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Abstract

Quantifying past ocean nitrate concentrations is crucial for understanding the global nitrogen
cycle. Here, we reconstruct deglacial bottom-water nitrate concentrations ([NO3z]sw)
reconstruction-in the oxygen-deficient zones of the Sea of Okhotsk, the Gulf of California, the
Mexican Margin, and the Gulf of Guayaquil. Using the pore density of denitrifying benthic
foraminifera as a nitrate proxy, differences in [NOs]sw are observed at the study sites spanning
the Last Glacial Maximum to the Holocene. Changes in water-column denitrification, water-mass
ventilation, primary productivity, and sea surface temperatures may account for nitrate differences
at the study sites. The [NOs]sw in the Sea of Okhotsk, the Gulf of California, and the Gulf of
Guayaquil are influenced by the intermediate water masses while, the [NOs]sw at the Mexican
Margin is likely influenced by deglacial changes in the Pacific Deep Water. The comparison of
past and present [NOs7] shows that the modern Gulf of Guayaquil and the Gulf of California
currently have stronger oxygen-deficient zones with higher denitrification than during the Last
Glacial Maximum. In contrast, the modern Mexican Margin and the Sea of Okhotsk may have

higher oxygen_than during the Last Glacial Maximum, indicated by low modern denitrification.
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1. Introduction

The marine nitrogen cycle is a complex web of microbially mediated processes controlling the
inventory and distribution of bioavailable nitrogen in marine environments (Casciotti, 2016).
Biological nitrogen fixation by nitrogen-fixing diazotrophs (e.g., cyanobacteria) in the surface
layer is the main source of bioavailable nitrogen in the ocean, and denitrification and anammox,
are the main fixed nitrogen loss processes (Lam and Kuypers, 2011), both of which occur under
low-oxygen conditions. The primary form of bioavailable nitrogen in the ocean is nitrate (NOz"),
(Casciotti 2016), whichis a limiting nutrient throughout the tropical and subtropical oceans (Moore
etal., 2013).

Oxygen-deficient zones (ODZs) are regions of very low dissolved oxygen (O2) where the O
concentration is less than 22 umol/kg, usually within depths of 100-1,200 m (Levin, 2003; 2018).
Oxygen plays a key role in the marine nitrogen cycle (Keeling et al., 2010) because some microbial
processes require oxygen while others are inhibited by it (Voss et al., 2013). For example,
denitrification (reduction of nitrate to dinitrogen gas) in the ocean occurs erby-in suboxic (oxygen
<5umol/kg) conditions (Codispoti et al., 2001; Levin, 2018). On a global scale, ~30-50% of fixed
nitrogen loss in the world’s oceans occurs in ODZs (Gruber, 2008), either through denitrification
or anammox (Devol et al., 2006; Lam and Kuypers, 2011; Evans et al., 2023). Due to the complex
interactions and feedbacks within the biogeochemical nitrogen cycle, the amount of benthic

denitrification also influences other important processes, such as global nitrogen fixation and net

primary production (Somes et al., 2017; Li et al., 2024).Benthic-denitrification-plays-an-tmportant

2024}, Oxygen Deficient Zones©BZs cover only 1% of the world’s seafloor (Codispoti et al.,

2001), however, 10% of the global benthic denitrification occurs in these regions (Bohlen et al.,
2012). Observations and climate model simulations have predicted that ODZs will continue to
expand until at least the year 2100 (Stramma et al., 2008, 2010; Schmidtko et al., 2017; Oschlies,

2021). However, the long-term evolution of ODZs remains uncertain (Yamamoto et al., 2015;
Takano et al., 2018; Fu et al., 2018; Frolicher et al., 2020). There is growing evidence that ODZs

may contract during transient and equilibrium climate warmings over timescales of millennia and
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Fu-et-al—2018:Frolicheretak—2020)-Considering the role of ODZs in modulating the marine

nitrogen cycle, it is of key scientific interest to understand how nitrogen cycling works in these

ecosystems and the potential factors that influence the nitrogen cycle.
In this study, we use the pore density (number of pores per unit area) of Bolivina spissa and

Bolivina subadvena as a NOs™ proxy (Fig. 1 (a)) to reconstruct bottom-water nitrate [NO3 ]sw in

intermediate water depths of the Sea of Okhotsk, the Gulf of California, the Gulf of Guayaquil,
and in the Pacific Deep Water (PDW) depths of the Mexican Margin (Fig. 2 and 3). The [NOs Jsw

calibration using the pore density of B. spissa and B. subadvena (see Fig. 1 (b)) developed in

Govindankutty Menon et al. (2023) is applied in the current study. Combining a proxy for

[NOs ]sw (pore density of denitrifying foraminifera) and a proxy for N-cycle processes in the

water column (8" Npui) facilitates a more comprehensive understanding of past N-cycling in

different zones of the water column. Here, we try to understand 1) whether there are differences

in reconstructed [NOs ]sw between today, deglacial, and glacial periods in the four studied sites,

and 2) whether the reconstructed [NOs ]sw records are in agreement with insights drawn from
S Npuik data.

1.1 Application of 8"°*Npuk and its potential limitations

The stable isotope signature of nitrogen in the sedimentary organic matter (8'*Npuk) is an
established proxy for water-column denitrification and for understanding changes associated with
nutrient utilization (Thunell et al., 2004; Robinson et al., 2009; Martinez and Robinson, 2010;
Dubois et al., 2011, 2014; Tesdal et al., 2013; Wang et al., 2019; Riechelson et al., 2024). An
increase (or decrease) in nutrient availability in relation to nutrient demand results in an increase
(or decrease) in 6°N values (Wada and Hattori, 1978; Montoya, 1990). When the oxygen in the

ocean is depleted, either due to global warming or increased remineralization, denitrification rates
in the water column are also increasing and so is 8*°N (Wang et al., 2019) Whenr-oxygen-supphy-in

{(Wang-et-al-—2019)Therefore, §*°Npui can be an important tool for reconstructing past changes
in denitrification in the ODZs. During-the-last-glacial-period -8 Nyu-measurements-suggest-that
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The §'°N records from the bulk sediment can be subject to interlinked processes/or sources which

can complicate their interpretation. Fhe-8**Npu-records from-the- whole-sediment can-be-subject to
variots-processestor-sourees-which-can-comphicate-theirinterpretation. For example, diagenetic

alteration during sinking in the water column and burial in the sediment (Altabet and Francois,

1994; Lourey et al., 2003), as well as terrestrial or shelf sources of organic and inorganic nitrogen
(Schubert & Calvert, 2001; Kienast et al., 2005; Meckler et al., 2011), and remotely advected water
masses with different 3*°N values (for e.g., Southern Californian margin; Liu and Kaplan, 1989),
could influence the §!°N signatures in sediments. Nevertheless, Tesdal et al. (2013) proposed that

8"Nhuik can be a reliable indicator for individual locations reflecting the oceanographic conditions

of the surrounding environments.

1999),-and-can-be-eitherplanktic-or-benthic—The nitrogen isotopes of organic matter bound and

protected within the calcite shell of planktic foraminifera (51°Ngg) are less subjected to diagenesis

or sedimentary contamination than §®Npux and can be used to understand major nitrogen

{
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transformations occurring in the ocean (Ren et al., 2012; Studer et al., 2021). There are well-

documented disagreements between bulk sediment 6'*N and foraminifera-bound §'°N records,
particularly in glacial-interglacial comparisons (Studer et al., 2021). While §"*Nhulk SUggests strong

variability in water-column denitrification between the LGM and deglaciation, 3'°Ngg records

indicate a more moderate change, with a peak during deglaciation but relatively stable values
during the LGM and Holocene. This highlights that 6"*Npuik_and 8'*Neg may reflect different

aspects of the nitrogen cycle (Studer et al., 2021). Fhe-ritrogen-isotopes-of-organic-matter-bound

MWWMMMW%N@%W

transformations-oceurring-in-the-ocean-(Ren-et-al,-2012; Studer-et-al.2021).-Recent studies
(Auderset et al., 2022; Hess et al., 2023; Moretti et al., 2024) based on §**Ngg have shown that

water column denitrification decreased and ODZs contracted during warmer-than-present periods
of the Cenozoic !
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Pacific—In contrast, Riechelson et al. (2024) used 8*5Npuk and hypothesized that the decrease in
5'°Npuik values over the Holocene is related to a decrease in Southern Ocean nutrient utilization

and not due to a decrease in denitrification. Otherstudies{Ganeshram-etal—2002;-Deutsch-etal;

004 aster_e 0 have-shown-th

1.2 Pore density of benthic foraminifera as a bottom-water nitrate proxy

Foraminifera account for a major part of benthic denitrification in the ODZs (up to 100% in some
environments) (Pifia-Ochoa et al., 2010a; 2010b; Glock et al., 2013; Dale et al., 2016, Chocquel et

al., 2021, Rakshit et al., 2025).Benthic-foraminifera-areresponsiblefora-largefraction-of benthie

Some species, for example B. spissa, which areSeme-speciesfor-example-Bolivina-spissa-which

are abundant in ODZs in and around the Pacific Ocean (Glock et al., 2011; Fontanier et al., 2014)
can use NOs™ as an electron acceptor (see Fig. 1 (a)) and thus can denitrify (Risgaard-Petersen
2006; Pifia-Ochoa et al., 2010a; 2010b).

A study by Glock et al. (2019) proposed for some denitrifying foraminifera, denitrification is their
preferred respiration pathway. The uptake of NOs™ by these foraminifera is likely through pores in
the test (see Fig. 1 (a)). Nitrate is completely denitrified to dinitrogen gas (N2) partly by the
foraminifera themselves (Risgaard-Petersen 2006; Woehle and Roy et al., 2018; Orsi et al., 2020;
Gomaa et al., 2021), and partly supported by prokaryotic endobionts (Bernhard et al., 2012a,
Woehle and Roy et al., 2022).

To date, benthic foraminifera are the only eukaryote holobiont known to perform complete
heterotrophic denitrification (Risgaard-Petersen 2006; Kamp et al., 2015). Every Bolivina species

tested so far (including Bolivina seminuda), can denitrify (Pifa-Ochoa et al., 2010a; Bernhard et

al., 2012h), suggesting that denitrification is a common survival strategy of Bolivinidae under

oxygen-depleted conditions (Glock et al., 2019). This makes species of this genus particularly

suitable candidates for reconstructing past nitrate levels using pore characteristics as a proxy.Every

~In low-oxygen environments,

such as the ODZs off Peru, Costa Rica, and the hypoxic Sagami Bay, B. spissa increase their pore
density with decreasing ambient NOsavailability (Govindankutty Menon et al., 2023). Thus, their
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198  pore density of several Bolivina species, such as B. spissa, and B. subadvena, is-significanthy;
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200 - ¢inds ==
201  strongest correlation with the bottom-water nitrate concentration (see Fig. 1 (b)) in-theirhabitat
202  (Glock et al., 2011; Govindankutty Menon et al., 2023) rather than bottom-water oxygen,
203  temperature, water depth, salinity or pore water nitrate. Fherefore—the-pore-density-efseveral

204

205
:'.‘.
if Nr
:" Nar Nir Nor Nos
NOs- b NOZ- g 2NO - Nzo i 2
I3
Nitrate Nitrite :::2 ";;’;‘;’ """;9:“
(b)
42 2
~
—%
—_ < o Peru
o [ —
= 40 N = Costa Rica
g $\\ 4+ Sagami Bay
= 38 So X Bolivina subadvena
= N — —Linear (fit)
o S
536 s S
o S
z >~
34 SN
y = -3896(+350)x + 61(x1)
R?=0.93 F =124 p =1.4E-6
32 T T T T T T
0.0040 0.0045 0.0050 0.0055 0.0060 0.0065 0.0070 0.0075
Pore density (P/um?2
206 y (P/um?)
207

208  Figure 1: The (a) schematic view of nitrate (NOz") uptake, and the excretion of nitrogen gas (N2)
209 by the benthic foraminifera Bolivina spissa. The step-wise denitrification pathway from NOs"to
210 N2 involving enzymes such as nitrate reductase (Nr Nar), nitrite reductase (Nir), nitric-oxide
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reductase (Nor), and nitrous oxide reductase (Nos) is also shown. (b) Correlation between pore
density of Bolivina spissa from Peru, off Costa Rica, Sagami Bay, and Bolivina subadvena with
bottom-water nitrate [NOs ]sw from Govindankutty Menon et al. (2023). If no species name is
indicated in the legend, the analysed species was B. spissa. The error bars are 1 standard error of
the mean.
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Figure 2. Location of sediment cores used in the current study and mean annual oxygen
concentrations at 700 m depth (Garcia et al., 2019). Sediment cores are indicated by yellow
triangles: Sea of Okhotsk (core MDO01-2415; water depth: 822 m), Gulf of California (DSDP Site-
480; water depth: 747 m), Mexican Margin (core MAZ-1E-04; water depth: 1463 m), and Gulf of
Guayaquil (core M77/2-59-01; water depth: 997 m). Map created with Ocean Data View
(Schlitzer, R., 2023).
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Figure 3. Modern a) salinity and b) nitrate distribution along a N-S transect across the Pacific
(Garcia et al., 2019) with major subsurface and deep-water masses (blue arrows) and formation
areas of North Pacific Intermediate Water (NPIW) and Southern Ocean Intermediate Water
(SOIW) are included. Sediment cores used for [NOs ]sw reconstruction are shown (red crosses)
projected to the N-S hydrographic transect. Equatorial Pacific Intermediate Water (EqPIW),
Equatorial Undercurrent (EUC), NPIW, SOIW, Pacific Deep Water (PDW), Antarctic Bottom
Water (AABW), and Circumpolar Deep Water (CDW). Profiles generated by Ocean Data View
(Schlitzer, R., 2023) using the data from World Ocean Atlas 2018 (Garcia et al., 2019).
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2. Materials and methods

2.1 Study area and sampling of sediment cores. We used downcore samples from the Eastern
Tropical South Pacific, ETSP (Gulf of Guayaquil (M77/2-59-01), Eastern Tropical North Pacific
the ETNP (Mexican Margin, MAZ-1E-04), the Gulf of California (Guaymas Basin, DSDP-64-
480), and the Sea of Okhotsk (MD01-2415), over the last ~20,000 years (Fig. 3). The Gulf of
Guayaquil sediment core M77/2-59-01 (03°57.01" S, 81°19.23" W, recovery 13.59 m) was
collected from the northern edge of the ODZ at a water depth of 997 m during the RV Meteor
cruise M77/2 in 2008 (Mollier-Vogel et al., 2013, 2019; Nurnberg et al., 2015). The piston core
MAZ-1E-04, Mexican Margin (22.9°N, 106.91°W) was collected on board the RV El Puma at a
water depth of 1463 m. The CALYPSO giant piston core MD01-2415 (53°57.09° N, 149°57.52’
E, recovery 46.23 m) was recovered from the northern slope of the Sea of Okhotsk at 822 m water
depth during the WEPAMA cruise MD122 of the R/V Marion Dufresne (Holbourn et al., 2002;
Nurnberg & Tiedemann, 2004). The Deep-Sea Drilling Project core DSDP- 480 (27°54' N, 111°39'
W) from the Gulf of California was retrieved at a water depth of 747 m close to the Guaymas

Basin._For details on the sampling procedure of foraminiferal specimens, please refer to the

Supplementary Methods section in the Supplementary Information.

2.3-2 Automated image analysis. All specimens of B. spissa and B. subadvena were imaged using

a Scanning Electron Microscope (Hitachi Tabletop SEM TM4000 series) at Hamburg University,

Germany with an accelerating voltage of 15 kV using a back-scattered electron (BSE) detector

11
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(Further methodological details are provided in the Supplementary Information). Fhe-specimens

Following the image analysis, pore density data of benthic foraminifera from the four ODZs were-
used for the quantitative reconstruction of [NOz ]ew (Fig. 64). We distinguished five different time
intervals, including the Last Glacial Maximum (LGM; 22-17 ka BP), Heinrich Stadial 1 (H1; 17—
15 ka BP), Bglling - Allerad (BA, 14.7-12. 9 ka BP), Younger Dryas (YD; 12.9-11.7 ka BP), Early
Holocene (EH; 11.7-8.2 ka BP) and Middle to Late Holocene (MLH; 8-0 ka BP) to describe the
[NOs]ew in the East Pacific and the Sea of Okhotsk {Fig—8&). We present updated

chronostratigraphies of the studied cores, primarily based on accelerator mass spectrometry (AMS)

radiocarbon ('*C) dating, as detailed in the Supplementary Information.

The [NOs ]sw from all cores were calculated using the calibration equation;

[NOs]gw = -3896 (+350) PD + 61(+1) 1)
where PD is the pore density of benthic foraminifera (Govindankutty Menon et al., 2023).
The standard error of the mean (SEM) for one sample was calculated using the equation;

SD[ 31
SEM[NOE]BW = Nj% B 2

where n is the number of specimens analyzed in each sample and SD is 1 standard deviation of
mean reconstructed [NOsgw.

SDiNos gy = /(350 X PD)2 + (—3896 X SDpp )2 + (1)2 ®)

12
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A complete error propagation was done for the calculation of the errors of the reconstructed [NOz"
]swincluding both the uncertainty of the mean PD within the samples and the uncertainties of the

calibration function. The reconstructed [NOs ]sw and the calculated SEM and SD of each sample

are shown in the Supplementary files.
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2.5-3 Sedimentary nitrogen isotope (8*°Nbuik) measurements. We have measured sedimentary

nitrogen isotope (8*5Npuik) rather than 3'°Neg from cores taken from the Sea of Okhotsk, and Gulf
of California, because the low abundances of foraminifera were utilized for other analysis. The
analysis of bulk sediments allows for high-resolution records. Prior to the 3**Npux measurements,
the Total Nitrogen (TN%) content of 20 sediment samples from the Sea of Okhotsk and 54 samples
from the Gulf of California were measured at the Institute for Geology, Hamburg University,
Germany using a flash combustion method with a Eurovector EA-3000 analyzer. The 8'*Npuik
measurements for both the Sea of Okhotsk and the Gulf of California were accomplished at the
Max Planck Institute for Chemistry (Mainz), Germany using a DELTA V ADVANTAGE Isotope
Ratio Mass Spectrometer (IRMS) equipped with a FLASH 2000 Organic Elemental Analyzer. The
results were expressed in standard -notation (equation 4). The standard deviation (xSD) of all
individual analysis runs based on a certified international reference standard (USGS65) and
internal laboratory standards (L-Phenylalanine and L-Glutamic acid) referenced to certified
international reference standards was < 0.3%o. The §Npui data for the Sea of Okhotsk and the

Gulf of California are shown in Supplementary Table ST1.
1N (%0) = [(**N:*Nsampte /°N:*Nair) —1] x 1,000 )

For the Gulf of Guayaquil core M77/2-59-01, the §**Npui data published by Mollier-Vogel et al.
(2019) was used. Their measurements were done on ~ 5-50 mg of homogenized and freeze-dried
bulk sediments using a Carlo-Erba CN analyzer 2500 interfaced directly to a Micromass-Isoprime
mass spectrometer at Bordeaux University. Results are expressed in standard §-notation (equation

4) relative to atmospheric dinitrogen gas (N2).

14
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2.6-4 Nitrate offset to present conditions. The reconstructed [NO3z Jsw from each location is

subtracted from the modern [NOz] present at the respective locations from similar water depths

the cores were retrieved from. This provided the [NO3] offset which is the difference (A[NO37]
(uM)) between the modern [NO3] and the past reconstructed [NOz ]sw. The modern [NOz"] for

each location was taken from World Ocean Atlas 2018 (Garcia et al., 2019). The details are given

in Fable-dsupplementary information.

Atlas 2018

Locations Latitude | Longitude | Waterdepth | StatiendD | [NOs]
G (mol/ig)

(M#7/2-50-01)

(MAZ-1E-04)

(MBO1-2415)

(BSBP-480)
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3. Results

We reconstructed deglacial [NOs ]sw using downcore sediment samples from the Sea of Okhotsk
(MDO01-2415), the Gulf of California (DSDP- 480), the Mexican Margin (MAZ-1E-04), and the
Gulf of Guayaquil (M77/2-59-01). The reconstructed [NO3 Jsw was compared to §* Npyi records
of all cores (Fig. 4). All data records presented cover the time period starting from the Last Glacial
Maximum, except for the core from the Sea of Okhotsk, which covers the late deglacial to the

Holocene.

3.1 Sea of Okhotsk (MDO01-2415). The Sea of Okhotsk core MD01-2415 covers the Younger
Dryas, (YD, 12.8 ka BP) until the Middle to Late Holocene (MLH, 4.9 ka BP). The reconstructed
[NOs Jsw values range from 32.8 pmol/kg to 44.1 umol/kg (Fig. 4a). A gradual increase in
[NO3 ]ew is observed from the Younger Dryas to the Middle to Late Holocene. At the beginning
of the Younger Dryas at 12.8 ka BP, [NOs ]sw were relatively high and then decreased to a
minimum value of 32.8 umol/kg at 12.4 ka BP. Since then, [NO3 ]aw steadily increased until the
Middle to Late Holocene (MLH, 44.1 pumol/kg) (Fig. 4a). The [NO3 Jaw during the Middle to Late
Holocene (mean = 41.2 umol/kg) is significantly (t-test, p = 0.023) higher than during the Younger

Dryas (mean = 36.7 umol/kg). The sedimentary 8*Npui record covers the interval from the Late

16
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Heinrich Stadial 1 (H1, 15.4 ka BP) to the Middle Holocene (6.1 ka BP). The 5 °Npuik values were
relatively high ranging from 7.1%o to 9.4%o with an average of 8.7%o. The §°Npuik values increased
steadily from the Late Heinrich Stadial 1 (15.4 ka BP) to the Early Holocene (EH, 10 ka BP) with
higher values centered between the Late Younger Dryas (11.9 ka BP) and the beginning of the
Early Holocene. Since then, the §*°Npui values decreased until the Middle to Late Holocene.

3.2 Gulf of California (DSDP-480). The analyzed sections of DSDP Site 480 covered the Last
Glacial Maximum (22 ka BP) until the Early Holocene (10.8 ka BP). The reconstructed [NO3z ]aw
ranged from 41.4 pmol/kg to 49.1 pmol/kg. The highest [NOs ]sw of 49.1 pumol/kg occurred
during the Last Glacial Maximum (18.2 ka BP). The data points from the Early Holocene (11.6-
10.8 ka BP) were the only Holocene data from this core providing the lowest [NOs ]sw estimate
of 42.1 umol/kg during the Early Holocene (10.8 ka BP) (Fig. 4b). A distinct difference in
[NOs Jew between the glacial period (mean = 46.1 pmol/kg) and the Early Holocene (42.7
pmol/kg) was observed with [NOs Jew found to be substantially higher during the glacial period
(t-test, p = 0.0067) (Fig. 4b). Accordingly, the [NOs ]sw followed a decreasing pattern from the
glacial period to the Early Holocene. The §°Nyuik values varied between 6.4%o and 13%o with an
average of 10.2%o (Fig. 4b). The 5'*Npuk values from the Guaymas Basin were similar to the
31Npui values (average 9.6%o) of Pride (1997) and Altabet et al. (1999). During the last glacial
period, the 8**Npuik values were low ranging from 8.5%o to 9%o. At the onset of the deglaciation,
the 8" Npuik values increased by more than 2%o with large-scale changes reaching a maximum of
13%o during the Younger Dryas. Afterward, we observed a gradual decline in 5'*Npuk values
throughout the Middle to Late Holocene (mean 10.7%o) and this pattern continued to the present.
3.3 Mexican Margin (MAZ-1E-04). This core MAZ-1E-04 covered the Last Glacial Maximum
(20.5 ka BP) until the Early Holocene (10.47 ka BP). The [NOs ]ew values range from 37.7
pmol/kg to 43.5 pmol/kg. We observed the highest [NOs ]sw during the Younger Dryas. From the
beginning to the end of the Last Glacial Maximum, [NOz Jsw followed a decreasing trend (Fig.
4c). The [NO3 Jsw levels continued to steadily decrease until Heinrich Stadial 1 and consistently
stayed low throughout this period. There was a strong change in [NOz ]sw from the end of Heinrich
Stadial 1 to the end of Younger Dryas (Fig. 4c). We observed a peak in [NOz Jew from the
beginning of Balling-Allergd, BA (14.29 ka BP) and it continued throughout the Younger Dryas
(Fig. 4c). Afterwards, [NO3 Jew declined during the Early Holocene. The 6Nk values taken
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from Alcorn et al. (2025) followed an increasing trend from the glacial towards the deglacial period
(Fig.4c).

3.4 Gulf of Guayaquil (M77/2-59-01). This core covered the Last Glacial Maximum (18 ka BP)
until the Middle to Late Holocene (0.18 ka BP). The reconstructed [NO3 ]ew values range from
40.5 pmol/kg to 46.5 umol/kg. The highest [NOs ]sw occurred during the Last Glacial Maximum
(Fig. 4d). The reconstructed [NOs Jsw levels during the Last Glacial Maximum (mean = 45.6
pumol/kg) were slightly higher than during the Middle to Late Holocene (mean = 44.9 umol/kg) (t-
test, p = 0.046). The 8"°Npui values were relatively low ranging between 4%o and 6%o (Fig. 4d).
During the Last Glacial Maximum, the §**Npuik values were low, varying between 4.4%o and 4.6%o,
close to the typical mean range of dissolved nitrate in the ocean (Sigman et al., 1997).
Subsequently, the §*°Npuik values increased from 16.7 ka BP (4.9%o), where we observed a decline
in [NO3 Jew to 8.9 ka BP (5.6%o). The highest 5'*Npui values centered at ~14 ka BP (5.9%o). From
8.9 ka BP onwards, a long-term decrease in 8**Npuk (< 4.4%0) was observed until the Latest
Holocene, consistent with higher [NOs™]sw levels during the Holocene (Fig. 4d). Despite higher

[NO3 ]ew levels, our reconstruction doesn’t show any strong variations during the Holocene.
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Figure 4. Quantitative [NOs ]sw reconstruction using the pore density of fossil specimens of B.

spissa, B. subadvena from a) the Sea of Okhotsk (MDO01-2415), b) the Gulf of California (DSDP-

480), c) the Mexican Margin (MAZ-1E-04), and d) Gulf of Guayaquil (M77/2-59-01). The

sedimentary nitrogen isotope (8*°Npuik) records from the Sea of Okhotsk, and the Gulf of California

are measured in this study, and the Gulf of Guayaquil is from Mollier-Vogel et al. (2019), and-
20



480  The-8"Npu-dataforthe Mexican Margin 5"°Npui data is from Alcorn et al. (2025). The error bars
481  of [NOs ]ew represent 1 SEM including a complete error propagation (using equations 3 and 4).
482  The accumulation rate of total organic carbon (Supplementary files) calculated from published
483 literature (Bubenshchikova et al., 2015; Leclaire & Kerry, 1982; Mollier-Vogel et al., 2019) is
484  shown in blue dashed lines for the Sea of Okhotsk, the Gulf of California and the Gulf of Guayaquil
485  cores respectively. The red-black dashed lines indicate the modern nitrate concentration of each
486  location. Time intervals Middle to Late Holocene (MLH), Early Holocene (EH), Younger Dryas
487 (YD), Bglling-Allergd (BA), Heinrich Stadial 1 (H1), and Last Glacial Maximum (LGM) are

488  shown in the figure.
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jons—The pore density of benthic foraminifera represents a

promising but still developing proxy for reconstructing past nitrate dynamics. Like most proxies

based on biology, it reflects an indirect physiological response rather than a direct measure of

nitrate. In addition, species-specific variability requires careful taxonomic control or its

interpretation carries inherent limitations especially since not many records are available, yet, for

this proxy. Thus, we used a multiproxy approach and combined it with 5'*Npuik, Which provides a

complementary perspective that strengthens reconstructions of nitrogen-cycling processes in

oxygen-deficient zones.

4.1 Sea of Okhotsk. Our data show that [NOs ]sw levels gradually increased through time and
reached modern concentrations during the Middle-Holocene (Fig. 4a). Most of the nutrients in the
northwestern Pacific including the Sea of Okhotsk are supplied by the upwelling of the North
Pacific Deep Water (NPDW) (Gorbarenko et al., 2014). The weakened Kuroshio current (Ujiié
and Ujiié, 1999) and increased sea ice extent (Ternois et al., 2001) weakened the upwelling of
NPDW during the Last Glacial Maximum (LGM). Subsequent studies (Gray et al., 2020; Rae et
al., 2020) have shown that the expansion of the North Pacific Gyre also resulted in less upwelling
of NPDW during the LGM.

During the LGM, the subpolar North Pacific was better ventilated at intermediate depths (Keigwin,
1998) and export productivity was reduced (Ternois et al., 2001; Narita et al., 2002; Seki et al.,
2004). This is consistent with a strengthened meridional overturning circulation, with enhanced
formation of intermediate waters and advection of nutrient-depleted subtropical waters to high
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latitudes (Rae et al., 2020). Furthermore, the North Pacific subpolar gyre extended ~3° further
south during the LGM (Gray et al., 2020), which shifted the westerly winds southward. This may
have resulted in less upwelling of the NPDW during the LGM.

The prolonged ice cover with low biological productivity (Ternois et al., 2001; Narita et al., 2002;
Seki et al., 2004; Rae et al., 2020) and well-oxygenated water masses (Keigwin, 1998) might have
prevented the formation of an oxygen deficient zone (ODZ) in the Sea of Okhotsk
(Bubenshchikova et al., 2015). This is supported by the absence of B. spissa, which are adapted to
living in dysoxic conditions, in our records during the LGM.

Deglacial low [NO3 Jsw which correspond to higher §*Npuk values (Fig. 4a) could be due to

enhanced primary productivity. It is important to note, however, that §"*Npuk is influenced by

diagenetic alteration and the incorporation of allochthonous nitrogen, which can obscure the local

denitrification signal. Therefore, interpretations of §'*Npuik trends should be made cautiously and

ideally corroborated with complementary proxies, such as foraminiferal pore density. Increased

nutrient supply from the Asian continental shelves and sea-ice retreat (Ternois et al., 2001)
strengthened primary productivity. Indeed, the accumulation rate of total organic carbon was
relatively higher during the Younger Dryas (Bubenshchikova et al., 2015) in our core (Fig. 4a).
The increased oxygen demand and weakened ventilation of intermediate waters in the subarctic
Pacific (Lembke-Jene et al., 2018) gradually intensified the ODZ. These poorly oxygenated
conditions conceivably strengthened denitrification, resulting in low deglacial [NO3 ]ew levels.
However, during the Middle to Late Holocene (MLH) a reorganization in atmospheric circulation
favored enhanced formation of oxygenated North Pacific Intermediate Water (NPIW) (Wang et
al., 2020). Thus, mid-depth ventilation was closely associated with atmospheric circulation in the
Holocene and a weakened ODZ (Ohkushi et al., 2013; Bubenshchikova et al., 2015; Wang et al.,
2020). These rising oxygen concentrations probably reduced denitrification (low 8'Npyik) in the
Sea of Okhotsk, resulting in higher [NO3"]sw comparable to today’s conditions (Fig. 4-&5). The
3% Npui values show a maximum from 13 ka to 10 ka BP, which indicates increased water-column
denitrification during that time. Nevertheless, the [NOs ]ew increased during this time, which
indicates a decoupling from denitrification in the oxygen minimum in the water column and the
[NOs Isw. This could be related to the sea level rise during that time (Waelbroeck et al., 2008),
which increased the vertical distance of the sediments (i.e., bottom water) at the sampling site from
the center of denitrification.
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4.2 Gulf of California. The Gulf of California ODZ is influenced by both intermediate and deep-
water properties, similar to that of the open Pacific Ocean. Thus, the ODZ intensity in the Guaymas
Basin is largely dependent on the oxygen content and ventilation of inflowing NPIW from the Sea
of Okhotsk (Pride et al., 1999) and the demand for oxygen at depth. During the glacial period, the
dissolved oxygen concentrations were higher due to better-ventilated NPIW at intermediate depths
of the Northeast Pacific (Keigwin and Jones, 1990; Ganeshram et al., 1995; Keigwin 1998;
Duplessy et al., 1988; Herguera et al., 2010; Cartapanis et al., 2011). Modeling studies show that
the Laurentide and Cordilleran ice sheets increased in size (Benson et al., 2003), lowering the
temperature of North America (Romanova et al., 2006) during the glacial period. The cold sinking
air over the ice sheet established a semi-permanent high-pressure cell (Kutzbach & Wright Jr,
1985; Romanova et al., 2006) causing a substantially weaker North Pacific High (Ganeshram and
Pedersen, 1998) or the southward displacement of the Inter Tropical Convergence Zone (Cheshire
and Thurow, 2013). This resulted in a weak California Current along the coast and reduced
upwelling-favorable winds (SOHMAPR—et-al,—1988:—Cartapanis et al., 2011) along the North
American coastline and reduced primary productivity (Ganeshram and Pedersen, 1998; Hendy et
al., 2004; Cartapanis et al., 2011; Chang et al., 2015) within the ETNP and the Gulf of California
during the glacial period. The nitrogen isotope ratios in the Guaymas Basin can be affected by
subsurface denitrification in the Gulf and in the ETNP (Pride et al 1999). The increase in dissolved
oxygen during the glacial period might have reduced water column denitrification (low 8**Npyik)
thereby increasing the [NOs ]ew (Fig. 4b).

Our study finds a declining trend in reconstructed [NOs Jsw during the Early Holocene, slowly
approaching modern concentrations. This coincides with a maximum in 55Nk values, suggesting
elevated denitrification. This agrees with previous studies in the ETNP (Kienast et al., 2002) and
within the Gulf of California (Pride et al., 1999), which showed that high denitrification most likely
was associated with warming temperatures that occurred during this period. Furthermore, the
scarcity of benthic foraminifera after the Early Holocene in our study coincides with laminations
of the sediment core (Keigwin & Jones, 1990) below 10.8 ka BP, where reconstructed [NO3 ]Jsw
begins to decrease. It is possible that redox conditions were too hostile for benthic foraminifers in

the time periods when laminated sediments formed. We acknowledge limitations in our Holocene

reconstruction due to the low abundance of B. subadvena and the limited calibration dataset

available for this species, which may introduce a systematic offset (Govindankutty Menon et al.,
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2023). Bolivina subadvena was used in this core due to the unavailability of B. spissa, and some

values fall outside the existing calibration range. We also cannot rule out other factors influencing

the proxy signal, such as microhabitat variability. Additional data and further proxy calibration are

therefore essential to improve the robustness of Holocene bottom-water nitrate reconstructions.

4.3 Mexican Margin. Our study finds a steep rise in [NOs ]aw between the Bglling-Allerad (BA)
and the Younger Dryas (YD) (Fig. 4c). The transition period from the BA to the Holocene involved
rapid oxygenation with increased oxygen levels at the onset of the YD (Jaccard & Galbraith, 2012;
Ohkushi et al., 2013; Taylor et al., 2017). This has been linked to active ventilation by increased
NPIW production at high latitudes in the North Pacific (Van Geen et al., 1996; Emmer and Thunell,
2000; Okazaki et al., 2010; Cartapanis et al., 2011; Chang et al., 2014). In addition, there was low
primary productivity (Hendy et al., 2004; Pospelova et al., 2015), and a higher influx of freshwater
(Broecker et al., 1985; Clark et al., 2002) during the YD. However, considering the deep location
of the Mexican Margin core below the direct influence of intermediate water masses (Fig. 3), it is
less likely to be reflected in the [NOs ]sw. Bulk sediment 8*5N records in the ETNP (Ganeshram
et al., 1995; Pride et al., 1999; Emmer and Thunell, 2000; S. S. Kienast et al., 2002; Hendy et al.,
2004) found a decrease in 8*Npuk during the YD due to reduced denitrification. Furthermore, a
foraminifera-bound nitrogen isotope (5*°Neg) study (Studer et al., 2021) in the eastern tropical
Pacific also found a decrease in §*°Ngs signatures during the Younger Dryas (Fig. 4c). In contrast
to this, a bulk sediment §!°N record of MAZ-1E-04 (Alcorn et al., 2025) depicts an increase in
water column denitrification during the Younger Dryas. Thus, reduced denitrification may not be
the dominant factor that led to the elevated [NOs]sw during this time. Instead, the Mexican Margin
may be more influenced by the NOs™ variability from the Pacific Deep Water, PDW (see Fig. 3).
Deep-sea reorganization and ventilation during the deglaciation may have influenced the
[NO3 Jsw. At the onset of the deglaciation, deep Southern Ocean ventilation (reduced “C
ventilation ages) and atmospheric carbon dioxide (CO.) synchronously increased (Robinson et al.,
2009; Burke and Robinson, 2012; Rae et al., 2018). This deglacial increase in **C ventilation in
the Pacific Ocean suggests that most of the increase in atmospheric CO; is derived from old carbon
in the Southern and Pacific Oceans (Rafter et al., 2022). The increase in reconstructed [NOz Jaw
during the YD may thus reflect the release of sequestered nutrient- and carbon dioxide-rich waters
during the deglaciation (Robinson et al., 2009; Rafter et al., 2022).
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The relatively high [NOs ]sw during the glacial period (Fig. 4c), before its decline in Heinrich
Stadial 1, is likely indicative of reduced water-column denitrification (Ganeshram et al., 1995;
2000) due to reduced productivity (Ganeshram et al., 1995; Ganeshram and Pedersen, 1998) and
low organic matter flux through the oxygen minimum zone (Ganeshram et al., 2000). In the ETNP,
including the Mexican Margin, coastal upwelling is driven by trade winds generated by subtropical
high-pressure centers. These high-pressure centers largely result from differential heating of the
land and the ocean. As a result of glacial cooling on land, these high-pressure systems and the
associated trade winds that drive the upwelling have likely been weakened (Ganeshram and
Pedersen, 1998).

4.4 Gulf of Guayaquil. The core M77/2-59-01 is in a region that is sensitive to changes in
subsurface denitrification in the ETSP (Robinson et al., 2007, 2009; Dubois et al., 2011, 2014).
The elevated reconstructed [NOz ]sw levels (Fig. 4d) during the glacial period suggest decreased
water-column denitrification (Salvatteci et al., 2014; Erdem et al., 2020; Glock et al., 2022) and
relatively low local productivity (Ganeshram et al., 2000; Robinson et al 2007; 2009; Martinez
and Robinson et al., 2010; Salvatteci et al., 2016). Nutrient export to the deep Southern Ocean
waters increased due to the sluggish Atlantic Meridional Overturning Circulation (Skinner et al.,
2010), and increased atmospheric iron (Fe) deposition (Somes et al., 2017) during the glacial
period. This reduced the transport of preformed NOz™ to the tropics via the Subantarctic Mode
Water (SAMW), limiting productivity. In fact, the total organic carbon (Fig. 4d) depicts low
productivity during this period. Furthermore, the colder sea surface temperature (SST) and the
accelerated formation of SAMW and Antarctic Intermediate Water masses (Russell & Dickson,
2003; Galbraith et al., 2004) and the stronger high-latitude winds in the Southern Hemisphere
(Karstensen and Quadfasel, 2002) increased the ventilation rate (Meissner et al., 2005; Jaccard and
Galbraith, 2012; Muratli et al., 2010) during the glacial period. The resulting increased oxygen
concentrations (Robinson et al., 2005; Robinson et al., 2007) decreased the volume of ODZs, and
nitrogen loss processes (lower §°Npuk values, Fig. 4d) during the glacial period. In addition,
enhanced Fe deposition (Somes et al., 2017), and the glacial low sea level (Clark and Mix, 2002;
Wallmann et al., 2016), may have influenced the nitrate inventory in the tropical and subtropical
southern hemisphere.

A study by Glock et al. (2018) on core M77/2-52-2 from Peru applying the pore density of B.

spissa also shows elevated [NOs™]ew during the Last Glacial Maximum, a similar decline in [NO3™]
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sw during the Heinrich Stadial 1 and thereafter a steady decrease in [NOs ]sw throughout the
Holocene.

The deglacial decline in [NO37] sw, especially during Heinrich Stadial 1 in this study (Fig. 4d),
indicates a gradual increase in surface productivity and bottom-water deoxygenation. High export
production strengthened the expansion of the ETSP ODZ during the deglaciation as compared to
LGM and MLH (Salvatteci et al., 2016; Glock et al., 2018; Mollier-Vogel et al., 2019). This is
consistent with the denitrification signal in the Eastern Equatorial Pacific through westward
advection from the Southeast Pacific margins (Martinez and Robinson, 2010).

The shift towards generally higher reconstructed [NOz ]sw from the Middle-Holocene, (Fig. 4d),
implies a profound change in the climatic state of the Peruvian upwelling system and the associated
ODZ during this time. From the deglaciation toward the Late Holocene, there was a general
increase in productivity (Mollier-Vogel et al., 2019) as shown by organic carbon accumulation
rates (Fig. 4d). This increase in organic matter input and/or preservation was likely related to an
increase in upwelling-driven delivery of nutrients towards the surface. The gradual decrease in
315 Npuik values and higher [NOs Jsw was likely related to a relaxation in nutrient utilization with a
nutrient supply exceeding the biological demand (Riechelson et al., 2024). Moreover, the core
M77/2-59-01 was retrieved outside of the core ODZ and is under the strong influence of the oxygen
and nutrient-rich Equatorial Under Current subsurface waters (Salvatteci et al., 2019; Mollier-
Vogel et al., 2019). These waters might have ventilated the Northern Peruvian margin and
deepened the oxycline at this site during the Middle-Holocene. Furthermore, enhanced zonal SST
(Koutavas et al., 2006) and a northward shift of the ITCZ strengthened the Pacific Walker and
Hadley circulation during the Middle-Holocene across the tropical Pacific (Koutavas et al., 2006;
Mollier-Vogel et al., 2013; Salvatteci et al., 2019). These enhanced atmospheric circulations
brought oxygen-rich waters to intermediate depths off Peru via the equatorial subsurface
countercurrents (Koutavas et al., 2006; Mollier-Vogel et al., 2013; Salvatteci et al., 2019). Hence,
increased ventilation of subsurface water masses reduced the strength of nitrogen loss processes
and nutrient uptake during the MLH.

At present, the only quantitative reconstruction of bottom-water oxygen from these locations is the
core M77/2-59-01 from the Gulf of Guayaquil reported by Erdem et al. (2020). Their record

suggests a decline in bottom-water oxygen from the deglacial period to the Holocene. Future more

detailed comparisons of the nitrate reconstructions with quantitative bottom water oxygen records
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at the same cores will further improve our understanding about variability in redox conditions and

nitrogen cycling.
4.5 Comparison of past and present [NO3s7] at the studied locations. The [NOs7] during the

present and past are compared to assess the resilience of our chosen study locations towards
environmental and ecological impacts of climate change. The generally positive A[NO37] that we
found (Fig. 54b) in the Gulf of California (Guaymas Basin) and the Gulf of Guayaquil indicate
that today the [NOs7]is lower than in the past. This suggests that today the nitrogen loss processes
at these two core sites are stronger, most likely related to ocean warming and a decline in oxygen
concentration of bottom waters. The Gulf of California core is within the heart of the oxygen-
deficient zone, and thus changes in ODZ oxygenation or denitrification will be more evident in
this core than in any other core studied. Under nitrogen limitation, negative feedbacks (e.g.,
anammox) result in a decline in productivity (Naafs et al., 2019; Wallmann et al., 2022), which
will stabilize the oxygen concentration. In the case of the Gulf of California, sediments are
enriched in reactive iron (Fe) (Scholz et al., 2019). The decreasing NO3™ concentrations in the
bottom water reduce the flux of NOs™ into the surface sediment. This leads to the release of
sedimentary Fe, which enhances nitrogen fixation in the Guaymas Basin (Scholz et al., 2019).
Thus, increased denitrification might not act as negative feedback in the Gulf of California because

it might be countered by increased nitrogen fixation (White et al., 2013).

In the case of the Gulf of Guayaquil_(Fig. 4d), whether today’s elevated denitrification could
enhance Nz fixation also depends on the availability of Fe (Pennington et al., 2006). The primary
productivity of the Peruvian ODZ is Fe limited due to the reduction of particular Fe oxides in shelf
and slope sediments (Scholz et al., 2014). Modeling studies show that primary productivity will
be amplified in the Peruvian ODZ due to the release of Fe from shelf and slope sediments
(Wallmann et al., 2022). This may induce deoxygenation and drive the expansion and
intensification of Peruvian ODZ resulting in a positive feedback loop, like in the Gulf of California.
This situation is indicated by lower [NO37 today compared to the past ~20,000 years-{Fig-5).

The negative nitrate A[NO37] in the Sea of Okhotsk and the Mexican Margin (Fig. 4a &c5)
indicates that modern [NOz7 levels are higher than in the reconstructed past. This suggests that
modern nitrogen loss is decreased at these two core sites compared to the last deglaciation. The
higher modern [NOs7] in the Sea of Okhotsk is likely associated with less primary productivity and
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more oxygen in the water column similar to the situation established in the MLH. The higher
modern [NOs7]sw in the case of the Mexican Margin could be associated with sea level rise. The
ODZ in the Mexican Continental Margin might have shifted to shallower depths today with less/or
no benthic denitrification in intermediate water depths at the core site, resulting in high [NOz]sw
levels. During the glacial period, continental shelves were exposed due to sea-level lowstands
(Clark and Mix, 2002; Kuhlmann et al., 2004; Wallmann et al., 2016), the main areas of primary
productivity may have migrated offshore from the shallow shelf towards the continental slope
relative to their Holocene positions. A similar situation occurred at the Benguela upwelling system
during the LGM: TOC accumulation at the continental slope increased during the LGM in response
to the seaward shift of centers of enhanced productivity (Mollenhauer et al., 2002). This offshore
shift of the productivity centers and the most likely reduced remineralization rates, due to lower
temperatures, indicate that the center of the ODZ at the Mexican Margin before sea level rise was
possibly deeper than today. However, with the deglacial eustatic sea-level rise, the ODZ may have
shifted to shallower depths. This shifted the main zone of denitrification further away from the

seafloor, resulting in the increased modern [NO3]sw in comparison to the LGM-{Fig-5).

5. Conclusion. The quantitative reconstruction of [NOs ]sw using the pore density of denitrifying

benthic foraminifera over the last deglaciation at the four studied ODZs provides a comprehensive

in-the-marine—nitrogen—eyele—in-oxygen—deficientzones—The Gulf of Guayaquil and Gulf of
California data shows elevated [NOs ]sw during the glacial period compared to deglacial and
modern conditions. Considering the well-ventilated intermediate water masses in the Sea of
Okhotsk, the Sea of Okhotsk may have also elevated [NOs ]sw in the glacial period. For the
Mexican Margin core, [NOs ]ew was particularly strong during the Younger Dryas. The
reconstructed [NOz ™ ]ew from the Sea of Okhotsk, the Gulf of California, and the Gulf of Guayaquil
are influenced by the formation of the North Pacific Intermediate Water. However, the [NO3 ]sw
in the deeper site, the Mexican Margin is likely influenced by the NOs™ variability in Pacific Deep
Water. The modern Gulf of Guayaquil and the Gulf of California have low [NO3] associated with

increased denitrification and a strengthening ODZ. In contrast, higher modern [NOs™] was
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observed in the Sea of Okhotsk and the Mexican Margin, suggesting that these two study areas

have higher oxygen.
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