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Abstract. Despite their ubiquity and importance as freshwater habitat, small headwater streams are under monitored by 

existing stream gage networks. To address this gap, we describe a low-cost, non-contact, and low-effort method that enables 

organizations to monitor relative streamflow dynamics in small headwater streams. The method uses a camera to capture repeat 

images of the stream from a fixed position. A person then annotates pairs of images, in each case indicating which image has 20 

more apparent streamflow or indicating equal flow if no difference is discernible. A deep learning modelling framework called 

Streamflow Rank Estimation (SRE) is then trained on the annotated image pairs and applied to rank all images from highest 

to lowest apparent streamflow. From this result a relative hydrograph can be derived. We found that our modelled relative 

hydrograph dynamics matched the observed hydrograph dynamics well for 11 cameras at 8 streamflow sites in western 

Massachusetts. Higher performance was observed during the annotation period (median Kendall’s Tau rank correlation 0.75 25 

with range 0.6-0.83) than after it (median Kendall’s Tau 0.59 with range 0.34 – 0.74).  We found that annotation performance 

was generally consistent across the eleven camera sites and two individual annotators and was positively correlated with 

streamflow variability at a site. A scaling simulation determined that model performance improvements were limited after 

1,000 annotation pairs. Our model’s estimates of relative flow, while not equivalent to absolute flow, may still be useful for 

many applications, such as ecological modelling and calculating event-based hydrological statistics (e.g., the number of out-30 

of-bank floods). We anticipate this method will be a valuable tool to extend existing stream monitoring networks and provide 

new insights on dynamic headwater systems. 
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1 Introduction 

Small headwater streams make up 50-70% of stream network length (Benda et al., 2004; McManamay and DeRolph, 2019) 

and are fundamental units of riverine networks. Streamflow dynamics in these streams are crucial controls on aquatic 35 

ecosystem function (Carlisle et al., 2017; Colvin et al., 2019; Hitt et al., 2022), thermal changes, and the routing of sediment 

and contaminants. Headwater streamflow dynamics are uniquely complex for the following reasons: 1) a majority of small 

(second-order or less) stream channels dry out seasonally or during drought events (Jaeger et al., 2021; Messager et al., 2021), 

2) along-channel changes can be abrupt due to geologic controls and focused groundwater inputs (Briggs et al., 2018), and 3) 

due to small catchment size, these streams are particularly susceptible to drastic hydrologic alterations, both anthropogenic 40 

(damming, impervious surface runoff) and natural (ice or beaver damming, wildfire effects, geomorphic changes).  

Despite their importance and vulnerability, headwater and non-perennial streams are underrepresented by streamflow 

monitoring networks in the United States. (Deweber et al., 2014; Seybold et al., 2023) and across the world (Krabbenhoft et 

al., 2022). Three primary limitations lead to a sparse headwater monitoring network: first, monitoring and maintaining 

traditional stage-discharge gage records (Turnipseed and Sauer, 2010) to a high quality requires expertise and training that 45 

limits the number of organizations able to collect the records. Second, velocity measurements in small, shallow, and slow-

moving streams are difficult to collect and have high uncertainty, making the percentage error of streamflow discharge much 

higher in small streams than large streams (Horner et al., 2018; King et al., 2022; Levin et al., 2023; McMillan et al., 2012). 

Third, in-stream instruments to measure stage in headwater streams are frequently lost or damaged due to shifting streambeds, 

very high local velocities, and beaver or other animal activity. Even disregarding the challenges in collecting the data, where 50 

streams are non-perennial or form disconnected pools, traditional pressure transducer-based stage measurements provide 

incomplete information regarding (dis)connectedness of the stream channel, making these records inadequate for certain uses 

in ecohydrological modelling (Steward et al., 2012). 

Streamflow monitoring using imagery is an attractive alternative to in-stream instruments and has grown in popularity 

as camera technology has improved. Collecting imagery is appealing because it requires very little training or specialized 55 

equipment. However, analysing a large volume of imagery can be a challenge; a range of approaches has been introduced to 

date. Initially, manual interpretation (Schoener, 2018) or rules-based image processing techniques (Chapman et al., 2022; 

Gilmore et al., 2013; Leduc et al., 2018; Noto et al., 2022) were used to automate the reading of a staff gage placed in the 

channel. While effective and low-cost, these staff-plate based approaches still require the installation of in-channel 

infrastructure that may not be permitted in protected lands or can be damaged by high flows. Additionally, stage monitoring 60 

is restricted to the location of the staff plate; therefore, any debris on the staff plate or view blockage due to snow or vegetation 

will result in missed readings. Computer-vision based approaches that avoid the use of an in-channel staff plate have been 

introduced, but generally require the manual identification of a specific region of interest in the image (Keys et al., 2016), 

image orthorectification using ground control points, and detailed high-resolution 3D models of riverbed and bank geometry 

to estimate changes in stage (Eltner et al., 2018).  65 
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 Advances in deep learning approaches for imagery analysis have created new opportunities for environmental 

monitoring. For example, several recent studies have applied deep learning to image-based stream stage monitoring to 

eliminate the need for fixed in-stream staff plates. Many of these papers use established image segmentation algorithms (i.e. 

convolutional neural networks) to classify parts of the image as “water” or “not-water” (Eltner et al., 2021; Liu and Huang, 

2024; Vandaele et al., 2021). Using a reference point on the image and knowledge of the interface location, the stream level is 70 

tracked over time. While effective, these approaches are sensitive to channel rearrangement or view blockage at the water/not-

water interface. They also still require some manual judgement about the location of interest in the image frame for which 

stage is provided and image orthorectification using ground control points.  

Unlike other deep learning approaches for streamflow estimation, Streamflow Rank Estimation (SRE) was developed 

to minimize the need for external monitoring data to train a model (Gupta et al., 2022). The approach aims to estimate 75 

streamflow dynamics without the need for traditional discharge observations, an in-channel staff plate, designating a region of 

interest, or imagery orthorectification. SRE uses a learning-to-rank framework that is trained using many pairs of stream 

images, with discharge in the images of each pair visually compared, removing the need for stream discharge training data. 

We refer to the person-generated pairwise ranks as “annotations”. The model is trained using the annotations to sort images 

from high apparent streamflow to low apparent streamflow by fine-tuning a convolutional neural network (a ResNet-18 (He 80 

et al., 2015) architecture pretrained on ImageNet (Deng et al., 2009)) and using a learning-to-rank approach utilizing the 

RankNet loss function (Burges et al., 2005). The rank of each image can be used to create a streamflow percentile which is 

correlated with the streamflow discharge and can be interpreted as a dimensionless hydrograph. While the absolute streamflow 

could be estimated from the streamflow percentile using an assumed streamflow discharge distribution, for unmonitored 

catchments this distribution would need to be estimated independently of the SRE model and would be a significant source of 85 

uncertainty in absolute streamflow estimates (Gupta et al., 2022). As a trade-off for low-effort model training and minimal 

external information requirements, the rank-based streamflow percentile estimate is the primary output produced by the SRE 

model. 

To date, the SRE model has been tested at a limited number of sites with simulated annotations derived from known 

streamflow discharge timeseries, but not with annotations created by people. With simulated annotations, SRE characterized 90 

streamflow percentile dynamics with a Kendall’s rank correlation greater than 0.7 in five of six stream locations (Gupta et al., 

2022). The number of annotations (n = 500, 1000, 2500,10000) and annotators’ ranking ability (could discern 0%, 10%, 20%, 

50% discharge difference) both strongly influenced the model’s ranking performance. This promising early work motivated 

us to further evaluate the real-world performance of the model by using person-generated annotations and expanding the 

number of stream sites at which we assessed model performance. With a better understanding of the factors influencing model 95 

performance, we plan to apply SRE to currently unmonitored headwater catchments. 

 This paper describes a methodology for monitoring relative streamflow dynamics in small headwater streams using 

timelapse imagery coupled with a deep learning model trained using person-generated annotation. We evaluate the real-world 

performance of this monitoring system and answer the following questions:  
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1. How accurate are people at ranking images by streamflow? 100 

2. How accurate are the image-derived relative hydrographs developed using person-generated annotations? 

3. Which factors influence ranking model accuracy and can indicate which unmonitored catchments would be suitable 

for low-cost camera monitoring?  

4. How many person-generated annotations are required to achieve stable ranking model performance? 

2 Methods 105 

2.1 Data Collection 

To collect timelapse imagery from low-cost cameras, this project developed a web platform titled the Flow Photo 

Explorer (https://www.usgs.gov/apps/ecosheds/fpe/). Since its inception in October 2021, the Flow Photo Explorer (FPE) 

platform has accepted imagery submissions from an array of organizations with a common motivation of enhancing and 

expanding stream monitoring networks. While guidelines are provided on the webpage, there are few restrictions on how 110 

cameras are configured and what views they capture. The only requirement is that the imagery format uploaded to the FPE 

platform is formatted with EXIF metadata, which is a common imagery data format across many low-cost battery-powered 

game or trail cameras. We recommend a photo every 15 minutes, though the FPE database contains intervals from less than 5 

minutes to once per day. The recommended camera view is looking downstream or upstream, though based on field conditions 

some sites may instead feature cross-stream or tangential views. We expect that the image-based monitoring approach will 115 

work best when at least some fixed objects (i.e. trees, boulders, bridge pilings, stream banks) are visible at all levels of 

streamflow. An example camera view with these fixed features visible is shown in Fig. 1. If a user knows a U.S. Geological 

Survey (USGS) stream gage monitoring the same stream reach, they can indicate the USGS station identifier and data are 

automatically pulled from the USGS National Water Information System (U.S. Geological Survey, 2024) database. 

Alternatively, they can upload their own streamflow observations, although they are not required. To test the methodology, 120 

we co-located 11 cameras with eight USGS gages in western Massachusetts for which records of stream discharge are available 

(Fair et al., 2025). Four cameras were located at the same streamflow monitoring location to examine the effect of differing 

camera angles on monitoring performance. In this study we collected imagery every 15 minutes with Reconyx (Hyperfire 2 

model) Bushnell (Trophy and Essential models) cameras that were mounted to trees (except for one site that was affixed to a 

bridge) using swivel mounts and a secure metal housing. 125 

https://www.usgs.gov/apps/ecosheds/fpe/
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Figure 1 – The recommended camera view includes stream banks and fixed objects such as trees or boulders visible at most 

flows. Photograph by the U.S. Geological Survey. 

 For this analysis we set minimum data availability criteria to test the method at sites with sufficient data. We expected 

that seasonal changes in vegetation, streamflow, and snow cover would appear in the imagery. Therefore, we selected sites 130 

with stream discharge and imagery data that spanned at least 1.5 years. We implemented this criterion to ensure that the model 

training period spanned at least one full year, so that all seasons were represented, and so that we additionally had access to a 

final half year of data for testing purposes. Within this span, we allowed some data gaps, since these are common in our 

available set of imagery data. We required at least 180 complete days of data within the 1.5 years, which is a completeness of 

approximately 33%. Table 1 contains a list of sites that met our data availability requirements. These locations are mapped in 135 

Fig. 2. In this analysis we used daytime-only imagery (from 7 am to 7 pm), though many sites have cameras with an infrared 

flash that also produce usable imagery at night.  

 To guide user site selection and setup, we evaluated patterns in model performance according to two key site 

attributes. The first is a measure of flow variability during the monitoring period. Some streams, such as those heavily 

influenced by groundwater discharge can have small fluctuations in stream stage that are difficult to identify in imagery. We 140 

selected the coefficient of variation (CV) of log-transformed streamflow log10(Q) to quantify the general variability of the 

stream. The second metric is a simple qualitative assessment of how stable the camera view is over the period of record. This 

metric is primarily for quantifying if there were abrupt changes in the field of view of the image time series, mainly coinciding 

with when the camera was serviced. Cameras can also shift slightly due to vibrations or wind changing the mounting position, 

though these types of shifts are minor alterations compared to abrupt view changes. In this rating system, a camera stability 145 

value of “Low” indicates that there was at least one camera view change of 50% or greater (i.e. only half of the original frame 

was still visible). “Medium” indicates at least one camera view change between 25% and 50%, while “High” indicates that all 

view changes were below 25%. These two attributes were selected to inform user site selection and field methods.  
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Location 

ID 

Station Name 

(USGS Station 

ID) 

Monitoring 

Period 

% of 

images 

have 

observed 

stream 

flow 

Number of 

Annotations 

Training 

period 

CV of 

log10(Q) 

Camera 

stability 

Drainage 

area 

(km2) 

ABB Avery Brook 

Bridge 

(01171000) 

2021-03-10 to 

2024-04-02 

99.1 3,147 0.8 Low 7.8 

ABL Avery Brook 

River Left 

(01171000) 

2021-07-02 to 

2024-04-02 

98.8 2,277 0.8 High 7.8 

ABR Avery Brook 

River Right 

(01171000) 

2021-03-19 to 

2024-04-02 

99.3 2,214 0.8 Medium 7.8 

ABS Avery Brook 

Side 

(01171000) 

2021-03-19 to 

2024-04-02 

99.2 2,441 1.0 High 7.8 

GR Green River 

(01170100) 

2022-09-29 to 

2024-03-29 

99.2 5,057 0.2 High 107.2 

SB Sanderson 

Brook 

(01171010) 

2021-04-01 to 

2024-03-22 

70.9 4,821 1.2 Low 4.4 

WB0 West Brook 0 

(01171100) 

2022-02-01 to 

2024-04-02 

99.1 7,953 0.8 High 27.7 

WBL West Brook 

Lower 

(01171070) 

2019-02-27 to 

2024-04-09 

67.7 2,256 0.7 High 21.8 

WBR West Brook 

Reservoir 

(01171020) 

2021-03-25 to 

2024-03-22 

64.8 2,325 1.1 High 16.1 

WBSR West Branch 

Swift River 

(01174565) 

2017-09-14 to 

2024-03-28 

99.5 3,553 0.3 Medium 32.6 

WW West Whately 

(1171005) 

2021-04-06 to 

2024-04-09 

70.2 2,510 -2.5 Medium 1.3 

Table 1 - Summary of data collected at locations included in this analysis. Streamflow observations were originally reported 150 

in a U.S. Geological Survey (USGS) data release (Fair et al., 2025). “Training period CV of log10(Q)” refers to the coefficient 

of variation of log-transformed streamflow discharge during the model training period. 
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`  

Figure 2 - Map of monitoring locations in western Massachusetts, USA (Fair et al., 2025; Goodling et al., 2025). Triangles 155 

in panels C and D indicate monitoring sites and are labelled with site identifiers listed in Table 1. Arrows in Panel D indicate 

streamflow direction. Water bodies shown are from the NHDPlus Version 2 (McKay et al., 2012) (panel C) and NHD High 

Resolution (Moore et al., 2019) (panel D) datasets. 

2.2 Data Annotation 

Training the neural network model to predict streamflow dynamics from imagery requires external site-specific 160 

information. Because we hope to use this method in places with no other information except for the imagery, we could not use 

any streamflow data in model training. Instead, we relied on people to rank pairs of images by streamflow in a process called 

‘data annotation’. In the FPE web application, users were shown two photos from a given site side-by-side and asked to indicate 

which one had more streamflow (Fig. 3). The images selected to form a pair were selected at random. The users also indicated 

if the images appear “about the same” or if the image was a “bad photo” (obscured or too dark). “Don’t know” was selected if 165 

the photo is bad or if other aspects of the images made them difficult to compare, such as a large difference in camera view or 

camera angle. Image pairs marked “don’t know” were not used in model training. In this study, users were only presented with 

images collected during daytime (7am – 7pm). A typical user completed an annotation in 1-3 seconds on average; if focused, 

an individual could perform approximately 1000 annotations in an hour. Our dataset includes 17 unique annotators who 
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contributed to the model training; however, only two annotators represent 93.7% of all the annotations and we focus on these 170 

two in our discussion of annotator performance. Both of these annotators were student interns (one ecology graduate student, 

one environmental science undergraduate student). The student interns were associated with the project but had no specialized 

training or experience in streamflow monitoring. 

 175 

Figure 3 – The web-based annotation interface from the Flow Photo Explorer used in this study to develop training datasets 

for the ranking model. 

 The process of annotation was not error-free; the judgments made by individual annotators could sometimes be 

incorrect. This could be through simple errors of transcription (i.e. clicking the incorrect button) or because the imagery pairs 

were difficult to compare because of lighting, vegetation, or seasonal differences. These errors, if significant, could provide 180 

spurious information to the deep learning model. We therefore quantified the performance of our annotation dataset using the 

known true flow-based ranks from the co-located USGS gage data. Our primary metric was classification accuracy for the 

selection of the “left” or “right” image with higher streamflow in the image pair: 

(1)    𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 % 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝐿+𝑇𝑅

𝑇𝐿+𝐹𝐿+𝑇𝑅+𝐹𝑅
∗ 100  

Where TL and TR refer to true left and true right selections and FL and FR refer to false true and right selections. We observed 185 

that the difficulty of the selection increases, and therefore the classification accuracy decreases, if the two photos had similar 

streamflow. To fully describe annotation performance, we provide our metrics as functions of the relative flow difference 

between the images. The relative flow difference (∆𝑟𝑒𝑙) between a pair of photos shown to an annotator was calculated as: 

(2)      ∆𝑟𝑒𝑙=
|𝑄1−𝑄2|

1

2
(𝑄1+𝑄2)
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Where Q1 and Q2 represent streamflow values for the two images. For positive values inclusive of zero, the value ∆𝑟𝑒𝑙 is 190 

bounded to be between zero and two. A ∆𝑟𝑒𝑙 value near zero indicates close agreement between Q1 and Q2 whereas a ∆𝑟𝑒𝑙  

value of 2 could indicate that one of the two values is approaching zero or infinity. We compute the overall classification 

accuracy within binned increments of 0.1 ∆𝑟𝑒𝑙; the unweighted binned performance is used to develop a function describing 

the relationship between ∆𝑟𝑒𝑙 and classification accuracy. 

2.3 Modelling Methodology 195 

Annotated images were ranked into an ordered sequence using the previously developed SRE neural network model 

(Gupta et al., 2022). An independent model was trained for each site. The SRE neural network model takes an image as input, 

which includes three channels (RGB), and generates a dimensionless, continuous-valued score representing relative 

streamflow as output. The score is derived by applying a sequence of mathematical operations to the input image, including 

spatial convolutions, which help the model extract relevant features from the image. During training, the model is given batches 200 

of paired images ranked by annotators based on relative streamflow. Two neural networks with shared model weights 

sequentially predict dimensionless scores for the two images. The pair of scores is used to compute a probabilistic ranking loss 

(Burges et al., 2005) that is minimized when the model assigns a higher score to the image that the annotator ranks as having 

higher flow, or assigns the same score to both images if the annotator ranks them as having the same flow. This architecture is 

sometimes called a “twin neural network”. Images are pre-processed by resizing, centre-cropping to exclude metadata bands, 205 

and normalizing. While training, data augmentations such as random crops, horizontal flips, rotations, and colour jitter are 

applied to improve model robustness, generalization, and reduce overfitting (Shorten and Khoshgoftaar, 2019). Additional 

detail on model development and image pre-processing is available in the supplemental materials. After training, the model 

is used to generate score predictions for all images from a site, which are then standardized into z-scores by subtracting the 

mean and dividing by the standard deviation.  210 

The imagery data were divided into training, testing, and validation splits to enable robust model evaluation. Unlike 

many machine learning applications, the model learns from image pairs and not individual images; therefore, these splits are 

a bit more complex to develop. When reporting model performance, we identify images that comprised pairs used for training 

(“train”, representing 80% of annotations) or validation (“val”, representing 20% of annotations). Images that were not part of 

any annotation pair provided to the model are used for “test”. We further divided this into “test-in”, which is coincident with 215 

the timeframe of annotation, and “test-out” (when available) for the period following the period with annotations. “All-in” is 

the combined set of images, regardless of if they are part of an annotation pair, during the annotation period. “All” is the 

performance for all images. We consider “test-in” to represent a retrospective model performance, while “test-out” to represent 

the expected performance of a deployed operational model on new imagery. 

 The sites in this study were co-located with traditional USGS streamflow gages, which enables us to evaluate model 220 

performance relative to these instruments. Our model performance metric is Kendall’s Tau, a nonparametric rank-based 

correlation coefficient (Kendall, 1938). We selected this metric because it is insensitive to monotonic transformations such as 
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log-transformation and percentile calculations, making it appropriate to compare values on different scales and with different 

distributions. As a metric it is strict regarding timing; short-lived peaks, if slightly mis-timed, will result in low Kendall’s Tau. 

Because it is based on ranks, it is insensitive to the magnitude difference between two values. As a result, low-flow 225 

observations, which are more common, have a greater influence on the resulting Kendall’s Tau than short-lived high-flow 

observations. 

 To provide a preliminary understanding of the factors influencing model performance we present pairwise 

relationships between annotation accuracy, streamflow variability, camera stability, and model performance. For comparisons 

among the numeric values we present the Pearson’s correlation coefficient and two-sided p-value calculated with the cor.test 230 

function in R version 4.3.2 (R Core Team, 2021). For comparisons between numeric values and the categorical camera stability 

metric, we present the results of the nonparametric Kruskal-Wallis test to evaluate if the distribution varies among the 

categories (Kruskal and Wallis, 1952). If significant, we perform Dunne’s post hoc pairwise multiple comparison test to 

identify which categories have statistically different distributions (Dunn, 1964). The Kruskal-Wallis and Dunne’s tests are 

computed with the rstatix R package (Kassambara, 2023). 235 

2.4 Sensitivity analysis 

We performed a sensitivity analysis to understand how many person-generated annotations are required to achieve 

acceptable performance. In this case, the target performance level was that achieved by training the model with all available 

image pair annotations for a given site. We created nested subsets of the annotations, beginning with increments of 100 up to 

500, then using larger increments of 250 up to 1500, and finally using increments of 500 up to 3000, with additional subsets 240 

at 4000 and the maximum number of available annotations. Smaller increments were used at the lower end of the annotation 

range to capture the more substantial improvements in model performance that are typically observed with initial increases in 

training data. Each subset was a strict superset of the previous one, meaning that each larger subset contained all the pairs from 

the smaller subsets plus additional pairs. This allowed us to assess how increasing the volume of training data impacts model 

performance and to identify the point where performance plateaus, avoiding unnecessary annotation efforts that may not 245 

significantly improve performance. The sensitivity analysis reported the Kendall’s Tau model performance metric is for the 

“test-in” data split for daytime images (7am – 7pm). 

To ensure the robustness of our findings, the analysis was repeated five times. For each repetition, we randomly 

permuted the order of the annotations before generating the nested subsets, thereby mitigating any potential variance that could 

arise from the specific sequence of training samples.  250 
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3 Results 

3.1 Annotation results 

 Annotation performance in our dataset was high (average 92.2% accuracy) and was generally consistent across sites 

and annotators. Accuracy was well-described by an increasing function of the relative flow difference (global 4 th order 

polynomial, R2 = 0.89, Fig. 4, red lines). At all sites, annotation accuracy neared 100% accuracy above a relative flow 255 

difference of 1 (which occurs when one image has three times as much streamflow as the other). As the relative flow difference 

neared 0, classification accuracy approached 50%, which is equivalent to guessing between the photos. Similar curves are 

observed for the two primary annotators (represented by symbols in Fig. 4). To characterize the overall accuracy of the 

annotation at a site, the percent accuracy of all annotations regardless of relative flow difference is reported in each panel of 

Fig. 4. The site with the lowest overall annotation performance—West Whately, with an 84% overall accuracy—had the lowest 260 

streamflow coefficient of variation a “medium” level of camera stability (Table 1).  
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Figure 4 – Annotation accuracy for each site as a function of the relative difference in streamflow between the two images 

shown to the annotator. Percent accuracy was computed for annotations in binned intervals of 0.1 relative flow difference. 265 

Two annotators (represented with symbols and named with 5-digit alphanumeric identifier) performed annotations across the 

11 camera sites. The red line is a 4th order polynomial fit across all 11 camera sites, with equation and fit statistic shown at 

the bottom of the figure. 

3.2 Modelling Results 

Predictions from models trained on person-generated annotations were found to represent both individual storm 270 

events and inter-annual hydrologic changes with a satisfactory degree of fidelity, with “test-in” Kendall’s Tau values ranging 

from 0.60 to 0.83 (Fig. 5). We separately report statistics for the data splits “test-in”, “test-out”, “all-in”, and “all”. Most 

models have a slight decrease in performance (approximately 0.02) when comparing the training to test-in results. This 

decrease is a measure of overfit to the data. Green River has the greatest decrease (0.08, or 10%). A review of the annotations 

for this site shows a low density in annotations at the end of the training period that could account for this difference. Where 275 
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available, the test-out performance is lower than test-in performance (mean decrease is 0.20), suggesting a decreased ability 

to generalize to new flow conditions or camera views.  

Within our camera monitoring dataset, we have several co-located cameras that were independently annotated and 

trained (lighter colour bars in Fig. 5). Four co-located cameras exhibited similar test-in performance, although a downstream-

facing view had slightly lower performance than the other three. For the test-out period, two sites (Avery Brook River Left 280 

and Avery Brook Side) have much better performance than the other two. These sites have “high” camera stability and greater 

annotation accuracy than the other two sites. The streamflow has the similar (but not identical) coefficient of variation due to 

the differing monitoring timeframes among the cameras.  

Model prediction timeseries show a clear correspondence with observed streamflow timeseries, especially when both 

datasets are displayed as rank percentile units (Fig. 6; supplemental materials). Major hydrologic events such as a drought 285 

that occurred in this area from June-September of 2022 and a prolonged wet period in July-August of 2023 are visible in the 

estimates derived solely from the imagery model. The duration and magnitude of major hydrologic events match well between 

observed streamflow and model predictions. Short-lived peaks from individual storm events are also well-characterized by 

their timing and general magnitude.  

 Model performance of the “test-in” set, annotation performance, flow variability, and camera stability were found to 290 

be highly interrelated (Fig. 7). Positive correlations were observed between flow variability and annotation accuracy (Panel 

A), flow variability and model performance (Panel C), annotation accuracy and model performance (Panel D). West Whately 

is an outlier to some extent; we report Pearson’s correlation coefficients and p-values with and without this camera site. The 

relationship between annotation accuracy and model performance (Panel D) has the highest correlation and is least affected 

by the outlier presence. Camera stability, a categorical variable, was weakly related to annotation accuracy (Panel B). The 295 

Kruskal-Wallis test indicates that the annotation performance is non-identical across the three stability classes at the 0.05 

significance level. The post hoc Dunn’s pairwise multiple comparison test shows the only significant difference is between the 

“high” stability and “medium” stability classes. The Kruskal-Wallis test indicates there is no significant difference in Kendall’s 

Tau among the stability classes (Panel E). Among the four cameras located on the same stream reach (shown with lighter 

shading), the highest performance in annotation accuracy and prediction Kendall’s Tau was observed for Avery Brook River 300 

Left, which had a highly stable camera. 
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 Figure 5 – Summary of model performance, as defined by Kendall’s Tau correlation, between observed and estimated 

streamflow percentile. Results are presented for 11 sites, 4 of which are co-located. Site abbreviations shown in brackets. 305 

Results are presented for six different sets of the data. The set “test-in” represents unseen images coincident with the training 

period. The set “test-out”, which is not available at all locations, represents unseen images following the training period.  
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Figure 6 – Timeseries prediction at a single site representing intermediate model performance. Top two panels show the 310 

streamflow, middle two panels show the predicted model score, bottom two panels show both when transformed to rank 

percentile. The left column indicates the full period of record, the right column is an inset. In the inset plots, daily means are 

plotted as dots and the 15-minute interval predictions are plotted with lines. Prediction timeseries for all sites are shown in 

the supplemental materials. 

 315 
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Figure 7 – Relationships between flow variability and annotation accuracy (panel A), camera stability and annotation 

accuracy (panel B), flow variability and model performance (panel C), annotation accuracy and model performance (panel 

D), and model performance and camera stability category (panel E). Flow Variability is quantified with the coefficient of 320 

variation of log-transformed streamflow. Model performance is the “test-in” split. Point labels refer to site number listed in 

Table 1. The four co-located cameras are indicated with light grey square symbols. Panels A, C, and D have text indicating 

the Pearson’s correlation coefficient and significance at the p<0.05 level; values are provided for without the West Whately 

site (“w/o WW”) and for all sites (“all”). Panels B and E have text with the Kruskal-Wallis significance test at the p<0.05 

level. Where significant, the post hoc Dunn’s pairwise multiple comparison test is performed. An asterisk indicates significance 325 

at the p<0.05 level while “ns” indicates not significant at that level. 
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3.3 Sensitivity analysis 

The sensitivity analysis we employed allowed us to examine the relationship between number of annotations and 

model performance. For most sites, “test-in” model performance improves significantly from 100 annotations to 500 

annotations, as the models learn more relevant features for inferring relative streamflow (Fig. 8). Generally, the spread of 330 

individual iterations (n = 5) was small relative to the performance improvement associated with increasing annotations. The 

model performance plateaus around 1000 annotations for most sites. Beyond this point, additional annotations offer minimal 

gains, suggesting that the model is not extracting further useful information from the additional annotations.  

 

  335 

Figure 8 - Model performance as function of the number of annotations used to train the model. Coloured lines indicate 

individual scaling experiments (n=5), the black line and points indicate mean performance. Dotted vertical line shows 1000 

annotations. Axis limits vary among panels. Performance computed on daytime (7am – 7pm) photos only. Subplots labelled 

with site name and number described in Table 1. 

 340 
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4 Discussion 

 We find that a low-cost methodology for monitoring relative streamflow dynamics in headwater streams is effective 

at characterizing interannual hydrologic events and short-term storm responses at the stream sites within our study. Based on 

our encouraging results, we anticipate the approach will provide a valuable alternative to traditional stream gaging methods 

when relative streamflow dynamics information is needed but the streamflow discharge is not required. The person-generated 345 

annotation, model performance patterns, and sensitivity analysis performed in this study have implications for how we refine 

the modelling approach and provide guidance to users as this platform evolves.  

This study was our first insight into annotator accuracy. In a previous study outlining the SRE method (Gupta et al., 

2022), the ability to correctly rank the image pair was varied systematically using simulations. In that study, in addition to a 

perfect annotator that always ranked the image pair correctly, the authors simulated annotations with varying ability to discern 350 

between streamflow differences in the photo pair. The thresholds they tested included 10%, 20%, and 50% of the lesser 

discharge. The authors found a less discerning annotator had to perform more annotations to train a model that reached similar 

performance as one trained on annotations from a more discerning annotator. However, these annotators could not make 

mistakes; incorrect labels were not introduced. Conversely, in this study, people performed annotations. While the overall 

accuracy of the annotators at individual sites ranges from 84% - 96%, these accuracy statistics obscure another feature of 355 

annotation – annotators are near perfect at distinguishing large differences in flow and less accurate at distinguishing small 

differences in flow. Even when provided with a “same” button and a “don’t know” button, annotators make mistakes at small 

differences in flow. This is likely due to the difficulty of the task in the presence of camera angle shifts, obscuring vegetation, 

changes in channel morphology, and the fact that it is simply difficult to discern small differences in streamflow visually. 

Annotation performance in our dataset followed similar patterns for two annotators and across 11 camera sites, such that all 360 

data could be reasonably fit with a single mathematical function (see Fig. 4). Future studies could use this function to simulate 

annotator performance more accurately than previous threshold-based simulations. This study primarily relied on annotations 

from two individuals with similar backgrounds and a single annotator worked on each site, resulting in a potential conflation 

of annotator and site variability. Future work using larger annotation datasets or designed common annotation sets could better 

assess the range of skill across individuals and backgrounds. In this study we used streamflow gage observations to quantify 365 

annotator and model performance. Where observations are not available, annotator performance could be assessed using 

multiple annotators assessing the same image pairs. Model performance could be evaluated using post-hoc human review using 

a similar approach as annotation. 

This study’s models, trained with person-generated annotations, produced a timeseries of streamflow percentile 

estimates analogous to a relative hydrograph that can be used to monitor the timing, duration, and relative magnitude of 370 

hydrologic events (Fig. 6; Supplemental Materials). All performance metrics in this paper are provided for the original 

approximately 15-minute interval frequency of the imagery and streamflow data, though the timeseries plots of model 

predictions do show substantial sub-daily variability in streamflow percentiles. For example, at times in late 2023, daily 
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percentiles at site Avery Brook Bridge consistently range from nearly 25 % to 90% (Fig. 6). A review of individual images 

during times of high sub-daily percentile variability shows that outliers in model prediction can be introduced by the presence 375 

of sun glare on the camera, vegetation blocking the camera view, twilight conditions, fog/haze, and other factors that present 

the model with unfamiliar views (Supplemental Materials, section 3). Since we allow annotators to exclude photos that are 

obscured, the model is not trained on these images which leads to poorer performance. A focus of future work on identifying 

and excluding these images will likely reduce the variability at a sub-daily scale resulting from poor images. Even in the 

presence of these features, the daily mean values plotted correspond well with major hydrologic events, such as a drought in 380 

the summer of 2022 that affected the region, and individual storm events. Users of this modelled relative streamflow data could 

create daily mean values if they were interested in results at this scale. However, we report sub-daily model performance 

because the headwater streams that are a focus of this work are highly responsive to storm events and it is also important to 

capture these events to understand and characterize streamflow dynamics. 

Where available, this study found lower model performance for the `test-out` period than the `test-in` period, though 385 

the degree of performance decrease varied among sites. Even for the four co-located sites on Avery Brook the decrease in 

model performance from `test-in` to `test-out` varied substantially (Fig. 5). We believe this may be due to a combination of 

new camera views not seen in training and the fact that the `test-out` period often included winter which can be a period of 

lower performance due to snow obscuring the stream. The general approach we took may be limited in its ability to describe 

the magnitude of out-of-distribution streamflow in the `test-out` period, but due to the limited availability of sites with `test-390 

out` periods, we are unable to draw conclusions that might hold true for other sites. Creating models from longer paired imagery 

and streamflow records with more extensive `test-out` periods will support future efforts to minimize performance loss for the 

`test-out` period, likely through improvements in the image augmentation steps of the modelling procedure. 

 Model performance among sites seems to be driven by the variability of the streamflow during the monitoring period. 

We find that annotator and model performance at sites that have very steady flow is low relative to sites experiencing wide 395 

variation in observed streamflow. To some extent this is a consequence of the Kendall’s Tau as a performance metric; where 

a small range in the overall data causes small fluctuations in stream discharge to manifest as large fluctuations in rank 

percentile. However, physical characteristics matter – for this method to perform well the stream needs to have visible changes 

in streamflow during the training period. The site in this study with the lowest streamflow coefficient of variation, West 

Whately, also had a very low stream depth such that the water surface was difficult to see within a meandering channel and in 400 

the presence of leaves. Future work with more sites will be better positioned to evaluate how camera stability, flow variability, 

other factors affect annotation and model performance. This study refines user guidance in two important ways. First, our 

results suggest that sites that experience a wide range of flows (or for long enough that a wide range of flows are experienced) 

will have higher model performance. Second, since our simple camera stability classification has a weak association with 

annotator accuracy and no significant relationship with model performance, the method is robust to slight changes in camera 405 

angle and can still be used if these shifts are present. However, the limited three-category approach in this study may limit the 
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findings. More complex frame-tracking algorithms to quantify camera stability (i.e. Ljubičić et al., 2021) could further improve 

insights into the robustness of the method to camera shifts. 

 A key requirement of this methodology is the need for a person to perform annotations on the imagery datasets. 

Anecdotally, users typically annotate at an average pace of 1,000 image pairs per hour using the interface. However, in practice, 410 

annotations are typically performed in smaller batches (100-200 images per batch) with breaks in between resulting in a slower 

effective pace. The sensitivity analysis performed in this study helps evaluate the number of annotations to reach near-optimal 

model performance while not wasting annotator effort. For our available sites and annotation datasets we approximate 1,000 

annotations as a reasonable guideline when creating a new model. While there is slight variability among the sites, the 

consistency of the shape of the curves shown in Fig. 8 suggests that a single guideline is reasonable. The number of annotations 415 

may also be controlled by factors not included in the sensitivity analysis such as the record length and annotator accuracy. 

Additional sensitivity analyses, likely using synthetic annotation datasets, could further refine the guideline for how many 

annotations to perform when developing ranking models at new sites. 

The output of the deep learning model is a relative flow percentile estimate. Although streamflow discharge (i.e. a 

flow rate with units of volume per time) is a more familiar metric, relative flow has value for several applications. With relative 420 

flow estimates we can 1) evaluate the duration and timing of disturbances such as drought and flood events, 2) provide inputs 

to statistical models such as ecological population models that may not require absolute streamflow accuracy, 3) establish or 

confirm relationships between streamflow at a study reach and at other nearby locations, 4) evaluate the ability of hydrologic 

models to simulate streamflow dynamics at a study reach, 5) provide the basis for counting the exceedance of site-relevant 

thresholds (for example, the number of times a roadway inundated or the number of times an intermittent stream is active). 425 

These outputs are aligned with the work of other authors to use semiquantitative observations to study headwater streams, for 

example stream connectivity (Bellucci et al., 2020; Kaplan et al., 2019). Nevertheless, some applications require absolute flow, 

and in future work we intend to explore approaches to transform relative flow estimates produced by the SRE model into 

absolute streamflow discharge estimates, either by periodically measuring discharge at the site or by using discharge data from 

nearby locations (if available). For now, we intend to communicate the appropriate use of these relative percentile estimates 430 

and avoid implying that streamflow discharge is produced by this work.  

 Because our study reports relative rather than absolute streamflow, it is difficult to directly compare our model 

performance against other similar work. We report our performance with the rank-based Kendall’s Tau value, which is 

analogous to a nonparametric R2 value appropriate to our model outputs. Similar studies using timelapse camera imagery to 

monitor rivers focus on reproducing point-in-time stage observations, often using in-channel calibration targets such as staff 435 

gages (Chapman et al., 2022; Eltner et al., 2018; Gilmore et al., 2013; Kim et al., 2011; Lin et al., 2018; Nguyen et al., 2009). 

These studies vary in approach, though typical steps include identifying the target and water surface, performing an 

orthorectification of the image into real world space, and conducting a measurement of a visual target. Typically, authors report 

sub-centimetre level accuracy. For example, a field study of uncertainty of one system reported ±5 mm accuracy at the 90% 

confidence interval in a tidal marsh environment with tranquil waters, though the authors noted this system was unsuited to 440 
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fast-moving turbulent water such as the mountainous headwater streams in our dataset (Birgand et al., 2022). A deep-learning 

water segmentation-based approach reported Spearman correlations between independent stage measurements ranging from 

0.57 to 0.94 at a single well-characterized gage site in eastern Germany (Eltner et al., 2021). We note these performance 

metrics reported by other similar studies, though due to differences in the model outputs our performance metrics are not 

directly comparable. Where evaluated in the field, most similar studies report results for single sites and/or for durations of 445 

less than 1 year (Birgand et al., 2022; Eltner et al., 2021; Leduc et al., 2018; Liu and Huang, 2024; Schoener, 2018), making 

this study’s multi-year monitoring of 11 camera sites a comparatively robust representation of model performance. 

 This work, while promising, is limited in a few important ways. Primarily, this system is not (and is not intended to 

be) a replacement for high accuracy stream stage or discharge measurements that are required for many applications such as 

computing streamflow trend, calculating nutrient loads, or supporting water management decision making. Users of this system 450 

must understand the relative nature of the results and determine if relative streamflow hydrographs are suitable for their 

application; we envision suitable applications to include habitat characterization, aquatic species population dynamics 

modelling, refining process understanding in small catchment studies, intermittent stream monitoring, and characterizing event 

(i.e. flood or drought) timing. In this study, model training and prediction is limited to daytime imagery, which we defined 

simply as between 7am and 7pm local time. While these cameras also have infrared flash that illuminates the channel, the 455 

degree to which the scene is visible at night varies significantly between sites. The imagery at night becomes greyscale and 

we expect that different portions of the imagery become important for a model. It is unclear if nighttime imagery is best 

modelled with both day and nighttime imagery or if a night-only model should be trained, and future work may investigate 

this. We also noticed that lens fog, camera glare, vegetation blockages, and other visual impediments had a negative impact 

on model performance. When present, these image issues typically resulted in abrupt high or low outliers in model score. For 460 

this analysis we retained these predictions as part of the overall evaluation. We expect computer vision algorithms to detect 

and remove these images which would further improve model performance. Data collection on the Flow Photo Explorer 

platform enables users to flag “bad” images during data annotation, which will enable us to develop outlier detection algorithms 

for this purpose. 

5 Conclusions 465 

 The camera-based methodology discussed here offers a novel approach to estimating relative streamflow. Its low cost 

and effort requirements should make it feasible to create dense observation networks to fill gaps in existing streamflow 

monitoring observations and thereby improve understanding of relative streamflow dynamics in headwater streams. While 

currently limited to estimates of relative streamflow trained as single-site models, we expect continued improvements that will 

expand the applicability and improve the ease of training models for new locations. The purpose of this paper was to answer 470 

questions regarding based on an initial set of monitoring stations. These findings will guide further development of the Flow 
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Photo Explorer integrated web platform that allows users to upload, annotate, model, and interpret headwater stream imagery. 

To summarize, this study answers the following questions: 

 

1. How accurate are people at ranking images by streamflow? Overall annotation accuracy of image pair ranking 475 

ranged from 84% to 96% (average of 92.2%) among the 11 camera sites. While limited to primarily two 

individuals, we see that our annotators are nearly 100% accurate at ranking stream image pairs when there are large 

differences in observed streamflow. Small differences in streamflow between image pairs were more difficult for 

the annotators to identify. Due to consistency among sites, the accuracy of person-generated streamflow annotations 

used in this study can be reasonably simulated with a single globally fit equation. 480 

 

2. How accurate are image-derived relative hydrographs developed using person-generated annotations? Kendall’s 

Tau values for streamflow percentile predictions ranged from 0.6 to 0.83 for unannotated days within the training 

period. These represent the retrospective model performance. Lower performance was observed for predictions on 

data collected after the training period, which may have a different distribution of streamflow or changes to the 485 

image scene. Where available, Kendall’s Tau values for the post-training period range from 0.34 to 0.74. 

 

3. Which factors influence ranking model accuracy that and indicate which unmonitored catchments would be suitable 

for low-cost camera monitoring? The primary factor describing among-site differences in performance was 

streamflow variability. Describing relative streamflow changes in streams with steady flow was challenging, in part 490 

due to our relative (percentile-based) metrics of performance. We expect better performance for streams that exhibit 

large stage variations, are seasonally dry, or have large seasonal variations in flow. 

 

4.  How many person-generated annotations are required to achieve stable ranking model performance? An 

experiment indicated that for most sites there were diminishing improvements in performance after about 1,000 495 

pairwise annotations. We therefore conclude this is a reasonable minimum number of annotations to develop a 

ranking model. 

Code Availability 

Modelling code is provided at this GitHub code repository: https://github.com/EcoSHEDS/fpe-model (fpe-model v0.9.0). 

https://github.com/EcoSHEDS/fpe-model
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Data Availability 500 

The imagery, streamflow data, and model results used in this study are publicly visible on webpage 

(https://www.usgs.gov/apps/ecosheds/fpe). Streamflow data were originally reported in a U.S. Geological Survey (USGS) data 

release (Fair et al., 2025). Model predictions, annotation data, and sensitivity analysis data are also available as a USGS data 

release (Goodling et al., 2025). 
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