

1 The ISIMIP Groundwater Sector: A Framework for Ensemble

2 Modeling of Global Change Impacts on Groundwater

3 Robert Reinecke¹, [Tanjila Akhter²](#), Annemarie Bäthge¹, Ricarda Dietrich¹, Sebastian Gnann³², Simon N.
4 Gosling⁴³, Danielle Grogan⁵⁴, Andreas Hartmann⁶⁵, Stefan Kollet⁷⁶, Rohini Kumar⁸⁷, Richard Lammers⁵⁴, Sida
5 Liu⁹⁸, Yan Liu⁷⁶, Nils Moosdorf^{109,110}, Bibi Naz⁷⁶, Sara Nazari¹⁰⁹, Chibuike Orazulike⁶⁵, Yadu Pokhrel²⁴⁴, Jacob
6 Schewe¹², Mikhail Smilovic^{13,14}, Maryna Strokal⁸, [Wim Thiery¹⁵](#), Yoshihide Wada¹⁶⁵, Shan Zuidema⁴, Inge de
7 Graaf⁸

8 *Correspondence to:* Robert Reinecke (reinecke@uni-mainz.de)

9 ¹Institute of Geography, Johannes Gutenberg-University, Mainz, Mainz, Germany

10 ²⁴⁴[Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA](#)

11 ³²Chair of Hydrology, University of Freiburg, Freiburg, Germany

12 ⁴³School of Geography, University of Nottingham, Nottingham, United Kingdom

13 ⁵⁴Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire,
14 USA

15 ⁶⁵Institute of Groundwater Management, TU Dresden, Dresden, Germany

16 ⁷⁶Agrosphere (IBG-3), Institute for Bio- and Geosciences, Research Centre Juelich, Juelich, Germany

17 ⁸⁷Department Computational Hydrosystems, Helmholtz Centre for Environmental Research GmbH - UFZ,
18 Leipzig

19 ⁹⁸Earth Systems and Global Change Group, Wageningen University and Research, Wageningen, the Netherlands

20 ¹⁰⁹Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany

21 ¹¹⁰Institute of Geosciences, Kiel University, Kiel, Germany

22 ²⁴⁴[Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA](#)

23 ¹²Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany

24 ¹³Water Security Research Group, International Institute for Applied Systems Analysis, Laxenburg, Austria

25 ¹⁴Chair of Hydrology and Water Resources, ETH Zurich, Zürich, Switzerland

26 ¹⁵[Vrije Universiteit Brussel, Department of Water and Climate, Brussels, Belgium](#)

27 ¹⁶⁵Biological and Environmental Science and Engineering Division, King Abdullah University of Science and
28 Technology, Thuwal, Saudi Arabia

29

30 **Abstract**

31
32
33 Groundwater serves as a crucial freshwater resource for people and ecosystems, [vital playing a vital role](#), in
34 adapting to climate change. Yet, its availability and dynamics are affected by climate variations, changes in land
35 use, and excessive extraction. Despite its importance, our understanding of how global change will influence
36 groundwater in the future remains limited. Multi-model ensembles are powerful tools for impact assessments;
37 compared to single-model studies, they provide a more comprehensive understanding of uncertainties and enhance

38 the robustness of projections by capturing a range of possible outcomes. However, to this point~~date~~, no ensemble
39 of groundwater models has been ~~was~~ available. Here, we present the new Groundwater sector within ISIMIP₁
40 which combines multiple global, continental, and regional-scale groundwater models. We describe the rationale
41 for the sector, present the sectoral output variables, and show ~~first~~the initial~~first~~ results of a model comparison.
42 We further,~~and~~ outline the synergies with other existing ISIMIP sectors₂ such as the global water sector and the
43 water quality sector. Currently, eight models are participating in this sector, ranging from gradient-based
44 groundwater models to specialized karst recharge models, each producing up to 19 out of 23 modeling protocol-
45 defined output variables. Utilizing available model outputs for a subset of participating models, we find that the
46 arithmetic mean global water table depth varies substantially between models (6 - 127 m) and shows a shallower
47 water table compared to other recent studies. Groundwater recharge also differs greatly in the global mean (78 -
48 228 mm/y), which is consistent with recent studies on the uncertainty of groundwater recharge₃ but with different
49 spatial patterns. Groundwater recharge changes between 2001 and 2006 show plausible patterns that align with
50 droughts in Spain and Portugal during this period. The simplified comparison highlights the value of a structured
51 model intercomparison project₄ which will help to better understand the impacts of climate change on the world's
52 largest accessible freshwater store – groundwater.

53

54

55 1 Introduction

56 Groundwater is the world's largest accessible freshwater resource, vital for human and environmental well-being
57 (Huggins et al., 2023; Scanlon et al., 2023), serving as a critical buffer against water scarcity and surface water
58 pollution (Foster and Chilton, 2003; Schwartz and Ibaraki, 2011). It supports irrigated agriculture, which supports
59 17% of global cropland and 40% of food production (Döll and Siebert, 2002; Perez et al., 2024; United Nations,
60 2022; Rodella et al., 2023). However, unsustainable extraction in many regions has led to declining groundwater
61 levels, the drying of rivers, lakes and wells, land subsidence, seawater intrusion, and aquifer depletion (e.g.,
62 Bierkens and Wada (2019); de Graaf et al. (2019); Rodell et al. (2009)).

63 The pressure on groundwater systems intensifies due to the combined effects of population growth, socioeconomic
64 development, agricultural intensification, and climate change, e.g., through a change in groundwater recharge
65 (Taylor et al., 2013; Reinecke et al., 2021). Rising temperatures and altered precipitation patterns are already
66 reshaping water availability and demand, with significant implications for groundwater use. For instance,
67 changing aridity is expected to influence groundwater recharge rates (Berghuijs et al., 2024), yet the consequences
68 for groundwater levels₅ dynamics remain limited (Moeck et al., 2024; Cuthbert et al., 2019). It is further unclear
69 how these shifts will affect groundwater's role in sustaining ecosystems, agriculture, and human water supplies.

70 Understanding the impacts of climate change and the globalized economy on groundwater systems requires a
71 large-scale perspective (Haqqi et al., 2023; Konar et al., 2013; Dalin et al., 2017). While groundwater
72 management is traditionally ~~conducted~~ at local or regional scales, aquifers often span administrative
73 boundaries, and over-extraction in one area can have far-reaching effects not captured by a local model.
74 Moreover, groundwater plays a critical role in the global hydrological cycle, influencing surface energy
75 distribution, soil moisture, and evapotranspiration through processes such as capillary rise (Condon and Maxwell,

76 2019; Maxwell et al., 2016) and supplying surface waters with baseflow (Winter, 2007; Xie et al., 2024). These
77 interactions underscore the importance of groundwater in buffering climate dynamics over extended temporal and
78 spatial scales (Keune et al., 2018) and ~~require~~underscore the need for a global perspective of the water-climate
79 cycle. While large-scale climate-groundwater interactions are starting to become understood (Cuthbert et al.,
80 2019), current global water and climate models may not always capture these feedbacks as most either do not
81 consider groundwater at all or only include a simplified storage bucket, limiting our understanding of how climate
82 change will affect the water cycle as a whole.

83 The inclusion of groundwater dynamics in global hydrological models remains a considerable challenge due to
84 data limitations and computational demands (Gleeson et al., 2021). Simplified representations, e.g., linear
85 reservoir (Telteu et al., 2021), often fail to capture the complexity of groundwater-surface water interactions,
86 lateral flows at local or regional scales, or the feedback between groundwater pumping and streamflow (de Graaf
87 et al., 2017; Reinecke et al., 2019). These processes are crucial for evaluating water availability, particularly in
88 regions heavily dependent on groundwater. For instance, lateral flows sustain downstream river baseflows and
89 groundwater availability, ~~which, in turn,~~ impacting water quality and ecological health (Schaller and Fan, 2009;
90 Liu et al., 2020). ~~N~~and not including head dynamics may lead to overestimation of groundwater depletion
91 (Bierkens and Wada, 2019). Multiple continental to global-scale groundwater models have been developed in
92 recent years to represent these critical processes (for an overview, see also Condon et al. (2021)and Gleeson et
93 al. (2021)).

94 While current model ensembles of global water assessments have not yet ~~included~~incorporated gradient-based
95 groundwater processes, they have already significantly advanced our ~~large-scale~~ understanding of the ~~large-scale~~
96 groundwater system. The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), analogous to the
97 Coupled Model Intercomparison Project (CMIP) for climate models (Eyring et al., 2016a), is a well-established
98 community project to carry out model ensemble experiments for climate impact assessments (Frieler et al., 2017;
99 2024; 2025). The current generation of models in the Global Water Sector of ISIMIP often represents groundwater
100 as a simplified storage that receives recharge, releases baseflow, and can be pumped (Telteu et al., 2021). Still, it
101 lacks lateral connectivity and head-based surface-groundwater fluxes. Nevertheless, the ISIMIP water sector
102 provided important insights on, for example, future changes and hotspots in global terrestrial water storage
103 (Pokhrel et al., 2021), environmental flows (Thompson et al., 2021), the planetary boundary for freshwater change
104 (Porkka et al., 2024), uncertainties in the calculation of groundwater recharge (Reinecke et al., 2021), and the
105 development of methodological frameworks to compare model ensembles (Gnann et al., 2023).

106 Here, we present a new sector in ISIMIP called the ISIMIP Groundwater Sector, which integrates ~~models of the~~
107 ~~groundwater community~~ ~~currently available groundwater models~~ that operate at regional (at least multiple km²
108 (Gleeson and Paszkowski, 2014)) to global scales and are committed to providing model simulations to this new
109 sector. The ~~G~~roundwater sector aims to provide a comprehensive understanding of the current state of
110 groundwater representation in large-scale models, identify groundwater-related uncertainties, enhance the
111 robustness of predictions regarding the impact of global change on groundwater and connected systems through
112 model ensembles, and provide insight into how to most reliably and efficiently model groundwater on regional to
113 global scales. The new ~~G~~roundwater sector is a separate but complementary sector to the existing ~~G~~lobal

114 Water sector. To our knowledge, there are currently no long-term community efforts for a structured model
115 intercomparison project for groundwater models. While studies have benchmarked different modeling approaches
116 (e.g., Maxwell et al. 2014), or compared model outputs (Reinecke et al., 2021; 2024), or collected information on
117 where and how we model groundwater (Telteu et al., 2021; Zipper et al., 2023; Zamrsky et al., 2025), no effort
118 yet aims at forcing different groundwater models with the same climate and human forcings for different scenarios.

119 Specifically, the ISIMIP Groundwater sector will compile a model ensemble that enables us to assess the impact
120 of global change on various groundwater-related variables and quantify model and scenario-related uncertainties.
121 These insights can then be used to quantify the impacts of global change on, for example~~e.g.~~, water availability
122 and in relation to other sectors impacted by changes in groundwater. The ISIMIP Groundwater sector has natural
123 linkages with other ISIMIP sectors, such as Global Water, Water Quality, Regional Water, and
124 Agriculture. This paper will highlight the connections between groundwater and ~~these other~~different ISIMIP
125 sectors, providing an opportunity to improve~~enhance~~ our understanding of how modeling choices affect
126 groundwater simulation dynamics.

127

128

129 **2 The ISIMIP framework**

130 ISIMIP aims to provide a framework for consistent climate impact data across sectors and scales. It facilitates
131 model evaluation and improvement, enables climate change impact assessments across sectors, and provides
132 robust projections of climate change impacts under different socioeconomic scenarios. ISIMIP uses a subset of
133 bias-adjusted climate models from the CMIP6 ensemble. The subset is selected to represent the broader CMIP6
134 ensemble while maintaining computational feasibility for impact studies (Lange, 2021).

135 ISIMIP has undergone multiple phases, with the current phase being ISIMIP3. The simulation rounds consist of
136 two main components: ISIMIP3a and ISIMIP3b, each serving distinct purposes. ISIMIP3a focuses on model
137 evaluation and the attribution of observed climate impacts, covering the historical period up to 2021. It utilizes
138 observational climate and socioeconomic data and includes a counterfactual "no climate change baseline" using
139 detrended climate data for impact attribution. Additionally, ISIMIP3a includes sensitivity experiments with high-
140 resolution historical climate forcing. In contrast, ISIMIP3b aims to quantify climate-related risks under various
141 future scenarios, covering pre-industrial, historical, and future projections. ISIMIP3b is divided into three groups:
142 Group I for pre-industrial and historical periods, Group II for future projections with fixed 2015 direct human
143 forcing, and Group III for future projections with changing socioeconomic conditions and representation of
144 adaptation. Despite their differences in focus, time periods, and data sources, both ISIMIP3a and ISIMIP3b require
145 the use of the same impact model version to ensure consistent interpretation of output data, thereby contributing
146 to ISIMIP's overall goal of providing a framework for consistent climate impact data across sectors and scales.

147 The creation of a new ISIMIP Groundwater sector is not linked to any funding and is a community-driven effort
148 that includes all modeling groups that wish to participate. During the creation process, multiple groups and
149 institutions were contacted to participate, and additional modeling groups are welcome to join the sector in the
150 future. Models participating in the sectors do not need to be able to model all variables and scenarios defined in

151 the protocol. ISIMIP sectors can be linked to broader thematic concepts, such as Agriculture, or can focus on
152 specific components of the Earth system, such as Lakes or Groundwater (see also
153 <https://www.isimip.org/about/#sectors-and-contacts>). The separation into these sectors is driven by the
154 availability of models that can be integrated into a model-intercomparison framework, which is based on the same
155 climatic and human forcings and produces a set of comparable output variables. We would like to note that
156 groundwater is not an isolated system, but rather part of the water cycle and the Earth system as a whole. Still,
157 Focusing on it within a dedicated sector aligns well with the existing models and is useful for studying
158 groundwater systems in a thematically focused way. Collaboration (and perhaps integration) with sectors like the
159 Global Water sector is possible and also desirable in the future. While intersectoral collaboration is desirable, it
160 is not a necessity; we discuss possible future synergies with other existing ISIMIP sectors in Section 5.

161

162 In the short term, the groundwater sector will focus on the historical period from 1901 to 2019 in ISIMIP3a
163 (https://protocol.isimip.org/#/ISIMIP3a/water_global/groundwater), utilizing with the climate-related forcing
164 based on observational data (obsclim) and the direct human forcing based on historical data (histsoc). We aim to
165 utilize these simulations for an in-depth model comparison, including a comparison to observational data such
166 as time series of groundwater table depth (e.g., Jasechko et al., 2024) and by utilizing so-called functional
167 relationships (Reinecke et al., 2024; Gnann et al., 2023). Functional relationships can be defined as covariations
168 of variables across space and/or time, and they are a key aspect of our theoretical knowledge of Earth's
169 functioning. Examples include relationships between precipitation and groundwater recharge (Gnann et al. 2023;
170 Berghuijs et al. 2024) or between topographic slope and water table depth (Reinecke et al., 2024). We aim to utilize
171 these simulations for an in-depth model comparison, including a comparison to observational data such as time
172 series of groundwater table depth (e.g., Jasechko et al. (2024)) and by utilizing functional relationships (Reinecke
173 et al., 2024).

174 -This will yield a new understanding of how these models differ, what the reasons for these differences are, and
175 how they could be improved. In addition, it will provide a basis for implementing impact analyses with ensemble
176 runs based on future scenarios using ISIMIP3b inputs.

177

178 3 The current generation of groundwater models in the sector

179 Many large-scale groundwater models are already participating in the sector (Table 1), and we expect it to expand
180 further. The current models are mainly global-scale, with some having a particular regional focus, and primarily
181 using daily timesteps.

182 While the main primary modeling purpose of most models is to simulate parts of the terrestrial water cycle, they
183 all focus on different aspects (such as karst recharge or sea-water intrusion), most investigate interactions between
184 groundwater and land surface processes, and account for human water uses. Two models (V2KARST and GGR)
185 have distinct purposes in modeling groundwater recharge and do not model any head-based groundwater fluxes.
186 Conceptually, the models may be classified according to Condon et al. (2021) into five categories: lumped models
187 with static groundwater configurations of long-term mass balance (a), saturated groundwater flow with recharge,

188 and surface water exchange fluxes as upper boundary conditions without lateral^{al} fluxes (b), quasi 3D models with
 189 variably saturated flow in the soil column and a dynamic water table as a lower boundary condition (c), saturated
 190 flow models solving mainly the Darcy equation (d), and variably saturated flow which is calculated as three-
 191 dimensional flow throughout the entire subsurface below and above the water table (e). See Condon et al. (2021)
 192 and also Gleeson et al. (2021) for a more detailed overview and discussion of approaches. Half of the models
 193 (Table 1) simulate a saturated subsurface flux (d), while V2KARST and GGR mainly use a 1D vertical approach
 194 (b), and others simulate a combination of multiple approaches (ParFlow, Table 1) or can switch between different
 195 approaches (CWatM, Table 1).

196

197 The sector protocol is defined at <https://protocol.isimip.org/#/ISIMIP3a/groundwater> and will be updated over
 198 time. We have defined multiple joint outputs for this sector (23 variables in total), but not all models can yet
 199 provide all outputs (Table 2). Models can provide 1-19 outputs (11 on average), and multiple models have
 200 further additional outputs that are currently under development. The global water sector also contains groundwater-
 201 related variables (Table A2), enabling groundwater-related analysis. We list them here to show their close
 202 connection to the global water sector and facilitate an overview of future groundwater-related studies.

203 The current sector protocol defines a targeted spatial resolution of 5 arcmin, as this represents not only the
 204 resolution achievable by most global models but also the coarsest resolution at which meaningful representation
 205 of groundwater dynamics, particularly lateral groundwater flows and water table depths, can still be captured
 206 (Gleeson et al., 2021). ISIMIP3 also specifies experiments with different spatial resolutions, but whether this is
 207 achievable with a sub-ensemble of the presented models remains unclear, as it depends on the available
 208 computational time, flexibility of model setups, and data availability. To ensure consistency and comparability,
 209 the model outputs are currently post-processed by the modeling groups to aggregate their outputs to the protocol-
 210 specified spatial and temporal resolutions.

211 **Table 1:** Summary of all models participating in the ISIMIP Groundwater sector. This table lists only models
 212 that add new variables to the ISIMIP protocol. Models already part of the global water sector and providing other
 213 groundwater-related variables are not listed here. (GMD discussion formatting requires a portrait instead of a
 214 landscape table)

Model name	Main model purpose	Coupling with other models	Spatial domain and resolution	Temporal resolution	Hydrogeological configuration, e.g. number of layers	Conceptual model according to Condon et al.	Calibrated	Representation of groundwater use	Main Reference
Water Balance Model (WBM)	Representation of the terrestrial hydrological cycle, including	-	Global and regional. Spatial resolution defined by the input	Sub-daily, Daily, Multi-day	1 soil layer, 2 groundwater layers	d.	Globally: no, regional: yes (NE, US)	Through calculated abstractio ns from groundwater.	Grogan et al. (2022) With groundwater methods based on

	human interaction s.		river network.						de Graaf et al. (2015); de Graaf et al. (2017).
Community Land Model (CLM)	To simulate surface and subsurface hydrologic processes, including crop growth, irrigation, and groundwater withdrawal.	Community Earth System Model (CESM)	Global and regional (0.05 (regional), 0.1, 0.25, and 0.5 degree (global))	Sub-Daily	20 soil layers extending up to 8.5 m; 1 aquifer layer, unconfined	c.	No	Yes	Felfelani et al. (2021) Lawrence et al. (2019)
Community Water Model (CWatM)	To reproduce main hydrologic processes, including water management on regional to global scales.	MODFLOW W (optional)	Global, regional, subbasin (30 arcsecond s, 1 km, 1 arc-min, 5 arc-min, 30 arc-min)	Daily	Standard: 1 with MODFLOW W: variable	Standard: a./b. With MODFLOW W: d.	Globally: yes (with discharge), regional: tailored	Yes	Guillaumont et al. (2022); Burek et al. (2020)
Global Gradient-based Groundwater Model (G ³ M)	Understanding of surface water, coastal, and ecosystem interaction with groundwater.	WaterGA P (Müller Schmied et al., 2016)	Global (5 arc minutes)	Daily, monthly, or yearly	2 layers, second layer with a reduced hydraulic conductivity	d.	No	Through calculated net abstractions from groundwater of WaterGA P	Reinecke et al. (2019); Kretschmer et al. (2025)
VIC-WUR-MODFLOW	Grid-based macro-	WOFOST (WOrld FOod	Regionally and globally:	Sub-daily to monthly	3 soil layers (variable)	d.	Globally: no,	Through calculated demands	Liu et al in prep.;

W (VIC-wur)	scale hydrological model that solves both the surface energy balance and water balance equations.	STudies) (Droppers et al 2021)	5 arcminutes		thickness), 2 groundwater layers (variable thickness, confined/unconfined systems.		regional: yes	and allocation to surface water/groundwater.	Droppers et al. 2020.; Liang et al. (1994)
V2KART	A grid-based vegetation–recharge model for the global karst areas.	-	Globally: 0.25 arc degree	Daily	three soil layers and one epikarst layer	b.	Yes, based on global karst landscapes	no	Sarrazin et al. (2018)
<u>Global Groundwater Rain-fed Recharge (GGR) GGR</u>	A grid-based three-layer water balance model to estimate the daily global rain-fed groundwater recharge	-	180.0°W to 180.0°E longitudes and 60.0°N to 60.0°S latitudes, 0.1 degree	Daily	2 soil layers and 1 groundwater layer of variable thickness	b.	No	No	Nazari et al. (2025)
ParFlow	3D continuum simulations of variably saturated groundwater-surface water and land surface processes.	Common Land Model, CLM (Maxwell and Miller, 2005; Kollet and Maxwell, 2008), Terrestrial Systems Modeling Platform	Regionally and globally, $10^0 - 10^1 \text{ km}$	Variable	Variable	a. - e.	Yes, in engineering applications	Yes	Kuffour et al. (2020)

		(Gasper et al., 2014), WRF (Maxwell et al., 2011)								
--	--	---	--	--	--	--	--	--	--	--

215

216

217

218

219

220

221

Table 2: List of output variables in the ISIMIP3a ~~global Ge~~ groundwater sector. The spatial resolution is five arcminutes (even if some models simulate at a higher or coarser resolution), and the temporal resolution is monthly. Most models also simulate daily timesteps, but as most groundwater movement happens across longer time scales, we unified the unit to months. A “**” indicates that a model is able to produce the necessary output. A “+” indicates that this output is currently under development. (GMD discussion formatting requires a portrait instead of a landscape table)

Groundwater sector output variables		Unit	VBM	CLM	CWaM	G3M	VIC-wur	V2KARST	GGR	ParFlow
Name	Description									
Capillary rise	Upward flux from groundwater to soil (leaving aquifer = negative value).	$\text{m}^3 \text{ m}^{-2} \text{ month}^{-1}$	*	*			*			*
Diffuse groundwater recharge	Downwards flux from soil to groundwater (entering aquifer = positive value). The unit $\text{kg m}^{-2} \text{ s}^{-1}$ is equal to mm s^{-1} . Unit is kept equal to the global water sector.	$\text{kg m}^{-2} \text{ s}^{-1}$	*	*	*		*	*	*	*
Groundwater abstractions	Groundwater pumped from the aquifer.	$\text{m}^3 \text{ m}^{-2} \text{ month}^{-1}$	*	*	*		+		+	
Groundwater abstractions (domestic)	<i>Groundwater abstractions</i> that are intended for domestic water use.	$\text{m}^3 \text{ m}^{-2} \text{ month}^{-1}$	*		*		+		+	

Groundwater abstractions (industries)	<i>Groundwater abstractions</i> that are intended for industrial water use.	m3 m-2 month-1	*		*		+		+
Groundwater abstractions (irrigation)	<i>Groundwater abstractions</i> that are intended for irrigational water use.	m3 m-2 month-1	*	*	*		+		+
Groundwater abstractions (livestock)	<i>Groundwater abstractions</i> that are intended for livestock water use.	m3 m-2 month-1	*		*		+		
Groundwater demands	Gross water demand	m3 m-2 month-1	*	*	*		+		
Groundwater depletion	Long-term losses from groundwater storage	m3 m-2 month-1	*	*		*	+		*
Groundwater drainage/surface water capture	Exchange flux between groundwater and surface water. Groundwater leaving the aquifer = negative value; entering the aquifer = positive value	m3 m-2 month-1	*	*	*	*	*		*
Groundwater drainage/surface water capture from lakes	Exchange flux between groundwater and surface water (lakes); if available, additional to the sum of exchange fluxes (Groundwater drainage/surface water capture) also separate components can be provided/ Leaving the aquifer = negative values; entering the aquifer = positive value.	m3 m-2 month-1				*	*		*
Groundwater drainage/surface water capture from rivers	Exchange flux between groundwater and surface water (rivers); if available, additional to the sum of exchange fluxes (Groundwater drainage/surface water capture) also separate components can be provided/ Leaving the aquifer = negative values; entering the aquifer = positive value.	m3 m-2 month-1	*		*	*			*
Groundwater drainage/surface water capture from springs	Exchange flux between groundwater and surface water (springs); if available, additional to the sum of exchange fluxes (Groundwater drainage/surface water capture) also separate components can be provided/ Leaving the aquifer = negative	m3 m-2 month-1			*	*			*

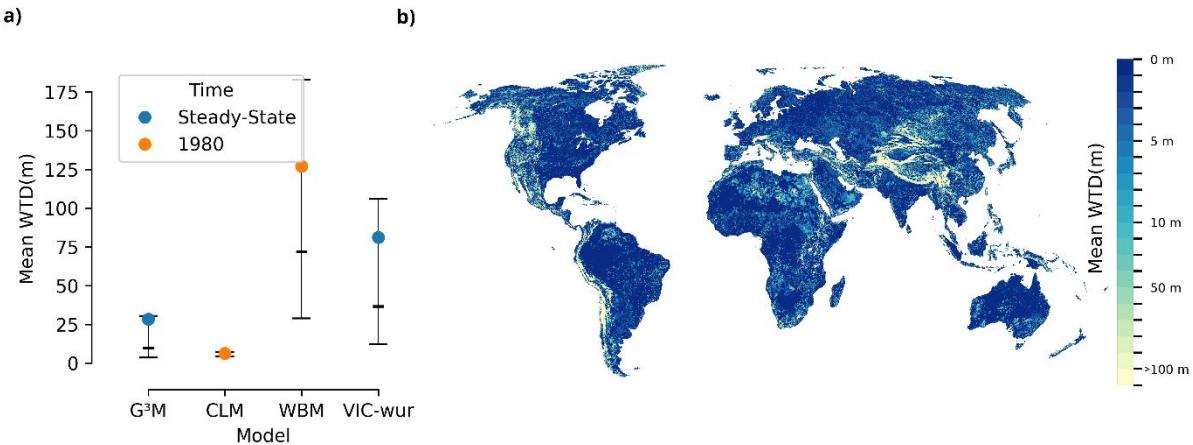
	values; entering the aquifer = positive value.									
Groundwater drainage/surface water capture from wetlands	Exchange flux between groundwater and surface water (wetlands); if available, additional to the sum of exchange fluxes (Groundwater drainage/surface water capture) also separate components can be provided/ Leaving the aquifer = negative values; entering the aquifer = positive value.	m3 m-2 month-1			*	*			*	
Groundwater return flow	Return flow of abstracted groundwater (not yet separated into different sources).	m3 m-2 month-1	*	*					*	
Groundwater storage	Mean monthly water storage in groundwater layer in kg m ⁻² . The spatial resolution is 0.5° grid.	m3 m-2 month-1	*	*	*	*			*	
Hydraulic head	Head above sea level in m. If more than one aquifer layer is simulated, report the heads on the top productive aquifer (confined or unconfined).	m	*		*	*			*	
Lateral groundwater flux (front face)	Cell-by-cell flow (front)	m3 m-2 month-1	*	*	*	*			*	
Lateral groundwater flux (right face)	Cell-by-cell flow (right)	m3 m-2 month-1	*	*	*	*			*	
Lateral groundwater flux (net)	Net cell-by-cell flow	m3 m-2 month-1	*	*	*	*			*	
Lateral groundwater flux (lower face)	Cell-by-cell flow (lower) when more than 1 groundwater layer is simulated.	m3 m-2 month-1	*		*	*			*	
Submarine groundwater discharge	Flow of groundwater into oceans. The definition may vary by model. But in principle also models without density driven flow can submit this variable.	m3 m-2 month-1	*		*				*	
Water table depth	Depth to the water table below land surface (digital elevation mode, DEM) in m.	m	*	*	*	*			*	
Number of groundwater output	Counting only currently available		19	13	9	14	14	1	1	17

variables in model											
-------------------------------	--	--	--	--	--	--	--	--	--	--	--

222

223

224 **4 Unstructured experiments point out model differences that should be explored further**

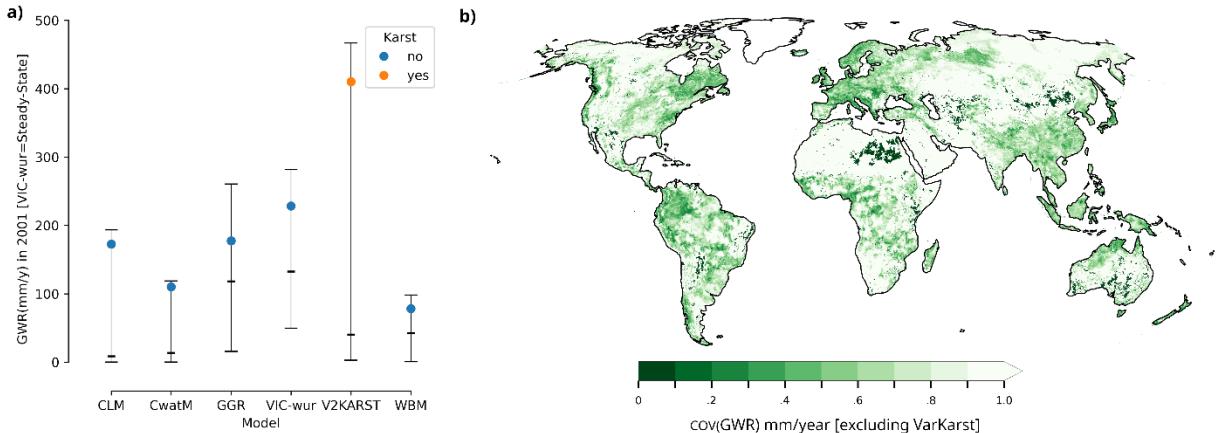

225 The ISIMIP groundwater sector is in an early development stage, and we hope that an ensemble of groundwater
226 models driven by the same meteorological data will be available soon. Yet, to provide first insights into the
227 models, their outputs, and how these can be compared, we collected existing outputs from the participating models
228 (see Table A1 for an overview). We opted for a straightforward initial comparison due to the various data formats,
229 model resolutions, and forcings that complicate a more thorough examination of a specific scientific inquiry. One
230 of our goals in the Groundwater sector is to conduct extensive analysis to better illustrate and understand the
231 model differences. The analysis presented here is intended solely as an introductory overview to provide a sense
232 of the rationale behind our initiative. Some overlap with recent model comparison studies naturally exists (e.g.,
233 Gnann et al., 2023; Reinecke et al., 2024, Reinecke et al. 2021); however, even though this brief- the
234 presentedcurrent work analysis contains a different ensemble of models, and thus thus provides some new
235 insights. ThusHence, this descriptive analysis serves as an introductory overview that highlights the present state
236 of the art and identifies model discrepancies warranting further investigation. In addition, relevant output data are
237 not yet available for all models. We focused on the two variables with the largest available ensemble: water table
238 depth (G³M, CLM, WBM, and VIC-wur; Table 1) and groundwater recharge (CLM, CWatM, GGR, VIC-wur,
239 V2KARST, WBM; Table 1), only on historical periods rather than future projections.

240 The arithmetic mean (not weighted by cell area) global water table depth varies substantially (6 m – 127 m)
241 between the models at the start of the simulation (1980 or steady-state) (Fig. 1a). On average, the water table of
242 G³M (28 m) and CLM (6 m) are shallower than WBM (127 m) and VIC-wur (81 m), whereas the latter two also
243 show a larger standard deviation (WBM: 133 m, VIC-wur: 105 m) than the other two models (G³M: 49 m, CLM:
244 3 m). The consistently shallower WTD of CLM impacts the ensemble mean WTD (Fig. 1b), which is shallower
245 compared to other model ensembles (5.67 m WTD as global mean here compared to 7.03 m in Reinecke et al.
246 (2024)).

247 This difference in ensemble WTD points to conceptual differences between the models. G³M and CLM both use
248 the relatively shallow WTD estimates of Fan et al. (2013) as initial state or spin-up, which could explain the
249 overall shallow water table depth. The difference between G³M and VIC-wur is consistent with the findings in
250 Reinecke et al. (2024), which showed a deeper water table simulated by the de Graaf et al. (2017) groundwater
251 model, which developed an aquifer parameterization adapted and conceptually similar to VIC-wur and WBM.
252 This difference may be linked to the implementation of groundwater drainage/surface water infiltration or
253 transmissivity parameterizations (Reinecke et al., 2024) as well as differences in groundwater recharge (Reinecke
254 et al., 2021). Furthermore, the models are not yet driven by the same climatic and human forcings, thereby possibly
255 causing different model responses. The newly initiated ISIMIP Groundwater sector offers an opportunity to
256 investigate these differences much more systematically in future studies, for example, by ruling out forcing as a
257 driver of the model differences and by exploring spatial and temporal relationships with key groundwater drivers
258 such as topography (e.g., Reinecke et al., 2024). In addition, the ISIMIP Groundwater sector provides a platform
259 for using the modelling team's expertise on their model implementations (e.g., model structures and parameter
260 fields) to better understand the origins of these differencesThis difference in ensemble WTD points to conceptual

261 ~~differences between the models, which should be investigated further, for example, by exploring spatial and~~
262 ~~temporal differences and relationships with important groundwater drivers (Reinecke et al., 2024), which should~~
263 ~~be investigated further, for example, by exploring spatial and temporal differences and relationships with~~
264 ~~important groundwater drivers (Reinecke et al., 2024).~~

265

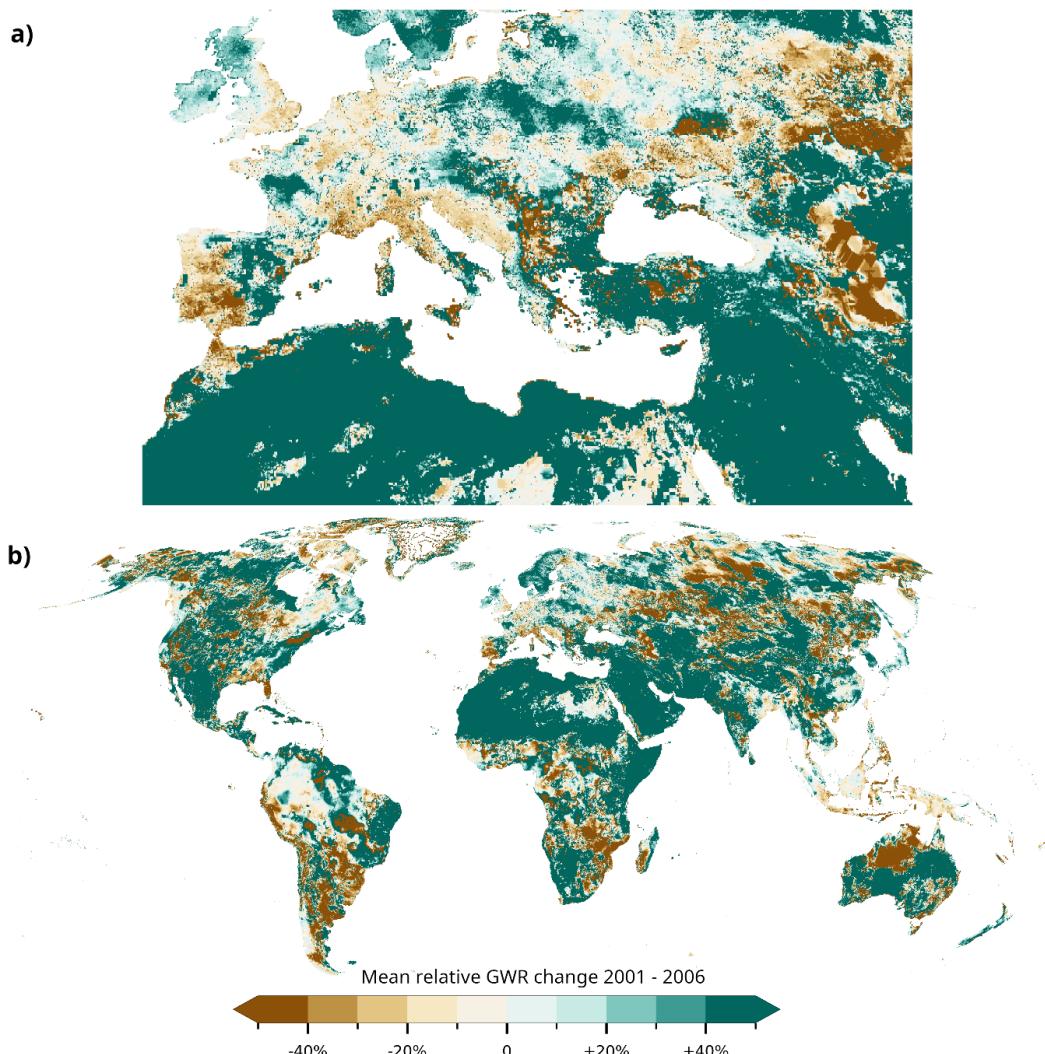

266

267 **Figure 1:** Global water table depth (WTD) at simulation start (1980) or the used steady-state. The simplified
268 boxplot (a) shows the arithmetic model mean as a colored dot and the median as a black line. Whiskers indicate
269 the 25th and 75th percentiles, respectively. The global map (b) shows the arithmetic mean of the model ensemble.
270 Models shown are not yet driven by the same meteorological forcing (see also table A1).

271

272 Similarly, the global arithmetic mean groundwater recharge (not weighted by cell area) differs by 332 mm/y
273 between models (150 mm/y excluding V2KARST since it calculates recharge in karst regions only) (Fig. 2a). This
274 difference in recharge is more pronounced spatially (Fig. 2b) than differences in WTD shown before (Fig. 1b).
275 Especially in drier regions such as in the southern Africa, central Australia, and the northern latitudes show
276 coefficient of variation of 1 or greater (white areas). In extremely dry areas such as the east Sahara and southern
277 Australia, the model spread is close to 0 (dark green). While the agreement is higher in Europe and western South
278 America, the global map differs slightly from other recent publications (e.g., compared to Fig. 1b in Gnann et al.
279 (2023)). In light of other publications, highlighting model uncertainty in groundwater recharge (Reinecke et al.,
280 Kumar et al., 2025) and the possible impacts of long-term aridity changes on groundwater recharge
281 (Berghuijs et al., 2024), an extended combined ensemble of the global water sector and the new Geroundwater
sector could yield valuable insights.

282

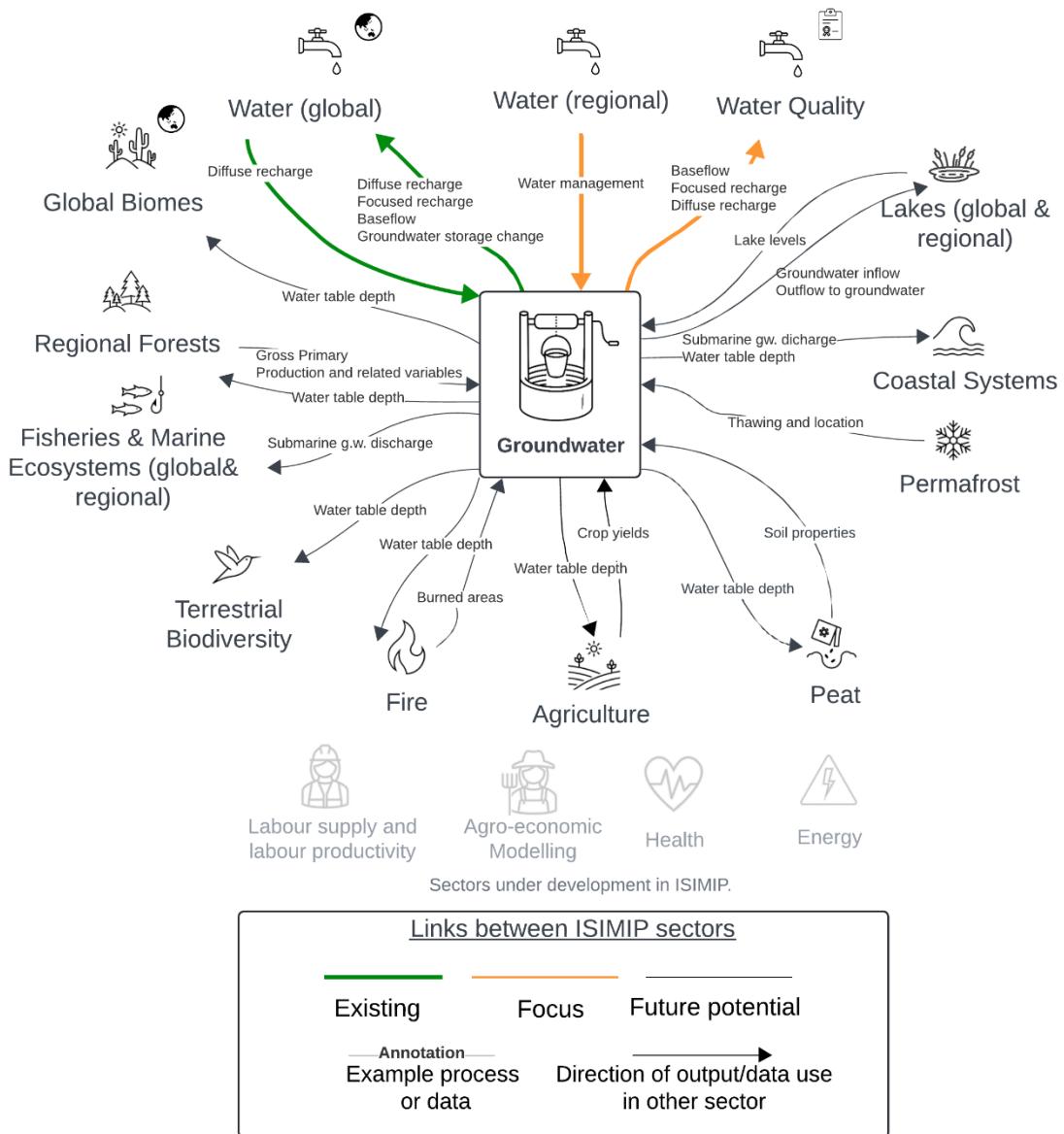


283

284 **Figure 2:** Global groundwater recharge (GWR) in 2001 or at steady-state (only VIC-wur). The simplified boxplot
 285 (a) shows the arithmetic model mean as a colored dot and the median as a black line. Whiskers indicate the 25th
 286 and 75th percentiles, respectively. The global map (b) shows the coefficient of variation of the model ensemble
 287 without V2KARST. Models shown are not yet driven by the same meteorological forcing (see also table A1).

288

289 We further calculated relative changes in groundwater recharge between 2001 and 2006 (Fig. 3) with an ensemble
 290 of 7 models (CLM, CWatM, GGR, VIC-wur, V2KARST, WBM, and ParFlow). The ensemble includes two
 291 models that only simulate specific regions (V2KARST: regions of karstifiable rock, ParFlow: Euro CORDEX
 292 domain). This result shows a potential analysis that should be repeated within the new Groundwater sector.
 293 Intentionally, we do not investigate model agreement on the sign of change or compare them with observed data.
 294 The ensemble still highlights plausible regions of groundwater recharge changes, such as in Spain and Portugal,
 295 which aligns with droughts in the investigated period (Panque Salgado and Vargas Molina, 2015; Coll et al.,
 296 2017; Trullenque-Blanco et al., 2024). Relative increases in groundwater recharge are mainly shown for arid
 297 regions in the Sahara, the Middle East, Australia, and Mexico. However, it is likely that because we investigate
 298 relative changes, this might be related to the already low recharge rates in these regions.


299

300 **Figure 3:** Mean relative percentage change of yearly groundwater recharge between 2001 and 2006 for Europe
 301 (a), and all continents except Antarctica (b). The ensemble consists of all models that provided data for the years
 302 2001 and 2006 (CLM, CWatM, GGR, VIC-wur, V2KARST, WBM, and ParFlow). V2KARST (only karst) and
 303 ParFlow (only Euro CORDEX domain) were only accounted for in regions where data is available. [Models shown](#)
 304 [are not yet driven by the same meteorological forcing \(see also table A1\).](#)

305

306 **5 Groundwater as a linking sector in ISIMIP**

307 ISIMIP encompasses a wide variety of sectors. Currently, 18 sectors are part of the impact assessment effort. The
 308 [Groundwater](#) sector offers a new and unique opportunity to enhance cross-sectoral activities within ISIMIP,
 309 foster interlinkages within ISIMIP, and thus deliver interdisciplinary assessments of climate change impacts.

311 **Figure 4:** The Groundwater sector provides the potential for multiple interlinkages between different sectors
 312 within ISIMIP. In the coming years, we will focus on links to three sectors (green and orange): Water (global),
 313 Water (regional), and Water Quality. Other cross-sectoral linkages between non-Groundwater sectors (i.e.,
 314 linkages between the outer circle) are not shown. Sectors that are currently under development or have not yet
 315 have data or outputs that could be shared or used for cross-sectoral assessments are shown in gray. Interactions
 316 between sectors are annotated with example processes, key variables, or datasets that can be shared between
 317 sectors.

318 Some links with other sectors within ISIMIP are more evident than others with regard to existing scientific
 319 community overlaps or existing scientific questions (Fig. 4). The examples of variables and data that can be shared
 320 among sectors shown in Fig. 4 provide a non-exhaustive description of current variables that the sectors already
 321 describe in their protocols. Whether cross-sectoral assessments will utilize this available data is up to the modeling
 322 teams that contribute to the sectors. –For example, the new Groundwater sector will focus on large-scale
 323 groundwater models, some of which are already part of global water models participating in the Global Water
 324 Sector or using outputs (such as groundwater recharge) from the Global Water S

325 groundwater variables in the global water sector Table A2). However, the Groundwater sector will also feature
326 non-global representations of groundwater. Thus, collaborating with the Regional Water sector could provide
327 opportunities to share outputs and pursue common assessments. For example, the outputs of the groundwater
328 model ensemble, such as water table depth variations or surface water groundwater interactions, could be used as
329 input for some regional models that consider groundwater only as a lumped groundwater storage. Conversely,
330 global and continental groundwater models can ~~learn from validated regional hydrological models, which may~~
331 ~~provide insights into local runoff generation processes and benefit from validated regional hydrological models,~~
332 ~~which may provide valuable insights into local runoff generation processes and the~~ impacts of water management.

333 Furthermore, the relevance of groundwater for water quality assessments is widely recognized (e.g., for
334 phosphorous transport from groundwater to surface water (Holman et al., 2008), or for salinization (Kretschmer
335 et al., 2025)), or as a link between warming groundwater and stream temperatures (Benz et al., 2024). And the
336 community effort of Friends of Groundwater called for a global assessment of groundwater quality (Misstear et
337 al., 2021). The Water Quality sector could incorporate model outputs from the Groundwater sector as input to
338 improve, for example, their estimates of groundwater contributions to surface water quantity or leakage of surface
339 water to groundwater. On the other hand, the Groundwater sector can utilize estimates of the Water Quality sector
340 to better assess water availability by incorporating water quality criteria. Ultimately, this may also result in
341 advanced groundwater models in the Groundwater sector that account for quality-related processes directly, which
342 can then be integrated into a future modeling protocol. One of the models (G³M; see Table 1) is already capable
343 of simulating salinization processes.

344 Leveraging such connections between sectors will provide valuable insights beyond groundwater itself. The
345 outputs and models that can be used for intersectoral assessments depend on the research question and may
346 necessitate the use of only a subset of models from an ensemble. Leveraging such connections will provide
347 valuable insights beyond groundwater itself.

348 Specifically, considering groundwater quality, a collaboration between both sectors could be achieved in multiple
349 aspects. Integrating groundwater availability with water quality helps ensure sufficient and safe drinking and
350 irrigation water. Focusing on aquifer storage levels and pollutant loads can help maintain groundwater resilience,
351 safeguard food security, and protect public health under changing climate and socioeconomic conditions. Further,
352 integrating groundwater quantity data with pollution source mapping helps prioritize remediation efforts where
353 aquifers are most vulnerable, ensuring both water availability and quality. Concerning observational data, a
354 unified approach to collecting and developing shared databases for groundwater levels and water quality
355 measurements across multiple agencies reduces bureaucratic hurdles and ensures consistent, comparable data.
356 Using standardized procedures for dealing with observational uncertainties ~~such as data gaps, scaling issues, and~~
357 ~~measurement inconsistencies, such as data gaps, scaling issues, and measurement inconsistencies,~~ would support
358 collaborative research further.

359 Research opportunities arise in other sectors as well. Groundwater is connected to the water cycle and social,
360 economic, and ecological systems (Huggins et al., 2023). For example, health impacts (such as water- and vector-
361 borne diseases) are closely related to water quantity and quality (e.g. Smith et al. (2024)), and the roles of
362 groundwater for forest resilience (regional forest sector, (Costa et al., 2023; Esteban et al., 2021)) and forest fires

363 (fire sector) under climate change are yet to be explored (Fig. 4). To prioritize our efforts and set a research agenda
364 for the groundwater ISIMIP sector, we will first focus on existing and more straightforward connections to the
365 global water sector, regional water sector, and the water quality sector and then expand to collaboration with other
366 sectors (Fig. 4).

367

368 **6 A vision for the ISIMIP groundwater sector**

369 Given groundwater's importance in the Earth system and for society, it is imperative to expand our knowledge of
370 groundwater and (1) how it is impacted by global climate change and other human forcings and (2) how, in turn,
371 this will affect other systems connected to groundwater. This enhanced understanding is essential to equip us with
372 the knowledge needed to address future challenges effectively. The ISIMIP Groundwater sector serves as a
373 foundation for examining and measuring the effects of global change on groundwater systems worldwide. It
374 facilitates cross-sector investigations, such as those concerning water quality, examines the influence of various
375 model structures on groundwater dynamics simulations, and supports the collaborative creation of new datasets
376 for model parameterization and assessment.

377 Already in the short term, the creation of the Groundwater sector has substantial potential to enhance large-scale
378 groundwater research by developing better modeling frameworks for reproducible research (running the multitude
379 of experiments targeted in ISIMIP requires an automated modeling pipeline) and forge a community that can
380 critically examine current modeling practices. The simple model comparison presented here sparks first raises
381 initial questions on as to why models differ and invites us to explore model differences in more greater depth. Such
382 model intercomparison studies will enable us to quantify uncertainties and identify hotspots for model
383 improvement. They will also allow us to assess the impact of climate and land use change on
384 various different groundwater-related variables, such as groundwater recharge and water table depth, and
385 enable allow ensemble-based impact assessments of future water availability. Model intercomparison and
386 validation may also help identify models that perform better in specific regions or for specific output variables,
387 thus allowing enabling the provision of region- or variable- specific recommendations and uncertainty assessments
388 to subsequent data users.

389 In the long term, the sector will enable us to jointly reflect on processes that we currently do not model or that
390 require need improvement, possibly also through new modeling approaches such as hybrid machine-learning
391 models tailored to the large-scale representation of groundwater. These model developments will be
392 incorporated added into the groundwater sector's contributions to upcoming ISIMIP simulation rounds, such as
393 ISIMIP4–, which is scheduled to commence start in 2026. Since groundwater is connected to many socio-
394 ecological systems, groundwater models could also emerge as a modular coupling tool that can be integrated into
395 multiple sectors. The newly established founded groundwater sector already provides a first step in that direction
396 by standardizing output names and units. If models are modular enough and define a standardized Application
397 Programming Interface (API), they could also serve as a valuable tool for other science communities.

398 The lack of a community- wide coordinated effort to simulate the effects of climate change on groundwater at
399 regional to global scale has precluded the comprehensive consideration of climate change impacts on groundwater

400 in policy relevant reports, such as the European Climate risk assessment (EUCRA, 2024) or the Assessment
401 Reports developed by the Intergovernmental Panel on Climate Change (IPCC) (e.g. LeeIPCC, 20243). The
402 anticipated groundwater sector contributions to ISIMIP3 and ISIMIP4, as described here, will address this gap by
403 serving as scientific evidence in the second EUCRA round and in the upcoming IPCC seventh assessment cycle.
404 As such, the anticipated outcomes of the new sector will pave the way for groundwater simulations to play an
405 increasingly important role in international climate mitigation and adaptation policy.

406 In summary, the ISIMIP Groundwater sector aims to enhance our understanding of the impacts of climate change
407 and direct human impacts on groundwater and a range of related sectors. To realize this goal, the new ISIMIP
408 Groundwater sector will address numerous challenges. For instance, core simulated variables, such as water table
409 depth and recharge, are highly uncertain and difficult to compare with observations. Further, tracing down
410 explanations for inter-model differences will require the joint development and application of new evaluation
411 methods (Eyring et al., 2016b) and protocols. Currently, models of the Groundwater sector operate at different
412 spatial resolutions, and compared to other sectors, they often run at relatively high spatial resolutions, which will
413 need to be addressed in evaluation and analysis approaches. Furthermore, depending on the model, executing
414 single-model simulations already requires substantial amounts of computation time, and running all impact
415 scenarios may be infeasible for some modeling groups. Lastly, running simulations for ISIMIP requires not only
416 computational resources but also human resources, which might not be feasible for all groups. This has always
417 been the case with ISIMIP, and it is an issue that other sectors have faced as well. Still, we are confident that the
418 groundwater sector will improve enhance our understanding of groundwater within the Earth system and help to
419 promote dialogue and synthesis in the research community. With its various connections to other sectors, the
420 Groundwater sector can be a catalyst for developing new holistic cross-sector modelling efforts that account for
421 the multitude of interconnections between the water cycle and social, economic, and ecological systems. In
422 summary, the ISIMIP groundwater sector aims to enhance our understanding of the impacts of climate change
423 and direct human impacts on groundwater resources and a range of related sectors.

424
425 In summary, the ISIMIP groundwater sector aims to enhance our understanding of the impacts of climate change
426 and direct human impacts on groundwater resources and a range of related sectors.

428 Data availability

429 The ensemble mean WTD and groundwater recharge trends are available at Reinecke (2025). For the original
430 model data publications, see Table A1.

431

432 Author contribution

433 RR led the writing and analysis of the manuscript. RR and IG conceived the idea. All authors reviewed the
434 manuscript and provided suggestions on text and figures.

435

436 **Competing interests**

437 None.

438

439 **Appendix**

440 **Table A1:** Original publications that describe the model outputs used in section 4.

Model	Simulation setup and used forcings	Reference
G ³ M	Steady-state model of WTD on 5 arcmin without any groundwater pumping, forced with WaterGAP 2.2d (Müller Schmied et al., 2021) groundwater recharge mean between 1901-2001.	Reinecke et al. (2019)
V2KARST	Global karst recharge model at 15 arcmin, forced with the MSWEP V2 (Beck et al., 2019) precipitation and GLDAS (Li et al., 2018) air temperature, shortwave and longwave radiation, specific humidity and wind speed for the period of 1990-2020	Sarrazin et al. (2018)
GGR	Global <u>G</u> roundwater <u>R</u> ain-fed <u>R</u> echarge model, A grid-based three-layer water balance model to estimate the daily global rain-fed groundwater recharge (2001-2020)	Nazari et al. (2025)
WBM	Time series simulation from 1980 to 2019 at 15 arc minutes, using the MERIT digital flow direction dataset (Yamazaki et al., 2019) including domestic, industrial, livestock, and irrigation water withdrawals. Forcings and key inputs: Climate: ERA5 (Prusevich et al., 2024), Reservoirs: GRanD v1.1 (Lehner et al., 2011), Inter-basin transfers (Lammers, 2022), Glaciers (Rounce et al., 2022), Impervious surfaces (Hansen and Toftemann Thomsen, 2020), Population density (Lloyd et al., 2019), Domestic and industrial water per capita demand: FAO AQUASTAT, Livestock density and water demand (Gilbert et al., 2018), Cropland: LUH2 (Hurt et al., 2020), Aquifer properties (de Graaf et al., 2017) aquifer depth gap-filled with terrain slope data from Yamazaki et al. 2019, Soil	Multiple, see left column.

	available water capacity: FAO soil map, Root depth (Yang et al., 2016)	
VIC-wur	<p>Global Hydrological model simulating the GWR and streamflow from 1970-2014 in natural condition.</p> <p>The mean GWR and streamflow were used to simulate the GWT in steady-state MODFLOW model in 5 arcmin.</p> <p>The model is forced by: GFDL-ESM4 climate model (Dunne et al., 2020), Aquifer properties (de Graaf et al., 2017).</p>	Droppers et al. (2020)
CLM	<p>The model was spun up for 1979 and subsequently simulated from 1979 to 2013 using the GSWPv3 atmospheric forcing dataset at a 0.1-degree resolution. Recharge, capillary rise, drainage, irrigation pumping and cell-to-cell lateral flow were simulated within the model.</p>	Akhter et al. (2024) (under review in WRR)
ParFlow	<p>The data provided here are based on Naz et al. (2023). In version 2 of the data, we provide variables including water table depth and groundwater recharge for time period of 1997-2006 at monthly time scale.</p>	Naz et al. (2023)
CWatM	<p>Community Water Model at 5 arcmin. Climate forcing with chelsa-W5E5v1.0 (5 arcmin) for temperature (average, maximum, minimum), precipitation, and shortwave radiation, and GSWP3-W5E5 (30 arcmin spline downscaled to 5 arcmin) for longwave radiation, wind speed, and specific humidity. Updates to Burek et al. (2020) include river network based on MERIT Hydro and upscaling with Eilander et al. (2021).</p>	Burek et al. (2020)

Table A2: List of groundwater related output variables in the ISIMIP3a global water sector (https://protocol.isimip.org/#/ISIMIP3a/water_global). The unit of all variables is $\text{kg m}^{-2} \text{ s}^{-1}$, the spatial resolution is 0.5° grid and the temporal resolution is monthly.

Groundwater-related output variable of the Global Water Sector	Description
Groundwater runoff	Water that leaves the groundwater layer. In case seepage is simulated but no groundwater layer is present, report seepage as <i>Total groundwater recharge</i> and <i>Groundwater Runoff</i> .
Total groundwater recharge	For models that consider both diffuse and focused/localised recharge this should be the sum of both; other models should submit the groundwater recharge component that the model simulates. See also the descriptions in <i>Focused/localised groundwater recharge</i> and <i>Diffuse groundwater recharge</i> .
Focused/localised groundwater recharge	Water that directly flows from a surface water body into the groundwater layer below. Only submit if the model separates focused/localised recharge from diffuse recharge.
Potential irrigation water withdrawal (assuming unlimited water supply) from groundwater resources	Part of <i>Potential Industrial Water Withdrawal</i> that is extracted from groundwater resources.
Actual irrigation water withdrawal from groundwater resources	Part of <i>Actual Irrigation Water Withdrawal</i> that is extracted from groundwater resources.
Potential Irrigation Water Consumption from groundwater resources	Part of <i>Potential Irrigation Water Consumption</i> that is extracted from groundwater resources.
Actual Irrigation Water Consumption from groundwater resources	Part of <i>Actual Irrigation Water Consumption</i> that is extracted from groundwater resources.
Potential Domestic Water Withdrawal from groundwater resources	Part of <i>Potential Domestic Water Withdrawal</i> that is extracted from groundwater resources.
Actual Domestic Water Withdrawal from groundwater resources	Part of <i>Actual Domestic Water Withdrawal</i> that is extracted from groundwater resources
Potential Domestic Water Consumption from groundwater resources	Part of <i>Potential Domestic Water Consumption</i> that is extracted from groundwater resources.

Actual Domestic Water Consumption from groundwater resources	Part of <i>Actual Domestic Water Consumption</i> that is extracted from groundwater resources.
Potential Manufacturing Water Withdrawal from groundwater resources	Part of <i>Potential Manufacturing Water Withdrawal</i> that is extracted from groundwater resources.
Actual Manufacturing Water Withdrawal from groundwater resources	Part of <i>Actual Manufacturing Water Withdrawal</i> that is extracted from groundwater resources.
Potential manufacturing Water Consumption from groundwater resources	Part of <i>Potential manufacturing Water Consumption</i> that is extracted from groundwater resources.
Actual Manufacturing Water Consumption from groundwater resources	Part of <i>Actual Manufacturing Water Consumption</i> that is extracted from groundwater resources.
Potential electricity Water Withdrawal from groundwater resources	Part of <i>Potential electricity Water Withdrawal</i> that is extracted from groundwater resources.
Actual Electricity Water Withdrawal from groundwater resources	Part of <i>Actual Electricity Water Withdrawal</i> that is extracted from groundwater resources.
Potential electricity Water Consumption from groundwater resources	Part of <i>Potential electricity Water Consumption</i> that is extracted from groundwater resources.
Actual Electricity Water Consumption from groundwater resources	Part of <i>Actual Electricity Water Consumption</i> that is extracted from groundwater resources.
Potential Industrial Water Withdrawal from groundwater resources	Part of <i>Potential Industrial Water Withdrawal</i> that is extracted from groundwater resources.
Actual Industrial Water Withdrawal from groundwater resources	Part of <i>Actual Industrial Water Withdrawal</i> that is extracted from groundwater resources.

Potential Industrial Water Consumption from groundwater resources	Part of <i>Potential Industrial Water Consumption</i> that is extracted from groundwater resources.
Actual Industrial Water Consumption from groundwater resources	Part of <i>Actual Industrial Water Consumption</i> that is extracted from groundwater resources.
Potential livestock Water Withdrawal from groundwater resources	Part of <i>Potential livestock Water Withdrawal</i> that is extracted from groundwater resources.
Actual Livestock Water Withdrawal from groundwater resources	Part of <i>Actual Livestock Water Withdrawal</i> that is extracted from groundwater resources.
Potential livestock Water Consumption from groundwater resources	Part of <i>Potential livestock Water Consumption</i> that is extracted from groundwater resources.
Actual livestock Water Consumption from groundwater resources	Part of <i>Actual livestock Water Consumption</i> that is extracted from groundwater resources.
Total Potential Water Withdrawal (all sectors) from groundwater resources	Part of <i>Total Potential Water Withdrawal</i> that is extracted from groundwater resources.
Total Actual Water Withdrawal (all sectors) from groundwater resources	Part of <i>Total Actual Water Withdrawal</i> that is extracted from groundwater resources.

442

443 **References**

444 Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk, A. I. J. M., McVicar, T. R., and
 445 Adler, R. F.: MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative
 446 Assessment, *Bulletin of the American Meteorological Society*, 100, 473–500,
 447 <https://doi.org/10.1175/BAMS-D-17-0138.1>, 2019.

448 Benz, S. A., Irvine, D. J., Rau, G. C., Bayer, P., Menberg, K., Blum, P., Jamieson, R. C., Griebler, C., and
 449 Kurylyk, B. L.: Global groundwater warming due to climate change, *Nature Geosci*, 17, 545–551,
 450 <https://doi.org/10.1038/s41561-024-01453-x>, 2024.

451 Berghuijs, W. R., Collenteur, R. A., Jasechko, S., Jaramillo, F., Luijendijk, E., Moeck, C., van der Velde, Y.,
 452 and Allen, S. T.: Groundwater recharge is sensitive to changing long-term aridity, *Nature Clim
 453 Change*, 14, 357–363, <https://doi.org/10.1038/s41558-024-01953-z>, 2024.

454 Bierkens, M. and Wada, Y.: Non-renewable groundwater use and groundwater depletion: a review,
 455 *Environ. Res. Lett.*, 14, 63002, <https://doi.org/10.1088/1748-9326/ab1a5f>, 2019.

456 Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M., Guillaumot, L., Zhao, F., and Wada, Y.:
457 Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model
458 for global and regional assessment of integrated water resources management, *Geosci. Model Dev.*,
459 13, 3267–3298, <https://doi.org/10.5194/gmd-13-3267-2020>, 2020.

460 Condon, L. E. and Maxwell, R. M.: Simulating the sensitivity of evapotranspiration and streamflow to
461 large-scale groundwater depletion, *Science advances*, 5, eaav4574,
462 <https://doi.org/10.1126/sciadv.aav4574>, 2019.

463 Condon, L. E., Kollet, S., Bierkens, M. F. P., Fogg, G. E., Maxwell, R. M., Hill, M. C., Fransen, H.-J. H.,
464 Verhoef, A., van Loon, A. F., Sulis, M., and Abesser, C.: Global Groundwater Modeling and Monitoring:
465 Opportunities and Challenges, *Water Resources Research*, 57,
466 <https://doi.org/10.1029/2020WR029500>, 2021.

467 Costa, F. R. C., Schiatti, J., Stark, S. C., and Smith, M. N.: The other side of tropical forest drought: do
468 shallow water table regions of Amazonia act as large-scale hydrological refugia from drought?, *The
469 New phytologist*, 237, 714–733, <https://doi.org/10.1111/nph.17914>, 2023.

470 Coll, J. R., Aguilar, E., and Ashcroft, L.: Drought variability and change across the Iberian Peninsula.
471 *Theoretical and Applied Climatology*, 130(3–4), 901–916. <https://doi.org/10.1007/s00704-016-1926-3>, 2017.

473 Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A., Hartmann, J., and Lehner, B.:
474 Global patterns and dynamics of climate-groundwater interactions, *Nature Clim Change*, 9, 137–141,
475 <https://doi.org/10.1038/s41558-018-0386-4>, 2019.

476 Dalin, C., Wada, Y., Kastner, T., and Puma, M. J.: Groundwater depletion embedded in international food
477 trade, *Nature*, 543, 700–704, <https://doi.org/10.1038/nature21403>, 2017.

478 de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H., and Bierkens, M. F. P.: A high-resolution global-
479 scale groundwater model, *Hydrol. Earth Syst. Sci.*, 19, 823–837, <https://doi.org/10.5194/hess-19-823-2015>, available at: <https://hess.copernicus.org/articles/19/823/2015/>, 2015.

481 de Graaf, I., Rens L.P.H. van Beek, Tom Gleeson, Nils Moosdorf, Oliver Schmitz, Edwin H. Sutanudjaja,
482 and Marc F.P. Bierkens: A global-scale two-layer transient groundwater model: Development and
483 application to groundwater depletion, *Advances in Water Resources*, 102, 53–67,
484 <https://doi.org/10.1016/j.advwatres.2017.01.011>, 2017.

485 de Graaf, I. E. M., Gleeson, T., van Rens Beek, L. P. H., Sutanudjaja, E. H., and Bierkens, M. F. P.:
486 Environmental flow limits to global groundwater pumping, *Nature*, 574, 90–94,
487 <https://doi.org/10.1038/s41586-019-1594-4>, 2019.

488 Döll, P. and Siebert, S.: Global modeling of irrigation water requirements, *Water Resources Research*, 38,
489 <https://doi.org/10.1029/2001WR000355>, 2002.

490 Droppers, B., Franssen, W. H. P., van Vliet, M. T. H., Nijssen, B., and Ludwig, F.: Simulating human
491 impacts on global water resources using VIC-5, *Geosci. Model Dev.*, 13, 5029–5052,
492 <https://doi.org/10.5194/gmd-13-5029-2020>, 2020.

493 Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S.,
494 Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A.,
495 Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W.,
496 Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonorov, S., Paynter, D. J.,
497 Poshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L.
498 T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, Y. and Zhao, M.:
499 The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and
500 Simulation Characteristics. *J Adv Model Earth Syst*, 12 (11), e2019MS002015.
501 <https://doi.org/10.1029/2019MS002015>, 2020.
502 Eilander, D., van Verseveld, W., Yamazaki, D., Weerts, A., Winsemius, H. C., and Ward, P. J.: A hydrography upscaling method for scale-invariant
503 parametrization of distributed hydrological models, *Hydrol. Earth Syst. Sci.*, 25, 5287–5313,
504 <https://doi.org/10.5194/hess-25-5287-2021>, 2021.
505 Esteban, E. J. L., Castilho, C. V., Melgaço, K. L., and Costa, F. R. C.: The other side of droughts: wet
506 extremes and topography as buffers of negative drought effects in an Amazonian forest, *The New
507 phytologist*, 229, 1995–2006, <https://doi.org/10.1111/nph.17005>, 2021.
508 European Environment Agency, *European climate risk assessment*, Publications Office of the European
509 Union, <https://doi.org/10.2800/8671471>, 2024.
510 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of
511 the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization,
512 *Geosci. Model Dev.*, 9, 1937–1958, <https://doi.org/10.5194/gmd-9-1937-2016>, 2016a.
513 Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I.,
514 Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann,
515 S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G.,
516 Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H.,
517 Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) – a community diagnostic and
518 performance metrics tool for routine evaluation of Earth system models in CMIP, *Geosci. Model Dev.*,
519 9, 1747–1802, <https://doi.org/10.5194/gmd-9-1747-2016>, 2016b.
520 Felfelani, F., Lawrence, D. M., and Pokhrel, Y.: Representing Intercell Lateral Groundwater Flow and
521 Aquifer Pumping in the Community Land Model, *Water Resources Research*, 57,
522 <https://doi.org/10.1029/2020WR027531>, 2021.
523 Foster, S. S. D. and Chilton, P. J.: Groundwater: the processes and global significance of aquifer
524 degradation, *Philosophical transactions of the Royal Society of London. Series B, Biological
525 sciences*, 358, 1957–1972, <https://doi.org/10.1098/rstb.2003.1380>, 2003.
526 Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S.,
527 Emanuel, K., Geiger, T., Halladay, K., Hurt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva,
528 R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Cais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith,
529 E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova,
530 V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet,

531 M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-
532 Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of
533 1.5\,°C global warming - simulation protocol of the Inter-Sectoral Impact Model
534 Intercomparison Project (ISIMIP2b), *Geosci. Model Dev.*, 10, 4321–4345,
535 <https://doi.org/10.5194/gmd-10-4321-2017>, 2017.

536 Gasper, F., Goergen, K., Shrestha, P., Sulis, M., Rihani, J., Geimer, M., and Kollet, S.: Implementation and
537 scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively
538 parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q), *Geosci. Model*
539 *Dev.*, 7, 2531–2543, <https://doi.org/10.5194/gmd-7-2531-2014>, 2014.

540 Gilbert, M., Nicolas, G., Cinardi, G., van Boeckel, T. P., Vanwambeke, S. O., Wint, G. R. W., and Robinson,
541 T. P.: Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in
542 2010, *Scientific data*, 5, 180227, <https://doi.org/10.1038/sdata.2018.227>, 2018.

543 Gleeson, T. and Paszkowski, D.: Perceptions of scale in hydrology: what do you mean by regional scale?,
544 *Hydrological Sciences Journal*, 59, 99–107, <https://doi.org/10.1080/02626667.2013.797581>, 2014.

545 Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R.,
546 Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M.-H., Kim, H., Hill, M., Hartmann, A., Fogg, G.,
547 Famiglietti, J. S., Ducharne, A., Graaf, I. de, Cuthbert, M., Condon, L., Bresciani, E., and Bierkens, M.
548 F. P.: GMD perspective: The quest to improve the evaluation of groundwater representation in
549 continental- to global-scale models, *Geosci. Model Dev.*, 14, 7545–7571,
550 <https://doi.org/10.5194/gmd-14-7545-2021>, 2021.

551 Gnann, S., Reinecke, R., Stein, L., Wada, Y., Thiery, W., Müller Schmied, H., Satoh, Y., Pokhrel, Y.,
552 Ostberg, S., Koutroulis, A., Hanasaki, N., Grillakis, M., Gosling, S., Burek, P., Bierkens, M., and
553 Wagener, T.: Functional relationships reveal differences in the water cycle representation of global
554 water models, 1079–1090, <https://doi.org/10.1038/s44221-023-00160-y>, 2023.

555 Grogan, D. S., Zuidema, S., Prusevich, A., Wollheim, W. M., Glidden, S., and Lammers, R. B.: Water
556 balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking
557 functionality, *Geosci. Model Dev.*, 15, 7287–7323, <https://doi.org/10.5194/gmd-15-7287-2022>, 2022.

558 Guillaumot, L., Smilovic, M., Burek, P., Bruijn, J. de, Greve, P., Kahil, T., and Wada, Y.: Coupling a large-
559 scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6)
560 to assess the impact of irrigation at regional scale, *Geosci. Model Dev.*, 15, 7099–7120,
561 <https://doi.org/10.5194/gmd-15-7099-2022>, 2022.

562 Hansen, M. and Toftemann Thomsen, C.: An integrated public information system for geology,
563 groundwater and drinking water in Denmark, *GEUS Bulletin*, 38, 69–72,
564 <https://doi.org/10.34194/geusb.v38.4423>, 2020.

565 Haqiqi, I., Bowling, L., Jame, S., Baldos, U., Liu, J., and Hertel, T.: Global drivers of local water stresses
566 and global responses to local water policies in the United States, *Environmental research letters ERL*,
567 18, 65007, <https://doi.org/10.1088/1748-9326/acd269>, 2023.

568 Holman, I. P., Whelan, M. J., Howden, N. J. K., Bellamy, P. H., Willby, N. J., Rivas-Casado, M., and
569 McConvey, P.: Phosphorus in groundwater—an overlooked contributor to eutrophication?, *Hydrol.*
570 *Process.*, 22, 5121–5127, <https://doi.org/10.1002/hyp.7198>, 2008.

571 Huggins, X., Gleeson, T., Castilla-Rho, J., Holley, C., Re, V., and Famiglietti, J. S.: Groundwater
572 Connections and Sustainability in Social-Ecological Systems, *Ground water*, 61, 463–478,
573 <https://doi.org/10.1111/gwat.13305>, 2023.

574 Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J.,
575 Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinemann, A., Humpenöder, F., Jungclaus,
576 J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J.,
577 Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren,
578 D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–
579 2100 (LUH2) for CMIP6, *Geosci. Model Dev.*, 13, 5425–5464, <https://doi.org/10.5194/gmd-13-5425-2020>, 2020.

580 Jasechko, S., Seybold, H., Perrone, D., Fan, Y., Shamsuddoha, M., Taylor, R. G., Fallatah, O., and
581 Kirchner, J. W.: Rapid groundwater decline and some cases of recovery in aquifers globally, *Nature*,
582 625, 715–721, <https://doi.org/10.1038/s41586-023-06879-8>, 2024.

583 Keune, J., Sulis, M., Kollet, S., Siebert, S., and Wada, Y.: Human Water Use Impacts on the Strength of the
584 Continental Sink for Atmospheric Water, *Geophys. Res. Lett.*, 45, 4068–4076,
585 <https://doi.org/10.1029/2018GL077621>, 2018.

586 Kollet, S. J. and Maxwell, R. M.: Capturing the influence of groundwater dynamics on land surface
587 processes using an integrated, distributed watershed model, *Water Resources Research*, 44,
588 <https://doi.org/10.1029/2007WR006004>, 2008.

589 Konar, M., Hussein, Z., Hanasaki, N., Mauzerall, D. L., and Rodriguez-Iturbe, I.: Virtual water trade flows
590 and savings under climate change, *Hydrol. Earth Syst. Sci.*, 17, 3219–3234,
591 <https://doi.org/10.5194/hess-17-3219-2013>, 2013.

592 Kretschmer, D. V., Michael, H., Moosdorf, N., Essink, G. O., Bierkens, M. F. P., Wagener, T., and
593 Reinecke, R.: Controls on coastal saline groundwater across North America, *Environmental research
594 letters*, <https://doi.org/10.1088/1748-9326/ada973>, 2025.

595 Kuffour, B. N. O., Engdahl, N. B., Woodward, C. S., Condon, L. E., Kollet, S., and Maxwell, R. M.:
596 Simulating coupled surface–subsurface flows with ParFlow v3.5.0: capabilities, applications, and
597 ongoing development of an open-source, massively parallel, integrated hydrologic model, *Geosci.
598 Model Dev.*, 13, 1373–1397, <https://doi.org/10.5194/gmd-13-1373-2020>, 2020.

599 Kumar, R., Samaniego, L., Thober, S., Rakovec, O., Marx, A., Wanders, N., Pan, M., Hesse, F. and Attinger,
600 S., Multi-model assessment of groundwater recharge across Europe under warming climate. *Earth's
601 Future*, 13(1), p.e2024EF005020. <https://doi.org/10.1029/2024EF005020>, 2025.

602 Lammers, R. B.: Global Inter-Basin Hydrological Transfer Database, 2022.

603 Lange, S.: Bias-correction fact sheet, <https://www.isimip.org/gettingstarted/isimip3b-bias-adjustment/>,
604 last access: 2 March 2025, 2021.

606 Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N.,
607 Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi,
608 D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M.,
609 Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K.,
610 Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox,
611 R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J.,
612 Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val
613 Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of New Features,
614 Benchmarking, and Impact of Forcing Uncertainty, *J Adv Model Earth Syst*, 11, 4245–4287,
615 <https://doi.org/10.1029/2018MS001583>, 2019.

616 [IPCC, Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., ... & Ruane, A. C. Climate](#)
617 [change 2023 synthesis report summary for policymakers. CLIMATE CHANGE 2023 Synthesis Report:](#)
618 [Summary for Policymakers, 2024.](#)

619 Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M.,
620 Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-
621 resolution mapping of the world's reservoirs and dams for sustainable river-flow management,
622 *Frontiers in Ecol & Environ*, 9, 494–502, <https://doi.org/10.1890/100125>, 2011.

623 Li, B., Rodell, M., and Beaudoin, H.: GLDAS Catchment Land Surface Model L4 daily 0.25 x 0.25 degree,
624 Version 2.0, 2018.

625 Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land
626 surface water and energy fluxes for general circulation models. *Journal of Geophysical Research: Atmospheres*, 99(D7), 14415–14428. <https://doi.org/10.1029/94JD00483>, 1994.

627 Liu, Y., Wagener, T., Beck, H. E., and Hartmann, A.: What is the hydrologically effective area of a
628 catchment?, *Environmental research letters ERL*, 15, 104024, <https://doi.org/10.1088/1748-9326/aba7e5>, 2020.

629 Lloyd, C. T., Chamberlain, H., Kerr, D., Yetman, G., Pistolesi, L., Stevens, F. R., Gaughan, A. E., Nieves, J.
630 J., Hornby, G., MacManus, K., Sinha, P., Bondarenko, M., Sorichetta, A., and Tatem, A. J.: Global
631 spatio-temporally harmonised datasets for producing high-resolution gridded population distribution
632 datasets, *Big earth data*, 3, 108–139, <https://doi.org/10.1080/20964471.2019.1625151>, 2019.

633 Maxwell, R. M. and Miller, N. L.: Development of a Coupled Land Surface and Groundwater Model,
634 *Journal of Hydrometeorology*, 6, 233–247, <https://doi.org/10.1175/JHM422.1>, 2005.

635 Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., and Forrester, M. M.: The imprint of
636 climate and geology on the residence times of groundwater, *Geophys. Res. Lett.*, 43, 701–708,
637 <https://doi.org/10.1002/2015GL066916>, 2016.

638 [Maxwell, R. M., Putti, M., Meyerhoff, S., Delfs, J.-O., Ferguson, I. M., Ivanov, V., Kim, J., Kolditz, O., Kollet,](#)
639 [S. J., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M. S., Shen, C., Sudicky, E.](#)
640 [A., and Sulis, M.: Surface-subsurface model intercomparison: A first set of benchmark results to](#)

643 [diagnose integrated hydrology and feedbacks, Water Resources Research, 50, 1531–1549,](#)
644 [https://doi.org/10.1002/2013WR013725, 2014.](https://doi.org/10.1002/2013WR013725)

645 Maxwell, R. M., Lundquist, J. K., Mirocha, J. D., Smith, S. G., Woodward, C. S., and Tompson, A. F. B.:
646 Development of a Coupled Groundwater–Atmosphere Model, Monthly Weather Review, 139, 96–116,
647 [https://doi.org/10.1175/2010MWR3392.1, 2011.](https://doi.org/10.1175/2010MWR3392.1)

648 [Misstear, B., Vargas, C.R., Lapworth, D. et al. A global perspective on assessing groundwater quality.](#)
649 [Hydrogeol J 31, 11–14, https://doi.org/10.1007/s10040-022-02461-0, 2023.](#)

650 Moeck, C., Collenteur, R. A., Berghuijs, W. R., Luijendijk, E., and Gurdak, J. J.: A Global Assessment of
651 Groundwater Recharge Response to Infiltration Variability at Monthly to Decadal Timescales, Water
652 Resources Research, 60, [https://doi.org/10.1029/2023WR035828, 2024.](https://doi.org/10.1029/2023WR035828)

653 Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E.,
654 Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll,
655 P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation,
656 [Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021.](#)

657 Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke,
658 R., Riedel, C., Song, Q., Zhang, J., and Döll, P.: Variations of global and continental water balance
659 components as impacted by climate forcing uncertainty and human water use, [Hydrol. Earth Syst.](#)
660 [Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, available at:](#)
661 [https://hess.copernicus.org/articles/20/2877/2016/, 2016.](https://hess.copernicus.org/articles/20/2877/2016/)

662 Naz, B. S., Sharples, W., Ma, Y., Goergen, K., and Kollet, S.: Continental-scale evaluation of a fully
663 distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe,
664 [Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, 2023.](#)

665 Nazari, S., Kruse, I. L., and Moosdorf, N.: Spatiotemporal dynamics of global rain-fed groundwater
666 recharge from 2001 to 2020, [Journal of Hydrology, 650, 132490,](#)
667 [https://doi.org/10.1016/j.jhydrol.2024.132490, 2025.](https://doi.org/10.1016/j.jhydrol.2024.132490)

668 Paneque Salgado, P., and Vargas Molina, J.: Drought, social agents and the construction of discourse in
669 Andalusia. [Environmental Hazards, 14\(3\), 224–235.](#)
670 [https://doi.org/10.1080/17477891.2015.1058739, 2015.](https://doi.org/10.1080/17477891.2015.1058739)

671 Perez, N., Singh, V., Ringler, C., Xie, H., Zhu, T., Sutanudjaja, E. H., and Villholth, K. G.: Ending
672 groundwater overdraft without affecting food security, [Nat Sustain, 7, 1007–1017,](#)
673 [https://doi.org/10.1038/s41893-024-01376-w, 2024.](https://doi.org/10.1038/s41893-024-01376-w)

674 Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S. N.,
675 Grillakis, M., Gudmundsson, L., Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L.,
676 Schewe, J., Müller Schmied, H., Stacke, T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F., and
677 Wada, Y.: Global terrestrial water storage and drought severity under climate change, [Nature Clim](#)
678 [Change, 11, 226–233, https://doi.org/10.1038/s41558-020-00972-w, 2021.](#)

679 Porkka, M., Virkki, V., Wang-Erlandsson, L., Gerten, D., Gleeson, T., Mohan, C., Fetzer, I., Jaramillo, F.,
680 Staal, A., te Wierik, S., Tobian, A., van der Ent, R., Döll, P., Flörke, M., Gosling, S. N., Hanasaki, N.,

681 Satoh, Y., Müller Schmied, H., Wanders, N., Famiglietti, J. S., Rockström, J., and Kummu, M.: Notable
682 shifts beyond pre-industrial streamflow and soil moisture conditions transgress the planetary
683 boundary for freshwater change, *Nat Water*, 2, 262–273, <https://doi.org/10.1038/s44221-024-00208-7>, 2024.

684

685 Prusevich, A. A., Lammers, R. B., and Glidden, S. J.: Delineation of endorheic drainage basins in the
686 MERIT-Plus dataset for 5 and 15 minute upscaled river networks, *Scientific data*, 11, 61,
687 <https://doi.org/10.1038/s41597-023-02875-9>, 2024.

688 Reinecke, R., Müller Schmied, H., Trautmann, T., Andersen, L. S., Burek, P., Flörke, M., Gosling, S. N.,
689 Grillakis, M., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Thiery, W., Wada, Y., Yusuke, S., and Döll, P.:
690 Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale
691 multi-model ensemble study, *Hydrol. Earth Syst. Sci.*, 25, 787–810, <https://doi.org/10.5194/hess-25-787-2021>, available at: <https://hess.copernicus.org/articles/25/787/2021/>, 2021.

692

693 Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., and Döll, P.: Challenges in developing a
694 global gradient-based groundwater model (G³M v1.0) for the integration into a global hydrological
695 model, *Geosci. Model Dev.*, 12, 2401–2418, <https://doi.org/10.5194/gmd-12-2401-2019>, 2019.

696 Reinecke, R., Gnann, S., Stein, L., Bierkens, M., Graaf, I. de, Gleeson, T., Essink, G. O., Sutanudjaja, E. H.,
697 Ruz Vargas, C., Verkaik, J., and Wagener, T.: Uncertainty in model estimates of global groundwater
698 depth, *Environmental research letters ERL*, 19, 114066, <https://doi.org/10.1088/1748-9326/ad8587>,
699 2024.

700 Reinecke, R.: The ISIMIP Groundwater Sector: A Framework for Ensemble Modeling of Global Change
701 Impacts on Groundwater, Zenodo, <https://doi.org/10.5281/zenodo.14962512>, 2025.

702 Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates of groundwater depletion in
703 India, *Nature*, 460, 999–1002, <https://doi.org/10.1038/nature08238>, 2009.

704 Rodella, A.-S., Zaveri, E., and Bertone, F.: The Hidden Wealth of Nations: The Economics of Groundwater
705 in Times of Climate Change. Washington, DC: World Bank, 2023.

706 Rounce, D., Hock, R., and Maussion, F.: Global PyGEM-OGGM Glacier Projections with RCP and SSP
707 Scenarios, Version 1, 2022.

708 Sarrazin, F., Hartmann, A., Pianosi, F., Rosolem, R., and Wagener, T.: V2Karst V1.1: a parsimonious large-
709 scale integrated vegetation–recharge model to simulate the impact of climate and land cover change
710 in karst regions, *Geosci. Model Dev.*, 11, 4933–4964, <https://doi.org/10.5194/gmd-11-4933-2018>,
711 2018.

712 Scanlon, B. R., Fakhreddine, S., Rateb, A., Graaf, I. de, Famiglietti, J., Gleeson, T., Grafton, R. Q., Jobbagy,
713 E., Kebede, S., Kolusu, S. R., Konikow, L. F., Di Long, Mekonnen, M., Schmied, H. M., Mukherjee, A.,
714 MacDonald, A., Reedy, R. C., Shamsuddoha, M., Simmons, C. T., Sun, A., Taylor, R. G., Villholth, K.
715 G., Vörösmarty, C. J., and Zheng, C.: Global water resources and the role of groundwater in a resilient
716 water future, *Nat Rev Earth Environ*, 4, 87–101, <https://doi.org/10.1038/s43017-022-00378-6>, 2023.

717 Schaller, M. F. and Fan, Y.: River basins as groundwater exporters and importers: Implications for water
718 cycle and climate modeling, *J. Geophys. Res.*, 114, <https://doi.org/10.1029/2008JD010636>, 2009.

719 Schwartz, F. W. and Ibaraki, M.: Groundwater: A Resource in Decline, *Elements*, 7, 175–179,
720 <https://doi.org/10.2113/gselements.7.3.175>, 2011.

721 Smith, M. W., Willis, T., Mroz, E., James, W. H. M., Klaar, M. J., Gosling, S. N., and Thomas, C. J.: Future
722 malaria environmental suitability in Africa is sensitive to hydrology, *Science (New York, N.Y.)*, 384,
723 697–703, <https://doi.org/10.1126/science.adk8755>, 2024.

724 Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M.,
725 Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P.,
726 MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M.,
727 Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground water and climate change, *Nature Clim
728 Change*, 3, 322–329, <https://doi.org/10.1038/nclimate1744>, 2013.

729 Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L.
730 S., Grillakis, M., Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L.,
731 Trautmann, T., Mao, G., Hanasaki, N., Koutoulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V.,
732 Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz, F.: Understanding each other's models:
733 an introduction and a standard representation of 16 global water models to support intercomparison,
734 improvement, and communication, *Geosci. Model Dev.*, 14, 3843–3878,
735 <https://doi.org/10.5194/gmd-14-3843-2021>, 2021.

736 Thompson, J. R., Gosling, S. N., Zaherpour, J., and Laizé, C. L. R.: Increasing Risk of Ecological Change to
737 Major Rivers of the World With Global Warming, *Earth's Future*, 9,
738 <https://doi.org/10.1029/2021EF002048>, 2021.

739 Trullenque-Blanco, V., Beguería, S., Vicente-Serrano, S. M., Peña-Angulo, D., and González-Hidalgo, C.:
740 Catalogue of drought events in peninsular Spanish along 1916–2020 period. *Scientific Data*, 11(1),
741 703. <https://doi.org/10.1038/s41597-024-03484-w>, 2024.

742 United Nations: The United Nations World Water Development Report 2022: groundwater: making the
743 invisible visible, UNESCO, Paris, 2022.

744 Winter, T. C.: The Role of Ground Water in Generating Streamflow in Headwater Areas and in Maintaining
745 Base Flow 1, *J American Water Resour Assoc*, 43, 15–25, [https://doi.org/10.1111/j.1752-1688.2007.00003.x](https://doi.org/10.1111/j.1752-
746 1688.2007.00003.x), 2007.

747 Xie, J., Liu, X., Jasechko, S., Berghuijs, W. R., Wang, K., Liu, C., Reichstein, M., Jung, M., and Koirala, S.:
748 Majority of global river flow sustained by groundwater, *Nature Geosci*, 17, 770–777,
749 <https://doi.org/10.1038/s41561-024-01483-5>, 2024.

750 Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-
751 Resolution Global Hydrography Map Based on Latest Topography Dataset, *Water Resources
752 Research*, 55, 5053–5073, <https://doi.org/10.1029/2019WR024873>, 2019.

753 Yang, Y., Donohue, R. J., and McVicar, T. R.: Global estimation of effective plant rooting depth:
754 Implications for hydrological modeling, *Water Resources Research*, 52, 8260–8276,
755 <https://doi.org/10.1002/2016WR019392>, 2016.

756 [Zamrsky, D., Ruzzante, S., Compare, K., Kretschmer, D., Zipper, S., Befus, K. M., Reinecke, R., Pasner, Y.,](#)
757 [Gleeson, T., Jordan, K., Cuthbert, M., Castranova, A. M., Wagener, T., and Bierkens, M. F. P.: Current](#)
758 [trends and biases in groundwater modelling using the community-driven groundwater model portal](#)
759 [\(GroMoPo\), Hydrogeol J, 33, 355–366, <https://doi.org/10.1007/s10040-025-02882-7>, 2025.](#)
760 [Zipper, S., Befus, K. M., Reinecke, R., Zamrsky, D., Gleeson, T., Ruzzante, S., Jordan, K., Compare, K.,](#)
761 [Kretschmer, D., Cuthbert, M., Castranova, A. M., Wagener, T., and Bierkens, M. F. P.: GroMoPo: A](#)
762 [Groundwater Model Portal for Findable, Accessible, Interoperable, and Reusable \(FAIR\) Modeling,](#)
763 [Ground water, <https://doi.org/10.1111/gwat.13343>, 2023.](#)