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Abstract

Climate change is accelerating cryosphere degradation in mountainous regions, altering hydrological and geomorphological
dynamics in deglaciating catchments. Among cryospheric features, rock glaciers degrade more slowly than glaciers, providing
a sustained influence on water resources in alpine watersheds. This study investigates the role of a rock glacier interacting with
the Shar Shaw Taga River (Grizzly Creek) riverbed in the St. Elias Mountains (Yukon, Canada), using a unique multimethod
approach that integrates hydro-physicochemical and isotopic characterization, drone-based thermal infrared (TIR) imagery,
and visible time-lapse (TL) imagery. Results assess that rock glaciers, due to their geomorphic properties, can constrict
riverbeds and alluvial aquifers, and control shallow groundwater flow, leading to notable changes in channel structure and
groundwater discharge. These disruptions promote downstream cryo-hydrological processes by facilitating aufeis formation
and modifying the physicochemical properties of streamflow. Additional findings highlight the critical role of rock glaciers
and proglacial systems in connecting mountain cryosphere and deep groundwater systems, with consequent implications for

mountain hydrology and water resources.

1. Introduction

Climate change is profoundly transforming mountain regions, where the cryosphere plays a critical role in regulating water
resources essential for the sustainability of downstream ecosystems and communities. With rising global temperatures, high
mountain areas are experiencing accelerated deglaciation, characterized by glacial retreat and permafrost thaw (Hock et al.,
2019). These processes drive rapid geomorphological and hydrological reconfigurations in proglacial systems (Carrivick and

Heckmann, 2017). Understanding the impacts of cryosphere degradation on mountain hydrology and hydrogeology is essential
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for predicting future water availability in these regions. Recently, the connectivity between the cryosphere and groundwater
has been identified as a critical issue in mountain hydrology, directly influencing water resource sustainability under changing
climatic conditions (van Tiel et al., 2024).

In proglacial systems, riverbeds and outwash plains serve as critical hydrogeological components, sustaining baseflow and
aquatic habitats (Késer and Hunkeler, 2016; Miiller et al., 2024). However, the recharge and discharge dynamics of alluvial
groundwater systems are intrinsically linked to upstream and adjacent cryospheric features (e.g., glaciers, seasonal snowpacks,
etc.; Miiller et al., 2024), as evidenced by aufeis formation. Aufeis, or icings, are layered ice formations that develop in winter
when groundwater outflows persist under sub-zero temperatures for several months (Ensom et al., 2020). These formations
can occur due to upwellings of groundwater encountering impermeable permafrost (Terry et al., 2020), with channel
constriction further promoting their formation (Wainstein et al., 2014; Liu et al., 2021). In mountain environments, aufeis
formations are common in outwash plains and are generally supplied by groundwater and meltwater from surrounding
cryospheric sources (Chesnokova et al., 2020; Mallinson et al., 2019; Wainstein et al., 2014).

Among cryospheric features, rock glaciers degrade more slowly than glaciers, allowing them to exert a prolonged influence
on hydrological processes as glaciers retreat (Bolch and Marchenko, 2009; Harrison et al., 2021; Jones et al., 2021). Despite
growing recognition of their hydrological importance, rock glaciers remain understudied compared to glaciers, particularly
concerning their roles in deglaciating catchments (Jones et al., 2019). Rock glaciers are tongue-shaped landforms composed
of rocky debris and ice, which creep due to the deformation of the ice-debris matrix, concentrated in the shear horizon (Arenson
et al., 2002). They are commonly found in high mountain environments and occur in both discontinuous and continuous
permafrost zones (Barsch, 1996). While existing studies primarily focus on the internal hydrological behavior of rock glaciers,
research addressing their broader catchment-scale implications remains limited (Jones et al., 2019).

Rock glaciers have been shown to buffer surface waters throughout the year, sustaining baseflow during dry periods and
attenuating discharge response to intense precipitation events due to their internal structure (Bearzot et al., 2023; Reato et al.,
2022; Wagner et al., 2021). Their hydrological behaviour is closely tied to the distribution of frozen and liquid water within
them (Harrington et al., 2018; Wagner et al., 2016; Winkler et al., 2016). Unfrozen layers in summer can act as reservoirs and
conduits for water flow (Halla et al., 2021; Harrington et al., 2018; Navarro et al., 2023; Wagner et al., 2020). In addition to
liquid water, intact rock glaciers (i.e., containing frozen content) store significant volumes of solid water as interstitial or
massive ice (Chakravarthi et al., 2022; Halla et al., 2021; Jones et al., 2018; Wagner et al., 2021). However, internal ice melt
typically contributes only minimally to total rock glacier discharge (Arenson et al., 2022). In addition to modulating discharge,
rock glaciers influence downstream water quality by increasing solute concentrations (Colombo et al., 2018; Colombo et al.,
2019; Schreder et al., 2023; Engel et al., 2019; Wanner et al., 2023; Zarroca et al., 2021) and cooling stream temperatures
(Bearzot et al., 2023; Brighenti et al., 2019; Colombo et al., 2020). The physicochemical impact of rock glacier outflows is
particularly pronounced at the catchment scale when compared to catchments lacking glacial or periglacial landforms

(Brighenti et al., 2023; Clow et al., 2021; Del Siro et al., 2023; Gammons et al., 2021; Robinson et al., 2022).
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While much of the literature focuses on the downstream effects of rock glacier outflows (e.g., Brighenti et al., 2023; Robinson
et al., 2022; Wagner et al., 2016; Wagner et al., 2021), their influence on the hydrogeomorphology of riverbeds and outwash
plains remains understudied. Rock glaciers can advance, constrain, and dam riverbeds, potentially forming ponds, as reported
in High Asia (Blothe et al., 2019; Falatkova et al., 2020; Hewitt, 2014) and the Alps (Colombo et al., 2020). Furthermore,
topographic changes driven by glacial retreat and paraglacial processes can force channel confinement (Marren and Toomath,
2014). Climate change has intensified rock glacier movement (Delaloye et al., 2010; Kummert et al., 2019; PERMOS, 2019),
sometimes causing destabilization (Marcer et al., 2021) and channel disruption (Sorg et al., 2015). Additionally, sudden mass
movements, such as the catastrophic collapse of rock glacier lobes, have triggered debris flows with downstream geomorphic
impacts (Bodin et al., 2015; Scotti et al., 2017). The hydrological and geomorphic disturbances caused by advancing rock
glaciers in valley systems are particularly notable, given the critical role of riverbeds and outwash plains in sustaining water
resources. Despite recent studies (e.g., Falatkova et al., 2020; Wagner et al., 2021), research on the interactions between rock
glaciers, the adjacent cryosphere, surface waters, and groundwater flow within valley systems is still underexplored.

This study examines the influence of rock glaciers on surface and shallow groundwater flow within alpine riverbed
hydrological systems. Specifically, it focuses on characterizing water fluxes in a section of the Shar Shaw Taga catchment (St.
Elias Mountains, Yukon, Canada) that is constrained by a rock glacier. We hypothesize that the rock glacier modulates
interactions between surface water and shallow groundwater, thereby affecting the overall functioning of the riverbed system.
To investigate these interactions, we employed a multimethod approach that was progressively refined as our observations and
understanding of the system evolved:

1) We hypothesized that the rock glacier influences the formation of aufeis on the downstream outwash plain. To test
this, we used time-lapse camera monitoring to track the development of aufeis and to identify the location and timing
of winter outflows.

2) Given the rock glacier’s position at the outlet of a subcatchment and the lack of significant surface outflow, we
hypothesized that it drains the subcatchment and contributes to river discharge via groundwater exfiltration. To assess
this, we conducted a spring inventory, followed by a physico-hydrochemical characterization of springs and streams
across the subcatchment. This allowed us to trace water sources and evaluate the rock glacier’s influence on stream
composition.

3) Building on the previous findings, we hypothesized that a specific section of the riverbed serves as a major zone of
groundwater exfiltration. To identify and map these zones, we conducted drone-based thermal infrared (TIR) surveys,
enabling us to delineate areas of groundwater emergence and assess their spatial extent and relative magnitude.

The novelty of this research lies in its focus on the indirect hydrological impacts of a rock glacier—particularly in the absence
of a visible, well-defined outflow. By integrating hydrological, hydrogeological, and geochemical methods, this study
advances our understanding of the complex role rock glaciers play in alpine watershed dynamics, and provides insights with

broader applicability to similar environments worldwide.
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2. Study site

Shar Shaw Taga, meaning Grizzly Creek in the Southern Tutchone indigenous language, is a 32 km? glacierized catchment
located within the traditional lands of the Kluane First Nation and the White River First Nation (Fig. 1a). It also lies within the
boundaries of Kluane National Park and Reserve in the St. Elias Mountains, southwestern Yukon Territory, Canada (61°05'13"
N, 139°07'18" W). The eastern flank of the St. Elias Mountains experiences a dry subarctic climate, characterized by annual
precipitation ranging from 300 to 500 mm yr! and a mean annual temperature between —8 °C and —12 °C (Wahl et al., 1987).
The upper Shar Shaw Taga catchment (Fig. 1b) contains eight glaciers, the largest of which is G-A1, covering an area of 3.2
km?, Faults are inferred along the valley floor (Dodds and Campbell, 1992). Due to its heavily fractured bedrock lithology and
steep slopes, the valley is characterized by significant mass wasting processes and depositional features, including nine
previously identified rock glaciers (Johnson, 1978; Evin et al., 1997). Between 1974 and 1997, Johnson participated to a series
of geomorphological studies on the valley (Johnson, 1974; 1978; 1980; 1983; 1986; 1992; Evin et al., 1997), providing detailed
descriptions of its landforms. The geomorphological identification and landform naming for these features, as established in
Johnson’s works, are adopted in this study to characterize the geomorphological setting.

The significance of ground ice landforms in the valley has prompted recent investigations, including a study on buried ice
detection using ground-penetrating radar (GPR) in rocky and steep terrains (Tjoelker et al., 2024). Publications prior to 2024
referred to the area by the toponym "Grizzly Creek" rather than Shar Shaw Taga. Of the nine rock glaciers identified by
Johnson and Evin et al. (1978; 1997), seven extend into the riverbed along the valley floor, with some exerting considerable

geomorphological constraints on the stream.
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Fig. 1: (a) Overview map showing the location of the Shar Shaw Taga valley in southwestern Yukon, Canada. (b) Enlarged view of
the study area from panel (a), highlighting key geomorphological features. The black frame outlines the extent of the map shown in

Fig. 2a. ArcticDEM data: Polar Geospatial Center (Porter et al., 2023). Basemap credits: Esri.

The present study investigates the hydrological influence of the RG-A1 rock glacier, located on the western side of the upper
Shar Shaw Taga valley. RG-Al, first identified by Johnson (1978), spans elevations between 1700 and 1850 m a.s.l. The
southern lobes of RG-A1 appear older, characterized by vegetation cover and a smoother frontal morphology, while the
northern lobes are younger, with sparse or absent vegetation, sharper forms, and a steeper front (Johnson, 1978). A frozen
layer, 20 to 40 m thick was detected in RG-A1 during a previous geophysical study, which also suggested the presence of
massive ice lenses at depth (Evin et al., 1997). The front of RG-A1 advances in the valley, constraining the Shar Shaw Taga
River against the opposing talus slope. Although previous studies did not classify the opposing talus slope as a rock glacier, it
is suspected to be a protalus rampart (or small active rock glacier) based on environmental and topographic criteria outlined in
Scapozza (2015), such as the absence of an upstream permanent snow field, the presence of coarse boulders in the upslope
area, a steep front with exposed fine sediments, and its juxtaposition and superimposition to other rock glaciers.

The outwash plains upstream and downstream of RG-A1 are separated by a “narrow section” of the Shar Shaw Taga River,
which can be divided into two subsections: N1 and N2 (Fig. 2). N1 extends from the outlet of the upstream outwash plain to a
bedrock outcrop visible on the opposite talus slope to RG-A1. N2 extends from this bedrock outcrop to the outlet of the “narrow

section”, where the rivers enters the downstream outwash plain. An aufeis forms in winter in the downstream outwash plain,

5
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as confirmed through field studies since 2018 and satellite imagery. No aufeis has been detected in the upstream outwash plain
during this period.

In 1974, Johnson (1978) observed that meltwater drained into a sinkhole located in the rooting zone of RG-Al (at
approximately 1850 m a.s.l.), with no major resurgence observed at the front (at 1700 m a.s.l.). In 1975, a new sinkhole was
observed upstream of the first one, and a significant resurgence was reported on the northern part of RG-A1l. Dry channels on
the surface of RG-A1l in 1975 were interpreted by Johnson as abandoned surface drainage pathways, highlighting the dynamic
and variable hydrological behaviour of RG-Al.

Field observations by our research team from 2018 to 2023 confirm the absence of a significant visible outlet from the rock
glacier, despite its location downstream of a 8 km? subcatchment, consisting of the G-B1 and G-B2 glaciers. The only visible
outlets consist of low-discharge springs around the RG-A1 front, particularly concentrated along the N1 subsection. During
low-discharge periods such as June 2023, we observed that the water from the Shar Shaw Taga River infiltrates the riverbed,
leaving it dry before entering the outwash plain upstream of RG-A1l. However, water was observed to flow again within the
riverbed in the N1 subsection, visually sustained by springs and seepage. During high-flow periods, the springs emerge directly
under the front of RG-A1l. In dry periods, like June 2023, the springs shift away from the front and align with the current river

level, 10 to 20 m downstream.

3. Methods
3.1 TL monitoring

Two RGB timelapse (TL) cameras, designated TL1 and TL2, were positioned above the right bank of the Shar Shaw Taga
River (61°526" N, 139°7'34" W, Fig. 2). TL1 was installed in 2018, focused on the central area of the outwash plain
immediately downstream of RG-Al. In 2019, TL2 was added adjacent to TL1, extending its field of view from the upper
margin of TL1’s coverage to the outlet of the N2 subsection of the Shar Shaw Taga River. Both cameras were configured to
capture four images daily at 8:00, 11:00, 13:00, and 16:00. The visual analysis of the images captured by the TL cameras
involved identifying signs of surface overflow on the developing aufeis and documenting the occurrence of such events

throughout the winter, following the protocol outlined by Chesnokova et al. (2020).

3.2 Physico-hydrochemical characterisation

3.2.1 Sampling and field measurements

Physico-hydrochemical characterisation was undertaken over three distinct campaigns: June 2022, August 2022, and June
2023. These campaigns targeted both the Shar Shaw Taga River and springs inventoried from 2018 to 2021, capturing different
hydrological conditions. The June 2022 campaign coincided with the melt of a late and substantial snowpack. The August

2022 campaign took place during late summer, when glacial ablation was at its peak. The June 2023 campaign was conducted
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following a winter with reduced snowpack and early snowmelt, after the primary snowmelt phase but before summer glacial
ablation commenced, while glaciers remained snow-covered.

Field measurements included in situ pH, electrical conductivity (EC, corrected to 25 °C, expressed in uS cm), and water
temperature (°C). Water samples were collected for laboratory analyses. Additionally, in June 2023, in situ radon
measurements were performed to further investigate groundwater contributions. Measurements were taken at each sampling
site using a calibrated Hanna HI 98195 multiparameter meter.

Water sampling followed a synoptic approach for cycles of 1-2 days, avoiding precipitation periods (e.g. Baraer et al., 2009).
When possible, sites were sampled multiple times within each campaign to account for diurnal fluctuations in physicochemical
parameters. Samples were categorized into four types (Table Al): glacial outlets from the RG-B1 snout (S-GL#), streams in
the ice-debris complex located between the RG-B1 snout and RG-A1 (S-IDC#), springs at the RG-A1 front and opposite talus
(S-RG#), and Shar Shaw Taga River (S-R#). Water samples were filtered using 0.45 pm syringe filters and collected in 50 mL
HDPE bottles, rinsed three times prior to sampling. Not all sites were accessible during each campaign (Table Al), due to
factors such as no flow or safety concerns related to snow cover and rockfalls.

Results were analyzed following the methodology of Baraer et al. (2015). Samples for major ion analysis were stored in a dark
environment at 4 °C until analysis. Major ions (Ca2*, Mg?*, Na*, Cl~, SO4>") and minor ions (K*, F") were analyzed at the LG2
laboratory, Ecole de technologie supérieure (ETS), Montreal, Canada. Cation concentrations were determined using an
inductively coupled plasma optical emission spectrometer (5110 ICP-OES, Agilent), and anion concentrations were measured
with an ion chromatograph (Dionex ED50, Thermo Fisher Scientific). Bicarbonate (HCOs") concentrations were calculated
from the charge balance equation, and total dissolved solids (TDS) were derived from the sum of ion concentrations.

Stable isotopic composition of the water molecule (%0 and 6°H) was measured using a cavity ringdown spectrometer (Picarro
L2130-i) at the LG2 laboratory (ETS), Montreal, Canada, expressed in %o relative to Vienna Standard Mean Ocean Water
(VSMOW). Internal reference waters were used for normalization after every 3 injections. The analytical uncertainty is = 0.13
%o for 8'%0 and + 1.5 %o for 6*H. The nearest local meteoric water line (LMWL) is established for the Whitehorse area 220 km
east of Shar Shaw Taga (Birks et al., 2004). The LMWL is similar to isotopic compositions found in the Lhu'aan Man' (Kluane
Lake), 25 km east of Shar Shaw Taga (Brahney et al., 2010). The LMWL is displayed alongside the analyses results as
reference (Fig. 6d, Fig. 7d and Fig. 8d) but we prefer not to assume direct applicability to our data..

Radon (**Rn) serves as a natural tracer to detect groundwater exfiltration in streams (Cartwright and Hofmann, 2016). In situ
radon activities were measured at four locations in the N1 subsection, including S-RG8 and S-RG9A springs, and at the
upstream and downstream ends of the N1 subsection (S-RUP and S-R1, respectively). A portable RAD7 Radon Monitor
(Durridge) was used, coupled with the Rad Aqua accessory (Durridge) for radon degassing. Results are reported in Bq m™,

with an analytical uncertainty of £ 220 Bq m=.
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3.2.2 Principal Component Analysis and clustering

Principal Component Analysis (PCA) was employed to classify the origins of the sampled water and to identify sample groups
that influence the chemistry of the Shar Shaw Taga River. For each of the three sampling campaigns, PCA was performed
using a set of independent variables: water temperature, 5'°0, Na*, Mg*", Ca?*, and SO+*". These major ions were selected as
they exhibited concentrations above the detection limit in more than 95 % of the samples. Principal components explaining at
least 90 % of the total variance were retained for further analysis to ensure the robustness of the PCA.

After conducting PCA, clustering analysis was performed using the k-means algorithm for each campaign (Lloyd, 1982;
MacQueen, 1967). This analysis was based on the sample scores derived from the selected principal components. The
maximum number of clusters was set at 25 % of the total number of samples for each campaign, which corresponded to 5, 9
and 7 for the campaigns of June 2022, August 2022, and June 2023, respectively. The algorithm determined the resulting
clusters were by associating samples with dominant combinations of variables, thereby highlighting inherent patterns within

the dataset.

3.3 TIR survey

Aerial and handheld thermal infrared (TIR) devices have been demonstrated as effective tools for mapping groundwater
discharge into streams (Toran, 2019). Specifically, drone-based TIR technology allows for high spatial resolution observations
of surface water—groundwater interactions (Vélez-Nicolas et al., 2021). Two common approaches for TIR surveys were
considered: 1) generating stream temperature maps using high-definition TIR image orthomosaics from overlapping images
(e.g., Abolt et al., 2018; Casas-Mulet et al., 2020; Rautio et al., 2015), and 2) using TIR videos or real-time scans (handheld
or drone-based) to visualize mixing plumes and record GPS coordinates of observed points (e.g., Barclay et al., 2022; Briggs
et al., 2016; Iwasaki et al., 2023).

While georeferenced thermal maps provide mesoscale coverage, they require stable flying conditions, ground control points,
and extensive post-processing (Webb et al., 2008). In contrast, TIR video or live scans allow for real-time visualization of
mixing dynamics in smaller-scale areas (Antonelli et al., 2017). Given our goal to identify and characterize groundwater
exfiltration zones, we chose the TIR video approach. This method does not require precise absolute temperature but relies
instead on relative contrasts between stream water and suspected groundwater inflows. Prior studies (Antonelli et al., 2017;
Briggs et al., 2016; Iwasaki et al., 2023; Iwasaki et al., 2024) have shown that TIR video, even without embedded temperature
scales, effectively highlights such contrasts.

Drone-based TIR video surveys were conducted on 28 June 2024, between 08:00 and 10:00, to maximize the coverage of
shaded sections of the stream. The surveys were conducted using a DJI Mavic 3T Enterprise, equipped with a DJI RTK module
and a DJI D-RTK 2 mobile station for GNSS base-station support. The Mavic 3T features a 48-megapixel RGB camera with
a 24 mm focal length and a 640 % 512-pixel thermal camera with a 40 mm focal length. The drone was manually controlled to

optimize the capture of surface temperatures across wide sections of the Shar Shaw Taga River, recording both TIR and RGB
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videos simultaneously. Flight altitudes ranged from 5 to 20 m above ground level, depending on the section. All flights were
manually piloted at low altitudes and near-nadir angles to reduce geometric distortion and minimize emissivity-related error
(Torgersen et al., 2001; Dugdale et al., 2016). The survey began approximately 180 m upstream of the N1 subsection and
ended around 800 m downstream of the N2 subsection (Fig. 2). Due to difficulties in flying over the narrow section, it was
surveyed twice at different elevations.

The TIR video was visually analyzed to identify cold groundwater exfiltration areas using two criteria: 1) a clear contrast
between the dominant stream surface temperature and the suspected exfiltration area, with an area larger than 10 cm?, and 2)
the presence of a turbulent mixing zone at least 1 m in length immediately downstream of the suspected area (flight data and
information are available as Supplemental Material in Charonnat and Baraer, 2025). Absolute temperatures were not derived
due to the absence of a calibrated color scale in the TIR video; instead, detection relied on qualitative identification of relative
temperature differences appearing as visual color contrasts in the TIR video—typically, colder areas appeared as blue-toned
patches compared to the green-toned stream and red-toned sunlit boulders.

When both criteria were met, the RGB video was used for confirmation. The Shar Shaw Taga River, originating from glacial
melt, has a substantial suspended sediment load, whereas groundwater is nearly free of suspended sediments. This contrast is
visible in the RGB video frames. The observed thermal contrasts were consistent with previously measured field temperature
differences between springs and stream water, typically >2°C and <6°C (Table S1), and exceeded the uncertainty range of
uncorrected thermal imagery under field conditions (Zappa and Jessup, 1998). Finally, images of confirmed groundwater
exfiltration areas were extracted from the videos for size evaluation. Exfiltration areas from the left bank were labeled TIR-

L#, and those from the right bank were labeled TIR-R#.
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Fig. 2: Map illustrating the methods used in this study. Panel (a) corresponds to the area shown in Fig. 1b, while panel (b) provides
a zoom-in of panel (a). A bedrock outcrop on the talus slope opposite to RG-A1 marks the division of the Shar Shaw Taga River’s
“narrow section” into two subsections, N1 and N2, as shown on the map. The spring locations represent the outflow points observed
during the August 2022 campaign, though their positions may vary depending on hydro-meteorological conditions. Basemap credits:
Esri.

4. Results
4.1 TL monitoring

Between 2018 and 2021, TL1 monitored aufeis formation during the winters of 2018-2019 and 2019-2020 (Fig. 3 and 4a). No
aufeis formation was observed during the winter of 2020-2021. The onset of aufeis development varied between the two
winters: in 2018-2019, it began in early November and continued to develop throughout the winter season, whereas in 2019-

2020, it started in February and progressed through February and March (Fig. 3). The development of the aufeis in both winters

10
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occurred in phases characterized by multiple flood events. Visible ablation of the aufeis began in May, with complete melt
occurring by June in both 2019 and 2020. The aufeis that formed during the winters of 2018-2019 and 2019-2020 spanned the
entire width of the river, from the RG-A1 front to the RG-B2 front.

Dec 1% Jan 1

2018/2019

2019/2020

2020/2021

Fig. 3: Monthly timelapse images captured by TL1 of the aufeis from November 1st to March 1st during the winters of 2018-2019,
2019-2020, and 2020-2021. The yellow dashed line indicates the extent of the aufeis in each image when visible. The timelapse images
were selected based on the closest date to the first day of each month, with consideration given to image quality. Note that no aufeis
formation occurred during the 2020-2021 winter.

TL2, installed in 2019 next to TL1 and oriented upstream, recorded the formation of the aufeis in the winter of 2019-2020 and
its absence during 2020-2021. In the winter of 2020, TL2 captured reflections of liquid water and/or ice at the end of the N2
subsection, when the river was dry (Fig. 4). In subsequent days, the aufeis was observed to form in the downstream outwash
plain, starting from the end of the N2 subsection. This observation suggests that the overflowing water contributing to the

formation of the aufeis originates from the “narrow section” of the Shar Shaw Taga River.
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Fig. 4: Initiation of an aufeis in the downstream outwash plain, captured by TL2 on (a) 04/01/2020 at 08:00, and (b) 08/01/2020 at
11:00. The light in the raw images has been enhanced to improve picture quality. Both images are oriented towards the end of the
N2 subsection and the entrance of the downstream outwash plain. (a) At 8:00 on 04/01/2020, the aufeis has not yet formed, but
reflections of ice and/or liquid water are visible at the end of the N2 subsection, during a time when the Shar Shaw Taga River is
dry. (b) At 11:00 on 08/01/2020, the aufeis has started to form in the outwash plain, extending from the end of the N2 subsection.

The repetitive monitoring of the aufeis provides evidence of overflow events during late fall and winter, particularly in the
2018-2019 and 2019-2020 periods. The formation of the aufeis is attributed to groundwater outflow from the “narrow section”
of the Shar Shaw Taga River, as the river runs dry in winter in the downstream outwash plain and no aufeis forms in the

upstream outwash plain. This finding aligns with the high density of springs inventoried along the N1 subsection.

4.2 Physico-hydrochemical characterization
4.2.1 Sampling and field measurements

A high concentration of springs was reported along the N1 subsection of the Shar Shaw Taga River (S-RG5 to S-RG11) from
2018 to 2021, and during the 2022 sampling campaigns. This led to a dedicated sampling campaign in June 2023. Many of
these springs were sampled across multiple campaigns, indicating their long-term flow. The June 2022 and August 2022
sampling campaigns can be directly compared for the springs at RG-Al’s front, given their similar spatial coverage and
sampling sites. In contrast, the June 2023 sampling campaign focused specifically on the N1 subsection of the river (Table
Al).

The mean water temperature for samples collected from the springs at RG-A1’s front in June 2022 was 0.90 °C, with a range
of 3.16 °C, slightly colder than in samples from August 2022, exhibiting a mean temperature of 1.38 °C and a range of 3.77
°C (Table S1). While cold temperatures in June 2022 may have been strongly influenced by recent snowmelt, no snow
remained at the lower elevations of the catchment in August 2022. In late season, cold groundwater outflows (< 2 °C) suggest
the possible presence of frozen content in the vicinity of springs (Carturan et al., 2016; Frauenfelder et al., 1998; Haeberli,
1975; Scapozza, 2009).

The June 2022 campaign recorded a lower mean EC in springs at RG-A1’s front of 225.64 uS cm!, with a range 0f 439.10 uS
cm’!, compared to 490.82 pS cm’! with a range of 546.72 pS cm™ in August 2022. These results indicate dilution due to
snowmelt in early season and increased groundwater contribution in late season, consistent with results from other rock glacier
hydrology studies (Jones et al., 2019). The high EC ranges highlight the heterogeneous behavior of the sampled springs. Mean
pH values were 8.47 in June 2022 and 8.13 in August 2022, with ranges of 1.84 and 1.00, respectively.

The mean isotopic composition was more depleted in the springs at RG-A1’s front in June 2022 (-23.57 %o vs. VSMOW for
60 and -183.69 %o vs. VSMOW for &°H, with ranges of 1.64 %o and 8.78 %o, respectively) compared to August 2022 (-21.01
%0 vs. VSMOW for 6'#0 and -169.20 %o vs. VSMOW for 6°H, with ranges of 1.38 %o and 9.68 %o, respectively). This depletion
is associated with a higher snowmelt contribution in June 2022. Solute concentrations were generally lower in June 2022,

frequently falling below detection limits for chlorides (all samples < 0.13 mg L"), potassium (13 out of 20 samples < 0.01 mg
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L), sodium (13 out of 20 samples < 0.09 mg L '), and magnesium (1 out of 20 samples < 0.03 mg L!). In contrast, in August
2022, solute concentrations exceeded detection limits for 38 out of 39 samples for all elements except chlorides (36 out of 39
samples < 0.13 mg L).

The June 2023 campaign showed a mean water temperature for the rock glacier springs of 1.40°C, with a range of 0.23 °C.
The mean EC value for June 2023 was 678.43 uS cm’!, with a range of 172.00 uS cm™'. The mean pH value was 7.82 with a
range of 0.23. The mean isotopic composition for the springs during this campaign was -22.86 %o vs. VSMOW for 50 and -
178.11 %0 vs. VSMOW for 62H, with ranges of 0.30 %o and 1.10 %o, respectively.

In June 2023, while the Shar Shaw Taga River level was lower than in previous years for the same period, 22Rn activities were
similar at S-RG8 and S-RG9A, ranging from 10.17x103 £ 0.22x103 Bq m™ to 10.85x10% + 0.19x10°* Bq m™ (Fig. 5). These
springs are located along the N1 subsection of the river, at the left and the right of the stream, respectively. In contrast, the
Shar Shaw Taga River at the upstream end of the N1 subsection (S-RUP) exhibited low activities (0.36x103 £ 0.06x10° Bq m*
3), while the downstream end of N1 (S-R1) showed significantly higher activities (5.46x10° + 0.14x10° Bq m™). These results
indicate a major groundwater input to the Shar Shaw Taga River in the N1 subsection, where S-RG8 and S-RG9A are located.

3
12 %10 :

flow direction

JE—

H

—_
==

-
o
T

o]
T

Average ***Rn in water (Bg m'3)
L= [

h%]
T

S-RUP S-RG8 S-RG9A S-R1

(0.3 km)

Fig. 5: *?Rn activities measured with a portable RAD7 Radon Monitor (Durridge) in June 2023. Data were collected at springs S-
RG8 and S-RGYA (orange) and along the Shar Shaw Taga river at upstream (S-RUP) and downstream (S-R1) sites (purple). The
bars are arranged from left to right in spatial sequence from upstream to downstream. The error bars represent the uncertainties
in the radon activity measurements.
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4.2.2  Principal Component Analysis and clustering

Samples collected in June 2022

Principal Component (PC) 1 accounts for 60.96 % of the variance in the dataset and primarily reflects the influence of mineral
elements, with PC scores ranging from 0.47 to 0.50 (Fig. 6a). PC2 and PC3, explaining 18.29 % and 14.10 % of the variance,
respectively, exhibit contrasting associations with the 6'*0 ratio and temperature. PC2 displays a strong positive correlation
with the 6'30 ratio (0.73) and a negative correlation with temperature (-0.67), whereas PC3 shows positive correlations with
530 (0.62) and temperature (0.71).

Clustering analysis based on PCA reveals two distinct clusters among the June 2022 samples (Fig. 6b). Cluster 1 comprises
17 samples characterized by low concentrations of mineral elements (Fig. 6¢), with total dissolved solids (TDS) concentrations
ranging from 28 to 100 mg L', In contrast, Cluster 2 includes samples S-RG4, S-RG3, and S-RG8, which show elevated TDS
values (90 to 269 mg L"). With the exception of S-RUP, S-RG4, and S-RG15, which record warmer temperatures from 1.43
to 3.19 °C, the remaining 16 samples in the June 2022 dataset exhibit colder temperatures, ranging from 0.03 °C to 0.67 °C
(Fig. 6¢). The most enriched samples are S-RG7, S-RG8, and S-RG10, with 80 values between -23 %o and -22.6 %o Vvs.
VSMOW in 6'*0 (Fig. 6d).

In June 2022, most of the springs were supplied by recent snowmelt, as indicated by low concentrations of mineral elements
and cold temperatures. In contrast, S-RG8 and S-RG4 were supplied by groundwater, as evidenced by their higher

concentrations of mineral elements.
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Fig. 6: (a) PCA scores for June 2022 samples. The explained variance for each PC is indicated in the legend of the horizontal axis.
(b) Distribution of clusters formed from June 2022 samples following PCA and k-means clustering. Symbols represent different
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sample types, and ellipses illustrate the distribution of each cluster. (c) Distribution of total dissolved solids (TDS) concentrations
and water temperature for the June 2022 samples. (d) Isotopic composition of the June 2022 samples.

Samples collected in August 2022

PCI1 accounts for 60.57 % of the variance in the dataset and is strongly influenced by solute concentrations, with PC scores
ranging from 0.47 to 0.48 (Fig. 7a). PC2, which explains 22.34 % of the variance, reflects opposing influences of temperature
(0.68) and isotopic composition (-0.63). PC3, accounting for 9.01 % of the variance, shows joint positive correlations with
both temperature (0.71) and isotopic composition (0.63).

Clustering analysis clearly distinguishes different sample types, forming 9 clusters, the maximum achievable based on the
parametrization (Fig. 7b). Cluster 3 consists of glacial outlet samples, characterized by low solute concentrations (16 to 38 mg
L-!'in TDS), cold temperatures (0.06 to 0.07 °C), and depleted isotopic compositions (-21.6 to -22 %o vs. VSMOW in 5'30) as
seen in Figs. 7c and 7d. Clusters 5 and 6 comprise Shar Shaw Taga River samples, with warmer temperatures (3.47 °C to 6.26
°C), higher solute concentrations (88 to 238 mg L' in TDS), and depleted isotopic compositions (-21.8 to -22.2 %o vs. VSMOW
in 6'20). The distinction between these clusters may be attributed to variations in the glacial regime diurnal cycle and weather
conditions based on sampling times. Clusters 4 and 8 include samples from springs near the upper end of the rock glacier front
and at the transition area with the ice-debris complex (e.g., S-IDC5, S-RG1, S-RG2). As shown in Figs. 7¢ and 7d, these
springs display high concentrations of mineral elements (209 to 304 mg L' in TDS) and enriched isotopic compositions (-20.6
to -20.9 %o vs. VSMOW in 6'%0). Clusters 2 and 9 are represented by springs S-RG7, S-RG8, S-RG9A, and S-IDCI, which
exhibit high but narrow ranges of solute concentrations (282 to 309 mg L' in TDS) and more depleted isotopic compositions
(-21.6 to -21.8 %o vs. VSMOW in 6'#0), as shown in Fig. 7d. Clusters 1 and 7 include other springs from the N1 subsection of
the Shar Shaw Taga River, which are characterized by low solute concentrations (111 to 162 mg L' in TDS) and enriched
isotopic compositions (-20.4 to -20.9 %o vs. VSMOW in §'%0). Fig. 7d clearly distinguishes samples with depleted isotopic
compositions (below -21.5 %o vs. VSMOW in §'%0) from those with enriched compositions (above -20.9 %o vs. VSMOW in
3'%0).

In late summer, the hydrochemical signatures of the springs show significant contrasts, with a high number of clusters.
However, springs S-RG7, S-RG8, and S-RG9YA share isotopic signatures similar to glacial meltwater from S-G1, S-G2, and
S-G3, indicating a glacial input. Despite being located on opposite sides of the river, these springs cluster together, contrasting

with the other springs. Most of the rock glacier spring samples show very cold temperatures (< 2 °C; Fig. 7c).
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Fig. 7: (a) PCA scores for August 2022 samples. The explained variance for each PC is indicated in the legend of the horizontal axis.
(b) Distribution of clusters formed from August 2022 samples following PCA and k-means clustering. Symbols represent different
sample types, and ellipses illustrate the distribution of each cluster. (c) Distribution of total dissolved solids (TDS) concentrations
and water temperature for the August 2022 samples. (d) Isotopic composition of the August 2022 samples.

Samples collected in June 2023

PCA conducted on samples collected in June 2023 revealed that PC1 accounts for 68.79 % of the variance (Fig. 8a), primarily
driven by solute concentrations (PC scores ranging from 0.40 to 0.48). PC2 and PC3 explain 15.54 % and 10.43 % of the
variance, respectively. PC2 is mainly influenced by water temperature (0.88), while PC3 is dominated by isotopic composition
(0.86).

The glacier outlet samples form a distinct cluster, labeled as Cluster 3 (Fig. 8b). The remaining samples are divided into two
clusters, with a clear distinction based on the maximum number of clusters (5). Cluster 1 consists solely of Shar Shaw Taga
River samples from the upstream part of the N1 subsection. Cluster 2 includes spring samples and Shar Shaw Taga River
samples collected in the downstream part of the N1 subsection. River samples from the downstream N1 subsection and spring
samples exhibit higher solute concentrations (from 121 to 147 mg L' in TDS) and colder temperatures (from 0.7 to 4 °C, with
14 out of 16 samples < 2 °C) compared to the upstream N1 samples, which have lower solute concentrations (87 to 125 mg L~
1) and warmer temperatures (5.3 to 9.5 °C; Fig. 8c). The isotopic composition is generally more enriched for the upstream N1
river samples than for the downstream N1 river and spring samples (Fig. 8d). The isotopic composition of one of the two
glacial water samples from G-B1 (sample S-GL1) is similar to the composition from the Shar Shaw Taga River in upstream

N1 (water flowing from G-A1l). However, the second S-GL1 sample shows a much more enriched isotopic composition, due
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to a two-day interval between the respective samplings. The most enriched sample (-21.2 %o vs. VSMOW in 6'#0 and -165.4
%o vs. VSMOW in &°H) was taken first, when the G-B1 glacier was still snow-covered. The most depleted sample (-22.4 %o
vs. VSMOW in %0 and -173.6 %o vs. VSMOW in §?H) was taken two days later, following significant snowmelt cover on
G-Bl1 and the initiation of glacial melt.

The springs located on opposite sides of the river along the N1 subsection cluster together and exhibit close hydrochemical
signatures, similar to what was observed in August 2022. By distinguishing between two clusters, the PCA highlights the
important influence of these springs on the Shar Shaw Taga River. Their outflows significantly lower the water temperature

and increase solute concentrations in the river.
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Fig. 8: (a) PCA scores for June 2023 samples. The explained variance for each PC is indicated in the legend of the horizontal axis.
(b) Distribution of clusters formed from June 2023 following PCA and k-means clustering. Symbols represent different sample types,
and ellipses illustrate the distribution of each cluster. (¢) Distribution of total dissolved solids (TDS) concentrations and water
temperature for the June 2023 samples. (d) Isotopic composition of the June 2023 samples.

Synthesis of physico-hydrochemical characterisation

The springs surrounding RG-A1’s front exhibit heterogeneous hydrochemical signatures. However, a group of springs along
the N1 subsection (S-RG7, S-RG8, and S-RGYA) cluster together in PCA and share high EC values, depleted isotopic
compositions, high solute concentrations, and similar radon activities. Despite being located on opposite sides of the river,
these three springs show striking similarities, suggesting a common origin. Their isotopic compositions are comparable to
those of glacial meltwater sampled at G-B1 and in the Shar Shaw Taga River, differing significantly from other springs along
RG-A1’s front. The other springs around RG-A1’s front exhibit diverse hydrochemical signatures under varying hydro-

meteorological conditions. All springs consistently exhibit cold temperatures. During low-discharge periods, such as June
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2023, the springs along the N1 subsection considerably increase downstream solute concentrations and radon activities in the

Shar Shaw Taga River, while their cold outflows reduce stream temperature. .

4.3 TIR survey

The TIR survey detected four cold water outflows outside the “narrow section” of the Shar Shaw Taga River, located in the
outwash plain downstream of RG-Al (Fig. 9). Two outflows were identified on the left bank: one associated with meltwater
originating from a snow patch at the front of RG-Al, and the other is from a persistent snow patch on the west flank of the
valley. The other two outflows were located on the right bank, originating from the middle of the outwash plain near the front
of RG-B2. These four outflows are not supplied by RG-A1, as they originate from snow patches or from the right bank.

The furthest downstream exfiltration area in the “narrow section” (TIR-L8) is situated in the N1 subsection, just a few meters
upstream of the bedrock outcrop (Fig. 9). Within the N1 subsection, eight groundwater exfiltration areas were identified on
the left bank of the main channel, and six on the right bank. Exfiltration areas on the left bank are generally smaller, with
plume lengths ranging from 1 to 6 m, four of these less than 2 m long. In contrast, exfiltration areas on the right bank are larger,
with plume lengths ranging from 5 to 14 m, and four exceed 10 m in length. These exfiltration areas were clearly visible as
color contrasts, distinguishing the warmer surface waters from the colder groundwater exfiltrations (Fig. 10a). The positions
of the mixing plumes were observed at each location. In the most notable exfiltration areas (plume lengths > 2 m), clearer
water was observed in the visible video footage, facilitating the validation of groundwater exfiltration detection (Fig. 10b).
Two of the six groundwater exfiltration areas detected from the right bank can be associated with springs sampled and
measured during the 2022 and 2023 campaigns for physico-hydrochemical analysis (TIR-R2 and TIR-R3 correspond to S-
RGYA and S-RGIB, respectively). As mentioned in Sect. 2, depending on the river level and meteorological conditions, the
outflow locations of the springs on the left side of the river have been observed to shift 10 to 20 m downstream of the RG-A1
front. During the TIR survey, these conditions were met, and no exfiltration area was found directly at the location of a spring
sampled in 2022 and 2023. Instead, exfiltration areas on the left bank were detected 20 m downstream of their corresponding
springs sampled earlier. Therefore, exfiltration areas TIR-L1, TIR-L2 and TIR-LS8 can be associated with the springs S-RGS,
S-RG10 and S-RG11, respectively (Fig. 9).

The drone-based TIR survey identified a high density of cold groundwater exfiltrations from both the left and right banks of
the N1 subsection of the Shar Shaw Taga River, upstream of the bedrock outcrop. Exfiltration areas on the right bank exhibited
longer plumes, suggesting higher discharge. Two cold outflows were detected in the downstream outwash plain on the left

bank, but no groundwater origin was identified for these.
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Fig. 9: Location of cold water outflows detected by the TIR survey along the Shar Shaw Taga riverbed. The zoomed-in view of the
“narrow section” highlights an area with a high density of cold groundwater outflows detected on both sides of the river, upstream
of a bedrock outcrop constraining the riverbed. Additional cold water outflows are observed in the downstream outwash plain,
originated from either snow patch melt on the left side or from the right bank of the outwash plain. Springs that outflow from RG-
Al or the opposite talus slope and were sampled during the 2022 and 2023 campaigns are marked in the zoomed-in panel. Basemap
credits: Esri.
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Cold water outflow

Fig. 10: (a) TIR capture showing cold groundwater outflow (in blue, delimited by the dashed white line), mixing with the warmer
waters of the Shar Shaw Taga River (in green) at the TIR-R2 location. Note that the video does not provide a color scale. (b) RGB
image capture showing clear water outflowing into the Shar Shaw Taga River, which is characterized by a significant sediment load
at the TIR-R2 location. The cold water area detected with TIR is delimited by the dashed white line. The extent of the TIR capture
is indicated by the dashed red line. Flight data and information can be accessed as Supplemental Material in Charonnat and Baraer,
2025.

5 DISCUSSION
5.1 The rock glacier forces resurgence of shallow groundwater flow

The preliminary inventory of springs and the TIR survey identified a high density of spring outflows from both banks of the
N1 subsection of the Shar Shaw Taga River. The physico-hydrochemical characterization indicates that the springs on both
banks share a similar signature originating from glacial melt, suggesting a common source (Fig. 7 and 8). The contribution of
internal ice melt in rock glacier outflows is known to be minimal and does not significantly influence isotopic signatures (Croce
and Milana, 2002; Krainer and Mostler, 2002; Krainer et al., 2007). This evidence supports the conclusion that these springs
are fed by groundwater of glacial origin. In June 2023, a low-discharge period, field observations revealed river water losses
before entering the upstream outwash plain, where the riverbed temporarily lacked surface flow. Surface flow resumed only
from the N1 subsection due to groundwater inflows, pointing to the existence of shallow subsurface flow through the upstream
outwash plain. Together, these elements indicate that water outflowing from the springs along the N1 subsection resurges from
lateral shallow groundwater, likely infiltrating through the riverbed and flowing within the lateral alluvial aquifer before
resurfacing.

Contrary to initial hypotheses, no evidence was found of outflow originating from the head of the rock glacier’s subcatchment
(comprising glaciers G-B1 and G-B2). Instead, the physico-hydrochemical characterization suggests that glacial meltwater
entering the water to the river derives from upstream outwash plains of the main Shar Shaw Taga catchment. In contrast, the
other springs emerging at the front of the rock glacier appear to be linked to internal drainage systems within the rock glacier

itself. These springs are primarily fed by snowmelt in the early season and by summer precipitation later in the season, with
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minimal or negligible glacier melt contribution, as shown by the physico-hydrochemical characterization of the samples
collected in June 2022 and August 2022, respectively. Across Canada, precipitation is typically enriched in heavy isotopes
during the snow-free period and depleted during winter and spring (Gibson et al., 2020). Accordingly, the depleted isotopic
compositions, low solute concentrations, and cold temperatures measured in early June point to a snowmelt origin, while the
enriched isotopic compositions in August reflect a stronger influence from rainfall. This seasonal distinction is further
supported by contrasting results from springs in the N1 subsection, which exhibit characteristics of both groundwater and
glacier-fed sources. Some springs likely reflect a mix of these sources, with their physicochemical parameters and clustering
reflecting these dual influences depending on hydro-meteorological conditions and time periods.

Parafluvial flow is common in outwash plains with coarse-grained unconsolidated sediments, occurring in river reaches where
water is lost before rejoining the river in gaining reaches (Cartwright and Hofmann, 2016). Outwash plains, often underlain
by bedrock, retaining groundwater in the shallow subsurface, providing baseflow during dry periods when upstream discharge
is limited (Miiller et al., 2024). Fractured and faulted bedrock aquifers can further contribute to baseflow in outwash plains
(Hayashi, 2019; Miiller et al., 2022). In this case, the resurgence of parafluvial and shallow groundwater flow is visible during
dry periods. The dynamic location of the springs reported between sampling campaigns reflects the lateral and vertical extent
of the alluvial aquifer. The lower density of springs identified beyond the bedrock outcrop at the end of the N1 subsection
suggests a shallow bedrock interface with limited groundwater flow capacity. Additionally, the faults inferred along the
riverbed in previous geological studies (Dodds and Campbell, 1992) may facilitate groundwater flow from outwash plains
upstream of the rock glacier to the N1 subsection, where it is forced to resurge.

The cold temperatures measured in the springs of the N1 subsection indicate that outflows from the alluvial aquifer are cooled
by adjacent frozen content, such as massive ice or permafrost (e.g. Carturan et al., 2016). Frozen content has been confirmed
in the rock glacier by Evin et al. (1997), and is suspected for the talus slope, based on Scapozza, (2015). The frozen content
on both sides of the Shar Shaw Taga River constrains the alluvial aquifer, forcing groundwater to resurface through springs
and cold water upwellings in the riverbed. The advance of the rock glacier, which considerably narrows the riverbed, further
enforces this constraint. The younger lobes of the rock glacier, potentially containing higher amounts of frozen content, extend
north from the bedrock outcrop to the downstream outwash plain, possibly acting as an additional barrier to groundwater flow
where they border the Shar Shaw Taga River. Thus, the location of the resurgences in the N1 subsection can be explained by
the geomorphic properties of the rock glacier. The narrowing of the riverbed by the rock glacier’s advance and the presence

of frozen content constrain the riverbed, forcing the resurgence of shallow groundwater flow.

5.2 The rock glacier affects downstream cryo-hydrological processes and hydrological continuity

The proximity of bedrock and ground ice in the narrow section of the Shar Shaw Taga River critically reduces the width and
depth of the alluvial aquifer, leading to groundwater exfiltrations along the N1 subsection, as discussed in Sect. 5.1. Aufeis

typically develop in areas where river flow velocity decreases, such as braided channels and outwash plains (Hu and Pollard,
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1997). The TL monitoring suggests that the resurgences from the alluvial aquifer provide the water from the N1 subsection
but the decrease in river flow velocity and channel depth creates conditions favourable for the formation of aufeis in the
outwash plain immediately downstream of the rock glacier. In contrast, the steeper slope in the N1 subsection likely inhibits
aufeis formation directly at the springs locations. Thus, the rock glacier plays a significant role in influencing downstream
cryo-hydrological processes.

The high density of springs along the N1 subsection and their distinct physicochemical signatures substantially affect the
downstream Shar Shaw Taga River. The solute enrichment observed in these springs is attributed to water-rock interactions
along groundwater flow paths. Prolonged residence time in aquifers facilitates the accumulation of dissolved solutes (Hem,
1985). In addition, the springs may be partially connected to internal drainage systems within the rock glacier, which are
known to generate solute-rich outflows (Colombo et al., 2018). Lastly, the proximity to buried ground ice and permafrost —
both within the rock glacier and in adjacent talus slopes — may enhance the release of mineral elements through thermal erosion
of the ice-sediment matrix (Jones et al., 2019). The physico-hydrochemical characterization from June 2023 demonstrates that
during dry periods, these springs notably increase solute concentrations and radon activities, while simultaneously cooling the
river water. These findings are consistent with prior studies showing the influence of rock glaciers on the physicochemical
characteristics of downstream surface waters (e.g., Bearzot et al., 2023; Brighenti et al., 2023; Robinson et al., 2022; Wagner
et al., 2021). However, the rock glacier in this study alters the entire riverbed and its physicochemical parameters primarily
due to its geomorphic properties. Contrary to initial hypotheses based on early observations and the literature, its internal

hydrological behavior does not account for the critical impact the rock glacier has on the riverbed’s hydrological system.

5.3 Future evolution of the rock glacier influence on catchment hydrology

Predicting the future evolution of the system described in Sect. 5.1 and 5.2 is challenging. However, several scenarios across
different timescales can be envisioned. Frozen content is likely to persist in depositional landforms for extended periods, as
residual ice has been detected in rock glaciers below the modeled elevation limit in multiple cases (e.g., Carturan et al., 2024;
Colucci et al., 2019). Future hydrological conditions in alpine catchments will likely be characterized by a reduced hydrological
influence of glaciers, lower discharge and an increased contribution from groundwater and periglacial features to streamflow
(Huss et al., 2017; Jones et al., 2019; Zierl and Bugmann, 2005). These conditions were observed during the June 2023
sampling campaign, which occurred after the peak of snowmelt and prior to the peak of glacial ablation, leading to a substantial
influence of groundwater resurgences on the Shar Shaw Taga River. Similar conditions may be expected in the future, with
groundwater outflows caused by the rock glacier expected to gain influence in the Shar Shaw Taga River. However, the
degradation of frozen content around the riverbed may alter this scenario, as rising air temperatures continue to drive
permafrost thaw. Additionally, thermal and mechanical erosion caused by lateral groundwater flow could expand the
parafluvial zone and create alternative subsurface flow paths, reducing the hydrological discontinuity and disruptive effects of

the rock glacier.
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The absence of evident streamflow contribution from the G-B1 subcatchment to the Shar Shaw Taga River, as highlighted in
Sect. 5.1, suggests substantial deep infiltration of surface and shallow groundwater flow between the glaciers of the
subcatchment and the rock glacier. Although the role of rock glaciers in deep infiltration has not been thoroughly documented
to our knowledge, it is suggested that their high vertical and horizontal flow transmissivity may enhance infiltration into deep
aquifers and groundwater recharge (Navarro et al., 2023). From a broader perspective, it is considered that deep groundwater
systems link mountain cryosphere components to lowlands aquifers through mountain-block recharge (van Tiel et al., 2024).
In this context, increased infiltration due to glacial retreat and permafrost degradation may position rock glaciers and other

depositional features as critical hubs in proglacial areas, contributing to regional groundwater circulation and water resources.

5.4 Limitations and perspectives

The physico-hydrochemical characterization conducted in this study was based on three sampling campaigns under varying
hydro-meteorological conditions. These diverse settings posed several challenges for water sampling, including issues with
accessibility, safety concerns, periods of no flow, and the need to prioritize specific areas. As a result, some sampling sites
could not be revisited during every campaign, leading to gaps in the data over time. Moreover, fluctuating weather conditions
during a single campaign in proglacial environments likely contributed to variations in physicochemical parameters at some
sites. Where possible, multiple samples were taken at different times or on different days within the same campaign to minimize
biases caused by diurnal and meteorological variations. Consequently, some sites could not be compared across campaigns,
and their characterization can remain incomplete. On the other hand, these challenges allowed us to identify the varying
influences of different drainage systems on certain springs.

Upon initial observations and hypotheses, we adopted a unique multi-method approach, which evolved as we refined our
understanding of the system. While this combination of methods was crucial in addressing the research question and drawing
the conclusions presented, alternative approaches could have provided a more direct route to the findings. Future research
could build on the insights gained in this study by investigating the hydrological roles of other rock glaciers within the same
valley or in different regions. Such studies would help assess whether similar patterns occur across varying settings. Moreover,
this research underscores the potential role of the rock glacier and adjacent depositional features in facilitating the infiltration
of water into deep groundwater systems, as suggested by the lack of water outflow from the head of the subcatchment to the
the Shar Shaw Taga River. Characterizing these transfers is crucial for understanding the role of proglacial areas in water

resource supply during deglaciation. The authors strongly encourage further works in this direction.

6 CONCLUSIONS

The geomorphic properties of rock glaciers make them dynamic features capable of altering riverbed hydrological systems.

As assessed in this study, rock glaciers can obstruct proglacial outwash plains, thereby controlling and constraining shallow
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groundwater flow. This obstruction results in channel confinement, which induces resurgences from the alluvial aquifer, with
profound impacts on both the hydrochemistry and hydrogeomorphology of alpine catchments. Rock glacier disruption leads
to substantial changes in the physicochemical parameters of streamflow, and contributes to the formation of aufeis, a
consequence not previously documented in the literature. In contrast to initial hypotheses, the internal hydrological system of
the rock glacier does not exhibit a significant influence on downstream surface waters. Instead, the critical disruption to the
riverbed hydrological system is due to the geomorphic constraint imposed by the rock glacier on the alluvial aquifer. The water
that flows from the subcatchment above the rock glacier is suspected to infiltrate deep groundwater systems through the rock
glacier and the adjacent depositional features, as it could not be traced beyond the rock glacier. Thus, this study emphasizes
the complexity and potentially misleading nature of characterizing groundwater flow pathways in proglacial environments.
The findings also have broader implications for mountain hydrology and water resources, highlighting the importance of rock
glaciers and proglacial systems as critical hydrological features and potential hubs for mountain-block recharge, linking the

mountain cryosphere to deep groundwater systems.

Appendix: Table A1

Dates and times of sampling
Sampling Northing | Easting Elevation Comments June 2022 August 2022 June 2023
sites (UTM) (UTM) (m a.s.l.)
S-R1 6773938 601332 1738 Shar Shaw Taga river (narrow NV NV 15/06/23 12:50
section) 16/06/23 13:00
S-R2 6773933 601336 1739 Shar Shaw Taga river (narrow NV NV 15/06/23 13:07
section) 16/06/23 13:10
S-R3 6773933 601336 1739 Shar Shaw Taga river (narrow NV NV 15/06/23 13:25
section) 16/06/23 13:40
S-R4A 6773813 601409 1741 Shar Shaw Taga river (narrow NV NV 15/06/23 13:50
section)
S-R4B 6773817 | 601408 1746 Shar Shaw Taga river (narrow NV NV 15/06/23 14:35
section) 16/06/23 14:20
S-R5A 6773817 | 601408 1746 Shar Shaw Taga river (narrow NV NV 15/06/23 14:40
section) 16/06/23 15:10
S-R5B 6773817 | 601408 1746 Shar Shaw Taga river (narrow NV NV 15/06/23 14:10
section) 16/06/23 15:25
S-R5C 6773781 601407 1747 Shar Shaw Taga river (narrow NV NV 16/06/23 14:45
section)
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S-R6 6773685 | 601449 1759 Shar Shaw Taga river (narrow NV NV 15/06/23 16:40
section) 16/06/23 15:45
S-R7 6773691 601445 1753 Shar Shaw Taga river (narrow NV NV 15/06/23 16:50
section) 16/06/23 16:00
S-R8 6773691 601445 1753 Shar Shaw Taga river (narrow NV NV 15/06/23 17:00
section) 16/06/23 16:10
S-RDOWN | 6774302 | 600936 1687 Shar Shaw Taga river (downstream | NV 19/08/22 13:05 NV
floodplain)
S-RUP 6773641 601455 1749 Shar Shaw Taga river (upstream NV 16/08/22 12:00 | NV
floodplain) 16/08/22 16:16
17/08/22 13:12
18/08/22 12:35
19/08/22 13:01
S-GL1 6772289 | 600889 2083 stream at G-B1 snout NV 18/08/22 18:36 19/06/23 14:35
21/06/23 12:05
S-GL2 6772230 | 600819 2109 stream at G-B1 snout NV 18/08/22 18:06 | NV
S-GL3 6772239 | 600703 2086 stream at G-B1 snout NV 18/08/22 19:03 NV
S-IDC1 6772896 600330 1886 ice-debris complex stream 16/06/22 15:56 18/08/22 20:29 NV
18/06/22 17:50
S-IDC2 6772897 600330 1886 ice-debris complex stream 18/06/22 17:56 NV NV
S-IDC3 6772943 600345 1891 ice-debris complex stream 16/06/22 15:37 NV NV
S-IDC4 6772967 600379 1893 ice-debris complex stream 16/06/22 17:04 NV NV
S-IDC5 6773216 600703 1860 ice-debris complex stream 16/06/22 17:40 18/08/22 20:55 NV
S-RG1 6773340 | 601180 1797 spring at RG-Al front NV 17/08/22 11:58 NV
18/08/22 13:52
S-RG2 6773415 | 601279 1780 spring at RG-A1 front 12/06/22 16:54 16/08/22 11:15 NF
19/06/22 15:08 17/08/22 12:14
S-RG3 6773442 | 601378 1770 spring at RG-A1 front 19/06/22 14:48 NF NF
S-RG4 6773492 | 601414 1770 spring at RG-A1 front 19/06/22 13:52 | NF NF
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S-RG5 6773643 | 601423 1770 spring at RG-Al front 19/06/22 13:45 16/08/22 11:30 | NV
16/08/22 16:04
17/08/22 12:44
18/08/22 12:47
19/08/22 13:46
S-RG6 6773683 | 601421 1758 spring at RG-A1 front 19/06/22 13:30 16/08/22 12:40 | NV
17/08/22 13:05
18/08/22 12:27
19/08/22 13:24
S-RG7 6773736 | 601413 1746 spring at RG-A1 front 19/06/22 13:18 16/08/22 13:05 NV
17/08/22 13:58
18/08/22 12:14
19/08/22 13:12
S-RG8 6773763 | 601408 1744 spring at RG-A1 front 19/06/22 12:50 16/08/22 13:15 15/06/23 14:55
17/08/22 14:13 16/06/23 14:35
18/08/22 11:11
19/08/22 12:34
S-RG9A 6773762 601415 1752 spring flowing from talus opposite NV 16/08/22 12:13 15/06/23 14:55
to RG-Al front (right bank) 17/08/22 13:29 16/06/23 14:25
S-RG9B 6773931 601335 1734 spring from talus opposite to RG- NV NV 16/06/23 14:10
Al front (right bank)
S-RG10 6773778 | 601401 1749 spring at RG-Al front 19/06/22 12:43 NV 16/06/23 14:00
S-RG11 6773867 | 601367 1738 spring at RG-Al front 19/06/22 12:35 NV 16/06/23 13:30
S-RG12 6773971 601281 1726 spring at RG-A1 front NV 18/08/22 11:56 | NV
19/08/22 12:10
S-RG13 6773995 | 601265 1726 spring at RG-A1 front NV 16/08/22 13:47 NV
18/08/22 11:40
S-RG14 6774166 | 601183 1712 spring at RG-Al front 15/06/22 15:30 19/08/22 12:30 NV
19/06/22 14:25
S-RG15 6774210 | 600985 1683 spring at RG-Al front 19/06/22 15:17 NV NV
S-RG16 6774034 | 600854 1740 spring at RG-A1 front 19/06/22 15:42 | NV NV

Table Al: List and description of sites sampled during the three campaigns between June 2022 and August 2023, with UTM
coordinates, elevation, dates and times of sampling. Samples are categorized into four distinct types: glacial outlets from the G-B1
glacier snout (S-GL#), ice-debris complex streams in the proglacial area between the glacier tongue and rock glaciers (S-IDC#), Shar
Shaw Taga River (S-R#), and springs from RG-A1 rock glacier front and opposite talus (S-RG#). Sites were not all sampled for
every campaign, due to diverse reasons (access and safety issues, no flow, campaign dedicated to a specific area, etc.). When possible,
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sites were sampled several times to trace potential fluctuations in their physico-chemical signature. When not sampled, the comment
“NV” stands for “not visited.” The comment “NF,” for “no flow,” indicates a site not sampled as it was dry when visited.

Code/Data availability

The data supporting this study are available upon request to the corresponding author.
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