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Manuscript ID: egusphere-2025-1169 

 

My co-authors and I would like to express our gratitude to the reviewers for their constructive 

feedback and suggestions for strengthening our research. The changes we have made to the 

attached file in response to such feedback and suggestions have been highlighted in blue to 

facilitate their identification. I would also like to offer my apologies for the length of time it 

took us to prepare this response. 

 

Response to Reviewer #1 

 

Overall Observations: This study utilizes 112 landslide inventory points in Jecheon, South 

Korea, to generate landslide susceptibility maps using four 

commonly applied models: Frequency Ratio (FR), Certainty Factor 

(CF), Logistic Regression (LR), and Information Value (IV). The 

spatial consistency of the predicted Landslide Susceptibility Index 

(LSI) with observed landslide profiles was assessed using high-

resolution aerial and drone imagery. To address observed spatial 

inconsistencies, a hybrid integrated model was proposed, resulting in 

a microzonation hazard map that reportedly shows improved 

predictive performance, with high precision metrics such as an AUC 

of 0.906. However, the manuscript has several critical flaws.  

 

Thank you for your insightful review. We are very grateful for your constructive suggestions, 

which have greatly helped improve the preprint. 

 

 

Comment 1: First, the landslide distribution map is of low quality and the number of samples 

is insufficient to represent the actual pattern of landslide development in the 

region, especially in the context of rainfall-induced clustered events. The limited 

sample size also raises concerns about severe overfitting, which can lead to high 

accuracy on training data but poor generalization in real-world applications. 

 

Response: Thank you for your insightful observation. In the present study, the inventory 

database was created using high-resolution aerial imagery (obtained from 

http://map.ngii.go.kr/ms/map/), historical Google Earth imagery, field investigation and 

compilation of available inventory data from the Korea Forest Service (KFS). As suggested, 

we further rigorously used historical Google Earth imagery and aerial photographs to update 

the landslide inventory data. Subsequently, we prepared an updated landslide inventory 

(n=160) map of the Jecheon-si region, as shown in Fig. 5. Additional, in the revised manuscript, 

to better understand the spatial distribution of landslide events in this region, we analyzed the 

long-term (2000-2019) maximum daily rainfall intensities using TRMM (Tropical Rainfall 
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Measuring Mission, https://gpm.nasa.gov/missions/trmm) datasets processed in Google Earth 

Engine. Results revealed that maximum rainfall intensity ranged from 43.74 to 56.7 mm/day 

across the region, with the central and northern parts exhibiting significantly higher values (Fig. 

5). This pattern aligns with the concentration of landslide events in the northern and central 

parts of the study region, indicating higher rainfall intensity is a critical factor controlling the 

spatial distribution of landslides. Subsequently, long-term rainfall intensity was utilized as a 

triggering factor for the landslide hazard microzonation analysis. 

 

Figure 5. Maximum rainfall intensity (mm/day) distribution of the region for the period of 2000 

to 2019, and spatial distribution of landslide inventory.  

 

Regarding potential overfitting, the spatial clustering and limited inventory size indeed 

limit the suitability of data-intensive ML models. For this reason, we adopted widely used 



 

3 

 

interpretable statistical approaches, FR, IV, CF, and LR, which are robust under data-scarce 

conditions (Ding et al., 2025; Xie et al., 2017). To train and validate the LSI models, we 

randomly split the landslide inventory dataset into training and testing, i.e., 70% and 30%, 

respectively (Nguyen et al., 2021; Zhou et al., 2021b; Aditian et al., 2018). Model performance 

was evaluated using AUC, MAE, MSE, and RMSE (Table 4). It was observed that all models 

achieved AUC > 0.85 for both training and testing, indicating high discriminative ability. The 

LR model yielded the highest AUC (0.901 training, 0.930 testing), while FR, IV, and CF 

achieved slightly lower but comparable results (0.858-0.910). Although LR displayed slightly 

higher MAE, MSE, and RMSE values, all models demonstrated robust predictive accuracy 

without clear signs of overfitting. 

 

Table 4. Validation of models by AUC, RMSE, MSE, and MAE. 

Models Traing Validation 

AUC MAE MSE RMSE AUC MAE MSE RMSE 

FR 0.879 0.291 0.092 0.303 0.905 0.267 0.078 0.279 

IV 0.858 0.248 0.068 0.261 0.910 0.220 0.053 0.230 

CF 0.861 0.236 0.063 0.252 0.917 0.204 0.046 0.215 

LR 0.901 0.306 0.174 0.417 0.930 0.238 0.125 0.354 

 

 Additionally, to explicitly assess model generalization in real-world scenarios, we 

tested spatial characteristics of the model outputs against recent landslide sites not included in 

the inventory by utilizing high-resolution LiDAR DEM, aerial photographs (NGII, 2020-

2021), and drone surveys (August 2020). It was observed that even though the statistical model 

evaluation revealed high AUC values and acceptable statistical metrics, spatial analysis 

revealed inconsistencies of LSI distribution in landslide source and deposition zones (Figs. 14 

and S1). For instance, FR, IV, and CF models predicted high LSI values in both the crown 

(~0.75) and deposit (~0.69) zones, whereas LR predicted moderate susceptibility in the crown 

(~0.62) but very low in the deposit (~0.05). To overcome this issue, we put forth a hybrid 

integrated strategy to verify whether the LSI derived from the integrated approach aligns with 

topography, geomorphic features, and landslide characteristics. It was observed that the LSI 

predicted through the integrated approach resolves spatial inconsistencies by combining the 

strengths of multiple models, which was not in the earlier case. For example, a high LSI value 

was observed in the landslide source area (i.e., 0.75 to 0.9), while a comparatively lower LSI 

value was observed in the landslide deposit zone (i.e., 0.35-0.55). This cross-temporal 
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validation confirms that the proposed models are not overfit to historical events and can reliably 

predict landslide-prone zones under varying topographic and geomorphic settings. Moreover, 

the hybrid integrated strategy leverages the complementary strengths of the individual models, 

yielding improved spatial coherence and practical applicability for real-world landslide hazard 

management and proactive mitigation planning. 

 

 

Figure 14. Spatial characteristics of predicted LSIs: (a) Drone image captured in August 2020, 

(b) LSI based on the FR model, (c) LSI based on the IV model, (d) LSI based on 

the CF model, (e) LSI based on the LR model and (f) elevation profile and LSI 

distribution from the landslide source area to landslide deposit zone (additional 

experimental site is illustrated in Figure S1 (electronic supplementary data)). 
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Figure S1. LSI based on the hybrid integrated approach: (a) spatial distribution of LSI in the 

Jecheon-si region, (b-d) the details of LSI distribution of three recent past landslide 

events, and (b'-d') elevation profile and LSI distribution from the landslide source 

area to the deposition zone at different landslide sites. 

 

In the revision, we incorporated the above discussion to address concerns about sample 

size, minimize the risk of overfitting, and enhance the generalization capability of the proposed 

hybrid integrated LSI model. 

 

 

Comment 2: Additionally, the manuscript lacks meaningful and insightful scientific 

discussion. The spatial inconsistency between predicted susceptibility and actual 

landslide characteristics is acknowledged but not adequately analyzed or 

explained.  

 

Response: Thank you for your comment and for acknowledging the discussion regarding the 

spatial inconsistency between predicted susceptibility and actual landslide characteristics. In 

the revision, we incorporated additional analyses and explanations to interpret these 

discrepancies better, as highlighted below,  

Figure 13 illustrates the ROC-AUC values of the FR, IV, CF and LR models, which 

reveal that all four models demonstrate strong discriminatory power, with AUC values 

consistently exceeding 0.85, indicating high model reliability. It was observed that the LR 

model achieved the highest AUC values for both training (0.901) and testing (0.930) datasets, 



 

6 

 

signifying its superior generalization capability and robustness in capturing the non-linear 

relationships between landslide occurrence and contributing factors. The FR model yielded 

AUCs of 0.879 (training) and 0.905 (testing), followed closely by IV (0.858 and 0.910) and CF 

(0.861 and 0.917), reflecting their competency in bivariate and heuristic-based spatial 

correlation assessments. Nevertheless, all models yielded acceptable and comparable 

prediction accuracies in both the training and testing datasets, indicating their robustness for 

landslide susceptibility mapping. Therefore, selecting an appropriate model for landslide 

susceptibility mapping is difficult, even though the performances and prediction accuracy of 

all the discussed models were acceptable.  

 

Figure 13. ROC curves and corresponding AUC values for four LSI models: (a) LR, (b) FR, 

(c) IV and (d) CF models [Note: Blue and red curves denote training and testing 

datasets, respectively, used for model evaluation. The block dotted line represents 

the random guess]. 

 

In this study, we used an alternative approach to evaluate the LSI results and explicitly 

assess model generalization in real-world scenarios. The approach integrates a high-resolution 

DEM (5×5m), aerial photos, and drone images of recent past landslide events (not included in 

the inventory datasets) to verify whether the unmapped landslide sites fall within the predicted 
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very high susceptibility zones (He et al., 2021). We also used the 1D elevation profile to check 

whether the predicted LSI distribution is consistent with the topographic, geomorphic, and 

landslide characteristics. Consequently, we selected recent event sites that have not previously 

experienced landslides to better demonstrate the experimental analysis and evaluate the model 

accuracy. For these purposes, we acquired aerial photos from the NGII web portal 

(https://map.ngii.go.kr/) for 2020 to 2021, and the drone survey was conducted in August 2020. 

Figure 14 depicts the predicted LSI distributions and the landslide area marked on a dronograph 

and elevation profile from the landslide source area to the landslide deposition zone. The 

landslide-affected regions are clearly visible in the drone imagery (Figs. 14a). The predicted 

LSI value based on the FR, IV, and CF models was found to be very high in both the crown 

(i.e., ~0.75) and the landslide deposit zone (i.e., ~0.69) (Fig. 14f). In contrast, the LSI predicted 

by the LR model was low in the landslide deposit zone (i.e., ~0.05) and moderate in the crown 

zone (i.e., ~0.62) (Fig. 14f). A similar experimental results was also found at different landslide 

event as depicted in Fig. S1 (supplementary data). It was observed that all models could identify 

the landslide source area precisely; however, differences in susceptibility distribution highlight 

that spatial consistency with topography varies by model.  

 

Figure 14. Spatial characteristics of predicted LSIs: (a) Drone image captured in August 2020, 

(b) LSI based on the FR model, (c) LSI based on the IV model, (d) LSI based on the 

CF model, (e) LSI based on the LR model and (f) elevation profile and LSI 

distribution from the landslide source area to landslide deposit zone. 
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Figure S1: Spatial characteristics of predicted LSIs: (a) Aerial image acquired in October 2021, 

(b) LSI based on the FR model, (c) LSI based on the IV model, (d) LSI based on 

the CF model, (e) LSI based on the LR model and (f) elevation profile and LSI 

distribution from crown zone to landslide deposit zone. 

The varying sensitivity of the FR, IV, CF, and LR models to depositional and source-

zone features primarily arises from the inherent differences in their methodological frameworks 

and ability to capture complex spatial relationships between landslide occurrence and 

conditioning factors. The LR model, as a multivariate parametric approach, explicitly 

quantifies the combined and potentially non-linear effects of multiple geomorphological, 

geological, topographical, hydrological and forest factors, allowing it to capture subtle spatial 

heterogeneities and interactions that characterize the transition from landslide source zones, 

marked by steep slopes, high shear stress, and mechanical instability, to depositional zones 

where slope gradients decrease and sediment accumulates, reducing failure susceptibility. 

Therefore, LR results in higher predicted susceptibility values in source areas and lower values 

in depositional zones, reflecting the physical processes of landslide initiation and deposition. 

In contrast, bivariate heuristic models such as FR, IV, and CF operate on simplified 

assumptions of factor independence and spatial correlation, evaluating susceptibility based 

primarily on relative frequency or certainty values within discrete factor classes, which can 

lead to similar susceptibility assignments across both source and depositional zones if they 

share common terrain attributes, thereby limiting their spatial discriminatory power. 
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Consequently, to overcome this issue, we put forth a hybrid integrated strategy to verify 

whether the LSI derived from the integrated approach aligns with topography, geomorphic 

features, and landslide characteristics. 

The hybrid integrated approach synergistically combines the parametric rigor of LR 

with the heuristic spatial correlation strengths of FR, IV, and CF models, producing a landslide 

susceptibility index that aligns closely with the topographic and geomorphic evidence by 

accurately distinguishing initiation zones of high instability from depositional zones of relative 

stability. It was observed that the hybrid approach resolves spatial inconsistencies by 

combining the strengths of multiple models (Fig. 15). For example, a high LSI value was 

observed in the landslide source area (i.e., 0.75 to 0.9), while a comparatively lower LSI value 

was observed in the landslide deposit zone (i.e., 0.35-0.55). Each model captures distinct 

aspects of terrain and susceptibility patterns, and their integration reduces localized prediction 

errors. Weighted averaging further ensures that models with stronger predictive abilities 

influence the final susceptibility map more, leading to higher spatial alignment with observed 

landslide patterns. This cross-temporal validation confirms that the proposed models are not 

overfit to historical events and can reliably predict landslide-prone zones under varying 

topographic and geomorphic settings. The hybrid integrated LSI model was further examined 

using AUC, MSE, MAE, and RMSE with the landslide inventory data exhibiting good 

consistency with the in-situ observations (AUC=0.908, MSE=0.082, MAE=0.259, and 

RMSE=0.286). On the other hand, correct classification percentages (for a 0.5 cut-off value) 

are also calculated to assess the LSI's sensitivity (Gorum et al., 2008). It was exhibited that the 

integrated models have a prediction capacity of 94.6% (Fig. 17a). The AUC value obtained 

from the integrated model is 0.909, which also suggests a high landslide prediction rate (Fig. 

17b). It is noted that although the anticipated landslide susceptibility index from all the models 

indicates the degree of field instability, there are variations in their predictive consistency. The 

LSI predicted based on the hybrid integrated method was consistent with the topographic and 

landslide characteristics (Bhuyan et al., 2025), suggesting more reliable and appropriate 

outcomes than other models. This improved spatial consistency is crucial for accurate landslide 

risk assessment and mitigation. Moreover, the hybrid integrated strategy leverages the 

complementary strengths of the individual models, yielding improved spatial coherence and 

practical applicability for real-world landslide hazard management and proactive mitigation 

planning. Subsequently, the LSI calculated through the hybrid integrated approach was used 
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for further analysis. 

 

Figure 15. LSI based on the hybrid integrated approach: (a) spatial distribution of LSI in the 

Jecheon-si region, (b-d) the details of LSI distribution of three recent past landslide 

events, and (b'-d') elevation profile and LSI distribution from the landslide source 

area to the deposit zone at different landslide sites. 

 

 

Figure 17. (a) the estimated LSI corresponding to the landslide inventory datasets with correct 

classification percentages, and (b) model performance of the proposed integrated 

approach based on the AUC. 
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Comment 3: There is also a lack of in-depth analysis of model limitations, data uncertainties, 

and regional applicability, which significantly weakens the scientific value of the 

work. Based on these issues, I recommend rejection. 

 

Response: We appreciate the reviewer’s concern regarding the limitations of the applied FR, 

IV, CF, and LR models, as well as data uncertainties, and the regional applicability of the 

proposed hybrid integrated approach. In the revision, we have expanded the discussion on the 

sensitivity of the LSI models and examined how these widely used approaches may influence 

susceptibility mapping results. We have also explicitly addressed data-related uncertainties, 

including inventory completeness and potential biases in landslide sampling. Furthermore, we 

evaluated the regional applicability of the proposed approach by discussing its transferability 

to other regions with similar geomorphological and climatic settings, along with the associated 

constraints. These additions aim to enhance the scientific value of the present work by 

providing a transparent and critical assessment of methodological and contextual limitations. 

Accordingly, we updated several sections by incorporating existing model limitations, data 

uncertainties, limitations of the present study, and regional applicability of the proposed model, 

as highlighted below. 

Landslide susceptibility models, whether statistical, probabilistic, or machine-learning 

based, inevitably face limitations due to the complex, non-linear, and site-specific nature of 

landslide processes, the heterogeneity of conditioning factors, and the variability of triggering 

mechanisms across temporal and spatial scales. While numerous statistical approaches such as 

FR, IV, CF, and LR have been successfully applied on various geographic regions (Merghadi 

et al., 2020; Shano et al., 2020; Park et al., 2013), none are universally optimal, and their 

predictive capacity depends heavily on inventory quality, factor relevance, and 

geomorphological context (Aditian et al., 2018; Tang et al., 2020). Furthermore, a landslide 

susceptibility index typically indicates areas that are more prone to landslides based on various 

factors and parameters. Thus, previous studies have primarily focused on assessing the overall 

performance of predicted susceptibility rather than examining the spatial characteristics of the 

predicted LSI. The overall accuracy of widely accepted models may produce acceptable LSIs 

in terms of AUC, MAE and RMSE, but it may not always be comparable with the topographic, 

geomorphic and landslide characteristics. Therefore, the main novelties of the present 

investigation include the development of LSI models using different widely adopted statistical 

models and uncertainty evaluation based on the spatial characteristics of the predicted landslide 
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susceptibility index to study previously overlooked accuracy criteria and propose a hybrid 

integrated approach to achieve higher accuracy than the individual LSI models. We also used 

both AUC-based performance metrics and error-based measures (MAE, MSE, RMSE) for each 

LSI model, comparing training and testing datasets. This dual evaluation mitigates the over-

reliance on AUC alone and provides a more robust understanding of prediction quality. We also 

performed multicollinearity diagnostics to ensure that selected variables met VIF and tolerance 

thresholds, reducing redundancy-induced uncertainty. Subsequently, we have highlighted 

spatial consistency analysis of the predicted LSIs as an innovative aspect of this study. By 

examining the susceptibility patterns in both source zones and deposit zones, we identified 

discrepancies where high AUC scores did not necessarily align with known landslide initiation 

areas. This analysis provides additional diagnostic insight into model robustness, beyond 

conventional accuracy statistics. To overcome this issue, we put forth a hybrid integrated 

strategy to verify whether the LSI derived from the integrated approach aligns with topography, 

geomorphic features, and landslide characteristics. It was observed that the LSI predicted 

through the integrated approach resolves spatial inconsistencies by combining the strengths of 

multiple models, which was not in the earlier case. For example, a high LSI value was observed 

in the landslide source area (i.e., 0.75 to 0.9), while a comparatively lower LSI value was 

observed in the landslide deposit zone (i.e., 0.35-0.55). This cross-temporal validation confirms 

that the proposed models are not overfit to historical events and can reliably predict landslide-

prone zones under varying topographic and geomorphic settings. Moreover, the hybrid 

integrated strategy leverages the complementary strengths of the individual models, yielding 

improved spatial coherence and practical applicability for real-world landslide hazard 

management and proactive mitigation planning. 

Although the developed hybrid integrated LSI model and LHM map revealed 

acceptable prediction accuracy with spatial consistency, this approach has several inherent 

limitations due to the complex, non-linear nature of landslide processes, the heterogeneity of 

conditioning factors, and the spatio-temporal variability of triggering mechanisms. In the 

present study, the landslide inventory (n=160) was compiled from multi-sourced data, 

including aerial photographs, historical Google Earth imagery, field investigations, and 

recorded data from the Korea Forest Service (KFS). Although diverse in origin, this inventory 

is spatially clustered in the central to northern part of the study region, reflecting spatial rainfall 

patterns controls. The moderate inventory size and spatial clustering limit the events-per-
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variable ratio in LSI models and risk of pseudo-replication, increasing parameter uncertainty 

and reducing generalization capability. Moreover, the class imbalance may bias model 

calibration toward the dominant class. Further, for LSI model development, we considered 18 

influencing factors, viz., topographic slope, aspect, landforms class, average shear-wave 

velocity, TPI, CI, TWI, TRI, plan curvature, profile curvature, SPI, SL, surface lithology, soil 

thickness, timber density, timber age, soil type, and timber diameter. These factors are widely 

used for the LSI models in South Korea; however, the inclusion of dynamic influencing factors 

such as high-resolution NDVI and LULC in future studies may increase spatial consistency by 

incorporating characteristics of landslide dynamics in the mountainous region, as frequent 

forest fires impact the South Korean mountainous region. Further, we conducted 

multicollinearity diagnostics (Table 2) to ensure statistical robustness of the selected 

influencing factors. However, additional collinearity and feature-importance tests, such as the 

pearson correlation coefficient (PCC) and information gain ratio, could be applied to refine the 

selection of influencing factors. Moreover, a machine learning-based feature selection 

approach may be adopted in future studies to optimize model performance further. 

In addition, the applied FR, IV, CF, LR, and integrated hybrid models rely on the 

premise that future landslides occur under conditions similar to past events; however, this 

assumption may lead to model overfitting, limited generalization, or bias if the historical 

inventory is incomplete or unrepresentative. It is also acknowledged that even though FR, IV, 

and CF models differ in their computation and interpretation of spatial relationships between 

landslide events and conditioning factors, they share similar probabilistic foundations. 

Therefore, incorporating advanced ML and ensemble algorithms in future modeling could 

further enhance the accuracy and predictive power of LSIs. Further, the inclusion of maximum 

daily rainfall intensity (2000-2019) as a triggering factor to determine LHM of the region 

enhances the model’s temporal relevance, yet regional rainfall thresholds vary and require site-

specific adjustment. Therefore, in future studies, we intend to use site-specific long-term 

rainfall intensity data from AWSs to better account for local variations in triggering factors, 

which could improve the landslide hazard microzonation zones. Further, the LSI models 

utilized in the present study were calibrated for the humid monsoon climate, steep terrain, and 

lithological complexity of Jecheon-si region, South Korea. While the methodological 

framework is transferable to other regions, the factor weights and model coefficients should be 

recalibrated based on the local inventories and environmental conditions. 
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