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Abstract 46 

Quantifying past ocean nitrate concentrations is crucial for understanding the global nitrogen 47 

cycle. Here, we reconstruct deglacial bottom-water nitrate concentrations ([NO3
-]BW) in the 48 

oxygen-deficient zones of the Sea of Okhotsk, the Gulf of California, the Mexican Margin, and 49 

the Gulf of Guayaquil. Using the pore density of denitrifying benthic foraminifera as a nitrate 50 

proxy, differences in [NO3
-]BW are observed at the study sites spanning the Last Glacial Maximum 51 

to the Holocene. Changes in water-column denitrification, water-mass ventilation, primary 52 

productivity, and sea surface temperatures may account for nitrate differences at the study sites. 53 

The [NO3
-]BW in the Sea of Okhotsk, the Gulf of California, and the Gulf of Guayaquil are 54 

influenced by the intermediate water masses while, the [NO3
-]BW at the Mexican Margin is likely 55 

influenced by deglacial changes in the Pacific Deep Water. The comparison of past and present 56 

[NO3
-] shows that the modern Gulf of Guayaquil and the Gulf of California currently have stronger 57 

oxygen-deficient zones with higher denitrification than during the Last Glacial Maximum. In 58 

contrast, the modern Mexican Margin and the Sea of Okhotsk may have higher oxygen than during 59 

the Last Glacial Maximum, indicated by low modern denitrification.  60 

 61 
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1. Introduction 75 

The marine nitrogen cycle is a complex web of microbially mediated processes controlling the 76 

inventory and distribution of bioavailable nitrogen in marine environments (Casciotti, 2016). 77 

Biological nitrogen fixation by nitrogen-fixing diazotrophs (e.g., cyanobacteria) in the surface 78 

layer is the main source of bioavailable nitrogen in the ocean, and denitrification and anammox, 79 

are the main fixed nitrogen loss processes (Lam and Kuypers, 2011), both of which occur under 80 

low-oxygen conditions. The primary form of bioavailable nitrogen in the ocean is nitrate (NO3
-), 81 

(Casciotti 2016), which is a limiting nutrient throughout the tropical and subtropical oceans (Moore 82 

et al., 2013).  83 

Oxygen-deficient zones (ODZs) are regions of very low dissolved oxygen (O2) where the O2 84 

concentration is less than 22 μmol/kg, usually within depths of 100-1,200 m (Levin, 2003; 2018). 85 

Oxygen plays a key role in the marine nitrogen cycle (Keeling et al., 2010) because some microbial 86 

processes require oxygen while others are inhibited by it (Voss et al., 2013). For example, 87 

denitrification (reduction of nitrate to dinitrogen gas) in the ocean occurs in suboxic (oxygen 88 

<5µmol/kg) conditions (Codispoti et al., 2001; Levin, 2018). On a global scale, ~30-50% of fixed 89 

nitrogen loss in the world’s oceans occurs in ODZs (Gruber, 2008), either through denitrification 90 

or anammox (Devol et al., 2006; Lam and Kuypers, 2011; Evans et al., 2023). Due to the complex 91 

interactions and feedbacks within the biogeochemical nitrogen cycle, the amount of benthic 92 

denitrification also influences other important processes, such as global nitrogen fixation and net 93 

primary production (Somes et al., 2017; Li et al., 2024). Oxygen Deficient Zones cover only 1% 94 

of the world’s seafloor (Codispoti et al., 2001), however, 10% of the global benthic denitrification 95 

occurs in these regions (Bohlen et al., 2012). Observations and climate model simulations have 96 

predicted that ODZs will continue to expand until at least the year 2100 (Stramma et al., 2008, 97 

2010; Schmidtko et al., 2017; Oschlies, 2021). However, the long-term evolution of ODZs remains 98 

uncertain (Yamamoto et al., 2015; Takano et al., 2018; Fu et al., 2018; Frölicher et al., 2020). 99 

There is growing evidence that ODZs may contract during transient and equilibrium climate 100 

warmings over timescales of millennia and beyond (Auderset et al., 2022; Moretti et al., 2024). 101 

Considering the role of ODZs in modulating the marine nitrogen cycle, it is of key scientific 102 

interest to understand how nitrogen cycling works in these ecosystems and the potential factors 103 

that influence the nitrogen cycle. 104 



4 
 

In this study, we use the pore density (number of pores per unit area) of Bolivina spissa and 105 

Bolivina subadvena as a NO3
- proxy (Fig. 1 (a)) to reconstruct bottom-water nitrate [NO3

−]BW in 106 

intermediate water depths of the Sea of Okhotsk, the Gulf of California, the Gulf of Guayaquil, 107 

and in the Pacific Deep Water (PDW) depths of the Mexican Margin (Fig. 2 and 3). The [NO3
−]BW 108 

calibration using the pore density of B. spissa and B. subadvena (see Fig. 1 (b)) developed in 109 

Govindankutty Menon et al. (2023) is applied in the current study. Combining a proxy for 110 

[NO3
−]BW (pore density of denitrifying foraminifera) and a proxy for N-cycle processes in the 111 

water column (δ15Nbulk) facilitates a more comprehensive understanding of past N-cycling in 112 

different zones of the water column. Here, we try to understand 1) whether there are differences 113 

in reconstructed [NO3
−]BW between today, deglacial, and glacial periods in the four studied sites, 114 

and 2) whether the reconstructed [NO3
−]BW records are in agreement with insights drawn from 115 

δ15Nbulk data. 116 

1.1 Application of δ15Nbulk and its potential limitations 117 

The stable isotope signature of nitrogen in the sedimentary organic matter (δ15Nbulk) is an 118 

established proxy for water-column denitrification and for understanding changes associated with 119 

nutrient utilization (Thunell et al., 2004; Robinson et al., 2009; Martinez and Robinson, 2010; 120 

Dubois et al., 2011, 2014; Tesdal et al., 2013; Wang et al., 2019; Riechelson et al., 2024).  An 121 

increase (or decrease) in nutrient availability in relation to nutrient demand results in an increase 122 

(or decrease) in δ15N values (Wada and Hattori, 1978; Montoya, 1990). When the oxygen in the 123 

ocean is depleted, either due to global warming or increased remineralization, denitrification rates 124 

in the water column are also increasing and so is δ15N (Wang et al., 2019). Therefore, δ15Nbulk can 125 

be an important tool for reconstructing past changes in denitrification in the ODZs.  126 

The δ15N records from the bulk sediment can be subject to interlinked processes/or sources which 127 

can complicate their interpretation. For example, diagenetic alteration during sinking in the water 128 

column and burial in the sediment (Altabet and Francois, 1994; Lourey et al., 2003), as well as 129 

terrestrial or shelf sources of organic and inorganic nitrogen (Schubert & Calvert, 2001; Kienast 130 

et al., 2005; Meckler et al., 2011), and remotely advected water masses with different δ15N values 131 

(for e.g., Southern Californian margin; Liu and Kaplan, 1989), could influence the δ15N signatures 132 

in sediments. Nevertheless, Tesdal et al. (2013) proposed that δ15Nbulk can be a reliable indicator 133 

for individual locations reflecting the oceanographic conditions of the surrounding environments.   134 
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The nitrogen isotopes of organic matter bound and protected within the calcite shell of planktic 135 

foraminifera (δ15NFB) are less subjected to diagenesis or sedimentary contamination than δ15Nbulk 136 

and can be used to understand major nitrogen transformations occurring in the ocean (Ren et al., 137 

2012; Studer et al., 2021). There are well-documented disagreements between bulk sediment δ¹⁵N 138 

and foraminifera-bound δ¹⁵N records, particularly in glacial-interglacial comparisons (Studer et 139 

al., 2021). While δ¹⁵Nbulk suggests strong variability in water-column denitrification between the 140 

LGM and deglaciation, δ¹⁵NFB records indicate a more moderate change, with a peak during 141 

deglaciation but relatively stable values during the LGM and Holocene. This highlights that 142 

δ¹⁵Nbulk and δ¹⁵NFB may reflect different aspects of the nitrogen cycle (Studer et al., 2021). Recent 143 

studies (Auderset et al., 2022; Hess et al., 2023; Moretti et al., 2024) based on δ15NFB have shown 144 

that water column denitrification decreased and ODZs contracted during warmer-than-present 145 

periods of the Cenozoic. In contrast, Riechelson et al. (2024) used δ15Nbulk and hypothesized that 146 

the decrease in δ15Nbulk values over the Holocene is related to a decrease in Southern Ocean nutrient 147 

utilization and not due to a decrease in denitrification.  148 

1.2 Pore density of benthic foraminifera as a bottom-water nitrate proxy 149 

Foraminifera account for a major part of benthic denitrification in the ODZs (up to 100% in some 150 

environments) (Piña-Ochoa et al., 2010a; 2010b; Glock et al., 2013; Dale et al., 2016, Chocquel et 151 

al., 2021, Rakshit et al., 2025).Some species, for example B. spissa, which are abundant in ODZs 152 

in and around the Pacific Ocean (Glock et al., 2011; Fontanier et al., 2014) can use NO3
- as an 153 

electron acceptor (see Fig. 1 (a)) and thus can denitrify (Risgaard-Petersen 2006; Piña-Ochoa et 154 

al., 2010a; 2010b). A study by Glock et al. (2019) proposed for some denitrifying foraminifera, 155 

denitrification is their preferred respiration pathway. The uptake of NO3
- by these foraminifera is 156 

likely through pores in the test (see Fig. 1 (a)). Nitrate is completely denitrified to dinitrogen gas 157 

(N2) partly by the foraminifera themselves (Risgaard-Petersen 2006; Woehle and Roy et al., 2018; 158 

Orsi et al., 2020; Gomaa et al., 2021), and partly supported by prokaryotic endobionts (Bernhard 159 

et al., 2012a, Woehle and Roy et al., 2022). To date, benthic foraminifera are the only eukaryote 160 

holobiont known to perform complete heterotrophic denitrification (Risgaard-Petersen 2006; 161 

Kamp et al., 2015). Every Bolivina species tested so far (including Bolivina seminuda), can 162 

denitrify (Piña-Ochoa et al., 2010a; Bernhard et al., 2012b), suggesting that denitrification is a 163 

common survival strategy of Bolivinidae under oxygen-depleted conditions (Glock et al., 2019). 164 

This makes species of this genus particularly suitable candidates for reconstructing past nitrate 165 
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levels using pore characteristics as a proxy. In low-oxygen environments, such as the ODZs off 166 

Peru, Costa Rica, and the hypoxic Sagami Bay, B. spissa increase their pore density with 167 

decreasing ambient NO3
- availability (Govindankutty Menon et al., 2023). Thus, the pore density 168 

of several Bolivina species, such as B. spissa, and B. subadvena, is an empirically calibrated proxy 169 

that shows the strongest correlation with the bottom-water nitrate concentration (see Fig. 1 (b)) 170 

(Glock et al., 2011; Govindankutty Menon et al., 2023) rather than bottom-water oxygen, 171 

temperature, water depth, salinity or pore water nitrate.  172 

 173 

   174 

Figure 1: The (a) schematic view of nitrate (NO3
-) uptake, and the excretion of nitrogen gas (N2) 175 

by the benthic foraminifera Bolivina spissa. The step-wise denitrification pathway from NO3
- to 176 

N2 involving enzymes such as nitrate reductase (Nr Nar), nitrite reductase (Nir), nitric-oxide 177 
reductase (Nor), and nitrous oxide reductase (Nos) is also shown. (b) Correlation between pore 178 
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density of Bolivina spissa from Peru, off Costa Rica, Sagami Bay, and Bolivina subadvena with 179 
bottom-water nitrate [NO3

−]BW from Govindankutty Menon et al. (2023). If no species name is 180 

indicated in the legend, the analysed species was B. spissa. The error bars are 1 standard error of 181 
the mean.  182 
 183 

 184 
Figure 2. Location of sediment cores used in the current study and mean annual oxygen 185 
concentrations at 700 m depth (Garcia et al., 2019). Sediment cores are indicated by yellow 186 

triangles: Sea of Okhotsk (core MD01-2415; water depth: 822 m), Gulf of California (DSDP Site- 187 
480; water depth: 747 m), Mexican Margin (core MAZ-1E-04; water depth: 1463 m), and Gulf of 188 
Guayaquil (core M77/2-59-01; water depth: 997 m). Map created with Ocean Data View 189 

(Schlitzer, R., 2023). 190 
 191 
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 192 

Figure 3. Modern a) salinity and b) nitrate distribution along a N-S transect across the Pacific 193 
(Garcia et al., 2019) with major subsurface and deep-water masses (blue arrows) and formation 194 
areas of North Pacific Intermediate Water (NPIW) and Southern Ocean Intermediate Water 195 
(SOIW) are included. Sediment cores used for [NO3

−]BW reconstruction are shown (red crosses) 196 

projected to the N-S hydrographic transect. Equatorial Pacific Intermediate Water (EqPIW), 197 
Equatorial Undercurrent (EUC), NPIW, SOIW, Pacific Deep Water (PDW), Antarctic Bottom 198 
Water (AABW), and Circumpolar Deep Water (CDW). Profiles generated by Ocean Data View 199 
(Schlitzer, R., 2023) using the data from World Ocean Atlas 2018 (Garcia et al., 2019). 200 

 201 

 202 
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2. Materials and methods 203 

2.1 Study area and sampling of sediment cores. We used downcore samples from the Eastern 204 

Tropical South Pacific, ETSP (Gulf of Guayaquil (M77/2-59-01), Eastern Tropical North Pacific 205 

the ETNP (Mexican Margin, MAZ-1E-04), the Gulf of California (Guaymas Basin, DSDP-64-206 

480), and the Sea of Okhotsk (MD01-2415), over the last ~20,000 years (Fig. 3). The Gulf of 207 

Guayaquil sediment core M77/2-59-01 (03°57.01′ S, 81°19.23′ W, recovery 13.59 m) was 208 

collected from the northern edge of the ODZ at a water depth of 997 m during the RV Meteor 209 

cruise M77/2 in 2008 (Mollier-Vogel et al., 2013, 2019; Nürnberg et al., 2015). The piston core 210 

MAZ-1E-04, Mexican Margin (22.9°N, 106.91°W) was collected on board the RV El Puma at a 211 

water depth of 1463 m. The CALYPSO giant piston core MD01-2415 (53°57.09’ N, 149°57.52’ 212 

E, recovery 46.23 m) was recovered from the northern slope of the Sea of Okhotsk at 822 m water 213 

depth during the WEPAMA cruise MD122 of the RV Marion Dufresne (Holbourn et al., 2002; 214 

Nürnberg & Tiedemann, 2004). The Deep-Sea Drilling Project core DSDP- 480 (27°54' N, 111°39' 215 

W) from the Gulf of California was retrieved at a water depth of 747 m close to the Guaymas 216 

Basin. For details on the sampling procedure of foraminiferal specimens, please refer to the 217 

Supplementary Methods section in the Supplementary Information. 218 

2.2 Automated image analysis. All specimens of B. spissa and B. subadvena were imaged using 219 

a Scanning Electron Microscope (Hitachi Tabletop SEM TM4000 series) at Hamburg University, 220 

Germany with an accelerating voltage of 15 kV using a back-scattered electron (BSE) detector 221 

(Further methodological details are provided in the Supplementary Information).  222 

Following the image analysis, pore density data of benthic foraminifera from the four ODZs were 223 

used for the quantitative reconstruction of [NO3
−]BW (Fig. 4). We distinguished five different time 224 

intervals, including the Last Glacial Maximum (LGM; 22–17 ka BP), Heinrich Stadial 1 (H1; 17–225 

15 ka BP), Bølling - Allerød (BA; 14.7-12. 9 ka BP), Younger Dryas (YD; 12.9–11.7 ka BP), Early 226 

Holocene (EH; 11.7–8.2 ka BP) and Middle to Late Holocene (MLH; 8–0 ka BP) to describe the 227 

[NO3
−]BW in the East Pacific and the Sea of Okhotsk. We present updated chronostratigraphies of 228 

the studied cores, primarily based on accelerator mass spectrometry (AMS) radiocarbon (¹⁴C) 229 

dating, as detailed in the Supplementary Methods. 230 

The [NO3
−]BW from all cores were calculated using the calibration equation; 231 
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[NO3
-]BW = -3896 (±350) PD + 61(±1)                                             (1) 232 

where PD is the pore density of benthic foraminifera (Govindankutty Menon et al., 2023). 233 

The standard error of the mean (SEM) for one sample was calculated using the equation; 234 

SEM[NO3
−]BW 

=  
SD[NO3

−]BW 

√n
                                                                                                   (2) 235 

where n is the number of specimens analyzed in each sample and SD is 1 standard deviation of 236 

mean reconstructed [NO3
-]BW. 237 

SD[NO3
−]BW 

= √(350 𝑋 𝑃𝐷)2 + (−3896 𝑋  𝑆𝐷𝑃𝐷 )2 + (1)2               (3) 238 

A complete error propagation was done for the calculation of the errors of the reconstructed 239 

[NO3]BW including both the uncertainty of the mean PD within the samples and the uncertainties 240 

of the calibration function. The reconstructed [NO3
−]BW and the calculated SEM and SD of each 241 

sample are shown in the Supplementary Information. 242 

2.3 Sedimentary nitrogen isotope (δ15Nbulk) measurements. We have measured sedimentary 243 

nitrogen isotope (δ15Nbulk) rather than δ15NFB from cores taken from the Sea of Okhotsk, and Gulf 244 

of California, because the low abundances of foraminifera were utilized for other analysis. The 245 

analysis of bulk sediments allows for high-resolution records. Prior to the δ15Nbulk measurements, 246 

the Total Nitrogen (TN%) content of 20 sediment samples from the Sea of Okhotsk and 54 samples 247 

from the Gulf of California were measured at the Institute for Geology, Hamburg University, 248 

Germany using a flash combustion method with a Eurovector EA-3000 analyzer. The δ15Nbulk 249 

measurements for both the Sea of Okhotsk and the Gulf of California were accomplished at the 250 

Max Planck Institute for Chemistry (Mainz), Germany using a DELTA V ADVANTAGE Isotope 251 

Ratio Mass Spectrometer (IRMS) equipped with a FLASH 2000 Organic Elemental Analyzer. The 252 

results were expressed in standard δ-notation (equation 4). The standard deviation (±SD) of all 253 

individual analysis runs based on a certified international reference standard (USGS65) and 254 

internal laboratory standards (L-Phenylalanine and L-Glutamic acid) referenced to certified 255 

international reference standards was < 0.3‰. The δ15Nbulk data for the Sea of Okhotsk and the 256 

Gulf of California are shown in Supplementary Table ST1. 257 

δ15N (‰) = [(15N:14Nsample /
15N:14Nair) −1] × 1,000                    (4) 258 

For the Gulf of Guayaquil core M77/2-59-01, the δ15Nbulk data published by Mollier-Vogel et al. 259 

(2019) was used. Their measurements were done on ~ 5–50 mg of homogenized and freeze-dried 260 

bulk sediments using a Carlo-Erba CN analyzer 2500 interfaced directly to a Micromass-Isoprime 261 
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mass spectrometer at Bordeaux University. Results are expressed in standard δ-notation (equation 262 

4) relative to atmospheric dinitrogen gas (N2).  263 

2.4 Nitrate offset to present conditions. The reconstructed [NO3
−]BW from each location is 264 

subtracted from the modern [NO3
−] present at the respective locations from similar water depths 265 

the cores were retrieved from. This provided the [NO3
−] offset which is the difference (Δ[NO3

–] 266 

(μM)) between the modern [NO3
−] and the past reconstructed [NO3

−]BW. The modern [NO3
−] for 267 

each location was taken from World Ocean Atlas 2018 (Garcia et al., 2019). The details are given 268 

in Supplementary Information.  269 

3. Results 270 

We reconstructed deglacial [NO3
−]BW using downcore sediment samples from the Sea of Okhotsk 271 

(MD01-2415), the Gulf of California (DSDP- 480), the Mexican Margin (MAZ-1E-04), and the 272 

Gulf of Guayaquil (M77/2-59-01). The reconstructed [NO3
−]BW was compared to δ15Nbulk records 273 

of all cores (Fig. 4). All data records presented cover the time period starting from the Last Glacial 274 

Maximum, except for the core from the Sea of Okhotsk, which covers the late deglacial to the 275 

Holocene.  276 

3.1 Sea of Okhotsk (MD01-2415).  The Sea of Okhotsk core MD01-2415 covers the Younger 277 

Dryas, (YD, 12.8 ka BP) until the Middle to Late Holocene (MLH, 4.9 ka BP). The reconstructed 278 

[NO3
−]BW values range from 32.8 µmol/kg to 44.1 µmol/kg (Fig. 4a). A gradual increase in 279 

[NO3
−]BW is observed from the Younger Dryas to the Middle to Late Holocene. At the beginning 280 

of the Younger Dryas at 12.8 ka BP, [NO3
−]BW were relatively high and then decreased to a 281 

minimum value of 32.8 µmol/kg at 12.4 ka BP. Since then, [NO3
−]BW steadily increased until the 282 

Middle to Late Holocene (MLH, 44.1 µmol/kg) (Fig. 4a). The [NO3
−]BW during the Middle to Late 283 

Holocene (mean = 41.2 µmol/kg) is significantly (t-test, p = 0.023) higher than during the Younger 284 

Dryas (mean = 36.7 µmol/kg). The sedimentary δ15Nbulk record covers the interval from the Late 285 

Heinrich Stadial 1 (H1, 15.4 ka BP) to the Middle Holocene (6.1 ka BP). The δ15Nbulk values were 286 

relatively high ranging from 7.1‰ to 9.4‰ with an average of 8.7‰. The δ15Nbulk values increased 287 

steadily from the Late Heinrich Stadial 1 (15.4 ka BP) to the Early Holocene (EH, 10 ka BP) with 288 

higher values centered between the Late Younger Dryas (11.9 ka BP) and the beginning of the 289 

Early Holocene. Since then, the δ15Nbulk values decreased until the Middle to Late Holocene. 290 
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3.2 Gulf of California (DSDP-480). The analyzed sections of DSDP Site 480 covered the Last 291 

Glacial Maximum (22 ka BP) until the Early Holocene (10.8 ka BP). The reconstructed [NO3
−]BW 292 

ranged from 41.4 µmol/kg to 49.1 µmol/kg. The highest [NO3
−]BW of 49.1 µmol/kg occurred 293 

during the Last Glacial Maximum (18.2 ka BP). The data points from the Early Holocene (11.6-294 

10.8 ka BP) were the only Holocene data from this core providing the lowest [NO3
−]BW estimate 295 

of 42.1 µmol/kg during the Early Holocene (10.8 ka BP) (Fig. 4b). A distinct difference in 296 

[NO3
−]BW between the glacial period (mean = 46.1 µmol/kg) and the Early Holocene (42.7 297 

µmol/kg) was observed with [NO3
−]BW found to be substantially higher during the glacial period 298 

(t-test, p = 0.0067) (Fig. 4b).  Accordingly, the [NO3
−]BW followed a decreasing pattern from the 299 

glacial period to the Early Holocene. The δ15Nbulk values varied between 6.4‰ and 13‰ with an 300 

average of 10.2‰ (Fig. 4b). The δ15Nbulk values from the Guaymas Basin were similar to the 301 

δ15Nbulk values (average 9.6‰) of Pride (1997) and Altabet et al. (1999). During the last glacial 302 

period, the δ15Nbulk values were low ranging from 8.5‰ to 9‰. At the onset of the deglaciation, 303 

the δ15Nbulk values increased by more than 2‰ with large-scale changes reaching a maximum of 304 

13‰ during the Younger Dryas. Afterward, we observed a gradual decline in δ15Nbulk values 305 

throughout the Middle to Late Holocene (mean 10.7‰) and this pattern continued to the present.  306 

3.3 Mexican Margin (MAZ-1E-04). This core MAZ-1E-04 covered the Last Glacial Maximum 307 

(20.5 ka BP) until the Early Holocene (10.47 ka BP). The [NO3
−]BW values range from 37.7 308 

µmol/kg to 43.5 µmol/kg. We observed the highest [NO3
−]BW during the Younger Dryas. From the 309 

beginning to the end of the Last Glacial Maximum, [NO3
−]BW followed a decreasing trend (Fig. 310 

4c). The [NO3
−]BW levels continued to steadily decrease until Heinrich Stadial 1 and consistently 311 

stayed low throughout this period. There was a strong change in [NO3
−]BW from the end of Heinrich 312 

Stadial 1 to the end of Younger Dryas (Fig. 4c). We observed a peak in [NO3
−]BW from the 313 

beginning of Bølling-Allerød, BA (14.29 ka BP) and it continued throughout the Younger Dryas 314 

(Fig. 4c). Afterwards, [NO3
−]BW declined during the Early Holocene. The δ15Nbulk values taken 315 

from Alcorn et al. (2025) followed an increasing trend from the glacial towards the deglacial period 316 

(Fig.4c). 317 

3.4 Gulf of Guayaquil (M77/2-59-01). This core covered the Last Glacial Maximum (18 ka BP) 318 

until the Middle to Late Holocene (0.18 ka BP).  The reconstructed [NO3
−]BW values range from 319 

40.5 µmol/kg to 46.5 µmol/kg. The highest [NO3
−]BW occurred during the Last Glacial Maximum 320 

(Fig. 4d). The reconstructed [NO3
−]BW levels during the Last Glacial Maximum (mean = 45.6 321 
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µmol/kg) were slightly higher than during the Middle to Late Holocene (mean = 44.9 µmol/kg) (t-322 

test, p = 0.046). The δ15Nbulk values were relatively low ranging between 4‰ and 6‰ (Fig. 4d). 323 

During the Last Glacial Maximum, the δ15Nbulk values were low, varying between 4.4‰ and 4.6‰, 324 

close to the typical mean range of dissolved nitrate in the ocean (Sigman et al., 1997). 325 

Subsequently, the δ15Nbulk values increased from 16.7 ka BP (4.9‰), where we observed a decline 326 

in [NO3
−]BW to 8.9 ka BP (5.6‰).  The highest δ15Nbulk values centered at ~14 ka BP (5.9‰). From 327 

8.9 ka BP onwards, a long-term decrease in δ15Nbulk (< 4.4‰) was observed until the Latest 328 

Holocene, consistent with higher [NO3
−]BW levels during the Holocene (Fig. 4d). Despite higher 329 

[NO3
−]BW levels, our reconstruction doesn’t show any strong variations during the Holocene.  330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

  341 

 342 

 343 

 344 

 345 

 346 

 347 
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348 

Figure 4. Quantitative [NO3
−]BW reconstruction using the pore density of fossil specimens of B. 349 

spissa, B. subadvena from a) the Sea of Okhotsk (MD01-2415), b) the Gulf of California (DSDP-350 

480), c) the Mexican Margin (MAZ-1E-04), and d) Gulf of Guayaquil (M77/2-59-01). The 351 

sedimentary nitrogen isotope (δ15Nbulk) records from the Sea of Okhotsk, and the Gulf of California 352 

are measured in this study, and the Gulf of Guayaquil is from Mollier-Vogel et al. (2019), and the 353 
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Mexican Margin δ15Nbulk data is from Alcorn et al. (2025). The error bars of [NO3
−]BW represent 1 354 

SEM including a complete error propagation (using equations 3 and 4). The accumulation rate of 355 

total organic carbon (Supplementary files) calculated from published literature (Bubenshchikova 356 

et al., 2015; Leclaire & Kerry, 1982; Mollier-Vogel et al., 2019) is shown in blue dashed lines for 357 

the Sea of Okhotsk, the Gulf of California and the Gulf of Guayaquil cores respectively. The black 358 

dashed lines indicate the modern nitrate concentration of each location. Time intervals Middle to 359 

Late Holocene (MLH), Early Holocene (EH), Younger Dryas (YD), Bølling-Allerød (BA), 360 

Heinrich Stadial 1 (H1), and Last Glacial Maximum (LGM) are shown in the figure. 361 

 362 

 4. Discussion 363 

The pore density of benthic foraminifera represents a promising but still developing proxy for 364 

reconstructing past nitrate dynamics. Like most proxies based on biology, it reflects an indirect 365 

physiological response rather than a direct measure of nitrate. In addition, species-specific 366 

variability requires careful taxonomic control or its interpretation carries inherent limitations 367 

especially since not many records are available, yet, for this proxy. Thus, we used a multiproxy 368 

approach and combined it with δ¹⁵Nbulk, which provides a complementary perspective that 369 

strengthens reconstructions of nitrogen-cycling processes in oxygen-deficient zones. 370 

4.1 Sea of Okhotsk. Our data show that [NO3
−]BW levels gradually increased through time and 371 

reached modern concentrations during the Middle-Holocene (Fig. 4a). Most of the nutrients in the 372 

northwestern Pacific including the Sea of Okhotsk are supplied by the upwelling of the North 373 

Pacific Deep Water (NPDW) (Gorbarenko et al., 2014). The weakened Kuroshio current (Ujiié 374 

and Ujiié, 1999) and increased sea ice extent (Ternois et al., 2001) weakened the upwelling of 375 

NPDW during the Last Glacial Maximum (LGM). Subsequent studies (Gray et al., 2020; Rae et 376 

al., 2020) have shown that the expansion of the North Pacific Gyre also resulted in less upwelling 377 

of NPDW during the LGM.  378 

During the LGM, the subpolar North Pacific was better ventilated at intermediate depths (Keigwin, 379 

1998) and export productivity was reduced (Ternois et al., 2001; Narita et al., 2002; Seki et al., 380 

2004). This is consistent with a strengthened meridional overturning circulation, with enhanced 381 

formation of intermediate waters and advection of nutrient-depleted subtropical waters to high 382 

latitudes (Rae et al., 2020). Furthermore, the North Pacific subpolar gyre extended ~3° further 383 
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south during the LGM (Gray et al., 2020), which shifted the westerly winds southward. This may 384 

have resulted in less upwelling of the NPDW during the LGM.  385 

The prolonged ice cover with low biological productivity (Ternois et al., 2001; Narita et al., 2002; 386 

Seki et al., 2004; Rae et al., 2020) and well-oxygenated water masses (Keigwin, 1998) might have 387 

prevented the formation of an oxygen deficient zone (ODZ) in the Sea of Okhotsk 388 

(Bubenshchikova et al., 2015). This is supported by the absence of B. spissa, which are adapted to 389 

living in dysoxic conditions, in our records during the LGM.  390 

Deglacial low [NO3
−]BW which correspond to higher δ15Nbulk values (Fig. 4a) could be due to 391 

enhanced primary productivity. It is important to note, however, that δ¹⁵Nbulk is influenced by 392 

diagenetic alteration and the incorporation of allochthonous nitrogen, which can obscure the local 393 

denitrification signal. Therefore, interpretations of δ¹⁵Nbulk trends should be made cautiously and 394 

ideally corroborated with complementary proxies, such as foraminiferal pore density. Increased 395 

nutrient supply from the Asian continental shelves and sea-ice retreat (Ternois et al., 2001) 396 

strengthened primary productivity. Indeed, the accumulation rate of total organic carbon was 397 

relatively higher during the Younger Dryas (Bubenshchikova et al., 2015) in our core (Fig. 4a). 398 

The increased oxygen demand and weakened ventilation of intermediate waters in the subarctic 399 

Pacific (Lembke-Jene et al., 2018) gradually intensified the ODZ. These poorly oxygenated 400 

conditions conceivably strengthened denitrification, resulting in low deglacial [NO3
−]BW levels. 401 

However, during the Middle to Late Holocene (MLH) a reorganization in atmospheric circulation 402 

favored enhanced formation of oxygenated North Pacific Intermediate Water (NPIW) (Wang et 403 

al., 2020). Thus, mid-depth ventilation was closely associated with atmospheric circulation in the 404 

Holocene and a weakened ODZ (Ohkushi et al., 2013; Bubenshchikova et al., 2015; Wang et al., 405 

2020). These rising oxygen concentrations probably reduced denitrification (low δ15Nbulk) in the 406 

Sea of Okhotsk, resulting in higher [NO3
−]BW comparable to today’s conditions (Fig. 4). The 407 

δ15Nbulk values show a maximum from 13 ka to 10 ka BP, which indicates increased water-column 408 

denitrification during that time. Nevertheless, the [NO3
−]BW increased during this time, which 409 

indicates a decoupling from denitrification in the oxygen minimum in the water column and the 410 

[NO3
−]BW. This could be related to the sea level rise during that time (Waelbroeck et al., 2008), 411 

which increased the vertical distance of the sediments (i.e., bottom water) at the sampling site from 412 

the center of denitrification.  413 
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4.2 Gulf of California. The Gulf of California ODZ is influenced by both intermediate and deep-414 

water properties, similar to that of the open Pacific Ocean. Thus, the ODZ intensity in the Guaymas 415 

Basin is largely dependent on the oxygen content and ventilation of inflowing NPIW from the Sea 416 

of Okhotsk (Pride et al., 1999) and the demand for oxygen at depth. During the glacial period, the 417 

dissolved oxygen concentrations were higher due to better-ventilated NPIW at intermediate depths 418 

of the Northeast Pacific (Keigwin and Jones, 1990; Ganeshram et al., 1995; Keigwin 1998; 419 

Duplessy et al., 1988; Herguera et al., 2010; Cartapanis et al., 2011). Modeling studies show that 420 

the Laurentide and Cordilleran ice sheets increased in size (Benson et al., 2003), lowering the 421 

temperature of North America (Romanova et al., 2006) during the glacial period. The cold sinking 422 

air over the ice sheet established a semi-permanent high-pressure cell (Kutzbach & Wright Jr, 423 

1985; Romanova et al., 2006) causing a substantially weaker North Pacific High (Ganeshram and 424 

Pedersen, 1998) or the southward displacement of the Inter Tropical Convergence Zone (Cheshire 425 

and Thurow, 2013). This resulted in a weak California Current along the coast and reduced 426 

upwelling-favorable winds (Cartapanis et al., 2011) along the North American coastline and 427 

reduced primary productivity (Ganeshram and Pedersen, 1998; Hendy et al., 2004; Cartapanis et 428 

al., 2011; Chang et al., 2015) within the ETNP and the Gulf of California during the glacial period. 429 

The nitrogen isotope ratios in the Guaymas Basin can be affected by subsurface denitrification in 430 

the Gulf and in the ETNP (Pride et al 1999). The increase in dissolved oxygen during the glacial 431 

period might have reduced water column denitrification (low δ15Nbulk) thereby increasing the 432 

[NO3
−]BW (Fig. 4b). 433 

Our study finds a declining trend in reconstructed [NO3
−]BW during the Early Holocene, slowly 434 

approaching modern concentrations. This coincides with a maximum in δ15Nbulk values, suggesting 435 

elevated denitrification. This agrees with previous studies in the ETNP (Kienast et al., 2002) and 436 

within the Gulf of California (Pride et al., 1999), which showed that high denitrification most likely 437 

was associated with warming temperatures that occurred during this period. Furthermore, the 438 

scarcity of benthic foraminifera after the Early Holocene in our study coincides with laminations 439 

of the sediment core (Keigwin & Jones, 1990) below 10.8 ka BP, where reconstructed [NO3
−]BW 440 

begins to decrease. It is possible that redox conditions were too hostile for benthic foraminifers in 441 

the time periods when laminated sediments formed. We acknowledge limitations in our Holocene 442 

reconstruction due to the low abundance of B. subadvena and the limited calibration dataset 443 

available for this species, which may introduce a systematic offset (Govindankutty Menon et al., 444 
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2023). Bolivina subadvena was used in this core due to the unavailability of B. spissa, and some 445 

values fall outside the existing calibration range. We also cannot rule out other factors influencing 446 

the proxy signal, such as microhabitat variability. Additional data and further proxy calibration are 447 

therefore essential to improve the robustness of Holocene bottom-water nitrate reconstructions. 448 

4.3 Mexican Margin. Our study finds a steep rise in [NO3
−]BW between the Bølling-Allerød (BA) 449 

and the Younger Dryas (YD) (Fig. 4c). The transition period from the BA to the Holocene involved 450 

rapid oxygenation with increased oxygen levels at the onset of the YD (Jaccard & Galbraith, 2012; 451 

Ohkushi et al., 2013; Taylor et al., 2017). This has been linked to active ventilation by increased 452 

NPIW production at high latitudes in the North Pacific (Van Geen et al., 1996; Emmer and Thunell, 453 

2000; Okazaki et al., 2010; Cartapanis et al., 2011; Chang et al., 2014). In addition, there was low 454 

primary productivity (Hendy et al., 2004; Pospelova et al., 2015), and a higher influx of freshwater 455 

(Broecker et al., 1985; Clark et al., 2002) during the YD.  However, considering the deep location 456 

of the Mexican Margin core below the direct influence of intermediate water masses (Fig. 3), it is 457 

less likely to be reflected in the [NO3
−]BW. Bulk sediment δ15N records in the ETNP (Ganeshram 458 

et al., 1995; Pride et al., 1999; Emmer and Thunell, 2000; S. S. Kienast et al., 2002; Hendy et al., 459 

2004) found a decrease in δ15Nbulk during the YD due to reduced denitrification. Furthermore, a 460 

foraminifera-bound nitrogen isotope (δ15NFB) study (Studer et al., 2021) in the eastern tropical 461 

Pacific also found a decrease in δ15NFB signatures during the Younger Dryas (Fig. 4c). In contrast 462 

to this, a bulk sediment δ15N record of MAZ-1E-04 (Alcorn et al., 2025) depicts an increase in 463 

water column denitrification during the Younger Dryas. Thus, reduced denitrification may not be 464 

the dominant factor that led to the elevated [NO3
−]BW during this time. Instead, the Mexican Margin 465 

may be more influenced by the NO3
− variability from the Pacific Deep Water, PDW (see Fig. 3). 466 

Deep-sea reorganization and ventilation during the deglaciation may have influenced the 467 

[NO3
−]BW. At the onset of the deglaciation, deep Southern Ocean ventilation (reduced 14C 468 

ventilation ages) and atmospheric carbon dioxide (CO2) synchronously increased (Robinson et al., 469 

2009; Burke and Robinson, 2012; Rae et al., 2018). This deglacial increase in 14C ventilation in 470 

the Pacific Ocean suggests that most of the increase in atmospheric CO2 is derived from old carbon 471 

in the Southern and Pacific Oceans (Rafter et al., 2022). The increase in reconstructed [NO3
−]BW 472 

during the YD may thus reflect the release of sequestered nutrient- and carbon dioxide-rich waters 473 

during the deglaciation (Robinson et al., 2009; Rafter et al., 2022). 474 
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The relatively high [NO3
−]BW during the glacial period (Fig. 4c), before its decline in Heinrich 475 

Stadial 1, is likely indicative of reduced water-column denitrification (Ganeshram et al., 1995; 476 

2000) due to reduced productivity (Ganeshram et al., 1995; Ganeshram and Pedersen, 1998) and 477 

low organic matter flux through the oxygen minimum zone (Ganeshram et al., 2000). In the ETNP, 478 

including the Mexican Margin, coastal upwelling is driven by trade winds generated by subtropical 479 

high-pressure centers. These high-pressure centers largely result from differential heating of the 480 

land and the ocean. As a result of glacial cooling on land, these high-pressure systems and the 481 

associated trade winds that drive the upwelling have likely been weakened (Ganeshram and 482 

Pedersen, 1998).  483 

4.4 Gulf of Guayaquil. The core M77/2-59-01 is in a region that is sensitive to changes in 484 

subsurface denitrification in the ETSP (Robinson et al., 2007, 2009; Dubois et al., 2011, 2014).  485 

The elevated reconstructed [NO3
−]BW levels (Fig. 4d) during the glacial period suggest decreased 486 

water-column denitrification (Salvatteci et al., 2014; Erdem et al., 2020; Glock et al., 2022) and 487 

relatively low local productivity (Ganeshram et al., 2000; Robinson et al 2007; 2009; Martinez 488 

and Robinson et al., 2010; Salvatteci et al., 2016). Nutrient export to the deep Southern Ocean 489 

waters increased due to the sluggish Atlantic Meridional Overturning Circulation (Skinner et al., 490 

2010), and increased atmospheric iron (Fe) deposition (Somes et al., 2017) during the glacial 491 

period. This reduced the transport of preformed NO3
− to the tropics via the Subantarctic Mode 492 

Water (SAMW), limiting productivity. In fact, the total organic carbon (Fig. 4d) depicts low 493 

productivity during this period. Furthermore, the colder sea surface temperature (SST) and the 494 

accelerated formation of SAMW and Antarctic Intermediate Water masses (Russell & Dickson, 495 

2003; Galbraith et al., 2004) and the stronger high-latitude winds in the Southern Hemisphere 496 

(Karstensen and Quadfasel, 2002) increased the ventilation rate (Meissner et al., 2005; Jaccard and 497 

Galbraith, 2012; Muratli et al., 2010) during the glacial period. The resulting increased oxygen 498 

concentrations (Robinson et al., 2005; Robinson et al., 2007) decreased the volume of ODZs, and 499 

nitrogen loss processes (lower δ15Nbulk values, Fig. 4d) during the glacial period. In addition, 500 

enhanced Fe deposition (Somes et al., 2017), and the glacial low sea level (Clark and Mix, 2002; 501 

Wallmann et al., 2016), may have influenced the nitrate inventory in the tropical and subtropical 502 

southern hemisphere.  503 

A study by Glock et al. (2018) on core M77/2-52-2 from Peru applying the pore density of B. 504 

spissa also shows elevated [NO3
−]BW during the Last Glacial Maximum, a similar decline in [NO3

−] 505 
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BW during the Heinrich Stadial 1 and thereafter a steady decrease in [NO3
−]BW throughout the 506 

Holocene. 507 

The deglacial decline in [NO3
−] BW, especially during Heinrich Stadial 1 in this study (Fig. 4d), 508 

indicates a gradual increase in surface productivity and bottom-water deoxygenation. High export 509 

production strengthened the expansion of the ETSP ODZ during the deglaciation as compared to 510 

LGM and MLH (Salvatteci et al., 2016; Glock et al., 2018; Mollier-Vogel et al., 2019). This is 511 

consistent with the denitrification signal in the Eastern Equatorial Pacific through westward 512 

advection from the Southeast Pacific margins (Martinez and Robinson, 2010). 513 

The shift towards generally higher reconstructed [NO3
−]BW from the Middle-Holocene, (Fig. 4d), 514 

implies a profound change in the climatic state of the Peruvian upwelling system and the associated 515 

ODZ during this time. From the deglaciation toward the Late Holocene, there was a general 516 

increase in productivity (Mollier-Vogel et al., 2019) as shown by organic carbon accumulation 517 

rates (Fig. 4d). This increase in organic matter input and/or preservation was likely related to an 518 

increase in upwelling-driven delivery of nutrients towards the surface. The gradual decrease in 519 

δ15Nbulk values and higher [NO3
−]BW was likely related to a relaxation in nutrient utilization with a 520 

nutrient supply exceeding the biological demand (Riechelson et al., 2024). Moreover, the core 521 

M77/2-59-01 was retrieved outside of the core ODZ and is under the strong influence of the oxygen 522 

and nutrient-rich Equatorial Under Current subsurface waters (Salvatteci et al., 2019; Mollier-523 

Vogel et al., 2019). These waters might have ventilated the Northern Peruvian margin and 524 

deepened the oxycline at this site during the Middle-Holocene. Furthermore, enhanced zonal SST 525 

(Koutavas et al., 2006) and a northward shift of the ITCZ strengthened the Pacific Walker and 526 

Hadley circulation during the Middle-Holocene across the tropical Pacific (Koutavas et al., 2006; 527 

Mollier-Vogel et al., 2013; Salvatteci et al., 2019). These enhanced atmospheric circulations 528 

brought oxygen-rich waters to intermediate depths off Peru via the equatorial subsurface 529 

countercurrents (Koutavas et al., 2006; Mollier-Vogel et al., 2013; Salvatteci et al., 2019). Hence, 530 

increased ventilation of subsurface water masses reduced the strength of nitrogen loss processes 531 

and nutrient uptake during the MLH.  532 

At present, the only quantitative reconstruction of bottom-water oxygen from these locations is the 533 

core M77/2-59-01 from the Gulf of Guayaquil reported by Erdem et al. (2020). Their record 534 

suggests a decline in bottom-water oxygen from the deglacial period to the Holocene. Future more 535 

detailed comparisons of the nitrate reconstructions with quantitative bottom water oxygen records 536 
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at the same cores will further improve our understanding about variability in redox conditions and 537 

nitrogen cycling. 538 

4.5 Comparison of past and present [NO3
-] at the studied locations. The [NO3

-] during the 539 

present and past are compared to assess the resilience of our chosen study locations towards 540 

environmental and ecological impacts of climate change. The generally positive Δ[NO3
–] that we 541 

found (Fig. 4b) in the Gulf of California (Guaymas Basin) and the Gulf of Guayaquil indicate that 542 

today the [NO3
-] is lower than in the past. This suggests that today the nitrogen loss processes at 543 

these two core sites are stronger, most likely related to ocean warming and a decline in oxygen 544 

concentration of bottom waters. The Gulf of California core is within the heart of the oxygen-545 

deficient zone, and thus changes in ODZ oxygenation or denitrification will be more evident in 546 

this core than in any other core studied. Under nitrogen limitation, negative feedbacks (e.g., 547 

anammox) result in a decline in productivity (Naafs et al., 2019; Wallmann et al., 2022), which 548 

will stabilize the oxygen concentration. In the case of the Gulf of California, sediments are 549 

enriched in reactive iron (Fe) (Scholz et al., 2019). The decreasing NO3
- concentrations in the 550 

bottom water reduce the flux of NO3
- into the surface sediment. This leads to the release of 551 

sedimentary Fe, which enhances nitrogen fixation in the Guaymas Basin (Scholz et al., 2019). 552 

Thus, increased denitrification might not act as negative feedback in the Gulf of California because 553 

it might be countered by increased nitrogen fixation (White et al., 2013). 554 

In the case of the Gulf of Guayaquil (Fig. 4d), whether today’s elevated denitrification could 555 

enhance N2 fixation also depends on the availability of Fe (Pennington et al., 2006). The primary 556 

productivity of the Peruvian ODZ is Fe limited due to the reduction of particular Fe oxides in shelf 557 

and slope sediments (Scholz et al., 2014). Modeling studies show that primary productivity will 558 

be amplified in the Peruvian ODZ due to the release of Fe from shelf and slope sediments 559 

(Wallmann et al., 2022). This may induce deoxygenation and drive the expansion and 560 

intensification of Peruvian ODZ resulting in a positive feedback loop, like in the Gulf of California. 561 

This situation is indicated by lower [NO3
-] today compared to the past ~20,000 years. 562 

The negative nitrate Δ[NO3
–] in the Sea of Okhotsk and the Mexican Margin (Fig. 4a & c) indicates 563 

that modern [NO3
-] levels are higher than in the reconstructed past. This suggests that modern 564 

nitrogen loss is decreased at these two core sites compared to the last deglaciation. The higher 565 

modern [NO3
-] in the Sea of Okhotsk is likely associated with less primary productivity and more 566 
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oxygen in the water column similar to the situation established in the MLH. The higher modern 567 

[NO3
-]BW in the case of the Mexican Margin could be associated with sea level rise. The ODZ in 568 

the Mexican Continental Margin might have shifted to shallower depths today with less/or no 569 

benthic denitrification in intermediate water depths at the core site, resulting in high [NO3
-]BW 570 

levels. During the glacial period, continental shelves were exposed due to sea-level lowstands 571 

(Clark and Mix, 2002; Kuhlmann et al., 2004; Wallmann et al., 2016), the main areas of primary 572 

productivity may have migrated offshore from the shallow shelf towards the continental slope 573 

relative to their Holocene positions. A similar situation occurred at the Benguela upwelling system 574 

during the LGM: TOC accumulation at the continental slope increased during the LGM in response 575 

to the seaward shift of centers of enhanced productivity (Mollenhauer et al., 2002). This offshore 576 

shift of the productivity centers and the most likely reduced remineralization rates, due to lower 577 

temperatures, indicate that the center of the ODZ at the Mexican Margin before sea level rise was 578 

possibly deeper than today. However, with the deglacial eustatic sea-level rise, the ODZ may have 579 

shifted to shallower depths. This shifted the main zone of denitrification further away from the 580 

seafloor, resulting in the increased modern [NO3
-]BW in comparison to the LGM.  581 

5. Conclusion. The quantitative reconstruction of [NO3
−]BW using the pore density of denitrifying 582 

benthic foraminifera over the last deglaciation at the four studied ODZs provides a comprehensive 583 

understanding of the past [NO3
−]. The Gulf of Guayaquil and Gulf of California data shows 584 

elevated [NO3
−]BW during the glacial period compared to deglacial and modern conditions. 585 

Considering the well-ventilated intermediate water masses in the Sea of Okhotsk, the Sea of 586 

Okhotsk may have also elevated [NO3
−]BW in the glacial period. For the Mexican Margin core, 587 

[NO3
−]BW was particularly strong during the Younger Dryas. The reconstructed [NO3

−]BW from the 588 

Sea of Okhotsk, the Gulf of California, and the Gulf of Guayaquil are influenced by the formation 589 

of the North Pacific Intermediate Water. However, the [NO3
−]BW in the deeper site, the Mexican 590 

Margin is likely influenced by the NO3
− variability in Pacific Deep Water. The modern Gulf of 591 

Guayaquil and the Gulf of California have low [NO3
−] associated with increased denitrification 592 

and a strengthening ODZ. In contrast, higher modern [NO3
−] was observed in the Sea of Okhotsk 593 

and the Mexican Margin, suggesting that these two study areas have higher oxygen.  594 
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