

1 The ISIMIP Groundwater Sector: A Framework for Ensemble

2 Modeling of Global Change Impacts on Groundwater

3 Robert Reinecke¹, Tanjila Akhter², Annemarie Bäthge¹, Ricarda Dietrich¹, Sebastian Gnann³, Simon N. Gosling⁴,
4 Danielle Grogan⁵, Andreas Hartmann⁶, Stefan Kollet⁷, Rohini Kumar⁸, Richard Lammers⁵, Sida Liu⁹, Yan Liu⁷,
5 Nils Moosdorf^{10,11}, Bibi Naz⁷, Sara Nazari¹⁰, Chibuike Orazulike⁶, Yadu Pokhrel², Jacob Schewe¹², Mikhail
6 Smilovic^{13,14}, Maryna Strokal⁸, Wim Thiery¹⁵, Yoshihide Wada¹⁶, Shan Zuidema⁴, Inge de Graaf⁸

7 *Correspondence to:* Robert Reinecke (reinecke@uni-mainz.de)

8 ¹Institute of Geography, Johannes Gutenberg-University, Mainz, Mainz, Germany

9 ²Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA

10 ³Chair of Hydrology, University of Freiburg, Freiburg, Germany

11 ⁴School of Geography, University of Nottingham, Nottingham, United Kingdom

12 ⁵Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire, USA

13 ⁶Institute of Groundwater Management, TU Dresden, Dresden, Germany

14 ⁷Agrosphere (IBG-3), Institute for Bio- and Geosciences, Research Centre Juelich, Juelich, Germany

15 ⁸Department Computational Hydrosystems, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig

16 ⁹Earth Systems and Global Change Group, Wageningen University and Research, Wageningen, the Netherlands

17 ¹⁰Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany

18 ¹¹Institute of Geosciences, Kiel University, Kiel, Germany

19 ¹²Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany

20 ¹³Water Security Research Group, International Institute for Applied Systems Analysis, Laxenburg, Austria

21 ¹⁴Chair of Hydrology and Water Resources, ETH Zurich, Zürich, Switzerland

22 ¹⁵Vrije Universiteit Brussel, Department of Water and Climate, Brussels, Belgium

23 ¹⁶Biological and Environmental Science and Engineering Division, King Abdullah University of Science and
24 Technology, Thuwal, Saudi Arabia

25

26

27 **Abstract**

28 Groundwater serves as a crucial freshwater resource for people and ecosystems, playing a vital role in adapting to
29 climate change. Yet, its availability and dynamics are affected by climate variations, changes in land use, and
30 excessive extraction. Despite its importance, our understanding of how global change will influence groundwater
31 in the future remains limited. Multi-model ensembles are powerful tools for impact assessments; compared to
32 single-model studies, they provide a more comprehensive understanding of uncertainties and enhance the
33 robustness of projections by capturing a range of possible outcomes. However, to date, no ensemble of
34 groundwater models has been available. Here, we present the new Groundwater sector within ISIMIP, which
35 combines multiple global, continental, and regional-scale groundwater models. We describe the rationale for the
36 sector, present the sectoral output variables, and show the initial results of a model comparison. We further outline
37 the synergies with other existing ISIMIP sectors, such as the global water sector and the water quality sector.

38 Currently, eight models are participating in this sector, ranging from gradient-based groundwater models to
39 specialized karst recharge models, each producing up to 19 out of 23 modeling protocol-defined output variables.
40 Utilizing available model outputs for a subset of participating models, we find that the arithmetic mean global
41 water table depth varies substantially between models (6 - 127 m) and shows a shallower water table compared to
42 other recent studies. Groundwater recharge also differs greatly in the global mean (78 - 228 mm/y), which is
43 consistent with recent studies on the uncertainty of groundwater recharge, but with different spatial patterns.
44 Groundwater recharge changes between 2001 and 2006 show plausible patterns that align with droughts in Spain
45 and Portugal during this period. The simplified comparison highlights the value of a structured model
46 intercomparison project, which will help to better understand the impacts of climate change on the world's largest
47 accessible freshwater store – groundwater.

48

49

50 **1 Introduction**

51 Groundwater is the world's largest accessible freshwater resource, vital for human and environmental well-being
52 (Huggins et al., 2023; Scanlon et al., 2023), serving as a critical buffer against water scarcity and surface water
53 pollution (Foster and Chilton, 2003; Schwartz and Ibaraki, 2011). It supports irrigated agriculture, which supports
54 17% of global cropland and 40% of food production (Döll and Siebert, 2002; Perez et al., 2024; United Nations,
55 2022; Rodella et al., 2023). However, unsustainable extraction in many regions has led to declining groundwater
56 levels, the drying of rivers, lakes and wells, land subsidence, seawater intrusion, and aquifer depletion (e.g.,
57 Bierkens and Wada (2019); de Graaf et al. (2019); Rodell et al. (2009)).

58 The pressure on groundwater systems intensifies due to the combined effects of population growth, socioeconomic
59 development, agricultural intensification, and climate change, e.g., through a change in groundwater recharge
60 (Taylor et al., 2013; Reinecke et al., 2021). Rising temperatures and altered precipitation patterns are already
61 reshaping water availability and demand, with significant implications for groundwater use. For instance,
62 changing aridity is expected to influence groundwater recharge rates (Berghuijs et al., 2024), yet the consequences
63 for groundwater level dynamics remain limited (Moeck et al., 2024; Cuthbert et al., 2019). It is further unclear
64 how these shifts will affect groundwater's role in sustaining ecosystems, agriculture, and human water supplies.

65 Understanding the impacts of climate change and the globalized economy on groundwater systems requires a
66 large-scale perspective (Haqqi et al., 2023; Konar et al., 2013; Dalin et al., 2017). While groundwater
67 management is traditionally conducted at local or regional scales, aquifers often span administrative boundaries,
68 and overextraction in one area can have far-reaching effects not captured by a local model. Moreover, groundwater
69 plays a critical role in the global hydrological cycle, influencing surface energy distribution, soil moisture, and
70 evapotranspiration through processes such as capillary rise (Condon and Maxwell, 2019; Maxwell et al., 2016)
71 and supplying surface waters with baseflow (Winter, 2007; Xie et al., 2024). These interactions underscore the
72 importance of groundwater in buffering climate dynamics over extended temporal and spatial scales (Keune et
73 al., 2018) and underscore the need for a global perspective of the water-climate cycle. While large-scale climate-
74 groundwater interactions are starting to become understood (Cuthbert et al., 2019), current global water and
75 climate models may not always capture these feedbacks as most either do not consider groundwater at all or only

76 include a simplified storage bucket, limiting our understanding of how climate change will affect the water cycle
77 as a whole.

78 The inclusion of groundwater dynamics in global hydrological models remains a considerable challenge due to
79 data limitations and computational demands (Gleeson et al., 2021). Simplified representations, e.g., linear
80 reservoir (Telteu et al., 2021), often fail to capture the complexity of groundwater-surface water interactions,
81 lateral flows at local or regional scales, or the feedback between groundwater pumping and streamflow (de Graaf
82 et al., 2017; Reinecke et al., 2019). These processes are crucial for evaluating water availability, particularly in
83 regions heavily dependent on groundwater. For instance, lateral flows sustain downstream river baseflows and
84 groundwater availability, which, in turn, impact water quality and ecological health (Schaller and Fan, 2009; Liu
85 et al., 2020). Not including head dynamics may lead to overestimation of groundwater depletion (Bierkens and
86 Wada, 2019). Multiple continental to global-scale groundwater models have been developed in recent years to
87 represent these critical processes (for an overview, see also Condon et al. (2021) and Gleeson et al. (2021)).

88 While current model ensembles of global water assessments have not yet incorporated gradient-based
89 groundwater processes, they have already significantly advanced our understanding of the large-scale
90 groundwater system. The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), analogous to the
91 Coupled Model Intercomparison Project (CMIP) for climate models (Eyring et al., 2016a), is a well-established
92 community project to carry out model ensemble experiments for climate impact assessments (Frieler et al., 2017;
93 2024; 2025). The current generation of models in the Global Water Sector of ISIMIP often represents groundwater
94 as a simplified storage that receives recharge, releases baseflow, and can be pumped (Telteu et al., 2021). Still, it
95 lacks lateral connectivity and head-based surface-groundwater fluxes. Nevertheless, the ISIMIP water sector
96 provided important insights on, for example, future changes and hotspots in global terrestrial water storage
97 (Pokhrel et al., 2021), environmental flows (Thompson et al., 2021), the planetary boundary for freshwater change
98 (Porkka et al., 2024), uncertainties in the calculation of groundwater recharge (Reinecke et al., 2021), and the
99 development of methodological frameworks to compare model ensembles (Gnann et al., 2023).

100 Here, we present a new sector in ISIMIP called the ISIMIP Groundwater Sector, which integrates models of the
101 groundwater community that operate at regional (at least multiple km² (Gleeson and Paszkowski, 2014)) to global
102 scales and are committed to providing model simulations to this new sector. The Groundwater sector aims to
103 provide a comprehensive understanding of the current state of groundwater representation in large-scale models,
104 identify groundwater-related uncertainties, enhance the robustness of predictions regarding the impact of global
105 change on groundwater and connected systems through model ensembles, and provide insight into how to most
106 reliably and efficiently model groundwater on regional to global scales. The new Groundwater sector is a separate
107 but complementary sector to the existing Global Water sector. To our knowledge, there are currently no long-term
108 community efforts for a structured model intercomparison project for groundwater models. While studies have
109 benchmarked different modeling approaches (e.g., Maxwell et al. 2014), compared model outputs (Reinecke et
110 al., 2021; 2024), or collected information on where and how we model groundwater (Telteu et al., 2021; Zipper
111 et al., 2023; Zamrsky et al., 2025), no effort yet aims at forcing different groundwater models with the same
112 climate and human forcings for different scenarios.

113 Specifically, the ISIMIP Groundwater sector will compile a model ensemble that enables us to assess the impact
114 of global change on various groundwater-related variables and quantify model and scenario-related uncertainties.
115 These insights can then be used to quantify the impacts of global change on, for example, water availability and
116 in relation to other sectors impacted by changes in groundwater. The ISIMIP Groundwater sector has natural
117 linkages with other ISIMIP sectors, such as Global Water, Water Quality, Regional Water, and Agriculture. This
118 paper will highlight the connections between groundwater and different ISIMIP sectors, providing an opportunity
119 to enhance our understanding of how modeling choices affect groundwater simulation dynamics.

120

121 **2 The ISIMIP framework**

122 ISIMIP aims to provide a framework for consistent climate impact data across sectors and scales. It facilitates
123 model evaluation and improvement, enables climate change impact assessments across sectors, and provides
124 robust projections of climate change impacts under different socioeconomic scenarios. ISIMIP uses a subset of
125 bias-adjusted climate models from the CMIP6 ensemble. The subset is selected to represent the broader CMIP6
126 ensemble while maintaining computational feasibility for impact studies (Lange, 2021).

127 ISIMIP has undergone multiple phases, with the current phase being ISIMIP3. The simulation rounds consist of
128 two main components: ISIMIP3a and ISIMIP3b, each serving distinct purposes. ISIMIP3a focuses on model
129 evaluation and the attribution of observed climate impacts, covering the historical period up to 2021. It utilizes
130 observational climate and socioeconomic data and includes a counterfactual "no climate change baseline" using
131 detrended climate data for impact attribution. Additionally, ISIMIP3a includes sensitivity experiments with high-
132 resolution historical climate forcing. In contrast, ISIMIP3b aims to quantify climate-related risks under various
133 future scenarios, covering pre-industrial, historical, and future projections. ISIMIP3b is divided into three groups:
134 Group I for pre-industrial and historical periods, Group II for future projections with fixed 2015 direct human
135 forcing, and Group III for future projections with changing socioeconomic conditions and representation of
136 adaptation. Despite their differences in focus, time periods, and data sources, both ISIMIP3a and ISIMIP3b require
137 the use of the same impact model version to ensure consistent interpretation of output data, thereby contributing
138 to ISIMIP's overall goal of providing a framework for consistent climate impact data across sectors and scales.

139 The creation of a new ISIMIP Groundwater sector is not linked to any funding and is a community-driven effort
140 that includes all modeling groups that wish to participate. During the creation process, multiple groups and
141 institutions were contacted to participate, and additional modeling groups are welcome to join the sector in the
142 future. Models participating in the sectors do not need to be able to model all variables and scenarios defined in
143 the protocol. ISIMIP sectors can be linked to broader thematic concepts, such as Agriculture, or can focus on
144 specific components of the Earth system, such as Lakes or Groundwater (see also
145 <https://www.isimip.org/about/#sectors-and-contacts>). The separation into these sectors is driven by the
146 availability of models that can be integrated into a model-intercomparison framework, which is based on the same
147 climatic and human forcings and produces a set of comparable output variables. We would like to note that
148 groundwater is not an isolated system, but rather part of the water cycle and the Earth system as a whole. Focusing
149 on it within a dedicated sector aligns well with the existing models and is useful for studying groundwater systems
150 in a thematically focused way. Collaboration (and perhaps integration) with sectors like the Global Water sector

151 is possible and desirable in the future. We discuss possible future synergies with other existing ISIMIP sectors in
152 Section 5.

153 In the short term, the Groundwater sector will focus on the historical period from 1901 to 2019 in ISIMIP3a
154 (https://protocol.isimip.org/#/ISIMIP3a/water_global/groundwater), utilizing climate-related forcing based on
155 observational data (obsclim) and the direct human forcing based on historical data (histsoc). We aim to use these
156 simulations for an in-depth model comparison, including a comparison to observational data such as time series
157 of groundwater table depth (e.g., Jasechko et al., 2024) and by utilizing so-called functional relationships
158 (Reinecke et al., 2024; Gnann et al., 2023). Functional relationships can be defined as covariations of variables
159 across space and/or time, and they are a key aspect of our theoretical knowledge of Earth's functioning. Examples
160 include relationships between precipitation and groundwater recharge (Gnann et al. 2023; Berghuijs et al. 2024)
161 or between topographic slope and water table depth (Reinecke et al., 2024).

162 This will yield a new understanding of how these models differ, what the reasons for these differences are, and
163 how they could be improved. In addition, it will provide a basis for implementing impact analyses with ensemble
164 runs based on future scenarios using ISIMIP3b inputs.

165

166 **3 The current generation of groundwater models in the sector**

167 Many large-scale groundwater models are already participating in the sector (Table 1), and we expect it to expand
168 further. The current models are mainly global-scale, with some having a particular regional focus, and primarily
169 using daily timesteps.

170 While the primary modeling purpose of most models is to simulate parts of the terrestrial water cycle, they all
171 focus on different aspects (such as karst recharge or seawater intrusion), most investigate interactions between
172 groundwater and land surface processes, and account for human water uses. Two models (V2KARST and GGR)
173 have distinct purposes in modeling groundwater recharge and do not model any head-based groundwater fluxes.
174 Conceptually, the models may be classified according to Condon et al. (2021) into five categories: lumped models
175 with static groundwater configurations of long-term mass balance (a), saturated groundwater flow with recharge,
176 and surface water exchange fluxes as upper boundary conditions without lateral fluxes (b), quasi 3D models with
177 variably saturated flow in the soil column and a dynamic water table as a lower boundary condition (c), saturated
178 flow models solving mainly the Darcy equation (d), and variably saturated flow which is calculated as three-
179 dimensional flow throughout the entire subsurface below and above the water table (e). See Condon et al. (2021)
180 and also Gleeson et al. (2021) for a more detailed overview and discussion of approaches. Half of the models
181 (Table 1) simulate a saturated subsurface flux (d), while V2KARST and GGR mainly use a 1D vertical approach
182 (b), and others simulate a combination of multiple approaches (ParFlow, Table 1) or can switch between different
183 approaches (CWatM, Table 1).

184 The sector protocol is defined at <https://protocol.isimip.org/#/ISIMIP3a/groundwater> and will be updated over
185 time. We have defined multiple joint outputs for this sector (23 variables in total), but not all models can yet
186 provide all outputs (Table 2). Models can provide 1-19 outputs (11 on average), and multiple models have
187 additional outputs that are currently under development. The global water sector also contains groundwater-related

188 variables (Table A2), enabling groundwater-related analysis. We list them here to show their close connection to
189 the global water sector and facilitate an overview of future groundwater-related studies.

190 The current sector protocol defines a targeted spatial resolution of 5 arcmin, as this represents not only the
191 resolution achievable by most global models but also the coarsest resolution at which meaningful representation
192 of groundwater dynamics, particularly lateral groundwater flows and water table depths, can still be captured
193 (Gleeson et al., 2021). ISIMIP3 also specifies experiments with different spatial resolutions, but whether this is
194 achievable with a sub-ensemble of the presented models remains unclear, as it depends on the available
195 computational time, flexibility of model setups, and data availability. To ensure consistency and comparability,
196 the model outputs are currently post-processed by the modeling groups to aggregate their outputs to the protocol-
197 specified spatial and temporal resolutions.

198 **Table 1:** Summary of all models participating in the ISIMIP Groundwater sector. This table lists only models that
199 add new variables to the ISIMIP protocol. Models already part of the global water sector and providing other
200 groundwater-related variables are not listed here. (GMD discussion formatting requires a portrait instead of a
201 landscape table)

Model name	Main model purpose	Coupling with other models	Spatial domain and resolution	Temporal resolution	Hydrogeological configuration, e.g. number of layers	Conceptual model according to Condon et al.	Calibrated	Representation of groundwater use	Main Reference
Water Balance Model (WBM)	Representation of the terrestrial hydrological cycle, including human interaction s.	-	Global and regional. Spatial resolution defined by the input river network.	Sub-daily, Daily, Multi-day	1 soil layer, 2 groundwater layers	d.	Globally: no, regional: yes (NE, US)	Through calculated abstractio ns from groundwat er methods based on de Graaf et al. (2015); de Graaf et al. (2017).	Grogan et al. (2022) With groundwat er methods based on de Graaf et al. (2015); de Graaf et al. (2017).
Community Land Model (CLM)	To simulate surface and sub-surface hydrological processes, including crop growth, irrigation,	Community Earth System Model (CESM)	Global and regional (0.05 (regional), 0.1, 0.25, and 0.5 degree (global))	Sub-Daily	20 soil layers extending up to 8.5 m; 1 aquifer layer, unconfined	c.	No	Yes	Felfelani et al. (2021) Lawrence et al. (2019)

	and groundwat er withdrawa l.								
Community Water Model (CWatM)	To reproduce main hydrologic processes, including water management on regional to global scales.	MODFLOW W (optional)	Global, regional, subbasin (30 arcsecond s, 1 km, 1 arc-min, 5 arc-min, 30 arc-min)	Daily	Standard: 1 with MODFLOW W: variable	Standard: a./b. With MODFLOW W: d.	Globally: yes (with discharge), regional: tailored	Yes	Guillaumont et al. (2022); Burek et al. (2020)
Global Gradient-based Groundwater Model (G ³ M)	Understanding of surface water, coastal, and ecosystem interaction with groundwater.	WaterGA P (Müller Schmied et al., 2016)	Global (5 arc minutes)	Daily, monthly, or yearly	2 layers, second layer with a reduced hydraulic conductivity	d.	No	Through calculated net abstractions from groundwater of WaterGA P	Reinecke et al. (2019); Kretschmer et al. (2025)
VIC-WUR-MODFLOW (VIC-wur)	Grid-based macro-scale hydrological model that solves both the surface energy balance and water balance equations.	WOFOST (WOrld FOod STudies) (Droppers et al 2021)	Regionally and globally: 5 arcminute	Sub-daily to monthly	3 soil layers (variable thickness), 2 groundwater layers (variable thickness, confined/unconfined systems)	d.	Globally: no, regional: yes	Through calculated demands and allocation to surface water/groundwater.	Liu et al in prep.; Droppers et al. 2020.; Liang et al. (1994)

V2KART	A grid-based vegetation –recharge model for the global karst areas.	-	Globally: 0.25 arc degree	Daily	three soil layers and one epikarst layer	b.	Yes, based on global karst landscapes	no	Sarrazin et al. (2018)
Global Groundwater Rain-fed Recharge (GGR)	A grid-based three-layer water balance model to estimate the daily global rain-fed groundwater recharge	-	180.0°W to 180.0°E longitudes and 60.0°N to 60.0°S latitudes, 0.1 degree	Daily	2 soil layers and 1 groundwater layer of variable thickness	b.	No	No	Nazari et al. (2025)
ParFlow	3D continuum simulation s of variably saturated groundwater and land surface processes.	Common Land Model, CLM (Maxwell and Miller, 2005; Kollet and Maxwell, 2008), Terrestrial Systems Modeling Platform (Gasper et al., 2014), WRF (Maxwell et al., 2011)	Regionally and globally, $10^0 - 10^1 \text{ km}$	Variable	Variable	a. - e.	Yes, in engineering applications	Yes	Kuffour et al. (2020)

202

203

204

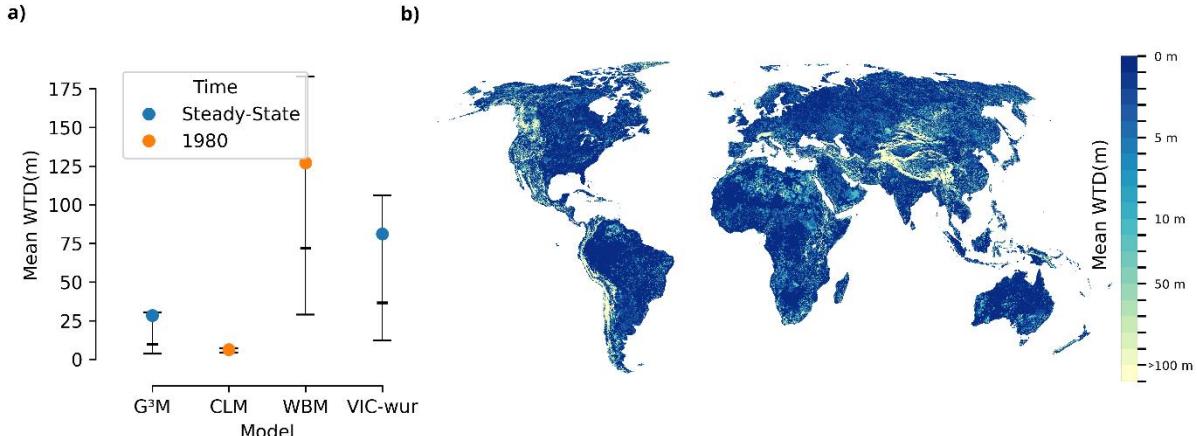
205
206
207
208

Table 2: List of output variables in the ISIMIP3a Groundwater sector. The spatial resolution is five arcminutes (even if some models simulate at a higher or coarser resolution), and the temporal resolution is monthly. Most models also simulate daily timesteps, but as most groundwater movement happens across longer time scales, we unified the unit to months. A “*” indicates that a model is able to produce the necessary output. A “+” indicates that this output is currently under development. (GMD discussion formatting requires a portrait instead of a landscape table)

Groundwater sector output variables		Unit	WBM	CLM	CWA&M	G&M	VIC-wur	V2KARST	GGR	ParFlow
Name	Description									
Capillary rise	Upward flux from groundwater to soil (leaving aquifer = negative value).	$\text{m}^3 \text{ m}^{-2} \text{ month}^{-1}$	*	*			*			*
Diffuse groundwater recharge	Downwards flux from soil to groundwater (entering aquifer = positive value). The unit $\text{kg m}^{-2} \text{ s}^{-1}$ is equal to mm s^{-1} . Unit is kept equal to the global water sector.	$\text{kg m}^{-2} \text{ s}^{-1}$	*	*	*		*	*	*	*
Groundwater abstractions	Groundwater pumped from the aquifer.	$\text{m}^3 \text{ m}^{-2} \text{ month}^{-1}$	*	*	*		+		+	
Groundwater abstractions (domestic)	<i>Groundwater abstractions</i> that are intended for domestic water use.	$\text{m}^3 \text{ m}^{-2} \text{ month}^{-1}$	*		*		+		+	
Groundwater abstractions (industries)	<i>Groundwater abstractions</i> that are intended for industrial water use.	$\text{m}^3 \text{ m}^{-2} \text{ month}^{-1}$	*		*		+		+	
Groundwater abstractions (irrigation)	<i>Groundwater abstractions</i> that are intended for irrigational water use.	$\text{m}^3 \text{ m}^{-2} \text{ month}^{-1}$	*	*	*		+		+	
Groundwater abstractions (livestock)	<i>Groundwater abstractions</i> that are intended for livestock water use.	$\text{m}^3 \text{ m}^{-2} \text{ month}^{-1}$	*		*		+		+	

Groundwater demands	Gross water demand	m3 m-2 month-1	*	*	*		+				
Groundwater depletion	Long-term losses from groundwater storage	m3 m-2 month-1	*	*		*	+				*
Groundwater drainage/surface water capture	Exchange flux between groundwater and surface water. Groundwater leaving the aquifer = negative value; entering the aquifer = positive value	m3 m-2 month-1	*	*	*	*	*				*
Groundwater drainage/surface water capture from lakes	Exchange flux between groundwater and surface water (lakes); if available, additional to the sum of exchange fluxes (Groundwater drainage/surface water capture) also separate components can be provided/ Leaving the aquifer = negative values; entering the aquifer = positive value.	m3 m-2 month-1				*	*				*
Groundwater drainage/surface water capture from rivers	Exchange flux between groundwater and surface water (rivers); if available, additional to the sum of exchange fluxes (Groundwater drainage/surface water capture) also separate components can be provided/ Leaving the aquifer = negative values; entering the aquifer = positive value.	m3 m-2 month-1	*			*	*				*
Groundwater drainage/surface water capture from springs	Exchange flux between groundwater and surface water (springs); if available, additional to the sum of exchange fluxes (Groundwater drainage/surface water capture) also separate components can be provided/ Leaving the aquifer = negative values; entering the aquifer = positive value.	m3 m-2 month-1				*	*				*
Groundwater drainage/surface water capture from wetlands	Exchange flux between groundwater and surface water (wetlands); if available, additional to the sum of exchange fluxes (Groundwater drainage/surface water capture) also separate components can be provided/ Leaving the aquifer = negative values; entering the aquifer = positive value.	m3 m-2 month-1				*	*				*

Groundwater return flow	Return flow of abstracted groundwater (not yet separated into different sources).	m3 m-2 month-1	*	*			.	.	.	*
Groundwater storage	Mean monthly water storage in groundwater layer in kg m ⁻² . The spatial resolution is 0.5° grid.	m3 m-2 month-1	*	*	*	*				*
Hydraulic head	Head above sea level in m. If more than one aquifer layer is simulated, report the heads on the top productive aquifer (confined or unconfined).	m	*		*	*				*
Lateral groundwater flux (front face)	Cell-by-cell flow (front)	m3 m-2 month-1	*	*	*	*				*
Lateral groundwater flux (right face)	Cell-by-cell flow (right)	m3 m-2 month-1	*	*	*	*				*
Lateral groundwater flux (net)	Net cell-by-cell flow	m3 m-2 month-1	*	*	*	*				*
Lateral groundwater flux (lower face)	Cell-by-cell flow (lower) when more than 1 groundwater layer is simulated.	m3 m-2 month-1	*		*	*				*
Submarine groundwater discharge	Flow of groundwater into oceans. The definition may vary by model. But in principle also models without density driven flow can submit this variable.	m3 m-2 month-1	*		*					*
Water table depth	Depth to the water table below land surface (digital elevation mode, DEM) in m.	m	*	*	*	*				*
Number of groundwater output variables in model	Counting only currently available		19	13	9	14	14	1	1	17

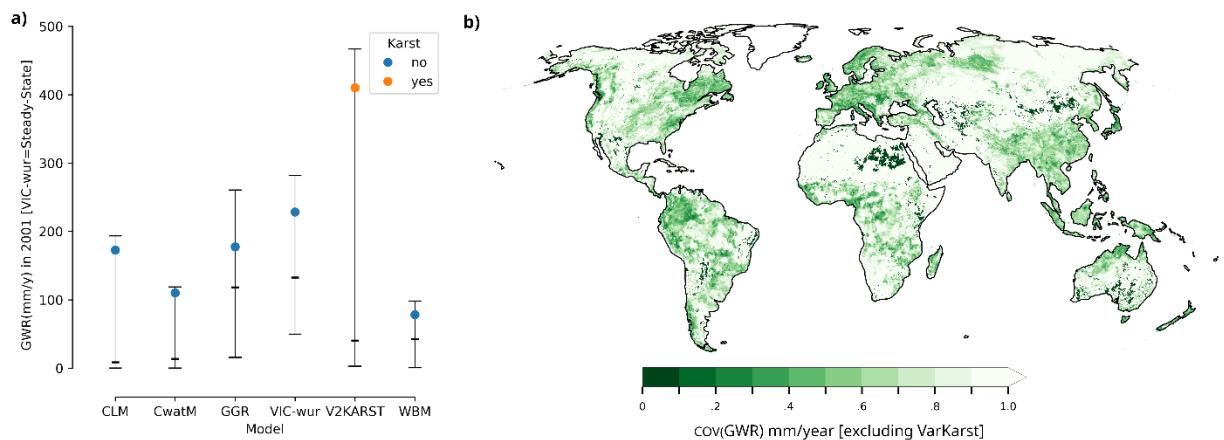

210

211 **4 Unstructured experiments point out model differences that should be explored further**

212 The ISIMIP groundwater sector is in an early development stage, and we hope that an ensemble of groundwater
213 models driven by the same meteorological data will be available soon. Yet, to provide first insights into the
214 models, their outputs, and how these can be compared, we collected existing outputs from the participating models
215 (see Table A1 for an overview). We opted for a straightforward initial comparison due to the various data formats,
216 model resolutions, and forcings that complicate a more thorough examination of a specific scientific inquiry. One
217 of our goals in the Groundwater sector is to conduct extensive analysis to better illustrate and understand the
218 model differences. The analysis presented here is intended solely as an introductory overview to provide a sense
219 of the rationale behind our initiative. Some overlap with recent model comparison studies naturally exists (e.g.,
220 Gnann et al., 2023; Reinecke et al., 2024, Reinecke et al. 2021); however, the presented analysis contains a
221 different ensemble of models and thus provides new insights. Hence, this descriptive analysis serves as an
222 introductory overview that highlights the present state of the art and identifies model discrepancies warranting
223 further investigation. In addition, relevant output data are not yet available for all models. We focused on the two
224 variables with the largest available ensemble: water table depth (G³M, CLM, WBM, and VIC-wur; Table 1) and
225 groundwater recharge (CLM, CWatM, GGR, VIC-wur, V2KARST, WBM; Table 1), only on historical periods
226 rather than future projections.

227 The arithmetic mean (not weighted by cell area) global water table depth varies substantially (6 m – 127 m)
228 between the models at the start of the simulation (1980 or steady-state) (Fig. 1a). On average, the water table of
229 G³M (28 m) and CLM (6 m) are shallower than WBM (127 m) and VIC-wur (81 m), whereas the latter two also
230 show a larger standard deviation (WBM: 133 m, VIC-wur: 105 m) than the other two models (G³M: 49 m, CLM:
231 3 m). The consistently shallower WTD of CLM impacts the ensemble mean WTD (Fig. 1b), which is shallower
232 compared to other model ensembles (5.67 m WTD as global mean here compared to 7.03 m in Reinecke et al.
233 (2024)).

234 This difference in ensemble WTD points to conceptual differences between the models. G³M and CLM both use
235 the relatively shallow WTD estimates of Fan et al. (2013) as initial state or spin-up, which could explain the
236 overall shallow water table depth. The difference between G³M and VIC-wur is consistent with the findings in
237 Reinecke et al. (2024), which showed a deeper water table simulated by the de Graaf et al. (2017) groundwater
238 model, which developed an aquifer parameterization adapted and conceptually similar to VIC-wur and WBM.
239 This difference may be linked to the implementation of groundwater drainage/surface water infiltration or
240 transmissivity parameterizations (Reinecke et al., 2024) as well as differences in groundwater recharge (Reinecke
241 et al., 2021). Furthermore, the models are not yet driven by the same climatic and human forcings, thereby possibly
242 causing different model responses. The newly initiated ISIMIP Groundwater sector offers an opportunity to
243 investigate these differences much more systematically in future studies, for example, by ruling out forcing as a
244 driver of the model differences and by exploring spatial and temporal relationships with key groundwater drivers
245 such as topography (e.g., Reinecke et al., 2024). In addition, the ISIMIP Groundwater sector provides a platform
246 for using the modelling team's expertise on their model implementations (e.g., model structures and parameter
247 fields) to better understand the origins of these differences.

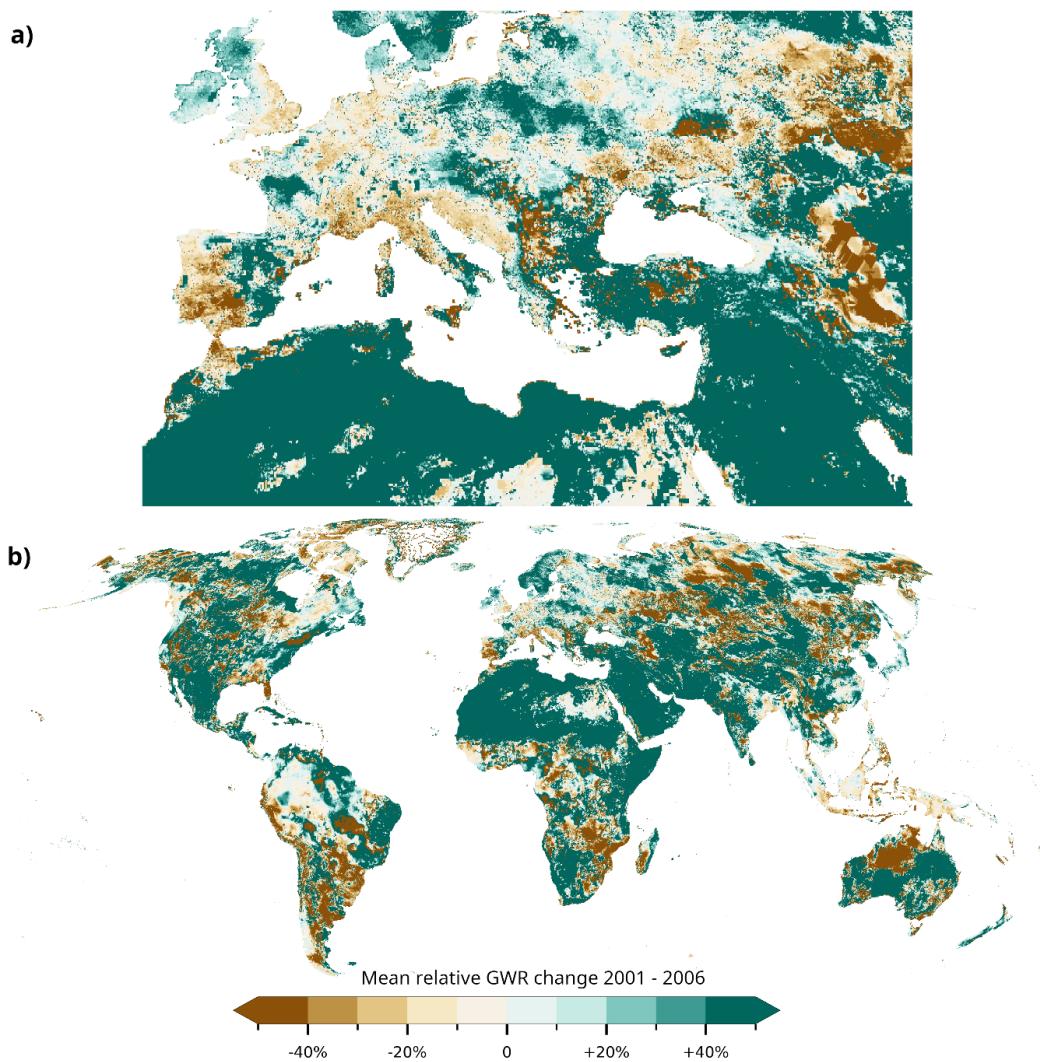


248

249 **Figure 1:** Global water table depth (WTD) at simulation start (1980) or the used steady-state. The simplified
 250 models shown are not yet driven by the same meteorological forcing (see also table A1).
 251
 252

253 Similarly, the global arithmetic mean groundwater recharge (not weighted by cell area) differs by 332 mm/y
 254 between models (150 mm/y excluding V2KARST since it calculates recharge in karst regions only) (Fig. 2a). This
 255 difference in recharge is more pronounced spatially (Fig. 2b) than differences in WTD shown before (Fig. 1b).
 256 Especially in drier regions such as in the southern Africa, central Australia, and the northern latitudes show
 257 coefficient of variation of 1 or greater (white areas). In extremely dry areas such as the east Sahara and southern
 258 Australia, the model spread is close to 0 (dark green). While the agreement is higher in Europe and western South
 259 America, the global map differs slightly from other recent publications (e.g., compared to Fig. 1b in Gnann et al.
 260 (2023)). In light of other publications, highlighting model uncertainty in groundwater recharge (Reinecke et al.,
 261 2021, Kumar et al., 2025) and the possible impacts of long-term aridity changes on groundwater recharge
 262 (Berghuijs et al., 2024), an extended combined ensemble of the global water sector and the new Groundwater
 263 sector could yield valuable insights.

264


265

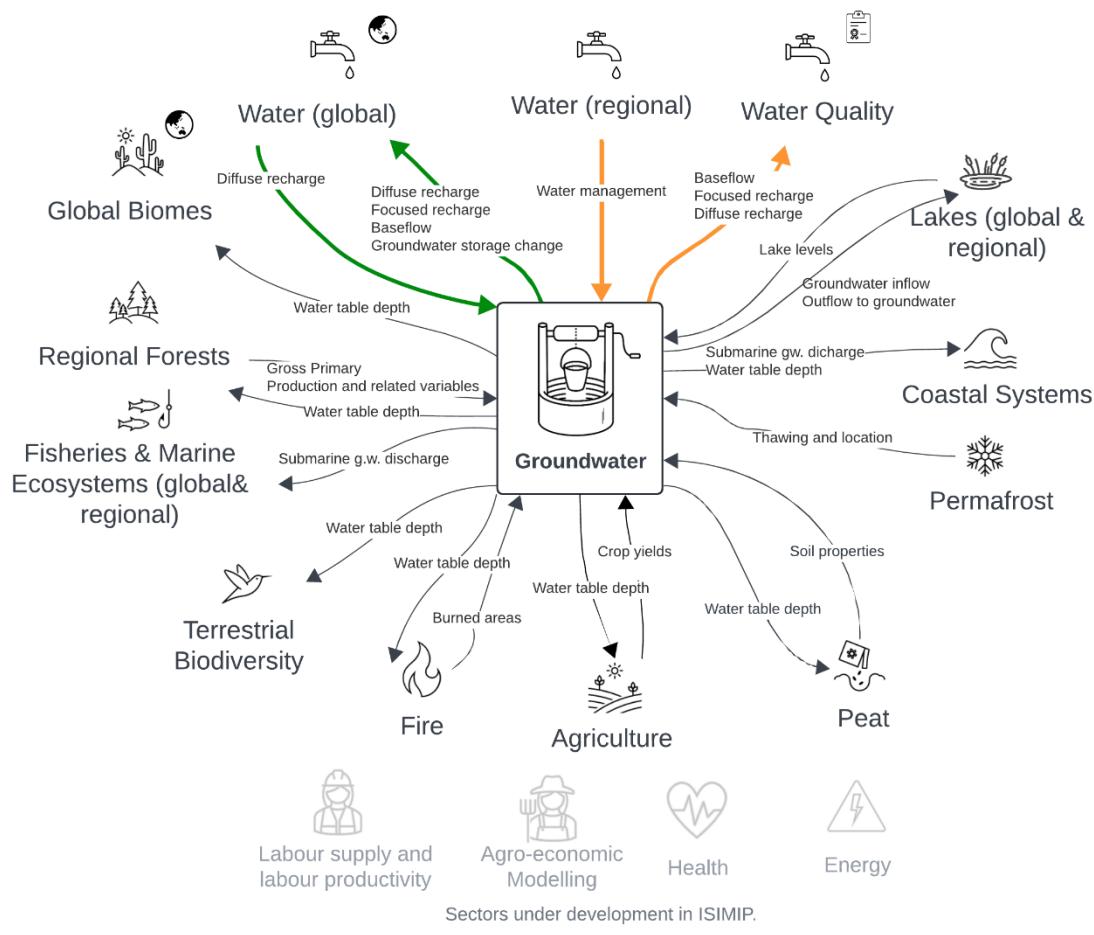
266 **Figure 2:** Global groundwater recharge (GWR) in 2001 or at steady-state (only VIC-wur). The simplified
 267 models shown are not yet driven by the same meteorological forcing (see also table A1).
 268

268 and 75th percentiles, respectively. The global map (b) shows the coefficient of variation of the model ensemble
269 without V2KARST. Models shown are not yet driven by the same meteorological forcing (see also table A1).

270

271 We further calculated relative changes in groundwater recharge between 2001 and 2006 (Fig. 3) with an ensemble
272 of 7 models (CLM, CWatM, GGR, VIC-wur, V2KARST, WBM, and ParFlow). The ensemble includes two
273 models that only simulate specific regions (V2KARST: regions of karstifiable rock, ParFlow: Euro CORDEX
274 domain). This result shows a potential analysis that should be repeated within the new Groundwater sector.
275 Intentionally, we do not investigate model agreement on the sign of change or compare them with observed data.
276 The ensemble still highlights plausible regions of groundwater recharge changes, such as in Spain and Portugal,
277 which aligns with droughts in the investigated period (Panque Salgado and Vargas Molina, 2015; Coll et al.,
278 2017; Trullenque-Blanco et al., 2024). Relative increases in groundwater recharge are mainly shown for arid
279 regions in the Sahara, the Middle East, Australia, and Mexico. However, it is likely that because we investigate
280 relative changes, this might be related to the already low recharge rates in these regions.

281


282 **Figure 3:** Mean relative percentage change of yearly groundwater recharge between 2001 and 2006 for Europe
283 (a), and all continents except Antarctica (b). The ensemble consists of all models that provided data for the years

284 2001 and 2006 (CLM, CWatM, GGR, VIC-wur, V2KARST, WBM, and ParFlow). V2KARST (only karst) and
 285 ParFlow (only Euro CORDEX domain) were only accounted for in regions where data is available. Models shown
 286 are not yet driven by the same meteorological forcing (see also table A1).

287

288 5 Groundwater as a linking sector in ISIMIP

289 ISIMIP encompasses a wide variety of sectors. Currently, 18 sectors are part of the impact assessment effort. The
 290 Groundwater sector offers a new and unique opportunity to enhance cross-sectoral activities within ISIMIP, foster
 291 interlinkages within ISIMIP, and thus deliver interdisciplinary assessments of climate change impacts.

292

293 **Figure 4:** The Groundwater sector provides the potential for multiple interlinkages between different sectors
 294 within ISIMIP. In the coming years, we will focus on links to three sectors (green and orange): Water (global),
 295 Water (regional), and Water Quality. Other cross-sectoral linkages between non-Groundwater sectors (i.e.,
 296 linkages between the outer circle) are not shown. Sectors that are currently under development or have not yet

297 have data or outputs that could be shared or used for cross-sectoral assessments are shown in gray. Interactions
298 between sectors are annotated with example processes, key variables, or datasets that can be shared between
299 sectors.

300 Some links with other sectors within ISIMIP are more evident than others with regard to existing scientific
301 community overlaps or existing scientific questions (Fig. 4). The examples of variables and data that can be shared
302 among sectors shown in Fig. 4 provide a non-exhaustive description of current variables that the sectors already
303 describe in their protocols. Whether cross-sectoral assessments will utilize this available data is up to the modeling
304 teams that contribute to the sectors. For example, the new Groundwater sector will focus on large-scale
305 groundwater models, some of which are already part of global water models participating in the Global Water
306 Sector or using outputs (such as groundwater recharge) from the Global Water Sector (see also existing
307 groundwater variables in the global water sector Table A2). However, the Groundwater sector will also feature
308 non-global representations of groundwater. Thus, collaborating with the Regional Water sector could provide
309 opportunities to share outputs and pursue common assessments. For example, the outputs of the groundwater
310 model ensemble, such as water table depth variations or surface water groundwater interactions, could be used as
311 input for some regional models that consider groundwater only as a lumped groundwater storage. Conversely,
312 global and continental groundwater models can benefit from validated regional hydrological models, which may
313 provide valuable insights into local runoff generation processes and the impacts of water management.

314 Furthermore, the relevance of groundwater for water quality assessments is widely recognized (e.g., for
315 phosphorous transport from groundwater to surface water (Holman et al., 2008), or for salinization (Kretschmer
316 et al., 2025), or as a link between warming groundwater and stream temperatures (Benz et al., 2024). And the
317 community effort of Friends of Groundwater called for a global assessment of groundwater quality (Misstear et
318 al., 2021). The Water Quality sector could incorporate model outputs from the Groundwater sector as input to
319 improve, for example, their estimates of groundwater contributions to surface water quantity or leakage of surface
320 water to groundwater. On the other hand, the Groundwater sector can utilize estimates of the Water Quality sector
321 to better assess water availability by incorporating water quality criteria. Ultimately, this may also result in
322 advanced groundwater models in the Groundwater sector that account for quality-related processes directly, which
323 can then be integrated into a future modeling protocol. One of the models (G³M; see Table 1) is already capable
324 of simulating salinization processes.

325 Leveraging such connections between sectors will provide valuable insights beyond groundwater itself. The
326 outputs and models that can be used for intersectoral assessments depend on the research question and may
327 necessitate the use of only a subset of models from an ensemble. Specifically, considering groundwater quality, a
328 collaboration between both sectors could be achieved in multiple aspects. Integrating groundwater availability
329 with water quality helps ensure sufficient and safe drinking and irrigation water. Focusing on aquifer storage
330 levels and pollutant loads can help maintain groundwater resilience, safeguard food security, and protect public
331 health under changing climate and socioeconomic conditions. Further, integrating groundwater quantity data with
332 pollution source mapping helps prioritize remediation efforts where aquifers are most vulnerable, ensuring both
333 water availability and quality. Concerning observational data, a unified approach to collecting and developing
334 shared databases for groundwater levels and water quality measurements across multiple agencies reduces
335 bureaucratic hurdles and ensures consistent, comparable data. Using standardized procedures for dealing with

336 observational uncertainties, such as data gaps, scaling issues, and measurement inconsistencies, would support
337 collaborative research further.

338 Research opportunities arise in other sectors as well. Groundwater is connected to the water cycle and social,
339 economic, and ecological systems (Huggins et al., 2023). For example, health impacts (such as water- and vector-
340 borne diseases) are closely related to water quantity and quality (e.g. Smith et al. (2024)), and the roles of
341 groundwater for forest resilience (regional forest sector, (Costa et al., 2023; Esteban et al., 2021)) and forest fires
342 (fire sector) under climate change are yet to be explored (Fig. 4). To prioritize our efforts and set a research agenda
343 for the groundwater ISIMIP sector, we will first focus on existing and more straightforward connections to the
344 global water sector, regional water sector, and the water quality sector and then expand to collaboration with other
345 sectors (Fig. 4).

346

347 **6 A vision for the ISIMIP groundwater sector**

348 Given groundwater's importance in the Earth system and for society, it is imperative to expand our knowledge of
349 groundwater and (1) how it is impacted by climate change and other human forcings and (2) how, in turn, this
350 will affect other systems connected to groundwater. This enhanced understanding is essential to equip us with the
351 knowledge needed to address future challenges effectively. The ISIMIP Groundwater sector serves as a foundation
352 for examining and measuring the effects of global change on groundwater systems worldwide. It facilitates cross-
353 sector investigations, such as those concerning water quality, examines the influence of various model structures
354 on groundwater dynamics simulations, and supports the collaborative creation of new datasets for model
355 parameterization and assessment.

356 Already in the short term, the creation of the Groundwater sector has substantial potential to enhance large-scale
357 groundwater research by developing better modeling frameworks for reproducible research (running the multitude
358 of experiments targeted in ISIMIP requires an automated modeling pipeline) and forge a community that can
359 critically examine current modeling practices. The simple model comparison presented raises initial questions as
360 to why models differ and invites us to explore model differences in greater depth. Such model intercomparison
361 studies will enable us to quantify uncertainties and identify hotspots for model improvement. They will also allow
362 us to assess the impact of climate and land use change on various groundwater-related variables, such as
363 groundwater recharge and water table depth, and enable ensemble-based impact assessments of future water
364 availability. Model intercomparison and validation may also help identify models that perform better in specific
365 regions or for specific output variables, thus allowing the provision of region- or variable-specific
366 recommendations and uncertainty assessments to subsequent data users.

367 In the long term, the sector will enable us to jointly reflect on processes that we currently do not model or that
368 require improvement, possibly also through new modeling approaches such as hybrid machine-learning models
369 tailored to the large-scale representation of groundwater. These model developments will be incorporated into the
370 groundwater sector's contributions to upcoming ISIMIP simulation rounds, such as ISIMIP4, which is scheduled
371 to commence in 2026. Since groundwater is connected to many socio-ecological systems, groundwater models
372 could also emerge as a modular coupling tool that can be integrated into multiple sectors. The newly established

373 groundwater sector already provides a first step in that direction by standardizing output names and units. If
374 models are modular enough and define a standardized Application Programming Interface (API), they could also
375 serve as a valuable tool for other science communities.

376 The lack of a community-wide coordinated effort to simulate the effects of climate change on groundwater at
377 regional to global scale has precluded the comprehensive consideration of climate change impacts on groundwater
378 in policy relevant reports, such as the European Climate risk assessment (EUCRA, 2024) or the Assessment
379 Reports developed by the Intergovernmental Panel on Climate Change (IPCC) (e.g. Lee, 2024). The anticipated
380 groundwater sector contributions to ISIMIP3 and ISIMIP4, as described here, will address this gap by serving as
381 scientific evidence in the second EUCRA round and the upcoming IPCC seventh assessment cycle. As such, the
382 anticipated outcomes of the new sector will pave the way for groundwater simulations to play an increasingly
383 important role in international climate mitigation and adaptation policy.

384 In summary, the ISIMIP Groundwater sector aims to enhance our understanding of the impacts of climate change
385 and direct human impacts on groundwater and a range of related sectors. To realize this goal, the new ISIMIP
386 Groundwater sector will address numerous challenges. For instance, core simulated variables, such as water table
387 depth and recharge, are highly uncertain and difficult to compare with observations. Further, tracing down
388 explanations for inter-model differences will require the joint development and application of new evaluation
389 methods (Eyring et al., 2016b) and protocols. Currently, models of the Groundwater sector operate at different
390 spatial resolutions, and compared to other sectors, they often run at relatively high spatial resolutions, which will
391 need to be addressed in evaluation and analysis approaches. Furthermore, depending on the model, executing
392 single-model simulations already requires substantial amounts of computation time, and running all impact
393 scenarios may be infeasible for some modeling groups. Lastly, running simulations for ISIMIP requires not only
394 computational resources but also human resources, which might not be feasible for all groups. This has always
395 been the case with ISIMIP, and it is an issue that other sectors have faced as well. Still, we are confident that the
396 groundwater sector will enhance our understanding of groundwater within the Earth system and help to promote
397 dialogue and synthesis in the research community. With its various connections to other sectors, the Groundwater
398 sector can be a catalyst for developing new holistic cross-sector modelling efforts that account for the multitude
399 of interconnections between the water cycle and social, economic, and ecological systems.

400 **Data availability**

401 The ensemble mean WTD and groundwater recharge trends are available at Reinecke (2025). For the original
402 model data publications, see Table A1.

403

404 **Author contribution**

405 RR led the writing and analysis of the manuscript. RR and IG conceived the idea. All authors reviewed the
406 manuscript and provided suggestions on text and figures.

407

408 **Competing interests**

409 None.

410

411 Appendix

412 **Table A1:** Original publications that describe the model outputs used in section 4.

Model	Simulation setup and used forcings	Reference
G ³ M	Steady-state model of WTD on 5 arcmin without any groundwater pumping, forced with WaterGAP 2.2d (Müller Schmied et al., 2021) groundwater recharge mean between 1901-2001.	Reinecke et al. (2019)
V2KARST	Global karst recharge model at 15 arcmin, forced with the MSWEP V2 (Beck et al., 2019) precipitation and GLDAS (Li et al., 2018) air temperature, shortwave and longwave radiation, specific humidity and wind speed for the period of 1990-2020	Sarrazin et al. (2018)
GGR	Global groundwater rain-fed recharge model, A grid-based three-layer water balance model to estimate the daily global rain-fed groundwater recharge (2001-2020)	Nazari et al. (2025)
WBM	Time series simulation from 1980 to 2019 at 15 arc minutes, using the MERIT digital flow direction dataset (Yamazaki et al., 2019) including domestic, industrial, livestock, and irrigation water withdrawals. Forcings and key inputs: Climate: ERA5 (Prusevich et al., 2024), Reservoirs: GRanD v1.1 (Lehner et al., 2011), Inter-basin transfers (Lammers, 2022), Glaciers (Rounce et al., 2022), Impervious surfaces (Hansen and Toftemann Thomsen, 2020), Population density (Lloyd et al., 2019), Domestic and industrial water per capita demand: FAO AQUASTAT, Livestock density and water demand (Gilbert et al., 2018), Cropland: LUH2 (Hurtt et al., 2020), Aquifer properties (de Graaf et al., 2017) aquifer depth gap-filled with terrain slope data from Yamazaki et al. 2019, Soil available water capacity: FAO soil map, Root depth (Yang et al., 2016)	Multiple, see left column.

VIC-wur	<p>Global Hydrological model simulating the GWR and streamflow from 1970-2014 in natural condition.</p> <p>The mean GWR and streamflow were used to simulate the GWT in steady-state MODFLOW model in 5 arcmin.</p> <p>The model is forced by: GFDL-ESM4 climate model (Dunne et al., 2020), Aquifer properties (de Graaf et al., 2017).</p>	Droppers et al. (2020)
CLM	<p>The model was spun up for 1979 and subsequently simulated from 1979 to 2013 using the GSWPv3 atmospheric forcing dataset at a 0.1-degree resolution. Recharge, capillary rise, drainage, irrigation pumping and cell-to-cell lateral flow were simulated within the model.</p>	Akhter et al. (2024) (under review in WRR)
ParFlow	<p>The data provided here are based on Naz et al. (2023). In version 2 of the data, we provide variables including water table depth and groundwater recharge for time period of 1997-2006 at monthly time scale.</p>	Naz et al. (2023)
CWatM	<p>Community Water Model at 5 arcmin. Climate forcing with chelsa-W5E5v1.0 (5 arcmin) for temperature (average, maximum, minimum), precipitation, and shortwave radiation, and GSWP3-W5E5 (30 arcmin spline downscaled to 5 arcmin) for longwave radiation, wind speed, and specific humidity. Updates to Burek et al. (2020) include river network based on MERIT Hydro and upscaling with Eilander et al. (2021).</p>	Burek et al. (2020)

413

Table A2: List of groundwater related output variables in the ISIMIP3a global water sector (https://protocol.isimip.org/#/ISIMIP3a/water_global). The unit of all variables is $\text{kg m}^{-2} \text{ s}^{-1}$, the spatial resolution is 0.5° grid and the temporal resolution is monthly.

Groundwater-related output variable of the Global Water Sector	Description
Groundwater runoff	Water that leaves the groundwater layer. In case seepage is simulated but no groundwater layer is present, report seepage as <i>Total groundwater recharge</i> and <i>Groundwater Runoff</i> .
Total groundwater recharge	For models that consider both diffuse and focused/localised recharge this should be the sum of both; other models should submit the groundwater recharge component that the model simulates. See also the descriptions in <i>Focused/localised groundwater recharge</i> and <i>Diffuse groundwater recharge</i> .
Focused/localised groundwater recharge	Water that directly flows from a surface water body into the groundwater layer below. Only submit if the model separates focused/localised recharge from diffuse recharge.
Potential irrigation water withdrawal (assuming unlimited water supply) from groundwater resources	Part of <i>Potential Industrial Water Withdrawal</i> that is extracted from groundwater resources.
Actual irrigation water withdrawal from groundwater resources	Part of <i>Actual Irrigation Water Withdrawal</i> that is extracted from groundwater resources.
Potential Irrigation Water Consumption from groundwater resources	Part of <i>Potential Irrigation Water Consumption</i> that is extracted from groundwater resources.
Actual Irrigation Water Consumption from groundwater resources	Part of <i>Actual Irrigation Water Consumption</i> that is extracted from groundwater resources.
Potential Domestic Water Withdrawal from groundwater resources	Part of <i>Potential Domestic Water Withdrawal</i> that is extracted from groundwater resources.
Actual Domestic Water Withdrawal from groundwater resources	Part of <i>Actual Domestic Water Withdrawal</i> that is extracted from groundwater resources
Potential Domestic Water Consumption from groundwater resources	Part of <i>Potential Domestic Water Consumption</i> that is extracted from groundwater resources.

Actual Domestic Water Consumption from groundwater resources	Part of <i>Actual Domestic Water Consumption</i> that is extracted from groundwater resources.
Potential Manufacturing Water Withdrawal from groundwater resources	Part of <i>Potential Manufacturing Water Withdrawal</i> that is extracted from groundwater resources.
Actual Manufacturing Water Withdrawal from groundwater resources	Part of <i>Actual Manufacturing Water Withdrawal</i> that is extracted from groundwater resources.
Potential manufacturing Water Consumption from groundwater resources	Part of <i>Potential manufacturing Water Consumption</i> that is extracted from groundwater resources.
Actual Manufacturing Water Consumption from groundwater resources	Part of <i>Actual Manufacturing Water Consumption</i> that is extracted from groundwater resources.
Potential electricity Water Withdrawal from groundwater resources	Part of <i>Potential electricity Water Withdrawal</i> that is extracted from groundwater resources.
Actual Electricity Water Withdrawal from groundwater resources	Part of <i>Actual Electricity Water Withdrawal</i> that is extracted from groundwater resources.
Potential electricity Water Consumption from groundwater resources	Part of <i>Potential electricity Water Consumption</i> that is extracted from groundwater resources.
Actual Electricity Water Consumption from groundwater resources	Part of <i>Actual Electricity Water Consumption</i> that is extracted from groundwater resources.
Potential Industrial Water Withdrawal from groundwater resources	Part of <i>Potential Industrial Water Withdrawal</i> that is extracted from groundwater resources.
Actual Industrial Water Withdrawal from groundwater resources	Part of <i>Actual Industrial Water Withdrawal</i> that is extracted from groundwater resources.

Potential Industrial Water Consumption from groundwater resources	Part of <i>Potential Industrial Water Consumption</i> that is extracted from groundwater resources.
Actual Industrial Water Consumption from groundwater resources	Part of <i>Actual Industrial Water Consumption</i> that is extracted from groundwater resources.
Potential livestock Water Withdrawal from groundwater resources	Part of <i>Potential livestock Water Withdrawal</i> that is extracted from groundwater resources.
Actual Livestock Water Withdrawal from groundwater resources	Part of <i>Actual Livestock Water Withdrawal</i> that is extracted from groundwater resources.
Potential livestock Water Consumption from groundwater resources	Part of <i>Potential livestock Water Consumption</i> that is extracted from groundwater resources.
Actual livestock Water Consumption from groundwater resources	Part of <i>Actual livestock Water Consumption</i> that is extracted from groundwater resources.
Total Potential Water Withdrawal (all sectors) from groundwater resources	Part of <i>Total Potential Water Withdrawal</i> that is extracted from groundwater resources.
Total Actual Water Withdrawal (all sectors) from groundwater resources	Part of <i>Total Actual Water Withdrawal</i> that is extracted from groundwater resources.

414

415 **References**

416 Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk, A. I. J. M., McVicar, T. R., and
 417 Adler, R. F.: MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative
 418 Assessment, *Bulletin of the American Meteorological Society*, 100, 473–500,
 419 <https://doi.org/10.1175/BAMS-D-17-0138.1>, 2019.

420 Benz, S. A., Irvine, D. J., Rau, G. C., Bayer, P., Menberg, K., Blum, P., Jamieson, R. C., Griebler, C., and
 421 Kurylyk, B. L.: Global groundwater warming due to climate change, *Nature Geosci*, 17, 545–551,
 422 <https://doi.org/10.1038/s41561-024-01453-x>, 2024.

423 Berghuijs, W. R., Collenteur, R. A., Jasechko, S., Jaramillo, F., Luijendijk, E., Moeck, C., van der Velde, Y.,
 424 and Allen, S. T.: Groundwater recharge is sensitive to changing long-term aridity, *Nature Clim
 425 Change*, 14, 357–363, <https://doi.org/10.1038/s41558-024-01953-z>, 2024.

426 Bierkens, M. and Wada, Y.: Non-renewable groundwater use and groundwater depletion: a review,
 427 *Environ. Res. Lett.*, 14, 63002, <https://doi.org/10.1088/1748-9326/ab1a5f>, 2019.

428 Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M., Guillaumot, L., Zhao, F., and Wada, Y.:
429 Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model
430 for global and regional assessment of integrated water resources management, *Geosci. Model Dev.*,
431 13, 3267–3298, <https://doi.org/10.5194/gmd-13-3267-2020>, 2020.

432 Condon, L. E. and Maxwell, R. M.: Simulating the sensitivity of evapotranspiration and streamflow to
433 large-scale groundwater depletion, *Science advances*, 5, eaav4574,
434 <https://doi.org/10.1126/sciadv.aav4574>, 2019.

435 Condon, L. E., Kollet, S., Bierkens, M. F. P., Fogg, G. E., Maxwell, R. M., Hill, M. C., Fransen, H.-J. H.,
436 Verhoef, A., van Loon, A. F., Sulis, M., and Abesser, C.: Global Groundwater Modeling and Monitoring:
437 Opportunities and Challenges, *Water Resources Research*, 57,
438 <https://doi.org/10.1029/2020WR029500>, 2021.

439 Costa, F. R. C., Schiatti, J., Stark, S. C., and Smith, M. N.: The other side of tropical forest drought: do
440 shallow water table regions of Amazonia act as large-scale hydrological refugia from drought?, *The*
441 *New phytologist*, 237, 714–733, <https://doi.org/10.1111/nph.17914>, 2023.

442 Coll, J. R., Aguilar, E., and Ashcroft, L.: Drought variability and change across the Iberian Peninsula.
443 *Theoretical and Applied Climatology*, 130(3–4), 901–916. <https://doi.org/10.1007/s00704-016-1926-3>, 2017.

445 Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A., Hartmann, J., and Lehner, B.:
446 Global patterns and dynamics of climate-groundwater interactions, *Nature Clim Change*, 9, 137–141,
447 <https://doi.org/10.1038/s41558-018-0386-4>, 2019.

448 Dalin, C., Wada, Y., Kastner, T., and Puma, M. J.: Groundwater depletion embedded in international food
449 trade, *Nature*, 543, 700–704, <https://doi.org/10.1038/nature21403>, 2017.

450 de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H., and Bierkens, M. F. P.: A high-resolution global-
451 scale groundwater model, *Hydrol. Earth Syst. Sci.*, 19, 823–837, <https://doi.org/10.5194/hess-19-823-2015>, available at: <https://hess.copernicus.org/articles/19/823/2015/>, 2015.

453 de Graaf, I., Rens L.P.H. van Beek, Tom Gleeson, Nils Moosdorf, Oliver Schmitz, Edwin H. Sutanudjaja,
454 and Marc F.P. Bierkens: A global-scale two-layer transient groundwater model: Development and
455 application to groundwater depletion, *Advances in Water Resources*, 102, 53–67,
456 <https://doi.org/10.1016/j.advwatres.2017.01.011>, 2017.

457 de Graaf, I. E. M., Gleeson, T., van Rens Beek, L. P. H., Sutanudjaja, E. H., and Bierkens, M. F. P.:
458 Environmental flow limits to global groundwater pumping, *Nature*, 574, 90–94,
459 <https://doi.org/10.1038/s41586-019-1594-4>, 2019.

460 Döll, P. and Siebert, S.: Global modeling of irrigation water requirements, *Water Resources Research*, 38,
461 <https://doi.org/10.1029/2001WR000355>, 2002.

462 Droppers, B., Franssen, W. H. P., van Vliet, M. T. H., Nijssen, B., and Ludwig, F.: Simulating human
463 impacts on global water resources using VIC-5, *Geosci. Model Dev.*, 13, 5029–5052,
464 <https://doi.org/10.5194/gmd-13-5029-2020>, 2020.

465 Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S.,
466 Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A.,
467 Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W.,
468 Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonorov, S., Paynter, D. J.,
469 Poshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L.
470 T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, Y. and Zhao, M.:
471 The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and
472 Simulation Characteristics. *J Adv Model Earth Syst*, 12 (11), e2019MS002015.
473 <https://doi.org/10.1029/2019MS002015>, 2020.
474 Eilander, D., van Verseveld, W., Yamazaki, D., Weerts, A., Winsemius, H. C., and Ward, P. J.: A hydrography upscaling method for scale-invariant
475 parametrization of distributed hydrological models, *Hydrol. Earth Syst. Sci.*, 25, 5287–5313,
476 <https://doi.org/10.5194/hess-25-5287-2021>, 2021.
477 Esteban, E. J. L., Castilho, C. V., Melgaço, K. L., and Costa, F. R. C.: The other side of droughts: wet
478 extremes and topography as buffers of negative drought effects in an Amazonian forest, *The New
479 phytologist*, 229, 1995–2006, <https://doi.org/10.1111/nph.17005>, 2021.
480 European Environment Agency, *European climate risk assessment*, Publications Office of the European
481 Union, <https://doi.org/10.2800/8671471>, 2024.
482 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of
483 the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization,
484 *Geosci. Model Dev.*, 9, 1937–1958, <https://doi.org/10.5194/gmd-9-1937-2016>, 2016a.
485 Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I.,
486 Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann,
487 S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G.,
488 Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H.,
489 Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) – a community diagnostic and
490 performance metrics tool for routine evaluation of Earth system models in CMIP, *Geosci. Model Dev.*,
491 9, 1747–1802, <https://doi.org/10.5194/gmd-9-1747-2016>, 2016b.
492 Felfelani, F., Lawrence, D. M., and Pokhrel, Y.: Representing Intercell Lateral Groundwater Flow and
493 Aquifer Pumping in the Community Land Model, *Water Resources Research*, 57,
494 <https://doi.org/10.1029/2020WR027531>, 2021.
495 Foster, S. S. D. and Chilton, P. J.: Groundwater: the processes and global significance of aquifer
496 degradation, *Philosophical transactions of the Royal Society of London. Series B, Biological
497 sciences*, 358, 1957–1972, <https://doi.org/10.1098/rstb.2003.1380>, 2003.
498 Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S.,
499 Emanuel, K., Geiger, T., Halladay, K., Hurt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva,
500 R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Cais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith,
501 E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova,
502 V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet,

503 M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-
504 Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of
505 1.5\,°C global warming - simulation protocol of the Inter-Sectoral Impact Model
506 Intercomparison Project (ISIMIP2b), *Geosci. Model Dev.*, 10, 4321–4345,
507 <https://doi.org/10.5194/gmd-10-4321-2017>, 2017.

508 Gasper, F., Goergen, K., Shrestha, P., Sulis, M., Rihani, J., Geimer, M., and Kollet, S.: Implementation and
509 scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively
510 parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q), *Geosci. Model*
511 *Dev.*, 7, 2531–2543, <https://doi.org/10.5194/gmd-7-2531-2014>, 2014.

512 Gilbert, M., Nicolas, G., Cinardi, G., van Boeckel, T. P., Vanwambeke, S. O., Wint, G. R. W., and Robinson,
513 T. P.: Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in
514 2010, *Scientific data*, 5, 180227, <https://doi.org/10.1038/sdata.2018.227>, 2018.

515 Gleeson, T. and Paszkowski, D.: Perceptions of scale in hydrology: what do you mean by regional scale?,
516 *Hydrological Sciences Journal*, 59, 99–107, <https://doi.org/10.1080/02626667.2013.797581>, 2014.

517 Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R.,
518 Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M.-H., Kim, H., Hill, M., Hartmann, A., Fogg, G.,
519 Famiglietti, J. S., Ducharne, A., Graaf, I. de, Cuthbert, M., Condon, L., Bresciani, E., and Bierkens, M.
520 F. P.: GMD perspective: The quest to improve the evaluation of groundwater representation in
521 continental- to global-scale models, *Geosci. Model Dev.*, 14, 7545–7571,
522 <https://doi.org/10.5194/gmd-14-7545-2021>, 2021.

523 Gnann, S., Reinecke, R., Stein, L., Wada, Y., Thiery, W., Müller Schmied, H., Satoh, Y., Pokhrel, Y.,
524 Ostberg, S., Koutroulis, A., Hanasaki, N., Grillakis, M., Gosling, S., Burek, P., Bierkens, M., and
525 Wagener, T.: Functional relationships reveal differences in the water cycle representation of global
526 water models, 1079–1090, <https://doi.org/10.1038/s44221-023-00160-y>, 2023.

527 Grogan, D. S., Zuidema, S., Prusevich, A., Wollheim, W. M., Glidden, S., and Lammers, R. B.: Water
528 balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking
529 functionality, *Geosci. Model Dev.*, 15, 7287–7323, <https://doi.org/10.5194/gmd-15-7287-2022>, 2022.

530 Guillaumot, L., Smilovic, M., Burek, P., Bruijn, J. de, Greve, P., Kahil, T., and Wada, Y.: Coupling a large-
531 scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6)
532 to assess the impact of irrigation at regional scale, *Geosci. Model Dev.*, 15, 7099–7120,
533 <https://doi.org/10.5194/gmd-15-7099-2022>, 2022.

534 Hansen, M. and Toftemann Thomsen, C.: An integrated public information system for geology,
535 groundwater and drinking water in Denmark, *GEUS Bulletin*, 38, 69–72,
536 <https://doi.org/10.34194/geusb.v38.4423>, 2020.

537 Haqiqi, I., Bowling, L., Jame, S., Baldos, U., Liu, J., and Hertel, T.: Global drivers of local water stresses
538 and global responses to local water policies in the United States, *Environmental research letters ERL*,
539 18, 65007, <https://doi.org/10.1088/1748-9326/acd269>, 2023.

540 Holman, I. P., Whelan, M. J., Howden, N. J. K., Bellamy, P. H., Willby, N. J., Rivas-Casado, M., and
541 McConvey, P.: Phosphorus in groundwater—an overlooked contributor to eutrophication?, *Hydrol.*
542 *Process.*, 22, 5121–5127, <https://doi.org/10.1002/hyp.7198>, 2008.

543 Huggins, X., Gleeson, T., Castilla-Rho, J., Holley, C., Re, V., and Famiglietti, J. S.: Groundwater
544 Connections and Sustainability in Social-Ecological Systems, *Ground water*, 61, 463–478,
545 <https://doi.org/10.1111/gwat.13305>, 2023.

546 Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J.,
547 Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinemann, A., Humpenöder, F., Jungclaus,
548 J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J.,
549 Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren,
550 D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–
551 2100 (LUH2) for CMIP6, *Geosci. Model Dev.*, 13, 5425–5464, <https://doi.org/10.5194/gmd-13-5425-2020>, 2020.

553 Jasechko, S., Seybold, H., Perrone, D., Fan, Y., Shamsuddoha, M., Taylor, R. G., Fallatah, O., and
554 Kirchner, J. W.: Rapid groundwater decline and some cases of recovery in aquifers globally, *Nature*,
555 625, 715–721, <https://doi.org/10.1038/s41586-023-06879-8>, 2024.

556 Keune, J., Sulis, M., Kollet, S., Siebert, S., and Wada, Y.: Human Water Use Impacts on the Strength of the
557 Continental Sink for Atmospheric Water, *Geophys. Res. Lett.*, 45, 4068–4076,
558 <https://doi.org/10.1029/2018GL077621>, 2018.

559 Kollet, S. J. and Maxwell, R. M.: Capturing the influence of groundwater dynamics on land surface
560 processes using an integrated, distributed watershed model, *Water Resources Research*, 44,
561 <https://doi.org/10.1029/2007WR006004>, 2008.

562 Konar, M., Hussein, Z., Hanasaki, N., Mauzerall, D. L., and Rodriguez-Iturbe, I.: Virtual water trade flows
563 and savings under climate change, *Hydrol. Earth Syst. Sci.*, 17, 3219–3234,
564 <https://doi.org/10.5194/hess-17-3219-2013>, 2013.

565 Kretschmer, D. V., Michael, H., Moosdorf, N., Essink, G. O., Bierkens, M. F. P., Wagener, T., and
566 Reinecke, R.: Controls on coastal saline groundwater across North America, *Environmental research*
567 *letters*, <https://doi.org/10.1088/1748-9326/ada973>, 2025.

568 Kuffour, B. N. O., Engdahl, N. B., Woodward, C. S., Condon, L. E., Kollet, S., and Maxwell, R. M.:
569 Simulating coupled surface–subsurface flows with ParFlow v3.5.0: capabilities, applications, and
570 ongoing development of an open-source, massively parallel, integrated hydrologic model, *Geosci.*
571 *Model Dev.*, 13, 1373–1397, <https://doi.org/10.5194/gmd-13-1373-2020>, 2020.

572 Kumar, R., Samaniego, L., Thober, S., Rakovec, O., Marx, A., Wanders, N., Pan, M., Hesse, F. and Attinger,
573 S., Multi-model assessment of groundwater recharge across Europe under warming climate. *Earth's*
574 *Future*, 13(1), p.e2024EF005020. <https://doi.org/10.1029/2024EF005020>, 2025.

575 Lammers, R. B.: Global Inter-Basin Hydrological Transfer Database, 2022.

576 Lange, S.: Bias-correction fact sheet, <https://www.isimip.org/gettingstarted/isimip3b-bias-adjustment/>,
577 last access: 2 March 2025, 2021.

578 Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N.,
579 Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi,
580 D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M.,
581 Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K.,
582 Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox,
583 R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J.,
584 Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val
585 Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of New Features,
586 Benchmarking, and Impact of Forcing Uncertainty, *J Adv Model Earth Syst*, 11, 4245–4287,
587 <https://doi.org/10.1029/2018MS001583>, 2019.

588 IPCC, Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., ... & Ruane, A. C. Climate
589 change 2023 synthesis report summary for policymakers. *CLIMATE CHANGE 2023 Synthesis Report: Summary for Policymakers*, 2024.

590 Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M.,
591 Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-
592 resolution mapping of the world's reservoirs and dams for sustainable river-flow management,
593 *Frontiers in Ecol & Environ*, 9, 494–502, <https://doi.org/10.1890/100125>, 2011.

594 Li, B., Rodell, M., and Beaudoin, H.: GLDAS Catchment Land Surface Model L4 daily 0.25 x 0.25 degree,
595 Version 2.0, 2018.

596 Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land
597 surface water and energy fluxes for general circulation models. *Journal of Geophysical Research: Atmospheres*, 99(D7), 14415–14428. <https://doi.org/10.1029/94JD00483>, 1994.

598 Liu, Y., Wagener, T., Beck, H. E., and Hartmann, A.: What is the hydrologically effective area of a
599 catchment?, *Environmental research letters ERL*, 15, 104024, <https://doi.org/10.1088/1748-9326/aba7e5>, 2020.

600 Lloyd, C. T., Chamberlain, H., Kerr, D., Yetman, G., Pistolesi, L., Stevens, F. R., Gaughan, A. E., Nieves, J.
601 J., Hornby, G., MacManus, K., Sinha, P., Bondarenko, M., Sorichetta, A., and Tatem, A. J.: Global
602 spatio-temporally harmonised datasets for producing high-resolution gridded population distribution
603 datasets, *Big earth data*, 3, 108–139, <https://doi.org/10.1080/20964471.2019.1625151>, 2019.

604 Maxwell, R. M. and Miller, N. L.: Development of a Coupled Land Surface and Groundwater Model,
605 *Journal of Hydrometeorology*, 6, 233–247, <https://doi.org/10.1175/JHM422.1>, 2005.

606 Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., and Forrester, M. M.: The imprint of
607 climate and geology on the residence times of groundwater, *Geophys. Res. Lett.*, 43, 701–708,
608 <https://doi.org/10.1002/2015GL066916>, 2016.

609 Maxwell, R. M., Putti, M., Meyerhoff, S., Delfs, J.-O., Ferguson, I. M., Ivanov, V., Kim, J., Kolditz, O., Kollet,
610 S. J., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M. S., Shen, C., Sudicky, E.
611 A., and Sulis, M.: Surface-subsurface model intercomparison: A first set of benchmark results to

615 diagnose integrated hydrology and feedbacks, *Water Resources Research*, 50, 1531–1549,
616 <https://doi.org/10.1002/2013WR013725>, 2014.

617 Maxwell, R. M., Lundquist, J. K., Mirocha, J. D., Smith, S. G., Woodward, C. S., and Tompson, A. F. B.:
618 Development of a Coupled Groundwater–Atmosphere Model, *Monthly Weather Review*, 139, 96–116,
619 <https://doi.org/10.1175/2010MWR3392.1>, 2011.

620 Misstear, B., Vargas, C.R., Lapworth, D. et al. A global perspective on assessing groundwater quality.
621 *Hydrogeol J* 31, 11–14, <https://doi.org/10.1007/s10040-022-02461-0>, 2023.

622 Moeck, C., Collenteur, R. A., Berghuijs, W. R., Luijendijk, E., and Gurdak, J. J.: A Global Assessment of
623 Groundwater Recharge Response to Infiltration Variability at Monthly to Decadal Timescales, *Water*
624 *Resources Research*, 60, <https://doi.org/10.1029/2023WR035828>, 2024.

625 Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E.,
626 Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll,
627 P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation,
628 *Geosci. Model Dev.*, 14, 1037–1079, <https://doi.org/10.5194/gmd-14-1037-2021>, 2021.

629 Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke,
630 R., Riedel, C., Song, Q., Zhang, J., and Döll, P.: Variations of global and continental water balance
631 components as impacted by climate forcing uncertainty and human water use, *Hydrol. Earth Syst.*
632 *Sci.*, 20, 2877–2898, <https://doi.org/10.5194/hess-20-2877-2016>, available at:
633 <https://hess.copernicus.org/articles/20/2877/2016/>, 2016.

634 Naz, B. S., Sharples, W., Ma, Y., Goergen, K., and Kollet, S.: Continental-scale evaluation of a fully
635 distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe,
636 *Geosci. Model Dev.*, 16, 1617–1639, <https://doi.org/10.5194/gmd-16-1617-2023>, 2023.

637 Nazari, S., Kruse, I. L., and Moosdorf, N.: Spatiotemporal dynamics of global rain-fed groundwater
638 recharge from 2001 to 2020, *Journal of Hydrology*, 650, 132490,
639 <https://doi.org/10.1016/j.jhydrol.2024.132490>, 2025.

640 Paneque Salgado, P., and Vargas Molina, J.: Drought, social agents and the construction of discourse in
641 Andalusia. *Environmental Hazards*, 14(3), 224–235.
642 <https://doi.org/10.1080/17477891.2015.1058739>, 2015.

643 Perez, N., Singh, V., Ringler, C., Xie, H., Zhu, T., Sutanudjaja, E. H., and Villholth, K. G.: Ending
644 groundwater overdraft without affecting food security, *Nat Sustain*, 7, 1007–1017,
645 <https://doi.org/10.1038/s41893-024-01376-w>, 2024.

646 Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S. N.,
647 Grillakis, M., Gudmundsson, L., Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L.,
648 Schewe, J., Müller Schmied, H., Stacke, T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F., and
649 Wada, Y.: Global terrestrial water storage and drought severity under climate change, *Nature Clim*
650 *Change*, 11, 226–233, <https://doi.org/10.1038/s41558-020-00972-w>, 2021.

651 Porkka, M., Virkki, V., Wang-Erlandsson, L., Gerten, D., Gleeson, T., Mohan, C., Fetzer, I., Jaramillo, F.,
652 Staal, A., te Wierik, S., Tobian, A., van der Ent, R., Döll, P., Flörke, M., Gosling, S. N., Hanasaki, N.,

653 Satoh, Y., Müller Schmied, H., Wanders, N., Famiglietti, J. S., Rockström, J., and Kummu, M.: Notable
654 shifts beyond pre-industrial streamflow and soil moisture conditions transgress the planetary
655 boundary for freshwater change, *Nat Water*, 2, 262–273, <https://doi.org/10.1038/s44221-024-00208-7>, 2024.

656

657 Prusevich, A. A., Lammers, R. B., and Glidden, S. J.: Delineation of endorheic drainage basins in the
658 MERIT-Plus dataset for 5 and 15 minute upscaled river networks, *Scientific data*, 11, 61,
659 <https://doi.org/10.1038/s41597-023-02875-9>, 2024.

660 Reinecke, R., Müller Schmied, H., Trautmann, T., Andersen, L. S., Burek, P., Flörke, M., Gosling, S. N.,
661 Grillakis, M., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Thiery, W., Wada, Y., Yusuke, S., and Döll, P.:
662 Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale
663 multi-model ensemble study, *Hydrol. Earth Syst. Sci.*, 25, 787–810, <https://doi.org/10.5194/hess-25-787-2021>, 2021.

664

665 Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., and Döll, P.: Challenges in developing a
666 global gradient-based groundwater model (G³M v1.0) for the integration into a global hydrological
667 model, *Geosci. Model Dev.*, 12, 2401–2418, <https://doi.org/10.5194/gmd-12-2401-2019>, 2019.

668 Reinecke, R., Gnann, S., Stein, L., Bierkens, M., Graaf, I. de, Gleeson, T., Essink, G. O., Sutanudjaja, E. H.,
669 Ruz Vargas, C., Verkaik, J., and Wagener, T.: Uncertainty in model estimates of global groundwater
670 depth, *Environmental research letters ERL*, 19, 114066, <https://doi.org/10.1088/1748-9326/ad8587>,
671 2024.

672 Reinecke, R.: The ISIMIP Groundwater Sector: A Framework for Ensemble Modeling of Global Change
673 Impacts on Groundwater, Zenodo, <https://doi.org/10.5281/zenodo.14962512>, 2025.

674 Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates of groundwater depletion in
675 India, *Nature*, 460, 999–1002, <https://doi.org/10.1038/nature08238>, 2009.

676 Rodella, A.-S., Zaveri, E., and Bertone, F.: The Hidden Wealth of Nations: The Economics of Groundwater
677 in Times of Climate Change. Washington, DC: World Bank, 2023.

678 Rounce, D., Hock, R., and Maussion, F.: Global PyGEM-OGGM Glacier Projections with RCP and SSP
679 Scenarios, Version 1, 2022.

680 Sarrazin, F., Hartmann, A., Pianosi, F., Rosolem, R., and Wagener, T.: V2Karst V1.1: a parsimonious large-
681 scale integrated vegetation–recharge model to simulate the impact of climate and land cover change
682 in karst regions, *Geosci. Model Dev.*, 11, 4933–4964, <https://doi.org/10.5194/gmd-11-4933-2018>,
683 2018.

684 Scanlon, B. R., Fakhreddine, S., Rateb, A., Graaf, I. de, Famiglietti, J., Gleeson, T., Grafton, R. Q., Jobbagy,
685 E., Kebede, S., Kolusu, S. R., Konikow, L. F., Di Long, Mekonnen, M., Schmied, H. M., Mukherjee, A.,
686 MacDonald, A., Reedy, R. C., Shamsuddoha, M., Simmons, C. T., Sun, A., Taylor, R. G., Villholth, K.
687 G., Vörösmarty, C. J., and Zheng, C.: Global water resources and the role of groundwater in a resilient
688 water future, *Nat Rev Earth Environ*, 4, 87–101, <https://doi.org/10.1038/s43017-022-00378-6>, 2023.

689 Schaller, M. F. and Fan, Y.: River basins as groundwater exporters and importers: Implications for water
690 cycle and climate modeling, *J. Geophys. Res.*, 114, <https://doi.org/10.1029/2008JD010636>, 2009.

691 Schwartz, F. W. and Ibaraki, M.: Groundwater: A Resource in Decline, *Elements*, 7, 175–179,
692 <https://doi.org/10.2113/gselements.7.3.175>, 2011.

693 Smith, M. W., Willis, T., Mroz, E., James, W. H. M., Klaar, M. J., Gosling, S. N., and Thomas, C. J.: Future
694 malaria environmental suitability in Africa is sensitive to hydrology, *Science* (New York, N.Y.), 384,
695 697–703, <https://doi.org/10.1126/science.adk8755>, 2024.

696 Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M.,
697 Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P.,
698 MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M.,
699 Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground water and climate change, *Nature Clim
700 Change*, 3, 322–329, <https://doi.org/10.1038/nclimate1744>, 2013.

701 Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L.
702 S., Grillakis, M., Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L.,
703 Trautmann, T., Mao, G., Hanasaki, N., Koutoulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V.,
704 Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz, F.: Understanding each other's models:
705 improvement, and communication, *Geosci. Model Dev.*, 14, 3843–3878,
706 <https://doi.org/10.5194/gmd-14-3843-2021>, 2021.

707 Thompson, J. R., Gosling, S. N., Zaherpour, J., and Laizé, C. L. R.: Increasing Risk of Ecological Change to
708 Major Rivers of the World With Global Warming, *Earth's Future*, 9,
709 <https://doi.org/10.1029/2021EF002048>, 2021.

710 Trullenque-Blanco, V., Beguería, S., Vicente-Serrano, S. M., Peña-Angulo, D., and González-Hidalgo, C.:
711 Catalogue of drought events in peninsular Spanish along 1916–2020 period. *Scientific Data*, 11(1),
712 703. <https://doi.org/10.1038/s41597-024-03484-w>, 2024.

713 United Nations: The United Nations World Water Development Report 2022: groundwater: making the
714 invisible visible, UNESCO, Paris, 2022.

715 Winter, T. C.: The Role of Ground Water in Generating Streamflow in Headwater Areas and in Maintaining
716 Base Flow 1, *J American Water Resour Assoc*, 43, 15–25, [https://doi.org/10.1111/j.1752-
718 1688.2007.00003.x](https://doi.org/10.1111/j.1752-
717 1688.2007.00003.x), 2007.

719 Xie, J., Liu, X., Jasechko, S., Berghuijs, W. R., Wang, K., Liu, C., Reichstein, M., Jung, M., and Koirala, S.:
720 Majority of global river flow sustained by groundwater, *Nature Geosci*, 17, 770–777,
721 <https://doi.org/10.1038/s41561-024-01483-5>, 2024.

722 Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-
723 Resolution Global Hydrography Map Based on Latest Topography Dataset, *Water Resources
724 Research*, 55, 5053–5073, <https://doi.org/10.1029/2019WR024873>, 2019.

725 Yang, Y., Donohue, R. J., and McVicar, T. R.: Global estimation of effective plant rooting depth:
726 Implications for hydrological modeling, *Water Resources Research*, 52, 8260–8276,
727 <https://doi.org/10.1002/2016WR019392>, 2016.

728 Zamrsky, D., Ruzzante, S., Compare, K., Kretschmer, D., Zipper, S., Befus, K. M., Reinecke, R., Pasner, Y.,
729 Gleeson, T., Jordan, K., Cuthbert, M., Castranova, A. M., Wagener, T., and Bierkens, M. F. P.: Current
730 trends and biases in groundwater modelling using the community-driven groundwater model portal
731 (GroMoPo), *Hydrogeol J*, 33, 355–366, <https://doi.org/10.1007/s10040-025-02882-7>, 2025.
732 Zipper, S., Befus, K. M., Reinecke, R., Zamrsky, D., Gleeson, T., Ruzzante, S., Jordan, K., Compare, K.,
733 Kretschmer, D., Cuthbert, M., Castranova, A. M., Wagener, T., and Bierkens, M. F. P.: GroMoPo: A
734 Groundwater Model Portal for Findable, Accessible, Interoperable, and Reusable (FAIR) Modeling,
735 Ground water, <https://doi.org/10.1111/gwat.13343>, 2023.