
 

1 

 

Comment on "Can uncertainty in climate sensitivity be narrowed 

further?" by Sherwood and Forest (2024) 
 

Nicholas Lewis
1
 

1
 Bath, UK; independent of any institution 5 

Correspondence to: Nicholas Lewis (nhlewis@btinternet.com) 

Abstract. This comment addresses assertions made by Sherwood and Forest (2024) [SF24] regarding the narrowing of the 

range of equilibrium climate sensitivity (ECS), particularly at the low end. ). SF24 challenged a previous study by Lewis 

(2022) [L22] that found a narrower and substantially lower ECS level. This comment clarifies that, contrary to SF24's 

claims, L22 did not rule out a high ECS level based on historical evidence, and did identify and correct errors in Sherwood 10 

et al. (2020). Those errors included use of an invalid), in particular in relation to its likelihood estimation; their method that, 

ironically, substantially underestimated likelihood at high ECS levels for their historical evidence at high ECS levels. I t  

a lso appraises L22’s revisions to S20's methods and input assumptions, and considers how these have contributed to the 

lowering and narrowing of the ECS range. This comment also discusses the role of priors in Bayesian ECS estimation and 

explains why the subjective Bayesian approach favoured by SF24 risks producingcan often produce unreliable inference for 15 

uncertain parameters such as ECS. Finally, the importance of considering structural uncertainties in climate models, 

particularly concerningregarding tropical warming patterns, is extended beyond the points raised by SF24. Such uncertainties 

could affect ECS estimation, not only from historical period evidence, but also from climate process understanding, 

paleoclimate data and emergent constraints, but. They seem more likely to suggest existing ECS estimates are too high than 

too low. 20 

1 Introduction 

In the Sherwood and Forest (2024) Opinion article "Can uncertainty in climate sensitivity be narrowed further?" published in 

Atmospheric Chemistry and Physics (hereafter SF24), the authors express doubts that the uncertainty range for equilibrium 

climate sensitivity (ECS) has been further narrowed since the publication of Sherwood et al. (2020) (hereafter S20). They 

note that the observationally driven ECS range in S20 was approximately adopted in the relevant chapter (Forster et al., 25 

2021) of the IPCC Sixth Assessment Report (AR6).     

SF24's authors state that the new study claiming the largest revision in the range for ECS is Lewis (2022) (hereafter L22), 

which "asserts a narrower and substantially lower ECS level using the basic S20 methodology with various updates".   This 

comment addresses the erroneous claims that SF24 made about L22,. It identifies L22’s contributions – through revisions to 

S20's input assumptions for each line of evidence, and other changes – to the lowering and narrowing of S20’s ECS range. It 30 

addresses problems with the subjective Bayesian approach described by SF24, and finally discusses the challenges in 
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narrowing the range of climate sensitivity posed by uncertainties inuncertainty as to the realism of global climate model 

(GCM) simulated long-term tropical warming patterns. For clarity, it should be noted that while SF24 refers to ECS, S20 and 

L22 actually both estimate S, a proxy for ECS. In GCMs, S is almost always slightly lower than ECS. The two terms are only 

distinguished herein when discussing their relationship. 35 

2 Critique of SF24’s Claims Regardingclaims regarding L22 

SF24 states concerning L22:  

 "While this author claims "errors" in S20, looking carefully it appears these are differences in opinion on 

methodological choices and priors rather than errors, and they moreover were acknowledged to have little 

effect on the outcome." 40 

There were indeed differences in opinion on Bayesian priors between L22 and S20. And S20's decision to not adjust for 

CO2 forcing increasing slightly faster than logarithmically with concentration, unlike L22, is arguably a defensible difference 

of opinion., although its application led to inconsistency between S20's estimates from different lines of evidence. The minor 

effects on ECS estimation of these two differences of opinion almost cancelled out.   

However, L22 also found actual2.1 L22's findings of errors, inconsistencies and indefensible methodological choices 45 

in S20.  

However, L22 also found actual errors and indefensible methodological choices in S20.  

L22 SectionsSect. 5.1 and Supporting Information S2 showed that S20's method of likelihood estimation was invalid, and 

resulted in a major underestimation of the historical evidence likelihoods at high climate sensitivities. S20's likelihood 

estimates based on Paleocene-Eocene Thermal Maximum (PETM) evidence were similarly affected, although PETM 50 

evidence was not used in the main S20 results. Moreover, L22 Sectionspointed out that S20 used an uncertainty estimate that 

was a factor of ten lower than stated for PETM CO2 forcing, due to a coding error.
1
 

Moreover, L22 Sect. 4.1 and Supporting Information S1 showed that, based on an ensemble of 26 GCMs, S20's ECS 

estimates from both Processprocess and Historicalhistorical evidence were biased approximately 16% high, due to S20  

because, in deriving ECS from the climate feedback estimate, the authors had inappropriately using a fixed used an estimate 55 

of the effective radiative forcing (ERF) for doubled CO2 (F2×CO2) based on land-warming-corrected fixed sea surface 

temperature (SST) simulation basedsimulations, the method subsequently used in AR6, rather than a 150-year-regression -

based estimate of doubled CO2 forcing (F2×CO2) to derive ECS from estimated climate feedback. As L22 showed, in general 

GCM F2×CO2 estimates based on the land-warming corrected fixed SST simulation method (which it foundfor L22's 

ensemble of 26 GCMs agreed very closely, at their median, with the AR6 best estimate of F2×CO2) are in general 60 

significantly higher than 150-year regression -based F2×CO2 estimates. The latter are Regression based onF2×CO2 

                                                           
1
  Since publication of L22 this coding error has been noted, and its effects corrected, in the online version of S20. 
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estimates represent the y-intercept from a linear regression of planetary radiative imbalance (N) against the increase in global 

mean surface temperature (ΔGMST) as simulated in a GCM over 150 years following an abrupt quadrupling in CO2 

concentration (abrupt4xCO2), after scalingscaled to a doubling of CO2, with the. The x-intercept of the regression line – the 

definition of S – is taken as the GCM's estimated ECS., and the regression slope is taken as an estimate of its net climate 65 

feedback. In almost all GCMs, climate feedback weakens over the first few decades of the 150 -year simulation period, 

reflecting evolving tropicalSST warming patterns (a forced pattern effect). That being so, N is not linearly related to 

ΔGMST, and such regression based F2×CO2 values are bound to underestimate true F2×CO2. Nevertheless, to be 

arithmetically correct, ECS estimates intended (, as they are in bothestimated from fixed-SST simulations.
2
 However, 

estimates of S (which is what S20 and L22) to be on the same basis as 150-year regression based GCM ECS estimates, and 70 

therefore estimate in place of ECS) calculated by dividing observationally derived estimates of what the slope in such a 150-

year abrupt4xCO2 simulation regression would be into an estimate of F2×CO2, require , to be arithmetically correct, that the 

F2×CO2 estimate used is likewise a regression based one. Therefore, S20's use of a fixed SST based, rather than a regression 

based. , F2×CO2 estimate will have biased high its process and historical evidence derived estimates of S, which were based 

on such calculations. Based on the median ratio of those two types of F2×CO2 estimate in its GCM ensemble, L22 estimated 75 

the high bias to be approximately 16%. 

2.2 SF24's criticisms of L22 

SF24  criticizescriticises L22's results by claiming: 

"Instead, the reduction and narrowing of the ECS probability density function (PDF) resulted from a selective 

use of evidence - most importantly, a decision to reject the possibility of a large "pattern effect" on historical 80 

sea surface temperature (SST), even though this continues to be strongly supported by new studies, and a 

downward revision of expected historical aerosol cooling.  Together these two departures allowed Lewis to 

conclude (in contrast to other studies) that the historical record rules out a high ECS level." 

This claim is totally falsewrong. On the contrary, L22 finds (Table 8) that the historical record does not rule out a high 

ECS level. The standard 90% (5% - –95%) uncertainty range that L22 arrived at using only data from the historical record 85 

was 1.2 °C to –7.6 °C. Where, in addition, the common prior assumption that ECS is positive and does not exceed 20 °C was 

made, the range became 1.15 °C to –6.1 °C. Neither of these ranges rule out a high ECS level. Both 7.6 °C and 6.1 °C 

substantially exceed the 4.7 °C 95% uncertainty bound of S20's main combined-evidence ECS 95% bound of 4.7 °Cestimate. 

S20's combined all-evidence median (50% probability) baseline ECS estimate was 3.1 °C, with 66% ('likely') and 90% 

ranges of respectively 2.6 - –3.9 °C  and 2.3 - –4.7 °C. The corresponding values in L22 were 2.16 °C, 1.75 - –2.7 °C,  and 90 

1.55 - –3.2 °C. Without the two revisions criticized by SF24, the L22 all-evidence ECS 5% bound and median for the L22 

                                                           
2
 Reflecting the cause of this underestimation, the data in L22 Table S1 show a 0.98 correlation across the 26 GCMs between 

the measure of the forced pattern effect and the degree to which regression based F2×CO2 underestimates fixed SST based 

F2×CO2. 
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combined-evidence ECS estimates would have been unchangedchanged by less than 0.05 °C and the 95% bound would have 

increased by only about 0.1 °C. Excluding historical evidence entirely would similarly have left the L22 baseline ECS 5% 

bound and median estimates unchanged,  with the 95% bound increasing by only 0.2 °C. Thus, the reduction and narrowing 

of the ECS PDF in L22 had almost nothing to do with the revisions it made to assumptions about the pattern effect, or 95 

aerosol cooling, over the historical period.  

2.3 Historical aerosol forcing estimates and uncertainty 

In both S20 and L22, aerosol forcing is a major source of uncertainty for historical evidence. It is not surprisingtherefore 

unsurprising that the historical record does not rule out a high ECS level, since, in both S20 and L22, aerosol forcing is the 

largest source of uncertainty.. Aerosol forcing reduces, to an uncertain extent, the magnitude of the denominator of the 100 

energy -budget formula for estimating ECS. That results in there being a non-negligible probability, indeed a substantial one 

on S20's assumptions, that the denominator is small or negative, implying a very high or unbounded ECS, but a negligible 

probability that the denominator is very large, thus ruling out ECS being very low. It is surprising that the SF24 authors 

failed to recognize that it is process and, particularly for S20, paleoclimate evidence that most constrained the ECS upper 

bound both in L22 (Table 8) and in S20 (Table 10). 105 

  

Both S20 and L22 also estimated an effective climate sensitivity over the historical period (Shist), which is not adjusted for 

any pattern effect, and is somewhat less affected than ECS by assumptions about aerosol cooling. Employing a sampling 

method, S20 derived a 90% range for Shist of 1.9 to –14.4 °C, with a median of 3.1 °C, using an aerosol forcing distribution 

that assigned a 16% probability to it being even stronger (more negative) than −2.0 Wm
−2

. L22 down weighted the 110 

probability of very strong aerosol forcing from that assumed in S20, but without assuming the most likely level of aerosol 

forcing was weaker than in S20, and derived a 90% range for Shist of 1.3 to –4.3 °C (median 2.1 °C). As noted in S20, 

without criticism, Tokarska et al. (2020) likewise effectively down weighted very strong aerosol forcing as less consistent 

with observations. That resulted in their 90% range for Shist being 1.3 to –3.1 °C, with a median of 2.1 °C – identical results 

to L22 save that the 95% bound in L22 was considerably higher.    115 

2.4 Historical pattern-effect estimates 

The pattern effect – the dependence of outgoing radiation to space on the geographical pattern of SST warming – is generally 

thought to result in ECS being higher than Shist. , although some studies implicitly question whether this is so (see discussion 

in Sect. 5). The reduction in the tropical Pacific east-west temperature gradient that occurs after a decade or two in almost all 

GCM CO2-forced warming simulations, with greater warming occurring in the east than in the west, underlies the weakening 120 

over time of net climate feedback in GCMs (the forced pattern effect), which is what causes their ECS values to be higher 

than implied by their response over multidecadal periods. Moreover, during the historical period internal variability is 

generally thought to have caused an additional, unforced, pattern effect, particularly over the last few decades. Of the three 
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studies that SF24 cites as supporting a large total historical pattern effect, neither Heede and Fedorov,  (2021,) nor Chao et 

al., . (2022,) consider the full historical period (from the second half of the 19th century on), which is what S20 and L22 both 125 

use. They only consider, respectively, post-1980 and post-2000 periods, and thus do not in fact support SF24's claims. The 

third study cited by SF24, Andrews et al. (2022)), did estimate the pattern effect over the full historical period (1871 - 2010), 

as 0.48 Wm
−2

°C
-1

, in line with the S20 estimate of 0.5 Wm
−2

°C
-1

, when–2010), regressing annual mean historical simulation 

data from atmosphere-only GCMs driven by SST evolution in . Their result when using data from the non-spliced HadiSST1 

dataset rather than in the outlier spliced AMIPII SST dataset. The Andrews et al. (2022), of 0.48 Wm
−2

°C
−1

, is in line with 130 

the S20 estimate of 0.5 Wm
−2

°C
−1.

 Their estimate reduces to  0.41 Wm
−2

°C
-−1

 when regressing pentadal mean data, to 

suppressan approach that suppresses bias from responses to interannual fluctuations (Lewis and Mauritsen, 2021). If the 

resulting individual model estimates are weighted equally by modelling centre rather than by model, recognising that models 

from the same centre have structural similarities, that 0.41 Wm
-2

°C
-1

their estimate reduces further, to 0.36 Wm
−2

°C
-−1

, in line 

with the L22 estimate of 0.35 Wm
−2

°C
−1

. Moreover, Modak and Mauritsen (2023) obtained an even lower historical pattern-135 

effect estimate of 0.3530 Wm
−2

°C
-−1

, averaged across seven SST datasets. They also noted that, of the SST datasets that they 

studied, the commonly used AMIPII dataset produced by far the largest pattern effect estimate. 

3 Effects on ECS estimates of L22's various revisions to S20's assumptions 

It is relevant to appraise the contributions made to the lowering and narrowing of the ECS range in L22 by the various 

revisions made in it to S20's methods and input assumptions for each of the four lines of evidence that they both used: 140 

process, historical, paleoclimate cold period, and paleoclimate warm period. The impact of correcting L20's likelihood 

estimation and of the change in prior is shown in Table 4 of L20 for all cases where S20 provides posterior pdfs, and the 

impact on measures of the posterior pdf of different input assumptions between L22 and S20 on ECS estimates from each 

line of evidence on its own are detailed in Table 8 of L22. The effects of key classes of data differences on L22's combined 

evidence ECS estimation were set out in Table 7 of L22, but the effects of revisions to S20’s input assumptions by line of 145 

evidence are set out in detail below.  

The cumulative effects of these changes are summarised in Table 1. All percentage reductions in the median ECS estimate 

shown in Table 1 or mentioned below are from the 3.23 °C estimate using L22's Jeffreys' prior and after correcting S20's 

likelihood errors. The changes made in L22 to S20's historical pattern effect and aerosol forcing magnitudes, and to process 

cloud feedback are more open to debate than are the other input data revisions, which should not be regarded as particularly 150 

contentious, and their effects are therefore shown separately. Even without revisions in S20's estimates of any of those three 

input items, the bulk of the reduction from S20 to L22 in the ECS estimate range and over 80% of the reduction in the 

median estimate are still obtained. 
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3.1 Effect of adopting a computed Jefferys' "objective" prior and correcting S20's likelihood estimates 

As shown in the top section of Table 1, L22’s replacement of S20’s prior distribution with a computed Jefferys' prior, 155 

combined with the correction of S20's likelihood estimation method, widened and slightly raised the posterior ranges for 

ECS. Changing the prior and correcting the likelihoods made approximately equal contributions to the change in the ECS 

posterior median and 5–95% ranges.  

3.2 Effect of updating the F2×CO2 estimate, adjusted to a regression basis where appropriate, and revising the ECS 

to S ratio  160 

L22 incorporated the ratio (γ) of regression-based to fixed-SST-based estimates of F2×CO2 when using process or historical 

evidence (as is undoubtedly appropriate, and necessary to avoid them being on basis that is inconsistent with estimates of S 

from paleoclimate evidence: Sect. 2.1 and L22 Sect. 4.1), and updated S20's 4.00 Wm
−2

 fixed-SST-based estimates of F2×CO2 

to the 3.93 Wm
−2 

AR6 value. L22 also used an ECS to S (1+ζ) ratio estimated by comparing their values in each of 16 long 

CO2 doubling or CO2 quadrupling simulations (L22 Supplementary Information Sect.5.3.1), rather than using S20's ECS to S 165 

ratio (which resulted in inconsistent estimation of S between different lines of evidence in S20: L22 Sect. 2). These 

methodological choices reduce the median ECS estimate to 2.82 °C, accounting for 38% of the overall reduction in ECS (to 

2.16 °C) from all the L22 input assumption revisions combined.  

3.3 Effect of AR6-based revisions to the historical surface air temperature to blended warming ratio and non-aerosol 

forcings 170 

Substituting updated estimates from IPCC AR6 of the ratio of historical global near surface air temperature (SAT) warming 

to blended SST and land SAT warming, and of changes in historical forcings other than for aerosols, while retaining S20's 

aerosol forcing distribution, further reduces the estimated ECS range. The resulting cumulative reduction in the median ECS 

estimate to 2.64 °C represents 55% of the overall L22 reduction. None of the foregoing data input revisions can reasonably 

be regarded as contentious.  175 

3.4 Effect of revisions to cold Paleoclimate evidence input assumptions 

The revisions made in L22 to S20's estimates of cooling and non-greenhouse gas forcing at the last glacial maximum (LGM), 

discussed in detail in L22's Supplementary Information (Sect. 5.3.2), are also strongly defensible. The downward revision to 

estimated LGM cooling still left it greater than the average of the estimates from S20's cited sources, adjusted to correctly 

reflect the preindustrial-to-LGM temperature change. Moreover L22's revised cooling estimate is identical to the best 180 

estimate in Annan et al (2022). That study followed two LGM cooling studies (Tierney et al., 2020; and Osman et al., 2021) 

that estimated stronger cooling. All three studies combined information from GCM simulations and similar sets of proxies, 

but only Annan et al. (2022) used a method that prevented the global mean magnitude of cooling (as opposed to the spatial 

pattern of cooling) in the GCM simulations biasing the estimate of LGM cooling.  
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The revision to LGM non-greenhouse-gas forcing adds, to the land-ice and sea-level forcing, an estimate of the omitted 185 

albedo change caused by sea-level fall exposing more land; S20 claimed this was a "less commonly discussed factor", but as 

L22 pointed out multiple studies have accounted for it.  

Adopting these two changes results in a further 0.13 °C reduction in the median ECS estimate, to 2.51 °C, a cumulative 

fall representing 67% of the overall L22 reduction.  

It is also relevant to note that while L22 retained S20's assumption that ECS was lower at the LGM than for warming 190 

from the preindustrial climate, and accordingly applied an upwards adjustment when estimating the latter, a recent study 

finds the opposite to be true (Cooper et al., 2024). Replacing S20's and L22's upwards adjustment to ECS with an adjustment 

for that study's finding would have significantly lowered the LGM-based climate sensitivity estimates in both S20 and L22.  

3.5 Effect of revisions to warm Paleoclimate evidence input assumptions 

The revisions made in L22 to S20's estimates of the ratio of Earth-system sensitivity (ESS) to ECS, and the ratio of global 195 

SAT warming to tropical SST warming, for the mid-Pliocene warm period (mPWP) (discussed in detail in L22's 

Supplementary Information, Sect. 5.3.3) should likewise not be seen as contentious re-interpretations. S20 used mPWP 

simulation results from the PlioMIP1 model-ensemble to estimate the ESS-to-ECS ratio. The revised L22 estimate used 

results from the more recent PlioMIP2 model-ensemble instead. L22 also used PlioMIP2 mPWP simulations to estimate the 

global SAT to tropical SST warming ratio, whereas S20 used pre-PlioMIP2 studies and simulations that estimated the ratio 200 

for glacial cycles, which involve climate states very different from that in the mPWP. L22 also increased the width of S20's 

mPWP global SAT uncertainty range, in view of proxy evidence being sparse. Adopting these changes results in a further 

0.15 °C reduction in the median combined evidence ECS estimate, to 2.36 °C, thus achieving 81% of the overall L22 

reduction. The 5–95% range becomes 1.65–3.65 °C. By this point 76% of the total reduction in the 95% uncertainty bound 

has been achieved. 205 

3.6 Effects of revisions to process evidence input assumptions  

The revisions made in L22 to S20's Planck and cloud feedback estimates further reduce the L22 combined-evidence ECS 

estimate, with the median falling to 2.19 °C, thus achieving 97% of L22's overall reduction. The revision to S20's median 

Planck feedback estimate was justified in L22's Supplementary Information, Sect. 5.1.2, and was very small: from −3.20 to 

−3.25 Wm
−2

 °C
−1

. By comparison, the average of the estimates for CMIP5 and CMIP6 models in Zelinka et al. (2020) was 210 

−3.28 Wm
−2

 °C
−1

.  

Adopting L22's minor revision to Planck feedback but not its larger revision to S20's median cloud feedback estimate 

reduces the median ECS estimate only very marginally, to 2.34 °C (thus realising 83% of L22's total reduction in the 

median estimate), with the 5–95% range becoming 1.65–3.6 °C. The revision in L22 to S20's cloud feedback estimate 

(from 0.45 to 0.27 Wm
−2

 °C
−1

) and its effects are discussed in Sect. 3.8. 215 
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3.7 Effect of revisions to the historical aerosol forcing and pattern effect input assumptions  

After adopting L22's revisions L22 to S20's cloud and Planck process feedbacks, the only remaining revisions made in L22 

were to S20's historical aerosol-forcing and pattern-effect estimates. The adoption of these final two revisions has a 

remarkably small impact on L22's combined-evidence ECS estimate. The reduction to the original L22 median estimate is 

only 0.03 °C, while the 5% uncertainty bound is unchanged and the 95% bound reduces by 0.1 °C. Even after L22's 220 

revisions, historical evidence remained a weak constraint on high ECS because, as L22 Figure 5 shows, at L22's combined 

evidence 95% bound of 3.2 K its historical likelihood had not declined very far from its peak value, and even at higher 

climate sensitivity values the rate of its decline was very much slower than for the likelihood from either process or 

paleoclimate evidence. The reason why L22's revisions to S20's historical aerosol-forcing and pattern-effect estimates had 

little effect on its median combined evidence ECS estimate is that before making them the historical likelihood was not, 225 

unlike L22's process and paleoclimate likelihoods, changing sharply in the region of the combined-evidence likelihood 

maximum, so it had little effect on the combined evidence median ECS estimate, and after making those changes the 

historical likelihood maximum was in line with L22's process and paleoclimate likelihood maxima, so also had little effect 

on the median ECS estimate. 

3.8 Effects of various combinations of revisions to the most uncertain input assumptions  230 

Cloud feedback remains quite poorly constrained, and is the dominant source of process-evidence feedback uncertainty. 

While SF24 does not explicitly challenge L22's cloud-feedback estimate, which was smaller than in S20 due to L22 adopting 

a lower estimate of low-cloud feedback, it does cite a subsequent study (Stauffer and Wing, 2022) that suggests that non-low 

cloud feedback – the S20 estimate of which was not revised in L22 – is higher than assumed in S20 (and hence in L22). It 

also cites a post-S20 study (Ceppi and Nowack, 2021) that estimates almost the same total cloud feedback as in S20, 235 

although with an even smaller low-cloud feedback than assumed in L22. The revision of the cloud feedback estimate in L22 

should therefore be regarded as subject to significant uncertainty. Moreover, historical aerosol forcing is poorly constrained, 

as discussed in Sect. 2.3, and L22's revision of it may also be regarded as subject to significant uncertainty. As discussed in 

Sect. 2.4 the revision in L22 of S20's historical pattern effect appears to be well justified, but in view of SF24's focus on this 

point it is treated here as being subject to significant uncertainty.  240 

If no changes are made to S20's cloud feedback or historical aerosol forcing estimates, but all the other revisions in 

L22 are retained, the effect on L22’s combined-evidence ECS estimate is fairly modest: the original L22 median 

estimate increases by about 0.15 °C to 2.32 °C, while the 5–95% range becomes 1.6–3.55 °C, an increase of 0.35 °C at 

the top end. These ECS estimate increases barely change if S20's historical pattern effect estimate is left unaltered as well as 

S20's cloud feedback or historical aerosol forcing estimates (see Sect. 3.6). 245 
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If no changes are made to S20's cloud feedback or historical pattern effect estimates, but all the other revisions in 

L22 are retained, the original L22 median estimate increases by about 0.2  °C, to 2.37  °C, while the 5–95% range 

becomes 1.65–3.65  °C. 

If only cloud feedback is reverted to S20's estimate, retaining all the other L22 revisions, the effects are much the 

same, with the median L22 ECS estimate increasing to 2.28 °C and the 5–95% range becoming 1.6–3.45 °C. same, 250 

with the median L22 ECS estimate increasing to 2.28  °C and the 5-95% range becoming 1.6–3.45  °C.  

If only the historical pattern effect  is reverted to S20's estimate, retaining all the other L22 revisions, the effects are 

smaller, with the median L22 ECS estimate increasing to 2.21  °C and the 5-95% range becoming 1.55–3.3  °C.   

If instead only aerosol forcing is reverted to S20's estimate, the original L22 ECS estimates are essentially 

unchanged, with just the 95% uncertainty bound marginally increasing. from 3.2 to 3.25 °C. As explained in L22 Sect. 255 

6, the minor impact of reverting to S20's aerosol forcing estimate is due to the main effect on the historical likelihood of 

doing so being to increase it at higher ECS values, where the combined-evidence likelihood is strongly down weighted by 

low process and Paleoclimate likelihoods. 

 

Table 1. Evolution from the S20 to the L22 combined evidence estimates of S (the S20 and L22 proxy for ECS) arising from 260 

the change in prior and correction of likelihood estimation (top section), and subsequent changes arising from revising input 

data assumptions. All values are in °C and except for the medians are rounded to the nearest 0.05 °C.  

Percentile of posterior PDF for S (as %) 5% 50% 

(median) 

95% Fall in median 

/Total reduction 

Baseline results in S20 2.3 3.1 4.7  

Corresponding L22 estimates after correcting S20's 

likelihoods and adopting a computed Jeffreys' prior 
2.3 3.23 5.05 0% 

L22 estimates after then adopting revisions relating to:     

derivation of the ECS/S ratio (1+γ), adjustment of F2×CO2 to a   

regression basis (ζ) and adopting the AR6 F2×CO2 estimate  
1.95 2.82 4.35 38% 

also AR6 Historical ex-aerosol ERF & ΔT basis
a
 1.85 2.64 4.1 55% 

also LGM ΔT and ΔFexCO2 (preferred evaluation) 1.7 2.48 3.9 67% 

also mPWP GMST/Tropical SST and ESS/ECS ratios 1.65 2.36 3.65 81% 

also Process Planck feedback 1.65 2.34 3.6 83% 

also Process cloud feedback 1.55 2.19 3.3 97% 

also Historical Pattern effect  1.55 2.15 3.25 101% 
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also Historical aerosol ERF (all revisions) 1.55 2.16 3.2 100% 

 
a AR6 Historical ERF time series are used to estimate ΔFother, but only to scale the main 1850 to 2005−2015 ΔFaerosol estimate to a 1861−80 

to 2006−18 change. The AR6 revision to the ΔT basis relates to changing S20's estimated GMAT – GMST adjustment to match the AR6 265 
zero estimate of their difference. 

4 Subjective vs. Objectiveobjective Bayesian Approachesapproaches 

Regarding statistical issues, as noted by SF24 priors on ECS and other climate system parameters have been a contentious 

issue since the first Bayesian ECS studies. SF24 points out that most climate scientists have had little formal training in 

probability or statistics –  which perhaps accounts for none of the S20 authors or peer reviewers realising that the S20 270 

likelihood estimation method was invalid. SF24 argues that probability is most useful as a quantification of what someone 

expects, rather than a quasi-objective calculation based on the chosen physical models and data used. That isIn other words, 

they favour a Subjectivesubjective Bayesian rather than an Objectiveobjective Bayesian or a frequentist approach. However, 

as explained in L22, it is essential for scientific inference that the statistical methods used are calibrated, in the sense that the 

uncertainty ranges they generate closely approximate confidence intervals. Objective Bayesian methods involve use of 275 

mathematical, noninformative priors that are generally intended to produce uncertainty ranges that are (at least 

approximately) true confidence intervals; frequentist methods share that intention. Subjective Bayesian methods are not 

designed to do so, and their uncertainty ranges may be very ill-calibrated when (as in ECS estimation) the data are 

insufficiently strong to dominate the influence of the prior. S20 used a Subjectivesubjective Bayesian approach, while L22 

employed an Objectiveobjective Bayesian approach. one, using a computed Jeffery's prior. Doing so widened and slightly 280 

raised the combined-evidence posterior ranges for climate sensitivity, before making any changes to S20's other 

assumptions. 

There are also other problems with adopting a Subjectivesubjective Bayesian approach. First, the prior and data-likelihood 

may well both be based on the same evidence, at least to some extent. Scientists' expectations as to the value of ECS can 

only rationally be based on some set of observational evidence and/or on climate model behaviour. It would be reasonable to 285 

use the well-established fact that the climate system is not extremely unstable to require a prior to rule out ECS being 

negative or exceedingly high (over 20 °C, say). However, a considerable part of the observational data-based evidence 

available to scientists will already be reflected in the likelihood function(s) produced by the physical models and data used 

for estimating ECS, so it is duplication to also use it in formulating a prior. Moreover, since observational evidence is used in 

the construction of climate models, and because related aspects of climate model behaviour will have been used to quantify 290 

the data-variable distributions used in estimating the ECS likelihood, climate model behaviour should not shape the prior, 

particularly given the concern that ECS in such models may be unrealistic.  

Secondly, even if the chosen prior does produce well-calibrated uncertainty ranges when used to infer ECS from a data-

likelihood reflecting one set of evidence, the standard Bayesian method of simply updating that initial posterior PDF by data-
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likelihoods reflecting other sets of evidence may well not produce well-calibrated uncertainty ranges reflecting  the 295 

combined evidence (Lewis, 2018; Lewis and Grunwald, 2018).  

For historical and, particularly, process evidence, the uniform (flat) prior for climate feedback that S20 selected was in 

fact close to the mathematical, noninformative prior used in L22, although for paleoclimate evidence it differed substantially 

(L22 FigureFig. 3). However, the uniform prior for ECS selected for use with observational evidence in the IPCC Fourth 

Assessment Report was very far from noninformative, and resulted in huge overestimation of the chance of ECS being very 300 

high; only the upper bound placed on that prior (20 °C for most studies) prevented almost 100% probability being assigned 

to near-infinite ECS values. The same applies to S20's ECS estimate from historical evidence when using a 0 to –20 °C 

uniform prior for ECS (S20 Table 6); the median estimate was 8.5 °C, with a 95% bound (existing purely due to the prior 

upper limit of 20 °C) of 18.6 °C. By contrast, when using a noninformative prior with S20's historical evidence inputs, the 

L22 (Table 4) median ECS estimate was only 4.2 °C, with a 95% bound of 13.7 °C, despite being after 305 

correctingincorporating correction of S20's underestimation of its historical evidence likelihood at high ECS levels.   

45 Structural Uncertaintiesuncertainties in Climate Modelsclimate models 

SF24 raises the issue of structural uncertainty in GCMs and other forward models. SF24, and notes that the inability of 

GCMs to simulate the historical pattern of warming over recent decades, including changes in the Pacific east-west 

temperature gradient. This failure could have be because the pattern of Pacific warming is a transient phenomenon, or result 310 

from missing aerosol-forcing mechanisms. However, other possible explanations thatcould have very different ramifications 

for ECS from those if the pattern of warming is a transient phenomenon or due to missing aerosol forcing mechanisms. 

Specifically, if the reduction in the Pacific east-west temperature gradient that occurs after a decade or two in almost all 

GCM CO2-forced simulations, which underlies the pattern effect, is unrealistic, as some. However, several recent studies 

suggest it may be (LeeGCM-simulated weakening of the Pacific east-west temperature gradient may be unrealistic, with SST 315 

in the West Pacific warm pool being more sensitive to greenhouse gas forcing than SST in the eastern equatorial Pacific 

(Seager et al.., 2019; Lee et al., 2022,; Hua et al., 2024; Lee et al.., 2024),). If correct, the weakening of net climate feedback 

in GCMs over 150 years after an abrupt quadrupling of CO2 concentration would not occur. That would implyalso be 

unrealistic. That would imply both that current estimates of the historical pattern effect (Sect. 2.4) are excessive and that 

most current ECS estimates, including those based on process understanding and on emergent constraints as well as on 320 

historical warming – all of which (like those in S20 and L22) generally reflect the aforesaid weakening of climate feedback 

in GCMs – may be significantly biased upwards. Paleoclimate ECS estimates adjusted on the assumption that ECS is lower 

in cooler climates, as in the S20 and L22 LGM estimates, might also be biased upwards. Hua et al. (2024) found that, 

contrary to GCM simulations, the Pacific east-west temperature gradient was weaker at the LGM than preindustrially, 

consistent with SST in the West Pacific warm pool being more sensitive to greenhouse gas forcing than SST in the eastern 325 

equatorial Pacific (Seager et al. 2019), and suggesting ECS is higher, not lower, in cooler climates.      
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The possibility that long term tropical warming patterns simulated by GCMs are significantly wrong could be one of the 

most important of the omitted structural uncertainties in ECS estimation about which  SF24 expresses concern. However, 

that uncertainty points primarily to the possibility that ECS estimates are too high, not too low. Even if the Pacific east-west 

temperature gradient, and hence net climate feedback, does eventually weaken to the extent simulated by GCMs, a 330 

multidecadal -to -centennial delay in that weakening occurring could imply a significantly lower warming response this 

century, as a fraction of ECS, than would otherwise be the case. 

SF24 claims that probability distributions for ECS in S20 and AR6 remain approximately valid but that subsequent 

studies, including L22, omit important structural uncertainties. However,It is possible that both S20 and L22 omitted such 

uncertainties, but L22 did not omit any structural uncertainties that were included in S20. The equations used in L22 for 335 

estimating ECS were identical to those in S20, save for the inclusion of an additional structural uncertainty concerning the 

ratio of regression -based to fixed -SST -based estimates of F2×CO2. Moreover, the uncertainty estimates for each input 

variable in L22 were almost all the same or greater than those used in S20, exceptthe main exception being for the historical 

pattern effect and aerosol forcing –, the changed input distributionsdistribution of which had a negligible effect on the L22 

combined -evidence ECS estimation.  340 

56 Conclusions 

S20 substantially narrowed the uncertainty in ECS, primarily by rejecting lower values of ECS that had been included in 

climate assessments since 1979 and retained through to the 2013 IPCC Fifth Assessment Report, and its. Its observationally-

driven ECS approach and range was approximately adopted in IPCC AR6. By pointing outremedying deficiencies in the S20 

analysis and adopting input data estimatesassumptions based on newer evidence, and in a few cases alternative appraisals of 345 

existing evidence, L22 provided an analysis that re-emphasizedemphasised the lower values of ECS.  While S20 estimated 

the probability of ECS being below 2.3 °C as only 5%, L22 estimated it to be over 50%. S24 provides no evidence nor valid 

argument againstS24's criticisms of assertions in L22 regarding S20 and of L22’s estimateECS estimation are unjustified and 

incorrect.  

The reluctance of climate scientists to move away from mathematically unsound Subjectivesubjective Bayesian 350 

approaches for estimating ECS or other uncertain climate system parameters is deeply concerning. ObtainingEnsuring 

reliable results requires either adopting an Objectiveobjective Bayesian approach, employing a noninformative prior, or 

using frequentist statistical methods. 

While structural uncertainty in forward models, in particular GCMs, may well be underestimated, SF24's claim that 

probability distributions for ECS in S20 remain approximately valid, but that subsequent studies omit important structural 355 

uncertainties, cannot be justified in respect to L22. 
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Simulation data used to re-estimate HadiSST1 driven pattern effect results in Andrews et al. (2022) using pentadal mean 

ordinary least squares regression was downloaded from https://zenodo.org/records/6799004 on 15 February 2025. The 

regression code used was the lm function in R. 360 
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