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Abstract. This comment addresses assertions made by Sherwood and Forest (2024) (SF24) regarding the nar-
rowing of the range of equilibrium climate sensitivity (ECS). SF24 challenged a previous study by Lewis (2022)
(L22) that found a narrower and substantially lower ECS level. This comment clarifies that, contrary to SF24’s
claims, L.22 did not rule out a high ECS level based on historical evidence and did identify and correct errors in
Sherwood et al. (2020), in particular in relation to its likelihood estimation; their method, ironically, substantially
underestimated likelihood for their historical evidence at high ECS levels. It also appraises L22’s revisions to
S20’s methods and input assumptions and considers how these have contributed to the lowering and narrowing
of the ECS range. This comment also discusses the role of priors in Bayesian ECS estimation and explains why
the subjective Bayesian approach favoured by SF24 can often produce unreliable inference for uncertain param-
eters such as ECS. Finally, the importance of considering structural uncertainties in climate models, particularly
regarding tropical warming patterns, is extended beyond the points raised by SF24. Such uncertainties could
affect ECS estimation, not only from historical period evidence, but also from climate process understanding
and emergent constraints. They seem more likely to suggest that existing ECS estimates are too high rather than

too low.

1 Introduction

In the Sherwood and Forest (2024) opinion article entitled
“Can uncertainty in climate sensitivity be narrowed further?”
published in Atmospheric Chemistry and Physics (hereafter

s SF24), the authors express doubts that the uncertainty range
for equilibrium climate sensitivity (ECS) has been further
narrowed since the publication of Sherwood et al. (2020)
(hereafter S20). They note that the observationally driven
ECS range in S20 was approximately adopted in the relevant

10 chapter (Forster et al., 2021) of the IPCC Sixth Assessment
Report (ARG).

SF24’s authors state that the new study claiming the largest
revision in the range for ECS is Lewis (2022) (hereafter
L22), which “asserts a narrower and substantially lower ECS

15 level using the basic S20 methodology with various up-
dates”. This comment addresses the erroneous claims that

SF24 made about L22. It identifies L22’s contributions —
through revisions to S20’s input assumptions for each line
of evidence and other changes — to the lowering and nar-
rowing of S20’s ECS range. It addresses problems with the
subjective Bayesian approach described by SF24 and finally
discusses the challenges in narrowing the range of climate
sensitivity posed by uncertainty as to the realism of global
climate model (GCM)-simulated long-term tropical warm-
ing patterns. For clarity, it should be noted that while SF24
refers to ECS, S20 and L22 actually both estimate S, a proxy
for ECS. In GCMs, S is almost always slightly lower than
ECS. The two terms are only distinguished herein when dis-
cussing their relationship.
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2 Critique of SF24’s claims regarding L22

SF24 states the following concerning L22.

While this author claims “errors” in S20, looking
carefully it appears these are differences in opinion

5 on methodological choices and priors rather than
errors, and they moreover were acknowledged to
have little effect on the outcome.

There were indeed differences in opinion on Bayesian pri-
ors between L22 and S20. And S20’s decision to not adjust
10 for CO; forcing increasing slightly faster than logarithmi-
cally with concentration, unlike L22, is arguably a defensi-
ble difference of opinion, although its application led to in-
consistency between S20’s estimates from different lines of
evidence. The minor effects on ECS estimation of these two

15 differences of opinion almost cancelled out.

2.1 L22’s findings of errors, inconsistencies, and
indefensible methodological choices in S20

However, L22 also found actual errors and indefensible
methodological choices in S20.

20 L22 Sect. 5.1 and their Supplement (Sect. S2) showed
that S20’s method of likelihood estimation was invalid and
resulted in a major underestimation of the historical evi-
dence likelihoods at high climate sensitivities. S20’s likeli-
hood estimates based on Paleocene—Eocene Thermal Max-

»s imum (PETM) evidence were similarly affected, although
PETM evidence was not used in the main S20 results. More-
over, L22 pointed out that S20 used an uncertainty estimate
that was a factor of 10 lower than stated for PETM CO, forc-
ing due to a coding error!.

s  Moreover, L22 Sect. 4.1 and their Supplement (Sect. S1)
showed that S20’s ECS estimates from both process evi-
dence and historical evidence were biased high because, in
deriving ECS from the climate feedback estimate, the au-
thors had inappropriately used an estimate of the effective

s radiative forcing (ERF) for doubled CO; (F2xco,) based on
land-warming-corrected fixed sea surface temperature (SST)
simulations, the method subsequently used in AR6, rather
than a 150-year-regression-based estimate. As L.22 showed,
GCM Fa«co, estimates based on the fixed SST simula-

a0 tion method (which for L22’s ensemble of 26 GCMs agreed
very closely, at their median, with the AR6 best estimate of
F>%co,) are in general significantly higher than regression-
based F>2xco, estimates. Regression-based F>xco, estimates
represent the y intercept from a linear regression of plane-

ss tary radiative imbalance (/N) against the increase in global
mean surface temperature (AGMST) as simulated in a GCM
over 150 years following an abrupt quadrupling in CO> con-
centration (abrupt4xCQO?2), scaled to a doubling of CO,. The

ISince the publication of L22 this coding error has been noted,
and its effects corrected, in the online version of S20.

x intercept of the regression line — the definition of S — is
taken as the GCM’s estimated ECS, and the regression slope
is taken as an estimate of its net climate feedback. In al-
most all GCMs, climate feedback weakens over the first few
decades of the 150-year simulation, reflecting evolving SST
warming patterns (a forced pattern effect). That being so, N
is not linearly related to AGMST, and such regression-based
F>xco, values are bound to underestimate true F2xco,, as
estimated from fixed SST simulations?. However, estimates
of S (which is what S20 and L22 estimate in place of ECS)
calculated by dividing observationally derived estimates of
what the slope in a 150-year abrupt4xCO2 simulation regres-
sion would be into an estimate of F>xco, require, to be arith-
metically correct, that the F>xco, estimate used is likewise
a regression-based one. Therefore, S20’s use of a fixed-SST-
based, rather than a regression-based, F2xco, estimate will
have biased-high its process- and historical-evidence-derived
estimates of S, which were based on such calculations. Based
on the median ratio of those two types of F>xco, estimates
in the GCM ensemble, L22 estimated the high bias to be ap-
proximately 16 %.

2.2 SF24’s criticisms of L22

SF24 criticises L.22’s results by claiming the following.

Instead, the reduction and narrowing of the ECS
probability density function (PDF) resulted from
a selective use of evidence — most importantly, a
decision to reject the possibility of a large “pattern
effect” on historical sea surface temperature (SST),
even though this continues to be strongly supported
by new studies, and a downward revision of ex-
pected historical aerosol cooling. Together these
two departures allowed Lewis to conclude (in con-
trast to other studies) that the historical record rules
out a high ECS level.

This claim is totally wrong. On the contrary, L22 finds
(Table 8) that the historical record does not rule out a high
ECS level. The standard 90 % (5 %—95 %) uncertainty range
that L22 arrived at using only data from the historical record
was 1.2-7.6 °C. Where, in addition, the common prior as-
sumption that ECS is positive and does not exceed 20 °C
was made, the range became 1.15-6.1 °C. Neither of these
ranges rule out a high ECS level. Both 7.6 and 6.1 °C sub-
stantially exceed the 4.7 °C 95 % uncertainty bound of S20’s
main combined-evidence ECS estimate.

S20’s combined-evidence median (50 % probability) base-
line ECS estimate was 3.1°C, with 66% (“likely”) and

2Reﬂecting the cause of this underestimation, th = »a in L22
Table S1 in their Supplement show a 0.98{Il correlation across
the 26 GCMs between the measure of the forced pattern effect and
the degree to which regression-based F,, co, underestimates fixed-
SST-based F,xco,-
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90 % ranges of respectively 2.6-3.9 and 2.3—4.7 °C. The cor-
responding values in L22 were 2.16, 1.75-2.7, and 1.55—
3.2 °C. Without the two revisions criticised by SF24, the 5 %
bound and median for the L22 combined-evidence ECS esti-
mates would have changed by less than 0.05 °C and the 95 %
bound would have increased by only about 0.1 °C. Exclud-
ing historical evidence entirely would similarly have left the
5 % bound and median estimates unchanged, with the 95 %
bound increasing by only 0.2 °C. Thus the reduction and nar-
rowing of the ECS PDF in .22 had almost nothing to do with
the revisions it made to assumptions about the pattern effect
or aerosol cooling over the historical period.

2.3 Historical aerosol forcing estimates and uncertainty

In both S20 and 122, aerosol forcing is a major source of un-
certainty for historical evidence. It is therefore unsurprising
that the historical record does not rule out a high ECS level.
Aerosol forcing reduces, to an uncertain extent, the magni-
tude of the denominator of the energy budget formula for
estimating ECS. That results in there being a non-negligible
probability, indeed a substantial one based on S20’s assump-
tions, that the denominator is small or negative, implying a
very high or unbounded ECS but a negligible probability that
the denominator is very large, thus ruling out ECS being very
low. It is surprising that the SF24 authors failed to recognise
that it is process and, particularly for S20, paleoclimate ev-
idence that most constrained the ECS upper bound both in
L22 (Table 8) and in S20 (Table 10).

Both S20 and L22 also estimated an effective climate sen-
sitivity over the historical period (Spist), which is not adjusted
for any pattern effect and is somewhat less affected than ECS
by assumptions about aerosol cooling. Employing a sampling
method, S20 derived a 90 % range for Sis of 1.9-14.4 °C,
with a median of 3.1 °C, using an aerosol forcing distribu-
tion that assigned a 16 % probability to it being even stronger
(more negative) than —2.0 W m~2, L22 down-weighted the
probability of very strong aerosol forcing from that assumed
in S20, but without assuming that the most likely level of
aerosol forcing was weaker than in S20, and derived a 90 %
range for Spis of 1.3-4.3°C (median 2.1 °C). As noted in
S20, without criticism, Tokarska et al. (2020) likewise effec-
tively down-weighted very strong aerosol forcing as less con-
sistent with observations. That resulted in their 90 % range
for Spisc being 1.3-3.1°C, with a median of 2.1 °C — iden-
tical results to L22 except that the 95 % bound in L22 was
considerably higher.

2.4 Historical pattern effect estimates

The pattern effect — the dependence of outgoing radiation to
space on the geographical pattern of SST warming — is gener-
ally thought to result in ECS being higher than S, although
so some studies implicitly question whether this is so (see dis-
cussion in Sect. 5). The reduction in the tropical Pacific east—

west temperature gradient that occurs after a decade or two
in almost all GCM CO,-forced warming simulations, with
greater warming occurring in the east than in the west, un-
derlies the weakening over time of net climate feedback in
GCMs (the forced pattern effect), which is what causes their
ECS values to be higher than implied by their response over
multidecadal periods. Moreover, during the historical period
internal variability is generally thought to have caused an ad-
ditional, unforced pattern effect, particularly over the last few
decades. Of the three studies that SF24 cites as supporting
a large total historical pattern effect, neither Heede and Fe-
dorov (2021) nor Chao et al. (2022) consider the full his-
torical period (from the second half of the 19th century on),
which is what S20 and L22 both use. They only consider
post-1980 and post-2000 periods, respectively, and thus do
not in fact support SF24’s claims. The third study cited by
SF24, Andrews et al. (2022a), did estimate the pattern effect
over the full historical period (1871-2010), regressing an-
nual mean historical simulation data from atmosphere-only
GCMs driven by SST evolution. Their result when using data
from the non-spliced HadiSST1 dataset rather than the outlier
spliced AMIPII SST dataset, of 0.48 Wm~2°C~L is in line
with the S20 estimate of 0.5 W m™2°C~!. Their estimate is
reduced to 0.41 W m™2 °C~! when regressing pentadal mean
data, an approach that suppresses bias from responses to in-
terannual fluctuations (Lewis and Mauritsen, 2021). If the
resulting individual model estimates are weighted equally by
modelling centre rather than by model, recognising that mod-
els from the same centre have structural similarities, their es-
timate is reduced further to 0.36 Wm~—2°C~!, in line with
the L22 estimate of 0.35 W m~2 °C~!. Moreover, Modak and
Mauritsen (2023) obtained an even lower historical pattern
effect estimate of 0.30 Wm—2°C~!, averaged across seven
SST datasets. They also noted that, of the SST datasets that
they studied, the commonly used AMIPII dataset produced
by far the largest pattern effect estimate.

3 Effects on ECS estimates of L22’s various
revisions to S20’s assumptions

It is relevant to appraise the contributions made to the low-
ering and narrowing of the ECS range in L22 by the various
revisions made in it to S20’s methods and input assumptions
for each of the four lines of evidence that they both used:
process, historical, paleoclimate cold period, and paleocli-
mate warm period. The impact of correcting S20’s likelihood
estimation and of the change in prior is shown in Table 4 of
L22 for all cases where S20 provides posterior PDFs, and the
impact on measures of the posterior PDF of different input
assumptions between L22 and S20 on ECS estimates from
each line of evidence on its own are detailed in Table 8 of
L22. The effects of key classes of data differences on L22’s
combined-evidence ECS estimation are set out in Table 7 of
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L22; the effects of revisions to S20’s input assumptions by
line of evidence are set out in detail below.

The cumulative effects of these changes are summarised
in Table 1. All percentage reductions in the median ECS es-
timate shown in Table 1 or mentioned below are from the
3.23°C estimate using L22’s Jeffreys prior and after cor-
recting S20’s likelihood errors. The changes made in L22
to S20’s historical pattern effect and aerosol forcing mag-
nitudes and to process cloud feedback are more open to de-
bate than are the other input data revisions, which should not
be regarded as particularly contentious, and their effects are
therefore shown separately. Even without revisions in S20’s
estimates of any of those three input items, the bulk of the
reduction from S20 to L22 in the ECS estimate range and
over 80 % of the reduction in the median estimate are still
obtained.

3.1 Effect of adopting a computed Jeffreys “objective”

prior and correcting S20’s likelihood estimates

As shown in the top section of Table 1, 1.22’s replacement
of S20’s prior distribution with a computed Jeffreys prior,
combined with the correction of S20’s likelihood estimation
method, widened and slightly raised the posterior ranges for
ECS. Changing the prior and correcting the likelihoods made
approximately equal contributions to the change in the ECS
posterior median and 5 %-95 % ranges.

3.2 Effect of updating the F»,co, estimate, adjusted to
a regression basis where appropriate, and revising
the ECS to S ratio

L22 incorporated the ratio (y) of regression-based to fixed-
SST-based estimates of F>xco, when using process or his-
torical evidence (as is undoubtedly appropriate and necessary
to avoid them being on a basis that is inconsistent with esti-
mates of S from paleoclimate evidence: Sect. 2.1 and L22
Sect. 4.1) and updated S20’s 4.00 W m~2 fixed-SST-based
estimates of F,xco, to the 3.93 W m~2 ARG value. L22 also
used an ECS to S (1 + ¢) ratio estimated by comparing their
values in each of 16 long CO, doubling or CO, quadrupling
simulations (L22 Supplement, Sect. 5.3.1), rather than using
S20’s ECS to S ratio (which resulted in inconsistent estima-
tion of § between different lines of evidence in S20: L22
Sect. 2). These methodological choices reduce the median
ECS estimate to 2.82 °C, accounting for 38 % of the overall
reduction in ECS (to 2.16 °C) from all the L22 input assump-
tion revisions combined.

3.3 Effect of AR6-based revisions to the historical
surface air temperature to blended warming ratio
and non-aerosol forcings

Substituting updated estimates from IPCC ARG6 of the ratio
of historical global near-surface air temperature (SAT) warm-

ing to blended SST and land SAT warming and of changes
in historical forcings other than for aerosols, while retaining
S20’s aerosol forcing distribution, further reduces the esti-
mated ECS range. The resulting cumulative reduction in the
median ECS estimate to 2.64 °C represents 55 % of the over-
all L22 reduction. None of the foregoing data input revisions
can reasonably be regarded as contentious.

3.4 Effect of revisions to cold paleoclimate evidence
input assumptions

The revisions made in L22 to S20’s estimates of cooling
and non-greenhouse-gas forcing at the Last Glacial Max-
imum (LGM), discussed in detail in L22’s Supplement
(Sect. 5.3.2), are also strongly defensible. The downward re-
vision to estimated LGM cooling still left it greater than the
average of the estimates from S20’s cited sources, adjusted
to correctly reflect the preindustrial-to-LGM temperature
change. Moreover, L22’s revised cooling estimate is iden-
tical to the best estimate in Annan et al. (2022). That study
followed two LGM cooling studies (Tierney et al., 2020, and
Osman et al., 2021) that estimated stronger cooling. All three
studies combined information from GCM simulations and
similar sets of proxies, but only Annan et al. (2022) used
a method that prevented the global mean magnitude of cool-
ing (as opposed to the spatial pattern of cooling) in the GCM
simulations from biasing the estimate of LGM cooling.

The revision to LGM non-greenhouse-gas forcing adds, to
the land ice and sea level forcing, an estimate of the omitted
albedo change caused by sea level fall exposing more land;
S20 claimed this was a “less commonly discussed factor”,
but as L.22 pointed out multiple studies have accounted for it.

Adopting these two changes results in a further 0.13 °C re-
duction in the median ECS estimate to 2.51 °C, a cumulative
fall representing 67 % of the overall L22 reduction.

It is also relevant to note that while L22 retained S20’s
assumption that ECS was lower at the LGM than for warm-
ing from the preindustrial climate, and accordingly applied
an upwards adjustment when estimating the latter, a recent
study finds the opposite to be true (Cooper et al., 2024). Re-
placing S20’s and L22’s upwards adjustment to ECS with an
adjustment for that study’s finding would have significantly
lowered the LGM-based climate sensitivity estimates in both
520 and L22.

3.5 Effect of revisions to warm paleoclimate evidence
input assumptions

The revisions made in L22 to S20’s estimates of the ra-
tio of Earth system sensitivity (ESS) to ECS, and the ratio
of global SAT warming to tropical SST warming, for the
mid-Pliocene warm period (mPWP) (discussed in detail in
L22’s Supplement, Sect. 5.3.3) should likewise not be seen
as contentious re-interpretations. S20 used mPWP simula-
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Table 1. Evolution from the S20 to the L22 combined-evidence estimates of S (the S20 and L22 proxy for ECS) arising from the change in
prior and correction of likelihood estimation (top section), as well as subsequent changes arising from revising input data assumptions. All
values are in degrees Celsius (°C) and except for the medians are rounded to the nearest 0.05 °C. Medians, as the key measure of changes in

the posterior PDF for S, are shown in bold font.

Percentile of posterior PDF for S (as %) 5% 50% (median) 95%  Fall in median/total reduction
Baseline results in S20 2.3 3.1 4.7

Corresponding L22 estimates after correcting S20’s likelihoods and 2.3 323 505 0%
adopting a computed Jeffreys prior

L22 estimates after then adopting revisions relating to the following:

derivation of the ECS / § ratio (1 + %), adjustment of F,c0, to a 1.95 2.82 435 38 %
regression basis (&), and adopting the AR6 F; o, estimate

also ARG historical ex-aerosol ERF and AT basis? 1.85 2.64 4.1 55%
also LGM AT and A Fexco, (preferred evaluation) 1.7 248 39 67 %
also mPWP GMST/tropical SST and ESS / ECS ratios 1.65 236 3.65 81%
also process Planck feedback 1.65 2.34 3.6 83 %
also process cloud feedback 1.55 2.19 33 97 %
also historical pattern effect 1.55 215 325 101 %
also historical aerosol ERF (all revisions) 1.55 2.16 32 100 %

@ ARG historical ERF time series are used to estimate A Feyx_yerosol» but only to scale the main 1850 to 2005-2015 A Fyepos0] €stimate to a 18611880 to 2006-2018 change. The
ARG revision to the AT basis relates to changing S20’s estimated GMAT-GMST adjustment to match the AR6 zero estimate of their difference.

the ESS-to-ECS ratio. The revised L22 estimate used results
from the more recent PlioMIP2 model ensemble instead. .22
also used PlioMIP2 mPWP simulations to estimate the global
SAT to tropical SST warming ratio, whereas S20 used pre-
PlioMIP2 studies and simulations that estimated the ratio
for glacial cycles, which involve climate states very differ-
ent from that in the mPWP. L22 also increased the width of
S20’s mPWP global SAT uncertainty range, in view of proxy
evidence being sparse. Adopting these changes results in a
further 0.15 °C reduction in the median combined-evidence
ECS estimate to 2.36 °C, thus achieving 81 % of the overall
L22 reduction. The 5 %95 % range becomes 1.65-3.65 °C.
By this point 76 % of the total reduction in the 95 % uncer-
tainty bound has been achieved.

3.6 Effects of revisions to process evidence input
assumptions

The revisions made in L22 to S20’s Planck and cloud feed-
back estimates further reduce the L22 combined-evidence
ECS estimate, with the median falling to 2.19°C, thus
achieving 97 % of L22’s overall reduction. The revision to
S20’s median Planck feedback estimate was justified in L22’s
Supplement (Sect. 5.1.2) and was very small: from —3.20 to
—3.25Wm~2°C~!. By comparison, the average of the esti-
mates for CMIP5 and CMIP6 models in Zelinka et al. (2020)
was —3.28 Wm™2°C~ L.

Adopting L22’s minor revision to Planck feedback but not
its larger revision to S20’s median cloud feedback estimate
reduces the median ECS estimate only very marginally to
2.34°C (thus realising 83 % of L22’s total reduction in the
median estimate), with the 5 %—95 % range becoming 1.65—

3.6 °C. The revision in L.22 to S20’s cloud feedback estimate
(from 0.45 to 0.27 Wm~2 °C~!) and its effects are discussed
in Sect. 3.8.

3.7 Effect of revisions to the historical aerosol forcing
and pattern effect input assumptions

After adopting L22’s revisions L22 to S20’s cloud and Planck
process feedbacks, the only remaining revisions made in L22
were to S20’s historical aerosol forcing and pattern effect es-
timates. The adoption of these final two revisions has a re-
markably small impact on L22’s combined-evidence ECS es-
timate. The reduction to the original L22 median estimate is
only 0.03 °C, while the 5 % uncertainty bound is unchanged
and the 95 % bound is reduced by 0.1 °C. Even after L.22’s
revisions, historical evidence remained a weak constraint on
high ECS because, as L22 Fig. 5 shows, at L22’s combined-
evidence 95 % bound of 3.2K its historical likelihood had
not declined very far from its peak value, and even at higher
climate sensitivity values the rate of its decline was very
much slower than for the likelihood from either process ev-
idence or paleoclimate evidence. The reason why L22’s re-
visions to S20’s historical aerosol forcing and pattern effect
estimates had little effect on its median combined-evidence
ECS estimate is that before making them the historical like-
lihood was not, unlike L22’s process and paleoclimate like-
lihoods, changing sharply in the region of the combined-
evidence likelihood maximum, so it had little effect on the
combined-evidence median ECS estimate, and after making
those changes the historical likelihood maximum was in line
with L.22’s process and paleoclimate likelihood maxima, so
it also had little effect on the median ECS estimate.
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3.8 Effects of various combinations of revisions to the
most uncertain input assumptions

Cloud feedback remains quite poorly constrained and is the
dominant source of process evidence feedback uncertainty.
While SF24 does not explicitly challenge 1.22’s cloud feed-
back estimate, which was smaller than in S20 due to L22
adopting a lower estimate of low-cloud feedback, it does cite
a subsequent study (Stauffer and Wing, 2022) that suggests
that non-low cloud feedback — the S20 estimate of which was
not revised in L22 —is higher than assumed in S20 (and hence
in L22). It also cites a post-S20 study (Ceppi and Nowack,
2021) that estimates almost the same total cloud feedback as
in S20, although with an even smaller low-cloud feedback
than assumed in L22. The revision of the cloud feedback
estimate in L22 should therefore be regarded as subject to
significant uncertainty. Moreover, historical aerosol forcing
is poorly constrained, as discussed in Sect. 2.3, and L22’s
revision of it may also be regarded as subject to significant
uncertainty. As discussed in Sect. 2.4 the revision in L22 of
S20’s historical pattern effect appears to be well justified, but
in view of SF24’s focus on this point it is treated here as be-
ing subject to significant uncertainty.

If no changes are made to S20’s cloud feedback or his-
torical aerosol forcing estimates, but all the other revisions
in L22 are retained, the effect on L.22’s combined-evidence
ECS estimate is fairly modest: the original L22 median esti-
mate increases by about 0.15 to 2.32 °C, while the 5 %-95 %
range becomes 1.6-3.55 °C, an increase of 0.35 °C at the top
end. These ECS estimate increases barely change if S20’s
historical pattern effect estimate is left unaltered as well as
S20’s cloud feedback and historical aerosol forcing estimates
(see Sect. 3.6).

If no changes are made to S20’s cloud feedback or his-
torical pattern effect estimates, but all the other revisions in
L22 are retained, the original L22 median estimate increases
by about 0.2 to 2.37 °C, while the 5 %-95 % range becomes
1.65-3.65°C.

If only cloud feedback is reverted to S20’s estimate, retain-
ing all the other L22 revisions, the effects are much the same,
with the median L.22 ECS estimate increasing to 2.28 °C and
the 5 %95 % range becoming 1.6-3.45 °C.

If only the historical pattern effect is reverted to S20’s es-
timate, retaining all the other L22 revisions, the effects are
smaller, with the median L22 ECS estimate increasing to
2.21°C and the 5 %-95 % range becoming 1.55-3.3 °C.

If instead only aerosol forcing is reverted to S20’s es-
timate, the original L22 ECS estimates are essentially un-
changed, with just the 95 % uncertainty bound marginally
increasing from 3.2 to 3.25 °C. As explained in L22 Sect. 6,
the minor impact of reverting to S20’s aerosol forcing esti-
mate is due to the main effect on the historical likelihood of
doing so being to increase it at higher ECS values, where the
combined-evidence likelihood is strongly down-weighted by
low process and paleoclimate likelihoods.

4 Subjective vs. objective Bayesian approaches

Regarding statistical issues, as noted by SF24 priors on ECS
and other climate system parameters have been a contentious
issue since the first Bayesian ECS studies. SF24 argues that
probability is most useful as a quantification of what some-
one expects, rather than a quasi-objective calculation based
on the chosen physical models and data used. In other words,
they favour a subjective Bayesian rather than an objective
Bayesian or a frequentist approach. However, as explained
in L22, it is essential for scientific inference that the sta-
tistical methods used are calibrated, in the sense that the
uncertainty ranges they generate closely approximate con-
fidence intervals. Objective Bayesian methods involve use
of mathematical, noninformative priors that are generally in-
tended to produce uncertainty ranges that are (at least ap-
proximately) true confidence intervals; frequentist methods
share that intention. Subjective Bayesian methods are not de-
signed to do so, and their uncertainty ranges may be very
ill-calibrated when (as in ECS estimation) the data are insuf-
ficiently strong to dominate the influence of the prior. S20
used a subjective Bayesian approach, while L22 employed
an objective Bayesian one using a computed Jeffreys prior.
Doing so widened and slightly raised the combined-evidence
posterior ranges for climate sensitivity, before making any
changes to S20’s other assumptions.

There are also other problems with adopting a subjective
Bayesian approach. First, the prior and data likelihood may
well both be based on the same evidence, at least to some ex-
tent. Scientists’ expectations as to the value of ECS can only
rationally be based on some set of observational evidence
and/or on climate model behaviour. It would be reasonable
to use the well-established fact that the climate system is not
extremely unstable to require a prior to rule out ECS being
negative or exceedingly high (over 20 °C, say). However, a
considerable part of the observational data-based evidence
available to scientists will already be reflected in the likeli-
hood function(s) produced by the physical models and data
used for estimating ECS, so it is duplication to also use it in
formulating a prior. Moreover, since observational evidence
is used in the construction of climate models, and because
related aspects of climate model behaviour will have been
used to quantify the data-variable distributions used in esti-
mating the ECS likelihood, climate model behaviour should
not shape the prior, particularly given the concern that ECS
in such models may be unrealistic.

Secondly, even if the chosen prior does produce well-
calibrated uncertainty ranges when used to infer ECS from
a data likelihood reflecting one set of evidence, the standard
Bayesian method of simply updating that initial posterior
PDF by data likelihoods reflecting other sets of evidence may
well not produce well-calibrated uncertainty ranges reflect-
ing the combined evidence (Lewis, 2018; Lewis and Grun-
wald, 2018).
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For historical and, particularly, process evidence, the uni-
form (flat) prior for climate feedback that S20 selected was in
fact close to the mathematical, noninformative prior used in
L22, although for paleoclimate evidence it differed substan-
tially (L22 Fig. 3). However, the uniform prior for ECS se-
lected for use with observational evidence in the IPCC Fourth
Assessment Report was very far from noninformative and re-
sulted in huge overestimation of the chance of ECS being
very high; only the upper bound placed on that prior (20 °C
for most studies) prevented almost 100 % probability from
being assigned to near-infinite ECS values. The same applies
to S20’s ECS estimate from historical evidence when using a
0-20 °C uniform prior for ECS (S20 Table 6); the median es-
timate was 8.5 °C, with a 95 % bound (existing purely due
to the prior upper limit of 20°C) of 18.6 °C. By contrast,
when using a noninformative prior with S20’s historical ev-
idence inputs, the 122 (Table 4) median ECS estimate was
only 4.2 °C, with a 95 % bound of 13.7 °C, despite incorpo-
rating correction of S20’s underestimation of its historical
evidence likelihood at high ECS levels.

5 Structural uncertainties in climate models

SF24 raises the issue of structural uncertainty in GCMs and
other forward models and notes the inability of GCMs to sim-
ulate the historical pattern of warming, including changes in
the Pacific east—west temperature gradient. This failure could
be because the pattern of Pacific warming is a transient phe-
nomenon or a result of missing aerosol forcing mechanisms.
However, other possible explanations could have very dif-
ferent ramifications for ECS. Several recent studies suggest
that GCM-simulated weakening of the Pacific east-west tem-
perature gradient may be unrealistic, with SST in the West
Pacific Warm Pool being more sensitive to greenhouse gas
forcing than SST in the eastern equatorial Pacific (Seager et
al., 2019; Lee et al., 2022; Hou et al., 2024; Lee et al., 2024).
If correct, the weakening of net climate feedback in GCMs
over 150 years after an abrupt quadrupling of CO, concen-
tration would also be unrealistic. That would imply both that
current estimates of the historical pattern effect (Sect. 2.4)
are excessive and that most current ECS estimates, including
those based on process understanding and on emergent con-
straints as well as on historical warming — which (like those
in S20 and L.22) generally reflect the aforesaid weakening of
climate feedback in GCMs, may be significantly biased up-
wards.

The possibility that long-term tropical warming patterns
simulated by GCMs are significantly wrong could be one of
the most important of the omitted structural uncertainties in
ECS estimation about which SF24 expresses concern. How-
ever, that uncertainty points primarily to the possibility that
ECS estimates are too high, not too low. Even if the Pa-
cific east—west temperature gradient, and hence net climate
feedback, does eventually weaken to the extent simulated by

GCMs, a multidecadal to centennial delay in that weaken-
ing occurring could imply a significantly lower warming re-
sponse this century, as a fraction of ECS, than would other-
wise be the case.

SF24 claims that probability distributions for ECS in S20
and ARG remain approximately valid but that subsequent
studies, including .22, omit important structural uncertain-
ties. It is possible that both S20 and L22 omitted such un-
certainties, but L22 did not omit any structural uncertainties
that were included in S20. The equations used in L22 for es-
timating ECS were identical to those in S20, except for the
inclusion of an additional structural uncertainty concerning
the ratio of regression-based to fixed-SST-based estimates of
F>xco,. Moreover, the uncertainty estimates for each input
variable in L22 were almost all the same as or greater than
those used in S20, the main exception being for historical
aerosol forcing, the changed input distribution of which had
a negligible effect on the L22 combined-evidence ECS esti-
mation.

6 Conclusions

S20 substantially narrowed the uncertainty in ECS, primar-
ily by rejecting lower values of ECS that had been included
in climate assessments since 1979 and retained through to
the 2013 IPCC Fifth Assessment Report. Its observationally
driven ECS approach and range was approximately adopted
in IPCC ARG6. By remedying deficiencies in the S20 analy-
sis and adopting input assumptions based on newer evidence,
and in a few cases alternative appraisals of existing evidence,
L22 provided an analysis that re-emphasised the lower values
of ECS. While S20 estimated the probability of ECS being
below 2.3 °C as only 5 %, L22 estimated it to be over 50 %.
S24°s criticisms of assertions in L22 regarding S20 and of
L22’s ECS estimation are unjustified and incorrect.

The reluctance of climate scientists to move away from
mathematically unsound subjective Bayesian approaches for
estimating ECS or other uncertain climate system parame-
ters is deeply concerning. Ensuring reliable results requires
either adopting an objective Bayesian approach, employing a
noninformative prior, or using frequentist statistical methods.

While structural uncertainty in forward models, in par-
ticular GCMs, may well be underestimated, SF24’s claim
that probability distributions for ECS in S20 remain ap-
proximately valid but that subsequent studies omit impor-
tant structural uncertainties cannot be justified with respect
to L22.

Code and data availability. Simulation data used to re-estimate
HadiSST1-driven pattern effect results in Andrews et al. (2022a)
using pentadal mean ordinary least-squares regression were down-
loaded from https://doi.org/10.5281/zenodo.6799004 (Andrews et
al., 2022b) on 15 February 2025. The regression code used was the
Im function in R (R Core Team, 2025).
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