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Manuscript ID: egusphere-2025-1169 

 

My co-authors and I would like to express our gratitude to the reviewers for their constructive 

feedback and suggestions for strengthening our research. The changes we have made to the 

attached file in response to such feedback and suggestions have been highlighted in blue to 

facilitate their identification. I would also like to offer my apologies for the length of time it 

took us to prepare this response. 

 

Response to Reviewer #2 

We greatly appreciate the critical review of the manuscript and the constructive suggestions 

put forth by the reviewer that will help improve the quality of the manuscript. We have 

responded point by point to all the comments and suggestions raised by Reviwer#2 as follows: 

 

Comment 1: The manuscript has some serious problems in methodology and data. For the 

methodology, the used model such as frequency ratio (FR), certainty factor (CF), 

logistic regression (LR), and information value (IV), is not novel and new. 

Moreover, the as frequency ratio (FR), certainty factor (CF), and information 

value (IV) is similar and almost same models based on probability. I recommend 

the new models such as machine learning models. 

 

Response: We appreciate the reviewer's comment and acknowledge the increasing prominence 

of advanced machine learning (ML) methodologies in landslide susceptibility mapping due to 

their ability to handle complex datasets and improve predictive performance. However, our 

choice of statistical methods (FR, IV, CF, and LR) was intentional and grounded in both 

methodological and practical considerations. Although FR, IV, and CF share probabilistic 

foundations, they differ in computation and in the interpretation of spatial relationships 

between landslide events and conditioning factors. These models, along with LR, have been 

widely used for LSI mapping and validated across various regions (e.g., Lee and Pradhan, 

2007; Aditian et al., 2018; Dash et al., 2022), allowing for meaningful comparative 

benchmarking in our study area.  

Furthermore, the spatial distribution of rainfall-induced landslide events in our study 

area is highly clustered, particularly in the central and northern regions of Jecheon-si. This 

pattern corresponds closely with the distribution of maximum daily rainfall intensity (Fig. 5), 

indicating that intense rainfall is a dominant landslide-triggering factor. The compiled landslide 

inventory is both limited and spatially uneven, making it less suitable for training data-intensive 
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ML models. Therefore, in such data-constrained conditions, interpretable and efficient 

statistical models remain practical and reliable tools for landslide susceptibility analysis (Ding 

et al., 2025; Xie et al., 2017). Besides, the primary objective of this study is to evaluate the 

predictive performance and spatial consistency of commonly used statistical models and to 

propose a hybrid integration approach that leverages their combined strengths. Our 

methodology emphasizes spatial validation and model synergy rather than novelty in algorithm 

selection. Accordingly, in the revision, we have highlighted both the limitations of existing LSI 

models and the novel contributions of the present investigation in the Introduction section, as 

given below, 

In the past two decades, several statistical and machine-learning approaches have been 

introduced for landslide susceptibility assessment, presuming that landslides trigger in a similar 

environment to prior landslides (Xing et al., 2021; Aditian et al., 2018; Park et al., 2013; Lee 

and Pradhan, 2007; Lee et al., 2002). Although numerous techniques have been put forth to 

create GIS-based landslide susceptibility maps, there still needs to be an agreement on the best 

practices (Tang et al., 2020; Aditian et al., 2018). Most quantitative methods considered past 

landslides to determine the ranks and weight of each factor attribute based on their spatial 

association. Consequently, numerious quantitative have been frequently applied for landslide 

susceptibility mapping, ranging from conventional statistical methods (e.g., frequency ratio, 

information value, Shannon entropy, certainty factor, weights of evidence, and logistic 

regression) to advanced machine learning algorithms (e.g., random forests, support vector 

machines, extreme gradient boosting, and neural networks) (Biswas et al., 2023; Dash et al., 

2022; Mandal et al., 2021; Zhou et al., 2021a; Pham et al., 2020; Riaz et al., 2018; Aditian et 

al., 2018; Shahabi and Hashim, 2015; Park et al., 2013). The advantages and limitations of 

these statistical and probabilistic models have been systematically reviewed by Merghadi et al. 

(2020) and Shano et al. (2020). Even though there were numerous studies on landslide 

susceptibility, no single approach is suitable for all cases. As a result, to determine landslide 

susceptibility in a given area, the best model must be chosen based on the landslide's 

characteristics and the accessibility of inventory data (Zhu et al., 2018). Consequently, it is still 

crucial to calculate the effectiveness of various models for particular landslide susceptibility 

procedures. In addition, model integration provides another opportunity to improve model 

accuracy by combining different models on the GIS platform (Barman et al., 2024).  

A landslide susceptibility index typically indicates areas that are more prone to 
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landslides based on various factors and parameters. Thus, previous studies have primarily 

focused on assessing the overall performance of predicted susceptibility rather than examining 

the predicted LSI's spatial geomorphic and topographic characteristics. The overall accuracy 

of widely accepted models may produce acceptable LSIs in terms of AUC, MAE, MSE, and 

RMSE, but it may not always be comparable with the landslide characteristics. For example, 

the landslide source area (or depletion zones), characterized by steep slopes, high topographic 

relief, and often exposed bedrock or weathered material, is critical in understanding landslide 

dynamics, as it is where the initial failure occurs, leading to material movement (Crosta et al., 

2003). Thus, this area is typically characterized by high susceptibility to landslides due to the 

inherent instability (Bhuyan et al., 2025; Mathews et al., 2024). Identifying these areas is 

crucial for understanding initiation mechanisms and improving hazard models. Conversely, the 

landslide deposit area, characterized by gentle slopes and often covered by accumulated 

landslide debris, is the final resting place of the landslide mass and generally exhibits lower 

susceptibility due to the stabilization of the material (Meyrat et al., 2022). Numerous studies 

show that the characteristics of the deposit area can influence future landslide risks, as loose 

materials remain vulnerable (Li et al., 2024). Therefore, the landslide characteristics along with 

the AUC, MAE, MSE, and RMSE should be analyzed to validate the predicted LSI values. 

However, most landslide studies consider the overall model performance (i.e., AUC) and ignore 

the spatial inconsistency phenomenon. Therefore, the main novelties of this study include (a) 

the development of landslide susceptibility (LSI) maps by comparing and analyzing different 

statistical models commonly used for assessing LSI, (b) LSI models were validated using AUC 

and other statistical methods, (c) evaluating spatial geoporphic and topographic characteristics 

of the predicted LSIs to study previously overlooked accuracy criteria, (c) proposed a hybrid 

integrated approach to achieve higher accuracy than the individual LSI models, and (d) 

prepared a reliable landslide hazard microzonation map through integration of triggering factor 

(i.e., maximum rainfall intensity (mm/day) from 2000 to 2019) to mitigate landslide-induced 

disaster risks appropriately. 

However, we agree that integrating ML algorithms can enhance the accuracy and 

predictive power of LSIs. Consiquently, in revision, we have acknowledged this limitation in 

the discussion section.  
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Comment 2: Also, the relationships between landslide and input factors should be analyzed 

for the reason using the FR. Then only related factors should be used for the 

analysis. The authors just describe the result of FR and used all factors which is 

related to landslide or not. 

Response: Thank you for your insightful observations. In the present study, landslide 

susceptibility was modeled using four statistical models: FR, IV, CF, and LR. Five major steps 

were followed to achieve this goal: (a) the spatial relationship between the predisposing factors 

and landslide inventory were analyses based on the FR values, (b) Multicollinearity analysis 

of predisposing factors to understanding collinearity among the predisposing factors and select 

suitable predisposing factors for the analysis, (c) a GIS-based normalized raster database of 18 

predisposing factors were prepared to calculate the FR, IV, and CF values and to perform 

subsequent analysis, (d) LR analysis was performed based on the dependent (landslide 

inventory data) and independent variables, and (e) calculated LSIs were validated using AUC 

and other statistical methods. To train and validate the LSI models, we randomly split the 

landslide inventory dataset into training and testing, i.e., 70% and 30%, respectively (Nguyen 

et al., 2021; Zhou et al., 2021b; Aditian et al., 2018). This study aims to compare the most 

widely used landslide susceptibility approaches and gain insight into their precision in 

predicting capacities in susceptible zones. 

As the reviewer noted, we performed FR analysis to assess the degree of association 

between each factor’s attributes and historical landslide events. This was discussed in Section 

4.1 of the revised manuscript, where we emphasize that higher FR values indicate a stronger 

correlation between a given factor class and landslide occurrence (Lee and Talib, 2005). The 

FR results helped us interpret the influence of each factor on landslide distribution. 

Additionally, we conducted multicollinearity diagnostics to ensure statistical robustness in the 

LSI model. All 18 predisposing factors satisfied the recommended thresholds (Variance 

Inflation Factor < 10 and Tolerance > 0.1) as per Zhang et al. (2020) and Kadavi et al. (2019). 

For instance, the Topographic Roughness Index (TRI) exhibited the highest VIF (6.483) and 

lowest tolerance (0.154), both well within acceptable limits. Although some factor classes may 

exhibit weaker FR values, we retained all 18 factors due to consistency across all four models 

(FR, IV, CF, LR) to allow comparative evaluation. We have clarified this rationale in the revised 

manuscript and highlighted that future studies may adopt machine learning-based feature 

selection to further optimize model performance. 



 

5 

 

 

 

 

Comment 3: For the data, the authors have used the 112 landslides The number of landslides 

is too small to apply the modes. The Also, the study does not explicitly describe 

using a separate validation dataset (e.g., splitting the 112 landslides into 

training/testing subsets). Performance metrics like AUC were apparently 

computed on the same inventory used for modeling, which could lead to 

overfitting concerns.  

Response: Thank you for your insightful observation. In the present study, the inventory 

database was created using high-resolution aerial imagery (obtained from 

http://map.ngii.go.kr/ms/map/), historical Google Earth imagery, field investigation and 

compilation of available inventory data from the Korea Forest Service (KFS). As suggested, 

we further rigorously used historical Google Earth imagery and aerial photographs to update 

the landslide inventory data. Subsequently, we prepared an updated landslide inventory 

(n=160) map of the Jecheon-si region, as shown in Fig. 5. Additional, in the revised manuscript, 

to better understand the spatial distribution of landslide events in this region, we analyzed the 

long-term (2000-2019) maximum daily rainfall intensities using TRMM (Tropical Rainfall 

Measuring Mission, https://gpm.nasa.gov/missions/trmm) datasets processed in Google Earth 

Engine. Results revealed that maximum rainfall intensity ranged from 43.74 to 56.7 mm/day 

across the region, with the central and northern parts exhibiting significantly higher values (Fig. 

5). This pattern aligns with the concentration of landslide events in the northern and central 

parts of the study region, indicating higher rainfall intensity is a critical factor controlling the 

spatial distribution of landslides. Subsequently, long-term rainfall intensity was utilized as a 

triggering factor for the landslide hazard microzonation analysis.  
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Figure 5. Maximum rainfall intensity (mm/day) distribution of the region for the period of 2000 

to 2019, and spatial distribution of landslide inventory. 

 

To train and validate the LSI models, we randomly split the landslide inventory dataset 

into training and testing, i.e., 70% and 30%, respectively (Barman et a., 2023; Nguyen et al., 

2021; Zhou et al., 2021b; Aditian et al., 2018). Figure 13 illustrates the ROC-AUC values of 

the FR, IV, CF and LR models, which reveal that all four models demonstrate strong 

discriminatory power, with AUC values consistently exceeding 0.85, indicating high model 

reliability. It was observed that the LR model achieved the highest AUC values for both training 

(0.901) and testing (0.930) datasets, signifying its superior generalization capability and 

robustness in capturing the non-linear relationships between landslide occurrence and 

contributing factors. The FR model yielded AUCs of 0.879 (training) and 0.905 (testing), 

followed closely by IV (0.858 and 0.910) and CF (0.861 and 0.917), reflecting their 

competency in bivariate and heuristic-based spatial correlation assessments. Nevertheless, all 

models yielded acceptable and comparable prediction accuracies in both the training and 

testing datasets, indicating their robustness for landslide susceptibility mapping without clear 
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signs of overfitting.  

 

Figure 13. ROC curves and corresponding AUC values for four LSI models: (a) LR, (b) FR, 

(c) IV and (d) CF models [Note: Blue and red curves denote training and testing 

datasets, respectively, used for model evaluation. The block dotted line represents 

the random guess]. 

 

Comment 3: A randomized train-test split or cross-validation would increase confidence that 

the models generalize beyond the known inventory. 

Response: Thank you for your comment. In the present study, to train and validate the LSI 

models, the landslide inventory dataset was randomly split into 70% for training and 30% for 

testing (Nguyen et al., 2021; Zhou et al., 2021b; Aditian et al., 2018). Consequently, FR, IV, 

CF and LR models were developed based on the 70% training data. Figure 13 illustrates the 

ROC-AUC values of the FR, IV, CF and LR models, which reveal that all four models 

demonstrate strong discriminatory power, with AUC values consistently exceeding 0.85, 

indicating high model reliability. It was observed that the LR model achieved the highest AUC 

values for both training (0.901) and testing (0.930) datasets, signifying its superior 

generalization capability and robustness in capturing the non-linear relationships between 

landslide occurrence and contributing factors. The FR model yielded AUCs of 0.879 (training) 
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and 0.905 (testing), followed closely by IV (0.858 and 0.910) and CF (0.861 and 0.917), 

reflecting their competency in bivariate and heuristic-based spatial correlation assessments. 

Further, based on the training and testing datasets, the models' accuracy was examined using 

RMSE, MSE, and MAE. The outcome demonstrates that the FR, CF and IV models had the 

lowest RMSE, MSE, and MAE values (Table 4). On the other hand, the LR model had higher 

MAE, MSE, and RMSE values and comparatively lower prediction accuracy than other 

models. Nevertheless, all models yielded acceptable and comparable prediction accuracies in 

both the training and testing datasets, indicating their robustness for landslide susceptibility 

mapping. Therefore, selecting an appropriate model for landslide susceptibility mapping is 

difficult, even though the performances and prediction accuracy of all the discussed models 

were acceptable.  

 

Figure 13. ROC curves and corresponding AUC values for four LSI models: (a) LR, (b) FR, 

(c) IV and (d) CF models [Note: Blue and red curves denote training and testing 

datasets, respectively, used for model evaluation. The block dotted line represents 

the random guess]. 
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Table 4. Validation of models by AUC, RMSE, MSE, and MAE. 

Models Traing Validation 

AUC MAE MSE RMSE AUC MAE MSE RMSE 

FR 0.879 0.291 0.092 0.303 0.905 0.267 0.078 0.279 

IV 0.858 0.248 0.068 0.261 0.910 0.220 0.053 0.230 

CF 0.861 0.236 0.063 0.252 0.917 0.204 0.046 0.215 

LR 0.901 0.306 0.174 0.417 0.930 0.238 0.125 0.354 

 

On the other hand, we utilized the entire inventory database to validate the integrated 

LSI model and landslide hazard microzonation map along with in-situ observations. The hybrid 

integrated LSI model was examined using AUC, MSE, MAE, and RMSE, with the landslide 

inventory data exhibiting good consistency with the in-situ observations. On the other hand, 

correct classification percentages (for 0.5 cut-off value) are also calculated to assess the LSI's 

sensitivity (Gorum et al., 2008). It was exhibited that the integrated models have a prediction 

capacity of 95% (Fig. 17a). The AUC value obtained from the integrated model is 0.908, which 

also suggests a high landslide prediction rate (Fig. 17b).   

   

 

Figure 17. (a) The estimated LSI corresponding to the landslide inventory datasets with correct 

classification percentages, and (b) Model performance of the proposed integrated 

approach based on the AUC. 
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The above has been incorporated into the revised manuscript in Sections 4 and 5. 

 

Comment 4: There is no “Discussion section. The section should be included with “Conclusion” 

section. 

Response: Thank you for your comment. As recommended, the discussion section have been 

incorporated in the revised manuscript. 

5. Discussion 

Landslides, driven by downslope movements of soil and rock, are increasingly frequent in 

South Korea due to heavy monsoon rainfall and climate change. Urbanization and deforestation 

are anticipated to intensify these events, underscoring the need for effective hazard zonation 

mapping to mitigate risks and safeguard the well-being of communities and infrastructure. This 

study developed a hybrid integrated approach to improve the accuracy and spatial consistency 

of anticipated LSIs. By combining the strengths of multiple widely accepted statistical models 

(FR, CF, IV, and LR), the hybrid integrated approach effectively addresses the limitations of 

individual models. For these purposes, we comprehensively evaluate the predicted LSI values 

derived from the FR, CF, IV, and LR models and the one proposed hybrid model through 

traditional accuracy metrics (AUC, RMSE, MSE, MAE) in conjunction with with spatial 

topographic and landslide charactericties, focused on landslide source areas (steep, unstable 

zones) and deposition areas (stabilized material zones), which reflect heterogeneities in 

mechanical instability (Crosta et al., 2003; Mathews et al., 2024; Bhuyan et al., 2025; Meyrat 

et al., 2022; Li et al., 2024). 

The LSI models (i.e., FR, CF, IV, and LR) were developed using landslide inventories 

and 18 widely used influencing factors, i.e., topography, hydrogeology, soils, forests, and 

lithology. Subsequently, we performed FR analysis to assess the degree of association between 

each factor’s attributes and historical landslide events. We diagnosed the predisposing factors 

through multicollinearity tests and found no collinearity among the independent predisposing 

factors. After that, LSI models were developed based on the eighteen variables (Fig. 12, in the 

revised manuscript). Based on the training and testing datasets, the models' accuracy was 

examined using AUC, RMSE, MSE, and MAE. The outcome demonstrates that the FR, CF and 

IV models had the lowest RMSE, MSE, and MAE values (Table 4). On the other hand, the LR 

model had higher MAE, MSE, and RMSE values and comparatively lower prediction accuracy 

than other models.  
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Table 4. Validation of models by AUC, RMSE, MSE, and MAE. 

Models Traing Validation 

AUC MAE MSE RMSE AUC MAE MSE RMSE 

FR 0.879 0.291 0.092 0.303 0.905 0.267 0.078 0.279 

IV 0.858 0.248 0.068 0.261 0.910 0.220 0.053 0.230 

CF 0.861 0.236 0.063 0.252 0.917 0.204 0.046 0.215 

LR 0.901 0.306 0.174 0.417 0.930 0.238 0.125 0.354 

 

Further, it was observed that all models achieved AUC > 0.85 for both training and 

testing datasets, indicating high discriminative ability. The LR model yielded the highest AUC 

(0.901 training, 0.930 testing), while FR, IV, and CF achieved slightly lower but comparable 

results (0.858-0.910). Although the LR model exhibits slightly higher MAE, MSE, and RMSE 

values, all models demonstrated robust predictive accuracy without clear signs of overfitting. 

Thereafter, to explicitly assess model generalization in real-world scenarios, we tested spatial 

characteristics of the model outputs against recent landslide sites not included in the inventory 

by utilizing high-resolution LiDAR DEM, aerial photographs (NGII, 2020-2021), and drone 

surveys (August 2020). It was observed that even though the statistical model evaluation 

revealed high AUC values and acceptable statistical metrics, spatial analysis revealed 

inconsistencies of LSI distribution in landslide source and deposition zones (Figs. 14 and S1). 

For instance, FR, IV, and CF models predicted high LSI values in both the crown (~0.75) and 

deposit (~0.69) zones, whereas LR predicted moderate susceptibility in the crown (~0.62) but 

very low in the deposit (~0.05). The four applied models were found to be able to locate the 

landslide source area precisely; however, they are not consistent with the landslide and 

topography characteristics. On the other hand, the spatial analysis of predicted LSI values 

reveals that the hybrid integrated approach better captures the topographic and geomorphic 

characteristics of landslide source and deposition areas compared to individual models (Fig. 

15). The hybrid integrated LSI model was further examined using AUC, MSE, MAE, and 

RMSE with the landslide inventory data exhibiting good consistency with the in-situ 

observations (AUC=0.908, MSE=0.082, MAE=0.259, and RMSE=0.286). On the other hand, 

correct classification percentages (for 0.5 cut-off value) are also calculated to assess the LSI's 

sensitivity (Gorum et al., 2008). It was exhibited that the integrated models have a prediction 

capacity of 95% (Fig. 17a). The AUC value obtained from the integrated model is 0.908, which 

also suggests a high landslide prediction rate (Fig. 17b). It is noted that although the anticipated 
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landslide susceptibility index from all the models indicates the degree of field instability, there 

are variations in their predictive consistency. The LSI predicted based on the hybrid integrated 

method was consistent with the topographic and landslide characteristics (Bhuyan et al., 2025), 

suggesting more reliable and appropriate outcomes than other models. This improved spatial 

consistency is crucial for accurate landslide risk assessment and mitigation. 

 

Figure 17. (a) the estimated LSI corresponding to the landslide inventory datasets with correct 

classification percentages, and (b) model performance of the proposed integrated 

approach based on the AUC. 

Thereafter, an LHM map was developed by integrating the optimized hybrid LSI with 

maximum rainfall intensity (2000-2019), which was identified as a dominant landslide-

triggering factor in this region. The analysis revealed that severe hazard zones cover 

approximately 77.17 km2, predominantly covered in the northern part of the study area (Fig. 

16). This finding is supported by TRMM-derived long-term maximum rainfall intensity 

patterns, which show a strong correlation between rainfall and landslide occurrences in these 

areas. Previous studies (Lee et al., 2020; Park and Lee, 2021) similarly highlighted that 95% 

of landslides in South Korea occur during the monsoon season. The LHM map, validated 

against field observations, revealed that 95% of landslide occurrences align with severe to high-

hazard zones. The precision results (i.e., R-index) also indicate that the developed LHM map 

has a very high prediction accuracy and is useful for landcover planning and landslide-induced 

disaster mitigation purposes. 
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Although the developed hybrid integrated LSI model and LHM map revealed 

acceptable prediction accuracy with spatial consistency, this approach has several inherent 

limitations due to the complex, non-linear nature of landslide processes, the heterogeneity of 

conditioning factors, and the spatio-temporal variability of triggering mechanisms. In the 

present study, the landslide inventory (n=160) was compiled from multi-sourced data, 

including aerial photographs, historical Google Earth imagery, field investigations, and 

recorded data from the Korea Forest Service (KFS). Although diverse in origin, this inventory 

is spatially clustered in the central to northern part of the study region, reflecting spatial rainfall 

patterns controls. The moderate inventory size and spatial clustering limit the events-per-

variable ratio in LSI models and risk of pseudo-replication, increasing parameter uncertainty 

and reducing generalization capability. Moreover, the class imbalance may bias model 

calibration toward the dominant class. Further, for LSI model development, we considered 18 

influencing factors, viz., topographic slope, aspect, landforms class, average shear-wave 

velocity, TPI, CI, TWI, TRI, plan curvature, profile curvature, SPI, SL, surface lithology, soil 

thickness, timber density, timber age, soil type, and timber diameter. These factors are widely 

used for the LSI models in South Korea; however, the inclusion of dynamic influencing factors 

such as high-resolution NDVI and LULC in future studies may increase spatial consistency by 

incorporating characteristics of landslide dynamics in the mountainous region, as frequent 

forest fires impact the South Korean mountainous region. Further, we conducted 

multicollinearity diagnostics (Table 2) to ensure statistical robustness of the selected 

influencing factors. However, additional collinearity and feature-importance tests, such as the 

pearson correlation coefficient (PCC) and information gain ratio, could be applied to refine the 

selection of influencing factors. Moreover, a machine learning-based feature selection 

approach may be adopted in future studies to optimize model performance further. 

In addition, the applied FR, IV, CF, LR, and integrated hybrid models rely on the 

premise that future landslides occur under conditions similar to past events; however, this 

assumption may lead to model overfitting, limited generalization, or bias if the historical 

inventory is incomplete or unrepresentative. It is also acknowledged that even though FR, IV, 

and CF models differ in their computation and interpretation of spatial relationships between 

landslide events and conditioning factors, they share similar probabilistic foundations. 

Therefore, incorporating advanced ML and ensemble algorithms in future modeling could 

further enhance the accuracy and predictive power of LSIs. Further, the inclusion of maximum 
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daily rainfall intensity (2000-2019) as a triggering factor to determine LHM of the region 

enhances the model’s temporal relevance, yet regional rainfall thresholds vary and require site-

specific adjustment. Therefore, in future studies, we intend to use site-specific long-term 

rainfall intensity data from AWSs to better account for local variations in triggering factors, 

which could improve the landslide hazard microzonation zones. Further, the LSI models 

utilized in the present study were calibrated for the humid monsoon climate, steep terrain, and 

lithological complexity of Jecheon-si region, South Korea. While the methodological 

framework is transferable to other regions, the factor weights and model coefficients should be 

recalibrated based on the local inventories and environmental conditions. 
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