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Abstract

Groundwater serves as a crucial freshwater resource for people and ecosystems, playing a vital role in adapting to
climate change. Yet, its availability and dynamics are affected by climate variations, changes in land use, and
excessive extraction. Despite its importance, our understanding of how global change will influence groundwater
in the future remains limited. Multi-model ensembles are powerful tools for impact assessments; compared to
single-model studies, they provide a more comprehensive understanding of uncertainties and enhance the
robustness of projections by capturing a range of possible outcomes. However, to date, no ensemble of
groundwater models has been available. Here, we present the new Groundwater sector within ISIMIP, which
combines multiple global, continental, and regional-scale groundwater models. We describe the rationale for the
sector, present the sectoral output variables, and show the initial results of a model comparison. We further outline

the synergies with other existing ISIMIP sectors, such as the global water sector and the water quality sector.
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Currently, eight models are participating in this sector, ranging from gradient-based groundwater models to
specialized karst recharge models, each producing up to 19 out of 23 modeling protocol-defined output variables.
Utilizing available model outputs for a subset of participating models, we find that the arithmetic mean global
water table depth varies substantially between models (6 - 127 m) and shows a shallower water table compared to
other recent studies. Groundwater recharge also differs greatly in the global mean (78 - 228 mm/y), which is
consistent with recent studies on the uncertainty of groundwater recharge, but with different spatial patterns.
Groundwater recharge changes between 2001 and 2006 show plausible patterns that align with droughts in Spain
and Portugal during this period. The simplified comparison highlights the value of a structured model
intercomparison project, which will help to better understand the impacts of climate change on the world’s largest

accessible freshwater store — groundwater.

1 Introduction

Groundwater is the world’s largest accessible freshwater resource, vital for human and environmental well-being
(Huggins et al., 2023; Scanlon et al., 2023), serving as a critical buffer against water scarcity and surface water
pollution (Foster and Chilton, 2003; Schwartz and Ibaraki, 2011). It supports irrigated agriculture, which supports
17% of global cropland and 40% of food production (D41l and Siebert, 2002; Perez et al., 2024; United Nations,
2022; Rodella et al., 2023). However, unsustainable extraction in many regions has led to declining groundwater
levels, the drying of rivers, lakes and wells, land subsidence, seawater intrusion, and aquifer depletion (e.g.,

Bierkens and Wada (2019); de Graaf et al. (2019); Rodell et al. (2009)).

The pressure on groundwater systems intensifies due to the combined effects of population growth, socioeconomic
development, agricultural intensification, and climate change, e.g., through a change in groundwater recharge
(Taylor et al., 2013; Reinecke et al., 2021). Rising temperatures and altered precipitation patterns are already
reshaping water availability and demand, with significant implications for groundwater use. For instance,
changing aridity is expected to influence groundwater recharge rates (Berghuijs et al., 2024), yet the consequences
for groundwater level dynamics remain limited (Moeck et al., 2024; Cuthbert et al., 2019). It is further unclear

how these shifts will affect groundwater's role in sustaining ecosystems, agriculture, and human water supplies.

Understanding the impacts of climate change and the globalized economy on groundwater systems requires a
large-scale perspective (Haqiqi et al., 2023; Konar et al., 2013; Dalin et al., 2017). While groundwater
management is traditionally conducted at local or regional scales, aquifers often span administrative boundaries,
and overextraction in one area can have far-reaching effects not captured by a local model. Moreover, groundwater
plays a critical role in the global hydrological cycle, influencing surface energy distribution, soil moisture, and
evapotranspiration through processes such as capillary rise (Condon and Maxwell, 2019; Maxwell et al., 2016)
and supplying surface waters with baseflow (Winter, 2007; Xie et al., 2024). These interactions underscore the
importance of groundwater in buffering climate dynamics over extended temporal and spatial scales (Keune et
al., 2018) and underscore the need for a global perspective of the water-climate cycle. While large-scale climate-
groundwater interactions are starting to become understood (Cuthbert et al., 2019), current global water and

climate models may not always capture these feedbacks as most either do not consider groundwater at all or only

2
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include a simplified storage bucket, limiting our understanding of how climate change will affect the water cycle

as a whole.

The inclusion of groundwater dynamics in global hydrological models remains a considerable challenge due to
data limitations and computational demands (Gleeson et al., 2021). Simplified representations, e.g., linear
reservoir (Telteu et al., 2021), often fail to capture the complexity of groundwater-surface water interactions,
lateral flows at local or regional scales, or the feedback between groundwater pumping and streamflow (de Graaf
et al., 2017; Reinecke et al., 2019). These processes are crucial for evaluating water availability, particularly in
regions heavily dependent on groundwater. For instance, lateral flows sustain downstream river baseflows and
groundwater availability, which, in turn, impact water quality and ecological health (Schaller and Fan, 2009; Liu
et al., 2020). Not including head dynamics may lead to overestimation of groundwater depletion (Bierkens and
Wada, 2019). Multiple continental to global-scale groundwater models have been developed in recent years to

represent these critical processes (for an overview, see also Condon et al. (2021) and Gleeson et al. (2021).

While current model ensembles of global water assessments have not yet incorporated gradient-based
groundwater processes, they have already significantly advanced our understanding of the large-scale
groundwater system. The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), analogous to the
Coupled Model Intercomparison Project (CMIP) for climate models (Eyring et al., 2016a), is a well-established
community project to carry out model ensemble experiments for climate impact assessments (Frieler et al., 2017;
2024, 2025). The current generation of models in the Global Water Sector of ISIMIP often represents groundwater
as a simplified storage that receives recharge, releases baseflow, and can be pumped (Telteu et al., 2021). Still, it
lacks lateral connectivity and head-based surface-groundwater fluxes. Nevertheless, the ISIMIP water sector
provided important insights on, for example, future changes and hotspots in global terrestrial water storage
(Pokhrel et al., 2021), environmental flows (Thompson et al., 2021), the planetary boundary for freshwater change
(Porkka et al., 2024), uncertainties in the calculation of groundwater recharge (Reinecke et al., 2021), and the

development of methodological frameworks to compare model ensembles (Gnann et al., 2023).

Here, we present a new sector in ISIMIP called the ISIMIP Groundwater Sector, which integrates models of the
groundwater community that operate at regional (at least multiple km? (Gleeson and Paszkowski, 2014)) to global
scales and are committed to providing model simulations to this new sector. The Groundwater sector aims to
provide a comprehensive understanding of the current state of groundwater representation in large-scale models,
identify groundwater-related uncertainties, enhance the robustness of predictions regarding the impact of global
change on groundwater and connected systems through model ensembles, and provide insight into how to most
reliably and efficiently model groundwater on regional to global scales. The new Groundwater sector is a separate
but complementary sector to the existing Global Water sector. To our knowledge, there are currently no long-term
community efforts for a structured model intercomparison project for groundwater models. While studies have
benchmarked different modeling approaches (e.g., Maxwell et al. 2014), compared model outputs (Reinecke et
al., 2021; 2024), or collected information on where and how we model groundwater (Telteu et al., 2021; Zipper
et al., 2023; Zamrsky et al., 2025), no effort yet aims at forcing different groundwater models with the same

climate and human forcings for different scenarios.
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Specifically, the ISIMIP Groundwater sector will compile a model ensemble that enables us to assess the impact
of global change on various groundwater-related variables and quantify model and scenario-related uncertainties.
These insights can then be used to quantify the impacts of global change on, for example, water availability and
in relation to other sectors impacted by changes in groundwater. The ISIMIP Groundwater sector has natural
linkages with other ISIMIP sectors, such as Global Water, Water Quality, Regional Water, and Agriculture. This
paper will highlight the connections between groundwater and different ISIMIP sectors, providing an opportunity

to enhance our understanding of how modeling choices affect groundwater simulation dynamics.

2 The ISIMIP framework

ISIMIP aims to provide a framework for consistent climate impact data across sectors and scales. It facilitates
model evaluation and improvement, enables climate change impact assessments across sectors, and provides
robust projections of climate change impacts under different socioeconomic scenarios. ISIMIP uses a subset of
bias-adjusted climate models from the CMIP6 ensemble. The subset is selected to represent the broader CMIP6

ensemble while maintaining computational feasibility for impact studies (Lange, 2021).

ISIMIP has undergone multiple phases, with the current phase being ISIMIP3. The simulation rounds consist of
two main components: ISIMIP3a and ISIMIP3b, each serving distinct purposes. ISIMIP3a focuses on model
evaluation and the attribution of observed climate impacts, covering the historical period up to 2021. It utilizes
observational climate and socioeconomic data and includes a counterfactual "no climate change baseline" using
detrended climate data for impact attribution. Additionally, ISIMIP3a includes sensitivity experiments with high-
resolution historical climate forcing. In contrast, ISIMIP3b aims to quantify climate-related risks under various
future scenarios, covering pre-industrial, historical, and future projections. ISIMIP3D is divided into three groups:
Group I for pre-industrial and historical periods, Group II for future projections with fixed 2015 direct human
forcing, and Group III for future projections with changing socioeconomic conditions and representation of
adaptation. Despite their differences in focus, time periods, and data sources, both ISIMIP3a and ISIMIP3b require
the use of the same impact model version to ensure consistent interpretation of output data, thereby contributing

to ISIMIP's overall goal of providing a framework for consistent climate impact data across sectors and scales.

The creation of a new ISIMIP Groundwater sector is not linked to any funding and is a community-driven effort
that includes all modeling groups that wish to participate. During the creation process, multiple groups and
institutions were contacted to participate, and additional modeling groups are welcome to join the sector in the
future. Models participating in the sectors do not need to be able to model all variables and scenarios defined in
the protocol. ISIMIP sectors can be linked to broader thematic concepts, such as Agriculture, or can focus on
specific components of the Earth system, such as Lakes or Groundwater (see also
https://www.isimip.org/about/#sectors-and-contacts). The separation into these sectors is driven by the
availability of models that can be integrated into a model-intercomparison framework, which is based on the same
climatic and human forcings and produces a set of comparable output variables. We would like to note that
groundwater is not an isolated system, but rather part of the water cycle and the Earth system as a whole. Focusing
on it within a dedicated sector aligns well with the existing models and is useful for studying groundwater systems

in a thematically focused way. Collaboration (and perhaps integration) with sectors like the Global Water sector

4
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is possible and desirable in the future. We discuss possible future synergies with other existing ISIMIP sectors in

Section 5.

In the short term, the Groundwater sector will focus on the historical period from 1901 to 2019 in ISIMIP3a

(https://protocol.isimip.org/#/ISIMIP3a/water _global/groundwater), utilizing climate-related forcing based on

observational data (obsclim) and the direct human forcing based on historical data (histsoc). We aim to use these
simulations for an in-depth model comparison, including a comparison to observational data such as time series
of groundwater table depth (e.g., Jasechko et al., 2024) and by utilizing so-called functional relationships
(Reinecke et al., 2024; Gnann et al., 2023). Functional relationships can be defined as covariations of variables
across space and/or time, and they are a key aspect of our theoretical knowledge of Earth’s functioning. Examples
include relationships between precipitation and groundwater recharge (Gnann et al. 2023 ; Berghuijs et al. 2024)

or between topographic slope and water table depth (Reinecke et al., 2024).

This will yield a new understanding of how these models differ, what the reasons for these differences are, and
how they could be improved. In addition, it will provide a basis for implementing impact analyses with ensemble

runs based on future scenarios using ISIMIP3b inputs.

3 The current generation of groundwater models in the sector

Many large-scale groundwater models are already participating in the sector (Table 1), and we expect it to expand
further. The current models are mainly global-scale, with some having a particular regional focus, and primarily

using daily timesteps.

While the primary modeling purpose of most models is to simulate parts of the terrestrial water cycle, they all
focus on different aspects (such as karst recharge or seawater intrusion), most investigate interactions between
groundwater and land surface processes, and account for human water uses. Two models (V2KARST and GGR)
have distinct purposes in modeling groundwater recharge and do not model any head-based groundwater fluxes.
Conceptually, the models may be classified according to Condon et al. (2021) into five categories: lumped models
with static groundwater configurations of long-term mass balance (a), saturated groundwater flow with recharge,
and surface water exchange fluxes as upper boundary conditions without lateral fluxes (b), quasi 3D models with
variably saturated flow in the soil column and a dynamic water table as a lower boundary condition (c), saturated
flow models solving mainly the Darcy equation (d), and variably saturated flow which is calculated as three-
dimensional flow throughout the entire subsurface below and above the water table (e). See Condon et al. (2021)
and also Gleeson et al. (2021) for a more detailed overview and discussion of approaches. Half of the models
(Table 1) simulate a saturated subsurface flux (d), while V2KARST and GGR mainly use a 1D vertical approach
(b), and others simulate a combination of multiple approaches (ParFlow, Table 1) or can switch between different

approaches (CWatM, Table 1).

The sector protocol is defined at https://protocol.isimip.org/#/ISIMIP3a/groundwater and will be updated over
time. We have defined multiple joint outputs for this sector (23 variables in total), but not all models can yet
provide all outputs (Table 2). Models can provide 1-19 outputs (11 on average), and multiple models have

additional outputs that are currently under development. The global water sector also contains groundwater-related
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variables (Table A2), enabling groundwater-related analysis. We list them here to show their close connection to

the global water sector and facilitate an overview of future groundwater-related studies.

The current sector protocol defines a targeted spatial resolution of 5 arcmin, as this represents not only the
resolution achievable by most global models but also the coarsest resolution at which meaningful representation
of groundwater dynamics, particularly lateral groundwater flows and water table depths, can still be captured
(Gleeson et al., 2021). ISIMIP3 also specifies experiments with different spatial resolutions, but whether this is
achievable with a sub-ensemble of the presented models remains unclear, as it depends on the available
computational time, flexibility of model setups, and data availability. To ensure consistency and comparability,
the model outputs are currently post-processed by the modeling groups to aggregate their outputs to the protocol-

specified spatial and temporal resolutions.

Table 1: Summary of all models participating in the ISIMIP Groundwater sector. This table lists only models that
add new variables to the ISIMIP protocol. Models already part of the global water sector and providing other

groundwater-related variables are not listed here. (GMD discussion formatting requires a portrait instead of a

landscape table)

Model Main Coupling | Spatial Temporal | Hydrogeo | Conceptu | Calibrate | Represen | Main
name model with domain resolution | logical al model d tation of Reference
purpose other and configura | according groundw

models resolution tion, e.g. to ater use
number Condon
of layers et al.

Water Represent | - Global Sub-daily, | 1 soil d. Globally: Through Grogan et
Balance ation of and Daily, layer, 2 no, calculated | al. (2022)
Model the regional. Multi-day | groundwat regional: abstractio | With
(WBM) terrestrial Spatial er layers yes (NE, ns from groundwat

hydrologi resolution us) groundwat | er

ccycle, defined by er. methods

including the input based on

human river de Graaf

interaction network. etal.

S. (2015); de

Graaf et
al. (2017).

Communit | To Communit | Global Sub-Daily | 20 soil c. No Yes Felfelani
y Land simulate y Earth and layers etal.
Model surface System regional extending (2021)
(CLM) and sub- Model (0.05 up to 8.5 Lawrence

surface (CESM) (regional), m; 1 et al.

hydrologi 0.1, 0.25, aquifer (2019)

c and 0.5 layer,

processes, degree unconfine

including (global)) d

crop

growth,

irrigation,
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groundwat
er
withdrawa
L
Communit | To MODFLO | Global, Daily Standard: Standard: Globally: Yes Guillaumo
y Water reproduce | W regional, 1 a./b. yes (with tetal.
Model main (optional) | subbasin with With discharge) (2022);
(CWatM) | hydrologi (30 MODFLO | MODFLO | , Burek et
c arcsecond W: W:d. regional: al. (2020)
processes, s, 1 km, 1 variable tailored
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water 5 arc-min,
managem 30 arc-
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to global
scales.
Global Understan | WaterGA | Global (5 Daily, 2 layers, d. No Through Reinecke
Gradient- | ding of P (Miiller | arc monthly, second calculated | etal.
based surface Schmied minutes) or yearly layer with net (2019);
Groundwa | water, etal., a reduced abstractio Kretschm
ter Model | coastal, 2016) hydraulic ns from er et al.
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groundwat
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) 2020.;
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Liang et
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karst
areas.
Global A grid- - 180.0°W Daily 2 soil b. No No Nazari et
Groundwa | based to layers and al. (2025)
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Recharge | water and er layer of
(GGR) balance 60.0°N to variable
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208

Table 2: List of output variables in the ISIMIP3a Groundwater sector. The spatial resolution is five arcminutes

(even if some models simulate at a higher or coarser resolution), and the temporal resolution is monthly. Most

models also simulate daily timesteps, but as most groundwater movement happens across longer time scales,

we unified the unit to months. A “*” indicates that a model is able to produce the necessary output. A “+”

indicates that this output is currently under development. (GMD discussion formatting requires a portrait

instead of a landscape table)

Groundwater sector output variables

Name

Capillary rise

Diffuse
groundwater

recharge

Groundwater

abstractions

Groundwater
abstractions

(domestic)

Groundwater
abstractions

(industries)

Groundwater
abstractions

(irrigation)

Groundwater
abstractions

(livestock)

Description

Upward flux from groundwater to soil

(leaving aquifer = negative value).

Downwards flux from soil to groundwater
(entering aquifer = positive value). The unit
kg m?s! is equal to mm s™. Unit is kept

equal to the global water sector.

Groundwater pumped from the aquifer.

Groundwater abstractions that are intended

for domestic water use.

Groundwater abstractions that are intended

for industrial water use.

Groundwater abstractions that are intended

for irrigational water use.

Groundwater abstractions that are intended

for livestock water use.

Unit

m3 m-

month-

kg m-2

s-1

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

WBM

CLM

CWatM

G*M

VIC-wur

V2KARST

GGR

ParFlow



Groundwater

demands

Groundwater

depletion

Groundwater
drainage/surface

water capture

Groundwater
drainage/surface
water capture

from lakes

Groundwater
drainage/surface
water capture

from rivers

Groundwater
drainage/surface
water capture

from springs

Groundwater
drainage/surface
water capture

from wetlands

Gross water demand

Long-term losses from groundwater storage

Exchange flux between groundwater and
surface water. Groundwater leaving the
aquifer = negative value; entering the

aquifer = positive value

Exchange flux between groundwater and
surface water (lakes); if available,
additional to the sum of exchange fluxes
(Groundwater drainage/surface water
capture) also separate components can be
provided/ Leaving the aquifer = negative
values; entering the aquifer = positive

value.

Exchange flux between groundwater and
surface water (rivers); if available,
additional to the sum of exchange fluxes
(Groundwater drainage/surface water
capture) also separate components can be
provided/ Leaving the aquifer = negative
values; entering the aquifer = positive

value.

Exchange flux between groundwater and
surface water (springs); if available,
additional to the sum of exchange fluxes
(Groundwater drainage/surface water
capture) also separate components can be
provided/ Leaving the aquifer = negative
values; entering the aquifer = positive

value.

Exchange flux between groundwater and
surface water (wetlands); if available,
additional to the sum of exchange fluxes
(Groundwater drainage/surface water
capture) also separate components can be
provided/ Leaving the aquifer = negative
values; entering the aquifer = positive

value.

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

10



209

Groundwater

return flow

Groundwater

storage

Hydraulic head

Lateral
groundwater

flux (front face)

Lateral
groundwater

flux (right face)

Lateral
groundwater

flux (net)

Lateral
groundwater
flux (lower
face)
Submarine
groundwater

discharge

Water table
depth

Number of
groundwater
output
variables in

model

Return flow of abstracted groundwater (not

yet separated into different sources).

Mean monthly water storage in
groundwater layer in kg m. The spatial

resolution is 0.5° grid.

Head above sea level in m. If more than
one aquifer layer is simulated, report the
heads on the top productive aquifer

(confined or unconfined).

Cell-by-cell flow (front)

Cell-by-cell flow (right)

Net cell-by-cell flow

Cell-by-cell flow (lower) when more than 1

groundwater layer is simulated.

Flow of groundwater into oceans. The
definition may vary by model. But in
principle also models without density

driven flow can submit this variable.

Depth to the water table below land surface

(digital elevation mode, DEM) in m.

Counting only currently available

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

m3 m-

month-

11

19

13

14

14

17
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4 Unstructured experiments point out model differences that should be explored further

The ISIMIP groundwater sector is in an early development stage, and we hope that an ensemble of groundwater
models driven by the same meteorological data will be available soon. Yet, to provide first insights into the
models, their outputs, and how these can be compared, we collected existing outputs from the participating models
(see Table Al for an overview). We opted for a straightforward initial comparison due to the various data formats,
model resolutions, and forcings that complicate a more thorough examination of a specific scientific inquiry. One
of our goals in the Groundwater sector is to conduct extensive analysis to better illustrate and understand the
model differences. The analysis presented here is intended solely as an introductory overview to provide a sense
of the rationale behind our initiative. Some overlap with recent model comparison studies naturally exists (e.g.,
Gnann et al., 2023; Reinecke et al., 2024, Reinecke et al. 2021); however, the presented analysis contains a
different ensemble of models and thus provides new insights. Hence, this descriptive analysis serves as an
introductory overview that highlights the present state of the art and identifies model discrepancies warranting
further investigation. In addition, relevant output data are not yet available for all models. We focused on the two
variables with the largest available ensemble: water table depth (G*°M, CLM, WBM, and VIC-wur; Table 1) and
groundwater recharge (CLM, CWatM, GGR, VIC-wur, V2ZKARST, WBM; Table 1), only on historical periods

rather than future projections.

The arithmetic mean (not weighted by cell area) global water table depth varies substantially (6 m — 127 m)
between the models at the start of the simulation (1980 or steady-state) (Fig. 1a). On average, the water table of
G3M (28 m) and CLM (6 m) are shallower than WBM (127 m) and VIC-wur (81 m), whereas the latter two also
show a larger standard deviation (WBM: 133 m, VIC-wur: 105 m) than the other two models (G*M: 49 m, CLM:
3 m). The consistently shallower WTD of CLM impacts the ensemble mean WTD (Fig. 1b), which is shallower
compared to other model ensembles (5.67 m WTD as global mean here compared to 7.03 m in Reinecke et al.

(2024)).

This difference in ensemble WTD points to conceptual differences between the models. G*M and CLM both use
the relatively shallow WTD estimates of Fan et al. (2013) as initial state or spin-up, which could explain the
overall shallow water table depth. The difference between G*M and VIC-wur is consistent with the findings in
Reinecke et al. (2024), which showed a deeper water table simulated by the de Graaf et al. (2017) groundwater
model, which developed an aquifer parameterization adapted and conceptually similar to VIC-wur and WBM.
This difference may be linked to the implementation of groundwater drainage/surface water infiltration or
transmissivity parameterizations (Reinecke et al., 2024) as well as differences in groundwater recharge (Reinecke
etal., 2021). Furthermore, the models are not yet driven by the same climatic and human forcings, thereby possibly
causing different model responses. The newly initiated ISIMIP Groundwater sector offers an opportunity to
investigate these differences much more systematically in future studies, for example, by ruling out forcing as a
driver of the model differences and by exploring spatial and temporal relationships with key groundwater drivers
such as topography (e.g., Reinecke et al., 2024). In addition, the ISIMIP Groundwater sector provides a platform
for using the modelling team’s expertise on their model implementations (e.g., model structures and parameter

fields) to better understand the origins of these differences.
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Figure 1: Global water table depth (WTD) at simulation start (1980) or the used steady-state. The simplified
boxplot (a) shows the arithmetic model mean as a colored dot and the median as a black line. Whiskers indicate
the 25" and 75" percentiles, respectively. The global map (b) shows the arithmetic mean of the model ensemble.

Models shown are not yet driven by the same meteorological forcing (see also table Al).

Similarly, the global arithmetic mean groundwater recharge (not weighted by cell area) differs by 332 mm/y
between models (150 mm/y excluding V2KARST since it calculates recharge in karst regions only) (Fig. 2a). This
difference in recharge is more pronounced spatially (Fig. 2b) than differences in WTD shown before (Fig. 1b).
Especially in drier regions such as in the southern Africa, central Australia, and the northern latitudes show
coefficient of variation of 1 or greater (white areas). In extremely dry areas such as the east Sahara and southern
Australia, the model spread is close to 0 (dark green). While the agreement is higher in Europe and western South
America, the global map differs slightly from other recent publications (e.g., compared to Fig. 1b in Gnann et al.
(2023)). In light of other publications, highlighting model uncertainty in groundwater recharge (Reinecke et al.,
2021, Kumar et al., 2025) and the possible impacts of long-term aridity changes on groundwater recharge
(Berghuijs et al., 2024), an extended combined ensemble of the global water sector and the new Groundwater

sector could yield valuable insights.
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Figure 2: Global groundwater recharge (GWR) in 2001 or at steady-state (only VIC-wur). The simplified boxplot

(a) shows the arithmetic model mean as a colored dot and the median as a black line. Whiskers indicate the 25"
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and 75" percentiles, respectively. The global map (b) shows the coefficient of variation of the model ensemble

without V2KARST. Models shown are not yet driven by the same meteorological forcing (see also table Al).

We further calculated relative changes in groundwater recharge between 2001 and 2006 (Fig. 3) with an ensemble
of 7 models (CLM, CWatM, GGR, VIC-wur, V2KARST, WBM, and ParFlow). The ensemble includes two
models that only simulate specific regions (V2KARST: regions of karstifiable rock, ParFlow: Euro CORDEX
domain). This result shows a potential analysis that should be repeated within the new Groundwater sector.
Intentionally, we do not investigate model agreement on the sign of change or compare them with observed data.
The ensemble still highlights plausible regions of groundwater recharge changes, such as in Spain and Portugal,
which aligns with droughts in the investigated period (Paneque Salgado and Vargas Molina, 2015; Coll et al.,
2017; Trullenque-Blanco et al., 2024). Relative increases in groundwater recharge are mainly shown for arid
regions in the Sahara, the Middle East, Australia, and Mexico. However, it is likely that because we investigate

relative changes, this might be related to the already low recharge rates in these regions.

a)

b)

" Mean relative GWR change 2001 - 2006

-40% -20% 0 +20% +40%

Figure 3: Mean relative percentage change of yearly groundwater recharge between 2001 and 2006 for Europe

(a), and all continents except Antarctica (b). The ensemble consists of all models that provided data for the years
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2001 and 2006 (CLM, CWatM, GGR, VIC-wur, V2KARST, WBM, and ParFlow). V2KARST (only karst) and
ParFlow (only Euro CORDEX domain) were only accounted for in regions where data is available. Models shown

are not yet driven by the same meteorological forcing (see also table Al).

5 Groundwater as a linking sector in ISIMIP

ISIMIP encompasses a wide variety of sectors. Currently, 18 sectors are part of the impact assessment effort. The
Groundwater sector offers a new and unique opportunity to enhance cross-sectoral activities within ISIMIP, foster

interlinkages within ISIMIP, and thus deliver interdisciplinary assessments of climate change impacts.
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Figure 4: The Groundwater sector provides the potential for multiple interlinkages between different sectors
within ISIMIP. In the coming years, we will focus on links to three sectors (green and orange): Water (global),
Water (regional), and Water Quality. Other cross-sectoral linkages between non-Groundwater sectors (i.e.,

linkages between the outer circle) are not shown. Sectors that are currently under development or have not yet
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have data or outputs that could be shared or used for cross-sectoral assessments are shown in gray. Interactions
between sectors are annotated with example processes, key variables, or datasets that can be shared between

sectors.

Some links with other sectors within ISIMIP are more evident than others with regard to existing scientific
community overlaps or existing scientific questions (Fig. 4). The examples of variables and data that can be shared
among sectors shown in Fig. 4 provide a non-exhaustive description of current variables that the sectors already
describe in their protocols. Whether cross-sectoral assessments will utilize this available data is up to the modeling
teams that contribute to the sectors. For example, the new Groundwater sector will focus on large-scale
groundwater models, some of which are already part of global water models participating in the Global Water
Sector or using outputs (such as groundwater recharge) from the Global Water Sector (see also existing
groundwater variables in the global water sector Table A2). However, the Groundwater sector will also feature
non-global representations of groundwater. Thus, collaborating with the Regional Water sector could provide
opportunities to share outputs and pursue common assessments. For example, the outputs of the groundwater
model ensemble, such as water table depth variations or surface water groundwater interactions, could be used as
input for some regional models that consider groundwater only as a lumped groundwater storage. Conversely,
global and continental groundwater models can benefit from validated regional hydrological models, which may

provide valuable insights into local runoff generation processes and the impacts of water management.

Furthermore, the relevance of groundwater for water quality assessments is widely recognized (e.g., for
phosphorous transport from groundwater to surface water (Holman et al., 2008), or for salinization (Kretschmer
et al., 2025), or as a link between warming groundwater and stream temperatures (Benz et al., 2024). And the
community effort of Friends of Groundwater called for a global assessment of groundwater quality (Misstear et
al., 2021). The Water Quality sector could incorporate model outputs from the Groundwater sector as input to
improve, for example, their estimates of groundwater contributions to surface water quantity or leakage of surface
water to groundwater. On the other hand, the Groundwater sector can utilize estimates of the Water Quality sector
to better assess water availability by incorporating water quality criteria. Ultimately, this may also result in
advanced groundwater models in the Groundwater sector that account for quality-related processes directly, which
can then be integrated into a future modeling protocol. One of the models (G*M; see Table 1) is already capable

of simulating salinization processes.

Leveraging such connections between sectors will provide valuable insights beyond groundwater itself. The
outputs and models that can be used for intersectoral assessments depend on the research question and may
necessitate the use of only a subset of models from an ensemble. Specifically, considering groundwater quality, a
collaboration between both sectors could be achieved in multiple aspects. Integrating groundwater availability
with water quality helps ensure sufficient and safe drinking and irrigation water. Focusing on aquifer storage
levels and pollutant loads can help maintain groundwater resilience, safeguard food security, and protect public
health under changing climate and socioeconomic conditions. Further, integrating groundwater quantity data with
pollution source mapping helps prioritize remediation efforts where aquifers are most vulnerable, ensuring both
water availability and quality. Concerning observational data, a unified approach to collecting and developing
shared databases for groundwater levels and water quality measurements across multiple agencies reduces

bureaucratic hurdles and ensures consistent, comparable data. Using standardized procedures for dealing with
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observational uncertainties, such as data gaps, scaling issues, and measurement inconsistencies, would support

collaborative research further.

Research opportunities arise in other sectors as well. Groundwater is connected to the water cycle and social,
economic, and ecological systems (Huggins et al., 2023). For example, health impacts (such as water- and vector-
borne diseases) are closely related to water quantity and quality (e.g. Smith et al. (2024)), and the roles of
groundwater for forest resilience (regional forest sector, (Costa et al., 2023; Esteban et al., 2021)) and forest fires
(fire sector) under climate change are yet to be explored (Fig. 4). To prioritize our efforts and set a research agenda
for the groundwater ISIMIP sector, we will first focus on existing and more straightforward connections to the
global water sector, regional water sector, and the water quality sector and then expand to collaboration with other

sectors (Fig. 4).

6 A vision for the ISIMIP groundwater sector

Given groundwater's importance in the Earth system and for society, it is imperative to expand our knowledge of
groundwater and (1) how it is impacted by climate change and other human forcings and (2) how, in turn, this
will affect other systems connected to groundwater. This enhanced understanding is essential to equip us with the
knowledge needed to address future challenges effectively. The ISIMIP Groundwater sector serves as a foundation
for examining and measuring the effects of global change on groundwater systems worldwide. It facilitates cross-
sector investigations, such as those concerning water quality, examines the influence of various model structures
on groundwater dynamics simulations, and supports the collaborative creation of new datasets for model

parameterization and assessment.

Already in the short term, the creation of the Groundwater sector has substantial potential to enhance large-scale
groundwater research by developing better modeling frameworks for reproducible research (running the multitude
of experiments targeted in ISIMIP requires an automated modeling pipeline) and forge a community that can
critically examine current modeling practices. The simple model comparison presented raises initial questions as
to why models differ and invites us to explore model differences in greater depth. Such model intercomparison
studies will enable us to quantify uncertainties and identify hotspots for model improvement. They will also allow
us to assess the impact of climate and land use change on various groundwater-related variables, such as
groundwater recharge and water table depth, and enable ensemble-based impact assessments of future water
availability. Model intercomparison and validation may also help identify models that perform better in specific
regions or for specific output variables, thus allowing the provision of region- or variable-specific

recommendations and uncertainty assessments to subsequent data users.

In the long term, the sector will enable us to jointly reflect on processes that we currently do not model or that
require improvement, possibly also through new modeling approaches such as hybrid machine-learning models
tailored to the large-scale representation of groundwater. These model developments will be incorporated into the
groundwater sector’s contributions to upcoming ISIMIP simulation rounds, such as ISIMIP4, which is scheduled
to commence in 2026. Since groundwater is connected to many socio-ecological systems, groundwater models

could also emerge as a modular coupling tool that can be integrated into multiple sectors. The newly established
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groundwater sector already provides a first step in that direction by standardizing output names and units. If
models are modular enough and define a standardized Application Programming Interface (API), they could also

serve as a valuable tool for other science communities.

The lack of a community-wide coordinated effort to simulate the effects of climate change on groundwater at
regional to global scale has precluded the comprehensive consideration of climate change impacts on groundwater
in policy relevant reports, such as the European Climate risk assessment (EUCRA, 2024) or the Assessment
Reports developed by the Intergovernmental Panel on Climate Change (IPCC) (e.g. Lee, 2024). The anticipated
groundwater sector contributions to ISIMIP3 and ISIMIP4, as described here, will address this gap by serving as
scientific evidence in the second EUCRA round and the upcoming IPCC seventh assessment cycle. As such, the
anticipated outcomes of the new sector will pave the way for groundwater simulations to play an increasingly

important role in international climate mitigation and adaptation policy.

In summary, the ISIMIP Groundwater sector aims to enhance our understanding of the impacts of climate change
and direct human impacts on groundwater and a range of related sectors. To realize this goal, the new ISIMIP
Groundwater sector will address numerous challenges. For instance, core simulated variables, such as water table
depth and recharge, are highly uncertain and difficult to compare with observations. Further, tracing down
explanations for inter-model differences will require the joint development and application of new evaluation
methods (Eyring et al., 2016b) and protocols. Currently, models of the Groundwater sector operate at different
spatial resolutions, and compared to other sectors, they often run at relatively high spatial resolutions, which will
need to be addressed in evaluation and analysis approaches. Furthermore, depending on the model, executing
single-model simulations already requires substantial amounts of computation time, and running all impact
scenarios may be infeasible for some modeling groups. Lastly, running simulations for ISIMIP requires not only
computational resources but also human resources, which might not be feasible for all groups. This has always
been the case with ISIMIP, and it is an issue that other sectors have faced as well. Still, we are confident that the
groundwater sector will enhance our understanding of groundwater within the Earth system and help to promote
dialogue and synthesis in the research community. With its various connections to other sectors, the Groundwater
sector can be a catalyst for developing new holistic cross-sector modelling efforts that account for the multitude

of interconnections between the water cycle and social, economic, and ecological systems.
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Appendix

Table Al: Original publications that describe the model outputs used in section 4.

Model

Simulation setup and used forcings

Reference

G*M

Steady-state model of WTD on 5 arcmin without
any groundwater pumping, forced with
WaterGAP 2.2d (Miiller Schmied et al., 2021)

groundwater recharge mean between 1901-2001.

Reinecke et al. (2019)

V2KARST

Global karst recharge model at 15 arcmin, forced
with the MSWEP V2 (Beck et al., 2019)
precipitation and GLDAS (Li et al., 2018) air
temperature, shortwave and longwave radiation,
specific humidity and wind speed for the period
of 1990-2020

Sarrazin et al. (2018)

GGR

Global groundwater rain-fed recharge model, A
grid-based three-layer water balance model to
estimate the daily global rain-fed groundwater

recharge (2001-2020)

Nazari et al. (2025)

WBM

Time series simulation from 1980 to 2019 at 15
arc minutes, using the MERIT digital flow
direction dataset (Yamazaki et al., 2019)
including domestic, industrial, livestock, and
irrigation water withdrawals. Forcings and key
inputs: Climate: ERAS (Prusevich et al., 2024),
Reservoirs: GRanD v1.1 (Lehner et al., 2011),
Inter-basin transfers (Lammers, 2022), Glaciers
(Rounce et al, 2022), Impervious surfaces
(Hansen and Toftemann Thomsen, 2020),
Population density (Lloyd et al., 2019), Domestic
and industrial water per capita demand: FAO
AQUASTAT, Livestock density and water
demand (Gilbert et al., 2018), Cropland: LUH2
(Hurtt et al., 2020), Aquifer properties (de Graaf
et al., 2017) aquifer depth gap-filled with terrain
slope data from Yamazaki et al. 2019, Soil
available water capacity: FAO soil map, Root

depth (Yang et al., 2016)

Multiple, see left column.
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VIC-wur

Global Hydrological model simulating the GWR
and streamflow from 1970-2014 in natural
condition.

The mean GWR and streamflow were used to
simulate the GWT in steady-state MODFLOW
model in 5 arcmin.

The model is forced by: GFDL-ESM4 climate
model (Dunne et al., 2020), Aquifer properties (de
Graaf et al., 2017).

Droppers et al. (2020)

CLM

The model was spun up for 1979 and
subsequently simulated from 1979 to 2013 using
the GSWPv3 atmospheric forcing dataset at a 0.1-
degree resolution. Recharge, capillary rise,
drainage, irrigation pumping and -cell-to-cell

lateral flow were simulated within the model.

Akhter et al. (2024) (under review
in WRR)

ParFlow

The data provided here are based on Naz et al.
(2023). In version 2 of the data, we provide
variables including water table depth and
groundwater recharge for time period of 1997-

2006 at monthly time scale.

Naz et al. (2023)

CWatM

Community Water Model at 5 arcmin. Climate
forcing with chelsa-W5E5v1.0 (5 arcmin) for
temperature (average, maximum, minimum),
precipitation, and shortwave radiation, and
GSWP3-WS5ES5 (30 arcmin spline downscaled to
5 arcmin) for longwave radiation, wind speed, and
specific humidity. Updates to Burek et al. (2020)
include river network based on MERIT Hydro
and upscaling with Eilander et al. (2021).

Burek et al. (2020)
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Table A2: List of groundwater related output variables in the ISIMIP3a global water sector

(https://protocol.isimip.org/#/ISIMIP3a/water_global). The unit of all variables is kg m™ s, the spatial

resolution is 0.5° grid and the temporal resolution is monthly.

Groundwater-related output variable

of the Global Water Sector

Groundwater runoff

Total groundwater recharge

Focused/localised groundwater

recharge

Potential irrigation water withdrawal
(assuming unlimited water supply)

from groundwater resources

Actual irrigation water withdrawal

from groundwater resources

Potential Irrigation Water Consumption

from groundwater resources

Actual Irrigation Water Consumption

from groundwater resources

Potential Domestic Water Withdrawal

from groundwater resources

Actual Domestic Water Withdrawal

from groundwater resources

Potential Domestic Water Consumption

from groundwater resources

Description

Water that leaves the groundwater layer. In case seepage is
simulated but no groundwater layer is present, report seepage as

Total groundwater recharge and Groundwater Runoff.

For models that consider both diffuse and focused/localised
recharge this should be the sum of both; other models should
submit the groundwater recharge component that the model
simulates. See also the descriptions in Focused/localised

groundwater recharge and Diffuse groundwater recharge.

Water that directly flows from a surface water body into the
groundwater layer below. Only submit if the model separates

focused/localised recharge from diffuse recharge.

Part of Potential Industrial Water Withdrawal that is extracted

from groundwater resources.

Part of Actual Irrigation Water Withdrawal that is extracted from

groundwater resources.

Part of Potential Irrigation Water Consumption that is extracted

from groundwater resources.

Part of Actual Irrigation Water Consumption that is extracted from

groundwater resources.

Part of Potential Domestic Water Withdrawal that is extracted from

groundwater resources.
Part of Actual Domestic Water Withdrawal that is extracted from
groundwater resources

Part of Potential Domestic Water Consumption that is extracted

from groundwater resources.

21



Actual Domestic Water Consumption

from groundwater resources

Potential Manufacturing Water
Withdrawal from groundwater

resources

Actual Manufacturing Water
Withdrawal from groundwater

resources

Potential manufacturing Water
Consumption from groundwater

resources

Actual Manufacturing Water
Consumption from groundwater

resources

Potential electricity Water Withdrawal

from groundwater resources

Actual Electricity Water Withdrawal

from groundwater resources

Potential electricity Water
Consumption from groundwater

resources

Actual Electricity Water Consumption

from groundwater resources

Potential Industrial Water Withdrawal

from groundwater resources

Actual Industrial Water Withdrawal

from groundwater resources

Part of Actual Domestic Water Consumption that is extracted from

groundwater resources.

Part of Potential Manufacturing Water Withdrawal that is extracted

from groundwater resources.

Part of Actual Manufacturing Water Withdrawal that is extracted

from groundwater resources.

Part of Potential manufacturing Water Consumption that is

extracted from groundwater resources.

Part of Actual Manufacturing Water Consumption that is extracted

from groundwater resources.

Part of Potential electricity Water Withdrawal that is extracted

from groundwater resources.

Part of Actual Electricity Water Withdrawal that is extracted from

groundwater resources.

Part of Potential electricity Water Consumption that is extracted

from groundwater resources.

Part of Actual Electricity Water Consumption that is extracted from

groundwater resources.

Part of Potential Industrial Water Withdrawal that is extracted

from groundwater resources.

Part of Actual Industrial Water Withdrawal that is extracted from

groundwater resources.
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Potential Industrial Water Consumption

Part of Potential Industrial Water Consumption that is extracted
from groundwater resources

from groundwater resources.

Actual Industrial Water Consumption

Part of Actual Industrial Water Consumption that is extracted from
from groundwater resources

groundwater resources.

Potential livestock Water Withdrawal

Part of Potential livestock Water Withdrawal that is extracted from
from groundwater resources

groundwater resources.

Actual Livestock Water Withdrawal

Part of Actual Livestock Water Withdrawal that is extracted from
from groundwater resources

groundwater resources.

Potential livestock Water Consumption

Part of Potential livestock Water Consumption that is extracted
from groundwater resources

from groundwater resources.

Actual livestock Water Consumption

Part of Actual livestock Water Consumption that is extracted from
from groundwater resources

groundwater resources.

Total Potential Water Withdrawal (all

Part of Total Potential Water Withdrawal that is extracted from
sectors) from groundwater resources

groundwater resources.

Total Actual Water Withdrawal (all

Part of Total Actual Water Withdrawal that is extracted from
sectors) from groundwater resources

groundwater resources.
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