 456 combined. ERA5 mean seal level pressure and 10 m wind anomalies (lef), RACMO2.4p1 SMB (centre),
 457 and GRACE-derived ice mass change (right). This represents the cumulative impact of different ENSO
 458 phases on AIS mass variability. Sea level pressure anomalies are shown as shaded regions with contours
 459 (hPa), and 10 m wind anomalies are indicated vectors (m s^{-1}). SMB and GRACE ($\text{kg m}^{-2} \text{y}^{-1}$) are shown.
 460 Non-significant areas stippled at $p\text{-value} < 0.05$.

461 **4. Discussion**

462 **4.1 Continental-wide perspective**

463 We examined the AIS mass variability during different ENSO-dominated periods. Our results show that the AIS
 464 exhibits considerable variability across these periods, each associated with its own circulation anomalies (Figs. 4,
 465 5), influenced by interactions between ENSO and SAM (Hosking et al., 2013; Fogt et al., 2011). Over longer
 466 timescales, the mean response reveals a dipole pattern: positive mass anomalies in West Antarctica and negative
 467 anomalies in East Antarctic during El Niño periods, with the reverse during La Niña periods (Fig. 3b, c). This
 468 pattern is supported by data-driven analysis showing a strong correlation between GRACE and cumulative ENSO
 469 indices (King et al., 2023).

470 However, there is a difference between the SMB signal and GRACE in West Antarctica, but they are closely
 471 aligned in East Antarctica (Fig. 3b, c). This suggests that SMB variability drives of ice mass changes in East
 472 Antarctica, but not necessarily in West Antarctica. The difference may be due to the near-instantaneous response
 473 of ice dynamics to ENSO-driven oceanic forcing and/or mismodelled SMB (IMBIE Team, 2018; Rignot et al.,
 474 2019), with the latter being more likely (King and Christoffersen, 2024).

475 Averaging multiple ENSO-dominated periods can obscure variability associated with individual periods and lead
476 to misinterpretation. As shown in Figs. 4e–h and 5e–h, mass variability—particularly in the Antarctic Peninsula
477 and East Antarctica—varies significantly across individual ENSO events (Figs. 4, 5). The mean response fails to
478 capture these short-term variations, which are critical for understanding their influence on AIS mass balance.

479 **4.2 West Antarctica**

480 El Niño-and La Niña-dominated periods correspond to positive and negative pressure anomalies in the Pacific,
481 respectively, indicative of positive PSA-1 and negative PSA-1 patterns (Hoskins and Karoly, 1981). These
482 patterns are associated with a weakened or strengthened ASL, influencing circulation and climate in West
483 Antarctica (Raphael et al., 2016a; Turner et al., 2017; Turner et al., 2012). Positive ice mass anomalies in the
484 Amundsen Sea sector during the 2002–2005, 2014–2016 and 2018–2020 El Niño periods (Fig. 4i, k–l) and negative
485 anomalies during the 2010–2014 and 2020–2022 La Niña periods (excluding the 2016–2018 period due to noisy
486 GRACE data) (Fig. 5i, k–l), are broadly consistent with previous studies (Paolo et al., 2018; King et al., 2023).
487 These mass anomalies are supported by the variability in the ASL during El Niño and La Niña periods influencing
488 circulation into the Amundsen Sea sector.

489 During El Niño conditions, a weakened ASL and reduced coastal easterlies allow westerly wind anomalies to
490 bring marine air masses, onshore, which, enhance snowfall and mass accumulation through orographic lifting
491 (Paolo et al., 2018; Huguenin et al., 2024). In contrast, La Niña conditions strengthen the ASL and intensify
492 coastal easterlies, limiting moisture transport and reducing precipitation (Huguenin et al., 2024; Hosking et al.,
493 2013).

494 However, the 2009–2010 El Niño period deviates from this pattern, with negative SMB anomalies observed in
495 the Amundsen Sea sector (Fig. 4f). The pressure anomaly during this period is distinct, with a positive pressure
496 anomaly extending from the Amundsen Sea to beyond the Ross Sea. An important difference to the other El Niño
497 periods, is the extension of this positive pressure anomaly further to the west, which decreases moisture transport
498 into the region. This period encompasses a strong Central Pacific El Niño event (Kim et al., 2011), and associated
499 pressure anomaly (Fig. 4b) resembles patterns linked to such events, which are associated with moisture depleted
500 wind anomalies and suppressed precipitation in the Amundsen and Bellingshausen regions (Chen et al., 2023;
501 Macha et al., 2024).

502 Our 2009–2010 El Niño mass pattern aligns with Macha et al. (2024), who reported reduced accumulation during
503 Central Pacific El Niño events in the SON and JJA seasons. These similarities suggest that the observed mass
504 change may reflect the impact of Central Pacific El Niño phases during the SON and JJA seasons in the Amundsen
505 Sea sector.

506 It is important to state that our defined ENSO periods do not distinguish between El Niño types or seasonal phases
507 but instead capture the net mass change over the entire period, providing broader context for ice sheet mass
508 balance.

509 Similarly, the 2007–2009 La Niña period shows a mass pattern that contrasts with other La Niña periods, featuring
510 a positive mass anomaly in the Amundsen Sea sector (Fig. 5i). However, atmospheric circulation patterns during

511 this period do not statistically support the observed mass gain, suggesting that it may be linked to unrelated
512 weather events or other modes of climate variability.

513 Our results supports that mass variability in the Antarctic Peninsula is variable and influenced by various factors
514 such as large-scale climate modes including SAM and ENSO (Clem et al., 2016; Clem and Fogt, 2013) and the
515 Peninsula's unique mountainous geography. Previous studies have demonstrated a reduction in mass during El
516 Niño and an increase during La Niña across the Peninsula. This is consistent with our results for the 2018–2020
517 El Niño- and 2020–2022 La Niña-dominated periods (Figs. 4l, 5l). Meanwhile, other studies suggest the opposite
518 pattern, reporting an increase in mass during El Niño and a reduction during La Niña in the Peninsula (Zhang et
519 al., 2021), which aligns with our observed ice mass change during the 2002-2005 and 2014-2016 El Niño periods
520 (Fig. 4i, k) and 2010-2014 La Niña period (Fig. 5j). However, the variable impact appears to be influence by the
521 position and orientation of the ASL and its effect on moisture transport into the Peninsula (Raphael et al., 2016b).
522 Further, moisture transport into the Peninsula is influenced by SAM-driven westerly winds and ENSO-related
523 meridional flow (Orr et al., 2008; Clem et al., 2016), which contributes to the complex mass change patterns.

524 **4.3 East Antarctica**

525 El Niño and La Niña events have been linked to negative and positive cumulative mass anomalies, respectively
526 in the East Antarctic Ice Sheet (King et al., 2023; Li et al., 2022), consistent with our earlier findings (Fig. 3b–c).
527 Our 2014–2016, 2018–2020 El Niño periods (Fig. 4k, l) and 2010-2014, 2020-2022 La Niña periods (Fig. 4j, l)
528 broadly align with this pattern. However, this pattern is consistent for every ENSO period (e.g. Fig. 4j 5i), and in
529 some periods regionally variable responses observed across the Atlantic and Indian Ocean sectors.

530 SMB anomalies in East Antarctica are primarily influenced by the strength and position of cyclonic and
531 anticyclonic anomalies over the continent and the Southern Ocean (Figs. 4a–d and 5a–d). These pressure
532 anomalies regulate atmospheric circulation, with meridional flow changes affecting heat and moisture distribution
533 across the region (Scarchilli et al., 2011; Wang et al., 2024; Udy et al., 2021). The SAM phase largely governs
534 these pressure patterns, modulating their positioning and highlighting its role as dominant climate driver in East
535 Antarctica (Fogt et al., 2012; Fogt and Marshall, 2020a; Marshall et al., 2013). For instance, 2014-2016 El Niño
536 showed a spatial mass pattern that are consistent with a positive SAM phase, with a reduction in precipitation
537 (Marshall et al., 2017) and observed negative mass anomaly (Fig. 4g).

538 The anomalous mass gain during the 2009-2010 El Niño period observed in Dronning Maud Land has been
539 attributed to atmospheric blocking, which produced large episodic snowfall events (Boening et al., 2012).
540 Similarly, a positive pressure anomaly in the Atlantic during the 2010-2014 La Niña period (although not
541 significant at $p < 0.05$ over the 4-year period) appears to support the mass gain in the Dronning Maud Land (Fig.
542 5j). Atmospheric blocking favours the occurrence of atmospheric rivers reaching the Antarctic coastline, often
543 associated with increased precipitation and temperature (Wille et al., 2021; Pohl et al., 2021). The weakening of
544 the westerlies during negative SAM conditions (Clem et al., 2016), allows for Rossby wave amplification and an
545 increased frequency of atmospheric blocking events in East Antarctica, particularly during winter, when the
546 relationship is strongest (Wang et al., 2024). It is important to note that climate modes of variability can create
547 conditions favourable for atmospheric river events in East Antarctic (Shields et al., 2022), especially in Wilkes

548 Land (Wang, 2023). However, in Dronning Maud Land, atmospheric rivers explain about 77 % of interannual
549 variability (Baiman et al., 2023)

550 Our 2002–2005 and 2009–2010 El Niño periods, along with the 2007–2009 La Niña period, show a blocking
551 pattern around Wilkes Land, consistent with transient meridional blocking associated with increased precipitation
552 along the coastline (Udy et al., 2022; Udy et al., 2021). However, given the duration of our defined periods, this
553 transient blocking is likely smoothed out over longer timeframes, which may explain the stronger signal observed
554 during the shorter 2009–2010 El Niño period. The asymmetric shape of the positive pressure anomaly extension
555 off the Wilkes Land is much stronger in the 2009–2010 period, and is consistent with the development of
556 atmospheric blocking in the Tasman Sea region (Pook et al., 2006), which is associated with increased
557 precipitation in Wilkes Land (Pohl et al., 2021; Udy et al., 2022).

558 Our 2020–2022 La Niña period shows significant mass gain across the Indian Ocean and Wilkes Land region and
559 was the only period in our analysis period when La Niña and positive SAM occurred together (Fig. 1c). However,
560 this period also included the March 2022 atmospheric river event, which delivered record-breaking precipitation
561 and heat to East Antarctica (Wille et al., 2024). While this event was not the only atmospheric river to occur
562 during the GRACE period, this four-day event likely had some influence on the mass anomaly patterns of the
563 2020–2022 La Niña period we define in this study. To determine the extent of the influence of this event, we
564 examined the 2020–2022 period by comparing the inclusion and exclusion of the March 2022 event
565 (Supplementary Fig. S5). While the March 2022 event increased the strength of the SMB positive anomaly in
566 Wilkes Land, the region still observed a strong positive SMB anomaly during the 2020–2022 period when March
567 2022 was excluded (Supplementary Fig. S5). According to Wang et al. (2023), extreme events in March 2022 and
568 October 2021 accounted for approximately 38% of the precipitation anomalies in Wilkes Land during the 2020–
569 2022 La Niña period, driven by a pair of symmetrically distributed high–low pressure systems over the Southern
570 Ocean near 120°W and 60°E.

571 Our findings indicate that ice mass changes during ENSO-dominated periods cannot be solely attributed to ENSO
572 forcing. To quantify changes in ENSO variability, long time series must be considered in future studies (Stevenson
573 et al., 2010), along with the use of climate models to better isolate and capture purely ENSO-driven signals.

574 **4.4 Combined ENSO and SAM influence**

575 Isolating the ENSO signal and its impact on AIS ice mass is challenging due to several factors. The Rossby wave
576 propagation of the ENSO signal to Antarctica is influenced by SAM (Marshall, 2003; Fogt and Marshall, 2020b),
577 and the ENSO signal can be masked by other climate modes, such as zonal-wave 3—a quasi-stationary pattern in
578 the southern high latitudes that affects meridional heat and momentum transport (Goyal et al., 2022; Raphael,
579 2004). Additionally, synoptic-scale weather systems can further mask ENSO’s influence. The complex interaction
580 between ENSO and other modes of climate variability likely drives the equally complex patterns of AIS ice mass
581 change observed during different ENSO-dominated periods.

582 Pressure anomaly variability in the Pacific sector during ENSO-dominated periods can be associated with the
583 cumulative SAM phase. During ENSO periods when the cumulative SAM and ENSO occur in phase (El Niño–

584 SAM or La Niña/+SAM) (Fogt et al., 2011), the pressure anomaly over the Pacific sector is close to the continent,
585 spatially extensive, and centred around the Amundsen Sea sector (Figs. 4a and 5d). However, during ENSO-
586 dominated periods that are out of phase with the cumulative SAM (El Niño/+SAM or La Niña–SAM) (Fogt et
587 al., 2011), the pressure anomaly appears northward, away from the continent (Figs. 4c and 5a). Periods where the
588 cumulative SAM phase shows a neutral phase, the pressure anomaly in the Pacific is centred around the
589 Bellingshausen Sea sector (Figs. 4d, 5b, c). However, between 2000 to 2020, shifts in large-scale circulation,
590 particularly in SAM, have been reported, potentially affecting ENSO teleconnections and their influence on AIS
591 variability (Xin et al., 2023).

592 Our analysis, which uses cumulative summed indices to match GRACE mass time series, has limitations. It
593 focuses primarily on low-frequency variability and does not account for shorter temporal scale impacts, such as
594 tropical convection pulses that trigger the Rossby waves or high-frequency variability associated with storm
595 systems such as atmospheric rivers. However, the net effect of these would be captured by GRACE.

596 Studies on precipitation (Marshall et al., 2017) and ice core records (Medley and Thomas, 2019) both recognise
597 that SMB generally decreases during positive SAM phase and increases during negative SAM phase. In terms of
598 the impact on basal melting, negative SAM periods generally decrease the transport of warm circumpolar deep
599 water onto the continental shelf (Palóczy et al., 2018), largely reducing ice shelf basal melt (Verfaillie et al., 2022)
600 and subsequently contributing to ice mass gain. However, the timescale of the response of the upstream ice to the
601 positive SAM forcing is unclear and would involve a substantial lag, which can range from months to several
602 years depending on regional ice dynamics (King and Christoffersen, 2024). This suggests that GRACE-derived
603 signals may represent a delayed response rather than an immediate reaction to SAM variability. The spatial pattern
604 of ice mass change anomaly during the 2002-2005 El Niño and 2007-2009 La Niña-dominated periods in the
605 Amundsen Sea sector and Wilkes Land resembles the negative SAM spatial pattern reported by King et al. (2023).
606 Negative SAM dominates the cumulative summed SAM (Fig. 1e) from the start of the GRACE time series in
607 2002 until around 2010, which aligns with the positive pressure anomaly observed over Antarctica, reflecting a
608 stronger than average (over the GRACE period) Antarctic High during this period (Figs. 4a–b and 5a). Therefore,
609 it is possible that ice mass variability observed between 2002 and 2010 was more influenced by SAM than by
610 ENSO.

611 Our findings agree with the premise that ENSO forcing on the Antarctic climate impacts atmospheric circulation
612 patterns, altering the ASL variability, which in turn influences Antarctic ice mass variability (Zhang et al., 2021;
613 Paolo et al., 2018; Sasgen et al., 2010; Clem et al., 2017). However, across individual ENSO periods, the AIS
614 response exhibits considerable variability, with each period associated with distinct atmospheric circulation
615 patterns. It is possible that the teleconnection between tropical ENSO signals and Antarctic climate may not be
616 fully established during a given ENSO phase or masked by other processes. Our analysis, which uses cumulative
617 summed indices to match GRACE mass time series, is primarily sensitive to low-frequency variability and does
618 not resolve shorter-term impacts, such as tropical convection pulses that initiate Rossby wave trains or high-
619 frequency variability linked to storm systems like atmospheric rivers. Nonetheless, the integrated effect of these
620 processes is captured by GRACE. Additionally, internal dynamics of the ASL may contribute to AIS mass
621 variability that is independent of the influence of ENSO and SAM which potentially can impact our analysis.

622 Given that our analysis spans a 22-year period, long time series must be considered in future studies (Stevenson
623 et al., 2010), along with the use of climate models to better isolate and capture purely ENSO-driven signals. While
624 ENSO induced circulation affects Antarctic SMB (Kim et al., 2020), recent Antarctic ice mass trends (2003-2020)
625 have been primarily driven by mass imbalance triggered by long-term ice dynamics changes (Kim et al., 2024;
626 Rignot et al., 2019). Some of the low-frequency mass variability around the long-term trend (which we remove)
627 is associated with changing ice dynamics. This dynamic signal is stronger in West than in East Antarctica (Rignot
628 et al., 2019).

629 In a warming climate, future ENSO event variability is predicted to increase (Cai et al., 2021). CMIP5 model
630 simulations suggest a reduction in El Niño-induced precipitation over West Antarctica (Lee et al., 2023). Given
631 that SAM is projected to remain in its positive phase across all seasons due to greenhouse gas emissions (Arblaster
632 and Meehl, 2006), accurate modelling of future AIS mass estimates in relation to ENSO teleconnections must
633 account for the interaction between SAM and ENSO. The AIS mass gain observed during 2020-2022 raises
634 questions about how the AIS will respond to future La Niña and positive SAM periods and if it would increase
635 the frequency of extreme events.

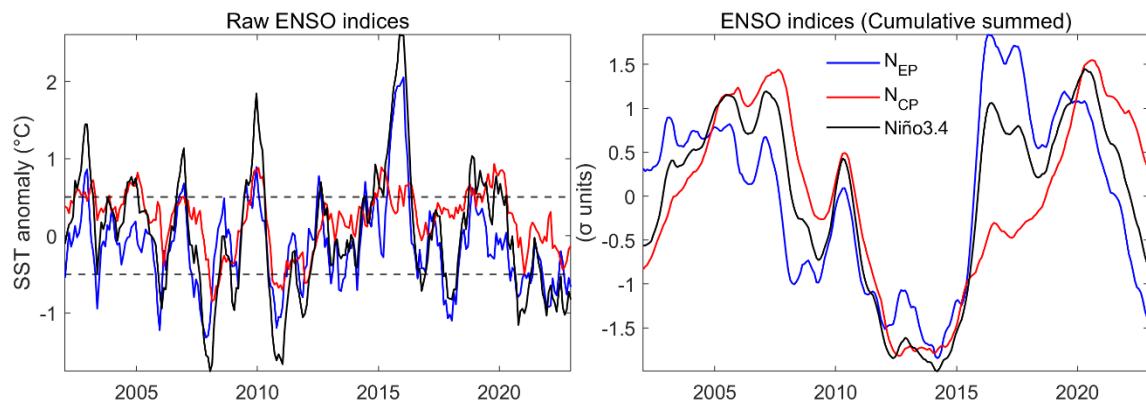
636 **5 Conclusion**

637 To examine the AIS mass change during different ENSO-dominated periods, we analysed AIS mass change
638 anomalies observed by GRACE/GRACE-FO spanning the period 2002-2022. These anomalies were interpreted
639 alongside RACMO2.4p1 modelled SMB and mean sea level pressure and 10 m winds from ERA5 reanalysis
640 products. Our analysis reveals that El Niño and La Niña periods exert distinct influences on the AIS, with
641 considerable spatial variability.

642 At the continental scale, three out of the four El Niño-dominated periods were characterised by mass increase in
643 West Antarctica and mass decrease in East Antarctica. Conversely, two out of the three La Niña-dominated
644 periods (here excluding the 2016-2018 period with degraded GRACE signal) showed the opposite pattern, with
645 mass reduction in West Antarctica and to varying degrees, mass increase in East Antarctica. The Amundsen Sea
646 sector typically experiences positive mass anomalies during El Niño-dominated periods and negative anomalies
647 during La Niña-dominated periods.

648 Mass variability in West Antarctica is primarily driven by ENSO-induced ASL pressure anomalies, which
649 modulate the atmospheric circulation and moisture transport. The ASL exhibits high variability in its location,
650 strength, and extent, which influence its impact between the Antarctic Peninsula and West Antarctica. The ASL
651 strengthens and moves closer to the Antarctic coastline during periods when ENSO-SAM are in phase (Hosking
652 et al., 2013). While ENSO has its strongest impact in West Antarctica. However, atmospheric pressure patterns
653 over the Southern Ocean play a crucial role in regulating moisture influx and, consequently, ice mass variability
654 in East Antarctica.

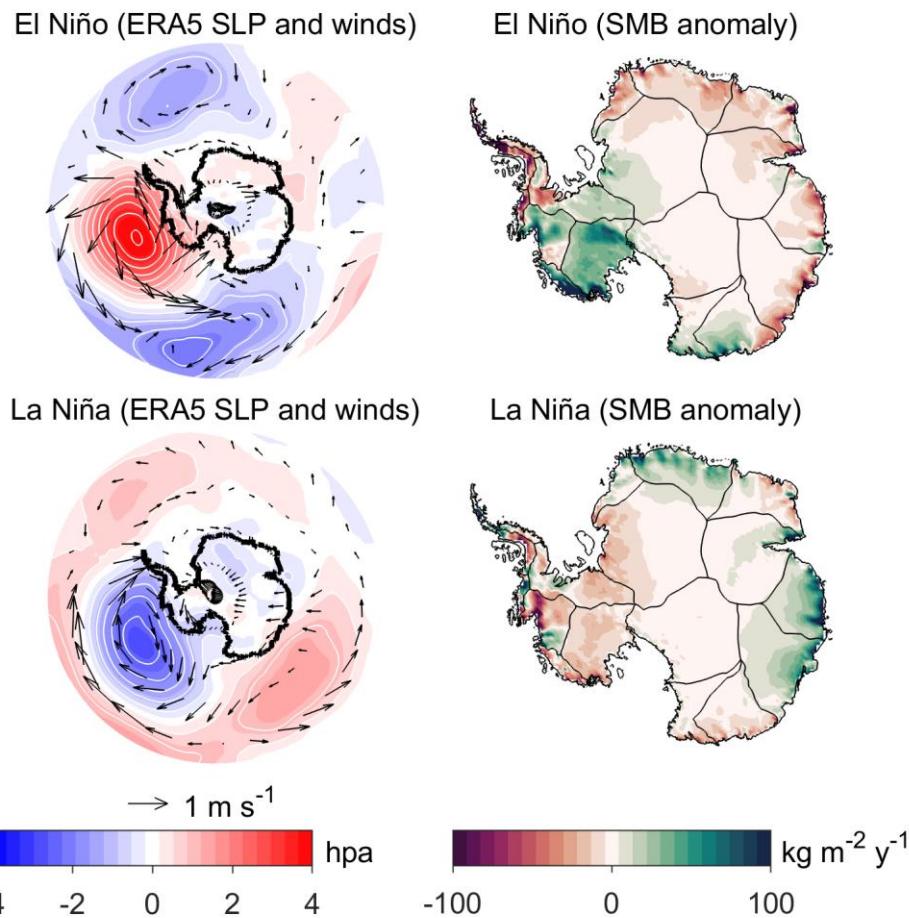
655 In summary, this study highlights the complex nature of ENSO teleconnections in modulating AIS mass balance
656 through changes in atmospheric circulation. Rather than exhibiting a simple dipole response, AIS mass variability
657 during ENSO periods is shaped by unique teleconnections and moisture fluxes specific to each period. We


658 acknowledge uncertainties in our analysis due to the relatively short ENSO-dominated periods considered. Some
659 ENSO-related teleconnections may not have fully developed during these intervals, and other processes—such as
660 atmospheric rivers—may have masked or modulated the ENSO signal, complicating the attribution of the
661 observed spatial impacts. Although climate model projections remain uncertain regarding whether future ENSO
662 events will more resemble an El Niño- or La Niña-like state, they consistently indicate that ENSO will influence
663 Antarctic precipitation patterns. A clearer understanding of ENSO’s role in Antarctic climate is therefore critical
664 for assessing its impact on future SMB and long-term ice mass balance. This requires both process-level
665 understanding and consideration of the net effect on ice sheet mass as explored here.

666 **Supplementary materials**

667 **Text S1**

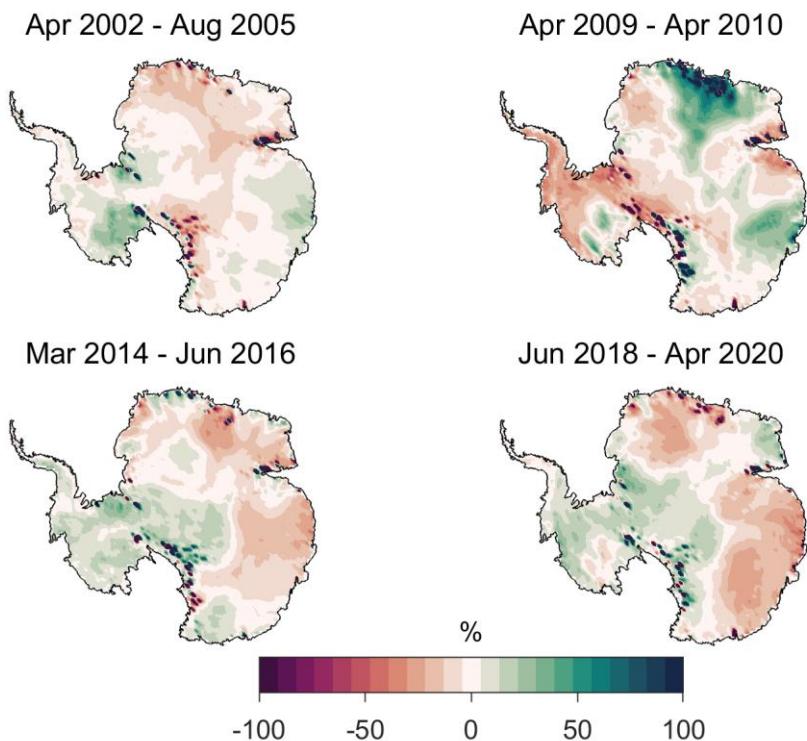
668 Following the method proposed by Ren and Jin (2011), we compute indices for Central and Eastern Pacific ENSO
669 events and compare their normalised and cumulatively summed timeseries to those of the Niño 3.4 index.


670

671
672 **Figure S1. Timeseries of various ENSO metric indices.**

673 **Text S2**

674 Using composite analysis, we examined the spatial patterns of surface mass balance (SMB) and atmospheric
675 anomalies during ENSO years. To achieve this, we first computed annual SMB accumulation anomalies and the
676 annual mean Niño 3.4 index. El Niño and La Niña years were then selected based on threshold values of above
677 0.5 and below -0.5, respectively. Composite maps were subsequently generated for each category. This approach
678 provides an additional framework for comparing our results with those derived from regression analysis.

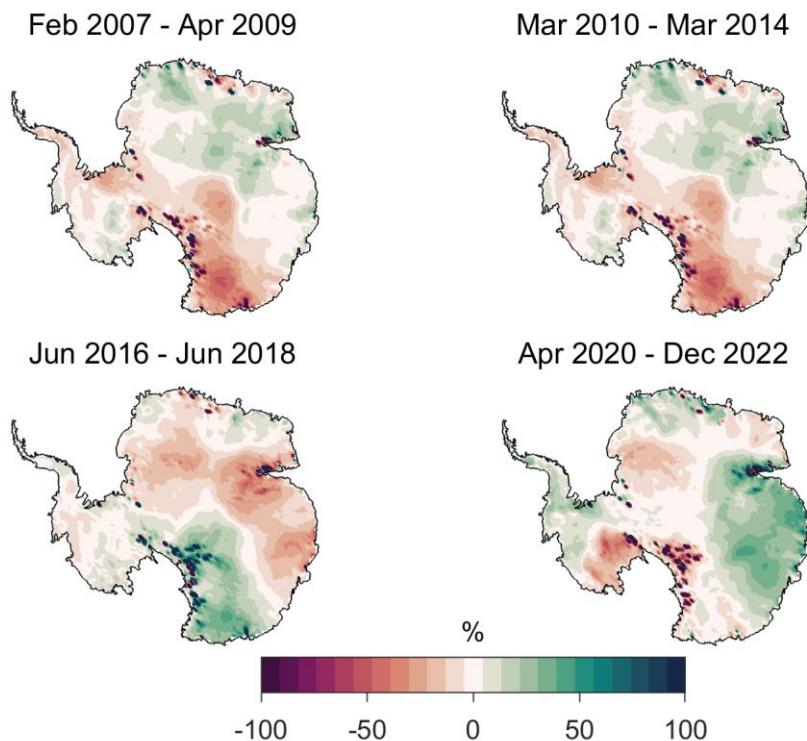


679
680
681
682

Figure S2. Composite maps showing the impact of El Niño and La Niña events on ERA5 mean sea level pressure (shading and contour, hPa) and 10 m wind anomalies (vectors, m s^{-1}), alongside surface mass SMB anomalies ($\text{kg m}^{-2} \text{y}^{-1}$) from RACMO2.4p1 over the period 2002-2022.

683 **Text S3**

684 The relative impact of SMB changes was expressed as a percentage of the climatological mean SMB for each El
685 Niño-dominated period. To achieve this, we computed the mean SMB for each period, compared it to the long-
686 term climatological mean at each grid point, and then expressed the difference as a percentage.

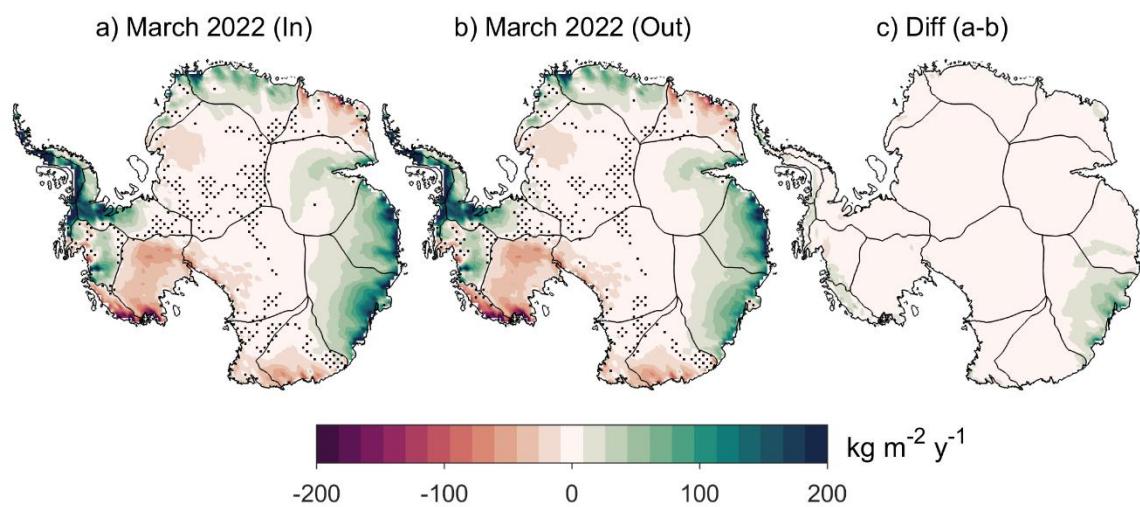


687

688 **Figure S3. Map of RACMO2.4p1 SMB changes, expressed as a percentage relative to the 2002–2022**
 689 **climatology during El Niño-dominated periods.**

690 **Text S4**

691 The relative impact of SMB changes was expressed as a percentage of the climatological mean SMB for each La
 692 Niña-dominated period. To achieve this, we computed the mean SMB for each period, compared it to the long-
 693 term climatological mean at each grid point, and then expressed the difference as a percentage.


694

695 **Figure S4. Map of RACMO2.4p1 SMB changes, expressed as a percentage relative to the 2002–2022**
 696 **climatology during La Niña-dominated periods.**

697 **Text S5**

698 The impact of the March 2022 extreme event is assessed by comparing scenarios that include and exclude the
 699 event and evaluating the difference between the two.

700

701

702 **Figure S5. Presents maps of SMB anomalies ($\text{kg m}^{-2} \text{y}^{-1}$) during the 2020–2022 La Niña period from**

703 **RACMO2.4p1: (a) includes the March 2022 AR event, (b) excludes March 2022 AR event, and (c) shows**

704 **the difference between (a) and (b).**

705 **Code and Data availability**

706 Source code and data will be made available through the University of Tasmania Research Data Portal prior to
707 publication. The GRACE data used is available at <https://gravis.gfz.de/ais>. The ERA5 reanalysis data used in the
708 atmospheric linkage to ice mass variation are publicly available from <https://cds.climate.copernicus.eu/>. The
709 station-derived SAM index from Marshall (2003) available at <http://www.nerc-bas.ac.uk/icd/gjma/sam.html>. The
710 Niño3.4 index are publicly available from <https://psl.noaa.gov/data/timeseries/month/Nino34/>. RACMO2.4p1
711 model SMB output can be accessed at <https://zenodo.org/records/14217232> (Van Dalum et al., 2025; Van Dalum
712 et al., 2024). **Author contributions**

713 All authors contributed to the conception and design of the study. JBA performed the statistical analysis and data
714 processing. JBA wrote the manuscript with input from all co-authors. All authors helped with the revision and
715 approved the final version of the manuscript.

716 **Competing interests**

717 The authors declare that they have no conflict of interest.

718 **Disclaimer**

719 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text,
720 published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus
721 Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.

722 **Acknowledgements**

723 We thank the GravIS team for supplying GRACE data, the European Centre for Medium-Range Weather
724 Forecasts for providing reanalysis climatic data, NOAA for the ENSO indices, Marshall (2003) for the SAM index
725 and Van Dalum et al. (2024) for providing the SMB dataset. Finally, we thank the Editor and reviewers for
726 constructive reviews.

727 **Financial support**

728 JBA, MK and DU were supported by the Australian Research Council Special Research Initiative, Australian
729 Centre for Excellence in Antarctic Science (Project Number SR200100008). TV was supported by the Australian
730 Government's Antarctic Science Collaboration Initiative (ASCI000002) through funding to the Australian
731 Antarctic Program Partnership. JBA was supported by a University of Tasmania Graduate Research Scholarship.

732 **References**

733 Arblaster, J. M. and Meehl, G. A.: Contributions of external forcings to southern annular mode trends, *Journal of*
734 *Climate*, 19, 2896–2905, Doi 10.1175/Jcli3774.1, 2006.

735 Baiman, R., Winters, A. C., Lenaerts, J., and Shields, C. A.: Synoptic Drivers of Atmospheric River Induced
 736 Precipitation Near Dronning Maud Land, Antarctica, *Journal of Geophysical Research (Atmospheres)*, 128,
 737 e2022JD037859, 10.1029/2022jd037859, 2023.

738 Bodart, J. A. and Bingham, R. J.: The Impact of the Extreme 2015-2016 El Nino on the Mass Balance of the
 739 Antarctic Ice Sheet, *Geophysical Research Letters*, 46, 13862-13871, 10.1029/2019gl084466, 2019.

740 Boening, C., Lebsack, M., Landerer, F., and Stephens, G.: Snowfall-driven mass change on the East Antarctic ice
 741 sheet, *Geophysical Research Letters*, 39, n/a-n/a, Artn L21501
 742 10.1029/2012gl053316, 2012.

743 Cai, W. J., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J. S., Lengaigne, M., McPhaden, M. J.,
 744 Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L. X., Yeh, S. W., Wang, G. J., Ng, B., Jia, F., Yang,
 745 Y., Ying, J., Zheng, X. T., Bayr, T., Brown, J. R., Capotondi, A., Cobb, K. M., Gan, B. L., Geng, T., Ham, Y. G.,
 746 Jin, F. F., Jo, H. S., Li, X. C., Lin, X. P., McGregor, S., Park, J. H., Stein, K., Yang, K., Zhang, L., and Zhong,
 747 W. X.: Changing El Nino-Southern Oscillation in a warming climate, *Nature Reviews Earth & Environment*, 2,
 748 628-644, 10.1038/s43017-021-00199-z, 2021.

749 Chen, X. Y., Li, S. L., and Zhang, C.: Distinct impacts of two kinds of El Nino on precipitation over the Antarctic
 750 Peninsula and West Antarctica in austral spring, *Atmospheric and Oceanic Science Letters*, 16, 100387, ARTN
 751 100387
 752 10.1016/j.aosl.2023.100387, 2023.

753 Clem, K. R. and Fogt, R. L.: Varying roles of ENSO and SAM on the Antarctic Peninsula climate in austral spring,
 754 *J Geophys Res-Atmos*, 118, 11481-11492, 10.1002/jgrd.50860, 2013.

755 Clem, K. R., Renwick, J. A., and McGregor, J.: Large-Scale Forcing of the Amundsen Sea Low and Its Influence
 756 on Sea Ice and West Antarctic Temperature, *Journal of Climate*, 30, 8405-8424, 10.1175/Jcli-D-16-0891.1, 2017.

757 Clem, K. R., Renwick, J. A., McGregor, J., and Fogt, R. L.: The relative influence of ENSO and SAM on Antarctic
 758 Peninsula climate, *J Geophys Res-Atmos*, 121, 9324-9341, 10.1002/2016jd025305, 2016.

759 Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer, K. H., Abrykosov, O., Reinhold,
 760 A., König, R., Sulzbach, R., and Förste, C.: The GFZ GRACE RL06 Monthly Gravity Field Time Series:
 761 Processing Details and Quality Assessment, *Remote Sensing*, 11, 2116, ARTN 2116
 762 10.3390/rs11182116, 2019.

763 Dahle, C., Boergens, E., Sasgen, I., Döhne, T., Reißland, S., Dobslaw, H., Kleemann, V., Murböck, M., König, R.,
 764 Dill, R., Sips, M., Sylla, U., Groh, A., Horwath, M., and Flechtner, F.: GravIS: mass anomaly products from
 765 satellite gravimetry, 10.5194/essd-2024-347, 2024.

766 Diener, T., Sasgen, I., Agosta, C., Fuerst, J. J., Braun, M. H., Konrad, H., and Fettweis, X.: Acceleration of
 767 Dynamic Ice Loss in Antarctica From Satellite Gravimetry, *Frontiers in Earth Science*, 9, ARTN 741789
 768 10.3389/feart.2021.741789, 2021.

769 Fogt, R. L. and Marshall, G. J.: The Southern Annular Mode: Variability, trends, and climate impacts across the
 770 Southern Hemisphere, *WIREs Climate Change*, 11, 10.1002/wcc.652, 2020a.

771 Fogt, R. L. and Marshall, G. J.: The Southern Annular Mode: Variability, trends, and climate impacts across the
 772 Southern Hemisphere, *Wiley Interdisciplinary Reviews-Climate Change*, 11, ARTN e652
 773 10.1002/wcc.652, 2020b.

774 Fogt, R. L., Bromwich, D. H., and Hines, K. M.: Understanding the SAM influence on the South Pacific ENSO
 775 teleconnection, *Climate Dyn.*, 36, 1555-1576, 2011.

776 Fogt, R. L., Jones, J. M., and Renwick, J.: Seasonal Zonal Asymmetries in the Southern Annular Mode and Their
 777 Impact on Regional Temperature Anomalies, *Journal of Climate*, 25, 6253-6270, 10.1175/Jcli-d-11-00474.1,
 778 2012.

779 Gardner, A. S., Moholdt, G., Scambos, T., Fahnestock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.:
 780 Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, *Cryosphere*, 12, 521-
 781 547, 10.5194/tc-12-521-2018, 2018.

782 Goyal, R., Jucker, M., Gupta, A. S., and England, M. H.: A New Zonal Wave-3 Index for the Southern
 783 Hemisphere, *Journal of Climate*, 35, 5137-5149, 10.1175/Jcli-D-21-0927.1, 2022.

784 Groh, A. and Horwath, M.: The method of tailored sensitivity kernels for GRACE mass change estimates, April
 785 01, 20162016.

786 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu,
 787 R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellán, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot,
 788 J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R.,
 789 Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux,
 790 P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.:
 791 The ERA5 global reanalysis, *Quarterly Journal of the Royal Meteorological Society*, 146, 1999-2049,
 792 10.1002/qj.3803, 2020.

793 Hosking, J. S., Orr, A., Marshall, G. J., Turner, J., and Phillips, T.: The Influence of the Amundsen-Bellingshausen
794 Seas Low on the Climate of West Antarctica and Its Representation in Coupled Climate Model Simulations,
795 *Journal of Climate*, 26, 6633-6648, 10.1175/Jcli-D-12-00813.1, 2013.

796 Hoskins, B. J. and Karoly, D. J.: The Steady Linear Response of a Spherical Atmosphere to Thermal and
797 Orographic Forcing, *Journal of the Atmospheric Sciences*, 38, 1179-1196, Doi 10.1175/1520-
798 0469(1981)038<1179:Tslroa>2.0.Co;2, 1981.

799 Huguenin, M. F., Holmes, R. M., Spence, P., and England, M. H.: Subsurface Warming of the West Antarctic
800 Continental Shelf Linked to El Niño-Southern Oscillation, *Geophysical Research Letters*, 51, ARTN
801 e2023GL104518
802 10.1029/2023GL104518, 2024.

803 Kim, B. H., Seo, K. W., Eom, J., Chen, J., and Wilson, C. R.: Antarctic ice mass variations from 1979 to 2017
804 driven by anomalous precipitation accumulation, *Sci Rep*, 10, 20366, 10.1038/s41598-020-77403-5, 2020.

805 Kim, B. H., Seo, K. W., Lee, C. K., Kim, J. S., Lee, W. S., Jin, E. K., and van den Broeke, M.: Partitioning the
806 drivers of Antarctic glacier mass balance (2003-2020) using satellite observations and a regional climate model,
807 *Proc Natl Acad Sci U S A*, 121, e2322622121, 10.1073/pnas.2322622121, 2024.

808 King, M. A. and Christoffersen, P.: Major Modes of Climate Variability Dominate Nonlinear Antarctic Ice-Sheet
809 Elevation Changes 2002-2020, *Geophysical Research Letters*, 51, ARTN e2024GL108844
810 10.1029/2024GL108844, 2024.

811 King, M. A., Lyu, K., and Zhang, X. B.: Climate variability a key driver of recent Antarctic ice-mass change,
812 *Nature Geoscience*, 16, 1128-1135, 10.1038/s41561-023-01317-w, 2023.

813 Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T., Bertiger, W. I., Bettadpur, S. V., Byun,
814 S. H., Dahle, C., Dobslaw, H., Fahnestock, E., Harvey, N., Kang, Z. G., Kruizinga, G. L. H., Loomis, B. D.,
815 McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S., Strekalov, D., Tamisiea, M. E., Wang, F.
816 R., Watkins, M. M., Wen, H. Y., Wiese, D. N., and Yuan, D. N.: Extending the Global Mass Change Data Record:
817 GRACE Follow-On Instrument and Science Data Performance, *Geophysical Research Letters*, 47, ARTN
818 e2020GL088306
819 10.1029/2020GL088306, 2020.

820 Lee, H.-J., Jin, E. K., Kim, B.-H., and Lee, W. S.: Vanishing of the El Niño-induced delay effect on the ice mass
821 loss of West Antarctica in future climate change, 10.21203/rs.3.rs-2437498/v1, 2023.

822 Li, Z., Chao, B. F., Wang, H., and Zhang, Z.: Antarctica ice-mass variations on interannual timescale: Coastal
823 Dipole and propagating transports, *Earth and Planetary Science Letters*, 595, 117789, ARTN 117789
824 10.1016/j.epsl.2022.117789, 2022.

825 Macha, J. M. A., Mackintosh, A. N., McCormack, F. S., Henley, B. J., McGregor, H. V., van Dalum, C. T., and
826 Purich, A.: Distinct Central and Eastern Pacific El Niño Influence on Antarctic Surface Mass Balance,
827 *Geophysical Research Letters*, 51, ARTN e2024GL109423
828 10.1029/2024GL109423, 2024.

829 Marshall, G. J.: Trends in the southern annular mode from observations and reanalyses, *Journal of Climate*, 16,
830 4134-4143, Doi 10.1175/1520-0442(2003)016<4134:Titam>2.0.Co;2, 2003.

831 Marshall, G. J., Orr, A., and Turner, J.: A Predominant Reversal in the Relationship between the SAM and East
832 Antarctic Temperatures during the Twenty-First Century, *Journal of Climate*, 26, 5196-5204, 10.1175/Jcli-D-12-
833 00671.1, 2013.

834 Marshall, G. J., Thompson, D. W. J., and van den Broeke, M. R.: The Signature of Southern Hemisphere
835 Atmospheric Circulation Patterns in Antarctic Precipitation, *Geophys Res Lett*, 44, 11580-11589,
836 10.1002/2017GL075998, 2017.

837 McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an integrating concept in earth science, *Science*,
838 314, 1740-1745, 10.1126/science.1132588, 2006.

839 Medley, B. and Thomas, E. R.: Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-
840 level rise, *Nature Climate Change*, 9, 34-+, 10.1038/s41558-018-0356-x, 2019.

841 Orr, A., Marshall, G. J., Hunt, J. C. R., Sommeria, J., Wang, C.-G., Van Lipzig, N. P. M., Cresswell, D., and King,
842 J. C.: Characteristics of Summer Airflow over the Antarctic Peninsula in Response to Recent Strengthening of
843 Westerly Circumpolar Winds, *Journal of the Atmospheric Sciences*, 65, 1396-1413, 10.1175/2007jas2498.1,
844 2008.

845 Palócz, A., Gille, S. T., and McClean, J. L.: Oceanic Heat Delivery to the Antarctic Continental Shelf: Large-
846 Scale, Low-Frequency Variability, *Journal of Geophysical Research: Oceans*, 123, 7678-7701,
847 10.1029/2018jc014345, 2018.

848 Paolo, F. S., Padman, L., Fricker, H. A., Adusumilli, S., Howard, S., and Siegfried, M. R.: Response of Pacific-
849 sector Antarctic ice shelves to the El Niño/Southern Oscillation, *Nat Geosci*, 11, 121-126, 10.1038/s41561-017-
850 0033-0, 2018.

851 Pohl, B., Favier, V., Wille, J., Udy, D. G., Vance, T. R., Pergaud, J., Dutrievoz, N., Blanchet, J., Kittel, C., Amory,
 852 C., Krinner, G., and Codron, F.: Relationship Between Weather Regimes and Atmospheric Rivers in East
 853 Antarctica, *Journal of Geophysical Research: Atmospheres*, 126, 10.1029/2021jd035294, 2021.

854 Pook, M. J., McIntosh, P. C., and Meyers, G. A.: The Synoptic Decomposition of Cool-Season Rainfall in the
 855 Southeastern Australian Cropping Region, *Journal of Applied Meteorology and Climatology*, 45, 1156-1170,
 856 10.1175/jam2394.1, 2006.

857 Raphael, M. N.: A zonal wave 3 index for the Southern Hemisphere, *Geophysical Research Letters*, 31, n/a-n/a,
 858 Artn L23212
 859 10.1029/2004gl020365, 2004.

860 Raphael, M. N., Marshall, G. J., Turner, J., Fogt, R. L., Schneider, D., Dixon, D. A., Hosking, J. S., Jones, J. M.,
 861 and Hobbs, W. R.: THE AMUNDSEN SEA LOW Variability, Change, and Impact on Antarctic Climate, *Bulletin*
 862 of the American Meteorological Society, 97, 111-121, 10.1175/Bams-D-14-00018.1, 2016a.

863 Raphael, M. N., Marshall, G. J., Turner, J., Fogt, R. L., Schneider, D., Dixon, D. A., Hosking, J. S., Jones, J. M.,
 864 and Hobbs, W. R.: The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate, *Bulletin* of
 865 the American Meteorological Society, 97, 111-121, 10.1175/bams-d-14-00018.1, 2016b.

866 Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and
 867 Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late
 868 nineteenth century, *J Geophys Res-Atmos*, 108, Artn 4407
 869 10.1029/2002jd002670, 2003.

870 Ren, H. L. and Jin, F. F.: Nino indices for two types of ENSO, *Geophysical Research Letters*, 38, n/a-n/a, Artn
 871 L04704
 872 10.1029/2010gl046031, 2011.

873 Richard Peltier, W., Argus, D. F., and Drummond, R.: Comment on “An Assessment of the ICE-6G_C (VM5a)
 874 Glacial Isostatic Adjustment Model” by Purcell et al, *Journal of Geophysical Research: Solid Earth*, 123, 2019-
 875 2028, 10.1002/2016jb013844, 2018.

876 Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., and Morlighem, M.: Four decades
 877 of Antarctic Ice Sheet mass balance from 1979-2017, *Proc Natl Acad Sci U S A*, 116, 1095-1103,
 878 10.1073/pnas.1812883116, 2019.

879 Sasgen, I., Groh, A., and Horwath, M.: COST-G GravIS RL01 ice-mass change products, 2020.

880 Sasgen, I., Dobslaw, H., Martinec, Z., and Thomas, M.: Satellite gravimetry observation of Antarctic snow
 881 accumulation related to ENSO, *Earth and Planetary Science Letters*, 299, 352-358, 10.1016/j.epsl.2010.09.015,
 882 2010.

883 Scarchilli, C., Frezzotti, M., and Ruti, P. M.: Snow precipitation at four ice core sites in East Antarctica:
 884 provenance, seasonality and blocking factors, *Climate Dynamics*, 37, 2107-2125, 10.1007/s00382-010-0946-4,
 885 2011.

886 Schneider, D. P., Okumura, Y., and Deser, C.: Observed Antarctic Interannual Climate Variability and Tropical
 887 Linkages, *Journal of Climate*, 25, 4048-4066, 10.1175/Jcli-D-11-00273.1, 2012.

888 Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H.,
 889 Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T., Li, J., Ligtenberg, S.
 890 R., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P.,
 891 Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sorenson, L. S., Scambos, T. A., Scheuchl, B., Schrama,
 892 E. J., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G.,
 893 Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A reconciled
 894 estimate of ice-sheet mass balance, *Science*, 338, 1183-1189, 10.1126/science.1228102, 2012.

895 Shields, C. A., Wille, J. D., Marquardt Collow, A. B., MacLennan, M., and Gorodetskaya, I. V.: Evaluating
 896 Uncertainty and Modes of Variability for Antarctic Atmospheric Rivers, *Geophysical Research Letters*, 49,
 897 10.1029/2022gl099577, 2022.

898 Stevenson, S., Fox-Kemper, B., Jochum, M., Rajagopalan, B., and Yeager, S. G.: ENSO Model Validation Using
 899 Wavelet Probability Analysis, *Journal of Climate*, 23, 5540-5547, 10.1175/2010jcli3609.1, 2010.

900 Swenson, S., Chambers, D., and Wahr, J.: Estimating geocenter variations from a combination of GRACE and
 901 ocean model output, *Journal of Geophysical Research-Solid Earth*, 113, Artn B08410
 902 10.1029/2007jb005338, 2008.

903 Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M.: GRACE measurements of mass
 904 variability in the Earth system, *Science*, 305, 503-505, 10.1126/science.1099192, 2004.

905 team, I.: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, *Nature*, 558, 219-222, 10.1038/s41586-018-
 906 0179-y, 2018.

907 Turner, J.: The El Nino-southern oscillation and Antarctica, *International Journal of Climatology*, 24, 1-31,
 908 10.1002/joc.965, 2004.

909 Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J., and Orr, A.: The Amundsen Sea low, *International Journal*
 910 of *Climatology*, 33, 1818-1829, 10.1002/joc.3558, 2012.

911 Turner, J., Orr, A., Gudmundsson, G. H., Jenkins, A., Bingham, R. G., Hillenbrand, C. D., and Bracegirdle, T. J.:
912 Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica, *Reviews of Geophysics*,
913 55, 235-276, 10.1002/2016rg000532, 2017.

914 Udy, D. G., Vance, T. R., Kiem, A. S., and Holbrook, N. J.: A synoptic bridge linking sea salt aerosol
915 concentrations in East Antarctic snowfall to Australian rainfall, *Communications Earth & Environment*, 3, ARTN
916 175
917 10.1038/s43247-022-00502-w, 2022.

918 Udy, D. G., Vance, T. R., Kiem, A. S., Holbrook, N. J., and Curran, M. A. J.: Links between Large Scale Modes
919 of Climate Variability and Synoptic Weather Patterns in the Southern Indian Ocean, *Journal of Climate*, 34, 883-
920 899, 10.1175/Jcli-D-20-0297.1, 2021.

921 van Dalum, C. T., van de Berg, W. J., van den Broeke, M. R., and van Tiggelen, M.: The surface mass balance
922 and near-surface climate of the Antarctic ice sheet in RACMO2.4p1, *EGUsphere*, 2025, 1-40, 10.5194/egusphere-
923 2024-3728, 2025.

924 Van Dalum, C. T., Van De Berg, W. J., Gadde, S. N., Van Tiggelen, M., Van Der Drift, T., Van Meijgaard, E.,
925 Van Ulft, L. H., and Van Den Broeke, M. R.: First results of the polar regional climate model RACMO2.4, *The
926 Cryosphere*, 18, 4065-4088, 10.5194/tc-18-4065-2024, 2024.

927 van de Berg, W. J., van den Broeke, M. R., Reijmer, C. H., and van Meijgaard, E.: Reassessment of the Antarctic
928 surface mass balance using calibrated output of a regional atmospheric climate model, *Journal of Geophysical
929 Research: Atmospheres*, 111, 10.1029/2005jd006495, 2006.

930 Verfaillie, D., Pelletier, C., Goosse, H., Jourdain, N. C., Bull, C. Y. S., Dalaïden, Q., Favier, V., Fichefet, T., and
931 Wille, J. D.: The circum-Antarctic ice-shelves respond to a more positive Southern Annular Mode with regionally
932 varied melting, *Communications Earth & Environment*, 3, 139, ARTN 139
933 10.1038/s43247-022-00458-x, 2022.

934 Wang, S.: New record of explosive warmings in East Antarctica, *Sci. Bull.*, 68, 129-132, 2023.

935 Wang, S., Ding, M. H., Liu, G., Li, G. C., and Chen, W.: Blocking Events in East Antarctica: Impact on
936 Precipitation and their Association with Large-Scale Atmospheric Circulation Modes, *Journal of Climate*, 37,
937 1333-1345, 10.1175/Jcli-D-23-0419.1, 2024.

938 Wang, W., Shen, Y. Z., Chen, Q. J., and Wang, F. W.: Unprecedented mass gain over the Antarctic ice sheet
939 between 2021 and 2022 caused by large precipitation anomalies, *Environmental Research Letters*, 18, 124012,
940 ARTN 124012
941 10.1088/1748-9326/ad0863, 2023.

942 Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., Jourdain, N. C., Lenaerts, J. T.
943 M., and Codron, F.: Antarctic Atmospheric River Climatology and Precipitation Impacts, *J Geophys Res-Atmos*,
944 126, ARTN e2020JD033788
945 10.1029/2020JD033788, 2021.

946 Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthélémy, L., Bergstrom, D. M., Berne, A., Binder, H.,
947 Blanchet, J., Bozkurt, D., Bracegirdle, T. J., Casado, M., Choi, T., Clem, K. R., Codron, F., Datta, R., Di Battista,
948 S., Favier, V., Francis, D., Fraser, A. D., Fourré, E., Garreaud, R. D., Genthon, C., Gorodetskaya, I., González-
949 Herrero, S., Heinrich, V. J., Hubert, G., Joos, H., Kim, S. J., King, J. C., Kittel, C., Landais, A., Lazzara, M.,
950 Leonard, G. H., Lieser, J. L., MacLennan, M., Mikolajczyk, D., Neff, P., Ollivier, I., Picard, G., Pohl, B., Ralph,
951 F. M., Rowe, P., Schlosser, E., Shields, C. A., Smith, I. J., Sprenger, M., Trusel, L., Udy, D., Vance, T., Walker,
952 C., Wever, N., and Zou, X.: The Extraordinary March 2022 East Antarctica "Heat" Wave. Part I: Observations
953 and Meteorological Drivers, *Journal of Climate*, 37, 757-778, 10.1175/Jcli-D-23-0175.1, 2024.

954 Williams, S. D. P., Moore, P., King, M. A., and Whitehouse, P. L.: Revisiting GRACE Antarctic ice mass trends
955 and accelerations considering autocorrelation, *Earth and Planetary Science Letters*, 385, 12-21,
956 <https://doi.org/10.1016/j.epsl.2013.10.016>, 2014.

957 Xin, M., Clem, K. R., Turner, J., Stammerjohn, S. E., Zhu, J., Cai, W., and Li, X.: West-warming East-cooling
958 trend over Antarctica reversed since early 21st century driven by large-scale circulation variation, *Environmental
959 Research Letters*, 18, 064034, 10.1088/1748-9326/acd8d4, 2023.

960 Zhang, B., Yao, Y. B., Liu, L., and Yang, Y. J.: Interannual ice mass variations over the Antarctic ice sheet from
961 2003 to 2017 were linked to El Nino-Southern Oscillation, *Earth and Planetary Science Letters*, 560, 116796,
962 ARTN 116796
963 10.1016/j.epsl.2021.116796, 2021.

964