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Abstract 24 

Hydrological modeling plays a key role in water resource management and flood forecasting. 25 

However, in China with diverse geography and complex climate types, a systematic evaluation of 26 

different modeling schemes for large-sample hydrological datasets is still lacking. This study 27 

preliminarily constructed a dataset of catchment attributes and meteorology covering 544 basins 28 

in China, and systematically evaluated the applicability of process-based models (PBMs), long 29 

short-term memory (LSTM) models, and hybrid modeling methods. The results demonstrated: (1) 30 

The accuracy of meteorological data critically impacts the prediction performance of hydrological 31 
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models. High-quality precipitation data enables the model to better simulate the runoff generation 32 

process in the basin, thereby improving prediction accuracy. (2) The hybrid modeling method 33 

possesses regional modeling capabilities comparable to those of LSTM model. It also demonstrates 34 

strong generalization capabilities. In predicting ungauged basins, the hybrid model exhibits greater 35 

stability than the LSTM model. (3) Among the two hybrid modeling methods, the differentiable 36 

hybrid modeling scheme offers a deeper understanding and simulation of hydrological processes, 37 

along with the ability to output unobserved intermediate hydrological variables, compared to the 38 

alternative hybrid modeling schemes. Its prediction results are more consistent with the water 39 

balance of the basin. The research results provide a systematic analysis for evaluating the 40 

applicability of different hydrological modeling methods in 544 basins in China, offering 41 

important guidance for the selection and optimization of future hydrological models. 42 

1. Introduction 43 

1.1 Challenges in hydrological modeling for China’s basins 44 

Global water resources management and hydrological process simulation play a key role in 45 

responding to climate change and human activity pressures (Devitt et al., 2023). Accurate 46 

hydrological modeling can provide a basis for scientific decision-making for sustainable water 47 

resources management, prediction of extreme events, and protection of natural ecosystems (Hoy, 48 

2017; Satoh et al., 2022). Among many hydrological variables, daily runoff is particularly widely 49 

used. For example, understanding flow patterns (Brunner et al., 2020), efficient water resources 50 

management (Patle and Sharma, 2023), reservoir operation and flood prediction (Mangukiya and 51 

Sharma, 2025; Mangukiya and Yadav, 2022). However, with the increasing complexity and 52 

uncertainty of basin hydrological processes, the applicability and predictive ability of traditional 53 
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process-based models (PBMs) in practical applications face many challenges, such as insufficient 54 

data and complex parameterization. 55 

China is located in a densely populated area in East Asia. The rational management of water 56 

resources is crucial to economic and social development. Therefore, the role of hydrological 57 

modeling in decision support systems has become increasingly prominent (Yin et al., 2018). 58 

However, the diversity of topography and the complexity of climate result in significant variations 59 

in hydrological processes between basins. This has led to the fact that hydrological models based 60 

on physical processes have only achieved certain success in predicting runoff in some basins. For 61 

example, Zhang et al. (2024) used the Xin’an jiang model to predict the runoff in the Suihe and 62 

Zuohe River basins, and X. Liu et al. (2022) integrated the VIC, Xin’an jiang, and DTVGM models 63 

for the Ganjiang River basin. Such models often produce deviations due to insufficient data, 64 

structural design defects, or improper parameterization schemes (Dembélé et al., 2020; Herrera et 65 

al., 2022; Koch et al., 2016; Silvestro et al., 2015), making it difficult to accurately capture the 66 

complex hydrological behavior of the basin. At the same time, with the large-scale growth and 67 

sharing of basin data sets, the development of deep learning technology worldwide has provided 68 

new tools for hydrological modeling. Especially under the condition of sufficient data, deep 69 

learning models such as long short-term memory (LSTM) networks can effectively capture 70 

complex nonlinear relationships and provide high-precision predictions by learning large-sample 71 

hydrological datasets. However, the applicability and predictive ability of deep learning methods 72 

in China's complex hydrological environment have not been fully verified. Hydrological modeling 73 

based on a large-sample hydrological dataset whose basins covering various river systems and 74 

climate regions in China can provide a relatively clear benchmark. This benchmark can assist in 75 
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improving relevant hydrological models to solve the runoff prediction problem in China and 76 

catchments with similar basin conditions. 77 

1.2 Hydrological modeling methods 78 

For runoff prediction, existing hydrological modeling methods primarily include process-79 

based models, deep learning models , and hybrid modeling methods that couple the two. Process-80 

based models focus on the physical mechanisms of hydrological processes, provide theoretical 81 

support and interpretability, and are particularly suitable for explicitly describing the dynamic 82 

hydrological behavior of a basin. However, this type of model emphasizes the uniqueness of 83 

hydrological processes and shows that it is impossible to effectively solve different hydrological 84 

processes in different basins with a unified approach (Blöschl et al., 2019). Even when used to 85 

model hydrology for a single basin, such models typically require a substantial amount of high-86 

quality input data and involve a degree of subjectivity and complexity in the parameterization 87 

process. This significantly impacts their applicability and accuracy. 88 

In contrast, deep learning models, such as long short-term memory networks (LSTM), learn 89 

the dynamic characteristics of basin hydrological processes through historical data, can effectively 90 

capture nonlinear relationships, and do not need to rely on precise physical parameters as PBMs. 91 

LSTM has attracted great interest in the field of hydrology, and has shown high prediction accuracy 92 

and stability in predicting various hydrological variables, including soil moisture (Fang et al., 2017; 93 

J. Liu et al., 2022; O. and Orth, 2021), runoff (Feng et al., 2020; Kratzert et al., 2019a), river 94 

temperature (Qiu et al., 2021; Rahmani et al., 2023), and dissolved oxygen (Kim et al., 2021; Zhi 95 

et al., 2021). This type of model excels in data collaboration (Fang et al., 2022) and therefore 96 

thrives in big data environments (Kratzert et al., 2019a; Tsai et al., 2021). This type of model 97 

performs well in data-driven collaboration and thrives in big data environments. However, deep 98 
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learning (DL) methods are not without limitations. On one hand, they may struggle with poor 99 

extrapolation ability in the absence of physical constraints, which can limit the model's 100 

generalization capability when confronted with unknown climate conditions or long-term 101 

predictions, potentially resulting in increased prediction errors and even physically unreasonable 102 

results. On the other hand, compared to PBMs that offer clear explanations of physical mechanisms, 103 

the predictive results of DL lack interpretability. The variable relationships represented by DL may 104 

rely on statistical correlations present in the data rather than true physical causal relationships, 105 

which affects its applicability under varying hydrological conditions. 106 

To address the limitations of the two aforementioned modeling approaches, hybrid modeling 107 

methods have been proposed (Konapala et al., 2020; Willard et al., 2021). The integration of deep 108 

learning models and process-based models (PBMs), along with the development of hybrid systems, 109 

has been recognized as a promising method for effectively enhancing runoff prediction (Slater et 110 

al., 2023). This modeling scheme not only retains the theoretical foundation and interpretability of 111 

PBMs but also leverages the robust data fitting capabilities of DL. Common hybrid schemes 112 

currently include alternative hybrid modeling scheme and differentiable hybrid modeling scheme. 113 

Alternative hybrid modeling scheme commonly employs DL as a post-processing tool to 114 

adjust the discrepancies between PBM outputs and actual observations by utilizing PBM outputs 115 

as additional input features. For instance, runoff, soil moisture, and snow cover are used as inputs 116 

to DL (Amendola et al., 2020; Frame et al., 2021; Wang et al., 2023). Such schemes have been 117 

tested in various regions (Cho and Kim, 2022; Shen et al., 2022). DL is trained in a supervised 118 

manner, involving only minor modifications to the existing PBMs, which allows for the 119 

preservation of valuable physical knowledge inherent in the PBM.  120 
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Differentiable hybrid modeling scheme is made possible by the emergence of automatic 121 

differentiation (auto-diff) technology (Baydin et al., 2018). Automatic differentiation technology 122 

calculates gradients automatically through the chain rule, thus avoiding the trouble of manually 123 

deriving derivatives and expediting the computation of complex gradients in deep neural networks. 124 

This technological advancement addresses the challenge of combining DL with PBMs and 125 

significantly enhances the integration of deep learning models into process-based models. 126 

Specifically, this hybrid modeling approach neuralizes the process-based model and adjusts model 127 

parameters by back propagating gradients based on daily prediction results. This method retains 128 

the interpretability of the process model while improving prediction accuracy through deep 129 

learning. Additionally, within this unified differentiable architecture, neural networks can 130 

selectively replace inaccurate process representations and parameterizations found in process-131 

based models. Due to the innovative nature of this approach, it has garnered significant attention 132 

from researchers and has led to the development of multiple variants and adaptations (Frame et al., 133 

2021; Höge et al., 2022; Jiang et al., 2020; Li et al., 2023). 134 

1.3 Research gap and study objectives 135 

There remains a gap in research regarding the applicability and performance comparison of 136 

various hydrological modeling methods in China basins. This highlights a notable research deficit 137 

in the field of hydrological modeling for large-sample hydrological datasets of China. Although 138 

some scholars have explored different modeling approaches and conducted theoretical analyses 139 

and empirical studies, the applicability and predictive capabilities of existing models still require 140 

systematic evaluation, especially in the context of China's complex hydrological environment. 141 

Specifically, several issues persist in the current research: (1) Comparative studies primarily focus 142 

on specific river basins or small sample datasets. For instance, the studies conducted by Wu et al. 143 
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(2024), Dong et al. (2024), and Xu et al. (2023) centered on small-scale river basins, namely the 144 

Weihe River, Lancang River, and Yellow River, respectively. The lack of systematic evaluation 145 

across large-sample hydrological datasets limits the feasibility of model promotion and application. 146 

Therefore, a systematic evaluation based on large-sample hydrological datasets can not only 147 

enhance the generalization ability of the model but also provide a more reliable reference for 148 

hydrological predictions nationwide. (2) The guiding principles for model selection in basins with 149 

different climatic and attribute characteristics are not yet clear, leading to a lack of relevance in 150 

practical applications and difficulty in identifying the optimal modeling methods. In-depth 151 

research is needed on the adaptability of different hydrological models in various basin 152 

environments, which will help improve modeling efficiency and enhance the stability of 153 

predictions. (3) Existing research on the application effects of hybrid modeling methods in China 154 

basins, along with their comparative analysis with single models, remains relatively insufficient, 155 

resulting in a lack of comprehensive understanding of the relative advantages of different hybrid 156 

modeling methods. This limits the further development and optimization of hybrid modeling 157 

methods in hydrological prediction. A systematic evaluation of the performance of hybrid 158 

modeling methods can not only reveal their potential advantages over traditional methods but also 159 

provide directions for future model improvements, offering more accurate and reliable tools for 160 

simulating and predicting complex hydrological systems. 161 

To address these issues—namely, the limited large-sample studies, unclear model selection 162 

guidelines, and insufficient analysis of hybrid models—this study systematically evaluates the 163 

applicability of three common hydrological modeling approaches using a comprehensive large-164 

sample hydrological dataset for China. By comparing and analyzing the performance of different 165 

models in daily runoff prediction, the study seeks to provide scientific guidance for the selection 166 
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and application of hydrological models. Specifically, the dataset encompasses 544 basins across 167 

nine river systems and seven climate regions in China. It integrates multiple data sources, including 168 

remote sensing products and reanalysis data, to relatively accurately describe basin attributes and 169 

meteorological characteristics. For each basin, the dataset includes vector boundaries and time 170 

series data. The static attribute dataset consists of 6 categories and 15 types. Hydrological and 171 

climate attributes are derived by calculating relevant indices from the aforementioned 172 

meteorological data, while topographical, soil, vegetation, and geological characteristics are 173 

extracted from publicly available global datasets. The hydrological models evaluated in this study 174 

include: process-based models (EXP-HYDRO model, Xin’an jiang model), deep learning models 175 

(LSTM), alternative hybrid hydrological models (EXP-IN-LSTM, XAJ-IN-LSTM), and 176 

differentiable hybrid hydrological models (EXP-dPL, XAJ-dPL). To ensure a fair evaluation, the 177 

training periods, testing periods, and the prediction in ungauged basins (PUB, Hrachowitz et al., 178 

2013; Sivapalan et al., 2003) scheme for all models were consistent. In addition to prediction 179 

performance, this study also assessed the water balance of each basin using the prediction results 180 

of different models. Based on this work, the study not only reveals the applicability of different 181 

models in China's basins but also fills the gap in existing research on model comparison in large-182 

sample hydrological datasets and complex basin environments. Furthermore, it provides a 183 

performance benchmark and guidance for the selection and improvement of hydrological modeling 184 

methods in China in the future. 185 

 186 
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2. Data 187 

2.1 Study Areas 188 

In China, obtaining a datasets for Large-scale hydrological studies is challenging for two 189 

main reasons. Firstly, accurate daily runoff observation data often needs to be kept confidential. 190 

Secondly, the start and end times, as well as the quality of data from hydrological observation 191 

stations across different regions, can vary significantly. Additionally, the diverse topography and 192 

climate conditions in China mean that some watersheds lack essential meteorological and 193 

hydrological observation stations (Meng et al., 2017). The primary goal of this study is not to 194 

provide a reliable hydrological dataset. Instead, the basic requirement for the dataset is to ensure 195 

that the catchment areas encompass a range of climatic and topographic conditions found across 196 

China. To meet these requirements, global river network data (Lehner et al., 2008) and DEM 197 

elevation data were utilized to delineate the basin vector boundaries. The outlet locations of each 198 

catchment (see Figure S1 in Supplementary Materials) were determined using the D8 flow 199 

direction scheme. Furthermore, to facilitate the extraction of meteorological forcing data, basins 200 

smaller than 1000 km² were excluded from the analysis. Ultimately, the vector boundaries of 544 201 

basins were delineated, as shown in Figure 1(a). These 544 basins represent a variety of terrains—202 

including plateaus, plains, and mountains—with average altitudes ranging from 0 to 5000 m. The 203 

catchment areas included in this dataset span various types of basins within China's nine river 204 

systems (Figure 1(c)) and seven climate regions (Figure 1(d)). Detailed information regarding each 205 

river system and climate zone is presented in Table S1 and Table S2 of Supplementary Materials. 206 
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 207 

 208 

Figure 1. Spatial distribution of 544 basins. Basin boundaries (a) and areas (b) of the 544 209 

basins included in this study. The six defined macro-zones are indicated in blue and purple 210 

arrows. (b) and (d) are the divisions of China's nine river systems and seven climate regions, 211 

respectively. (The map of China used in this study is from https://www.tianditu.gov.cn/.) 212 

2.2 Meteorological forcing and Runoff 213 

The meteorological data used in this study are sourced from the ERA5 (Hersbach et al., 214 

2020) and CN05.1 datasets (Gao et al., 2013). The meteorological forcing elements and their units 215 

provided by these datasets are shown in Table 1. We selected these two datasets to extract basin-216 

scale meteorological elements based on the following considerations: (1) ERA5 dataset: Although 217 

previous studies (Jiao et al., 2021; Liu et al., 2024) have demonstrated that the meteorological data 218 

from ERA5 exhibit certain deviations in Asia, the ERA5 dataset still offers significant advantages. 219 

https://doi.org/10.5194/egusphere-2025-1161
Preprint. Discussion started: 2 June 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

It not only provides a wide variety of meteorological element types but also has an extensive daily 220 

meteorological data time span, ensuring dataset completeness. (2) CN05.1 dataset: This dataset is 221 

interpolated from observational data collected from over 2,400 meteorological stations across 222 

China. Therefore, it can relatively accurately characterize the trends in meteorological changes in 223 

the country and offers high spatial resolution and applicability. Utilizing global-scale 224 

meteorological data (such as ERA5) alongside more precise meteorological data for specific 225 

research areas (such as CN05.1) to evaluate the applicability of different hydrological models can 226 

not only enhance the robustness of the evaluation results but also help to verify the differences and 227 

applicability of various meteorological data in hydrological predictions. 228 

Table 1 Meteorological forcings data for 544 basins. 229 

Variable name Description Unit 

total_precipitation_sum Average daily precipitation m 

temperature_2m 2 m daily mean air temperature K 

potential_evaporation_sum Total potential evapotranspiration m 

surface_pressure Near-surface daily average Pa 

surface_solar_radiation_downwards_sum Short-wave radiation J/m2 

The runoff data provided by the originates from VIC-CN05.1 dataset (Miao and Wang, 2020), 230 

which is consistent with the total runoff simulated by the Global Runoff Data Center 231 

(UNH/GRDC). Due to the high confidentiality surrounding China's runoff observation data, the 232 

number of basins with available runoff data is limited, and the start and end times of the runoff 233 

time series vary among different basins. Relying solely on available observational data for 234 

calibration may lead to systematic deviations in the runoff data across all basins. The daily runoff 235 

time series of each basin outlet were obtained. In order to verify the feasibility of this method, the 236 

daily runoff time series of 15 basin outlets with runoff observation data and the runoff hydrograph 237 
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of actual observation data are shown in Supplementary Figure S2. It can be seen that although it 238 

has not been strictly calibrated, the daily runoff time series extracted using the above method can 239 

basically reflect the actual runoff change trend of the basin. The aim of this study is not to provide 240 

a highly precise basin hydrological dataset but to construct a relatively comprehensive large-241 

sample dataset encompassing meteorological, hydrological, and attribute data for basins across 242 

different topographic and climatic regions of China.  243 

2.3 Static catchment attributes 244 

When performing regional modeling, the static attributes of the basin are used as inputs to 245 

the model, facilitating the model's ability to learn and extract information related to rainfall-runoff 246 

behavior while distinguishing between different basins. This enables the model to interpret the 247 

unique characteristics of each basin, thereby improving the accuracy of runoff predictions, as 248 

demonstrated by Kratzert et al. (2019b). Therefore, in addition to extracting daily meteorological 249 

forcing and runoff data for each basin, the dataset used in this study also includes static basin 250 

attribute data. This dataset comprises 15 attributes categorized into six groups: meteorology, 251 

hydrology, topography, soil, vegetation, and geology. Among these, meteorological and 252 

hydrological attributes are calculated based on the meteorological and runoff time series of each 253 

basin. Other static attribute data are derived from global data products based on the vector 254 

boundaries of each basin. The abbreviations, meanings, and sources of each static attribute are 255 

presented in Table 2. While existing large-sample hydrological datasets (such as CAMELS (Addor 256 

et al., 2017) and Caravan (Kratzert et al., 2023)) offer a richer variety of static attributes, our 257 

research goal is not to pursue dataset completeness. Instead, we aim to utilize relatively available 258 

datasets to evaluate the performance of different models in China. The six categories of static 259 

attributes broadly cover the primary factors affecting the hydrological behavior of the basin. 260 
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Among them, meteorological and hydrological attributes have the most direct and significant 261 

impact on runoff, while topography, soil, vegetation, and other attributes can help model to 262 

enhance the understanding of basin characteristics from the perspectives of spatial distribution and 263 

hydrological processes. Additionally, these static attributes can be obtained through global data 264 

products and basin vector boundary calculations, reducing reliance on region-specific data. 265 

Table 2 Static basin attributes data for 544 basins. 266 

Variable name Description Unit Source 

area Basin area km2 This study 

srftopo Surface (rock + ice) elevation m Amante and Eakins (2009) 

slope_avg Mean subgrid slope (inner slope) m/m Amante and Eakins (2009) 

wcap Maximum soil water capacity Kg/m2  Hagemann and Stacke (2015) 

wava Plant available water Kg/m2  Hagemann and Stacke (2015) 

fveg Fractional vegetation cover climatology relative to LSM / Hagemann (2002) 

lai Leaf area index m2/m2 Hagemann (2002) 

p_mean Mean daily precipitation m This study 

pet_mean Mean daily potential evapotranspiration m This study 

aridity Ratio of Mean PET to Mean Precipitation - This study 

frac_snow Fraction of precipitation falling on days with temp < 0 ◦C - This study 

high_prec_freq Frequency of days with ≤ 5× mean daily precipitation - This study 

high_prec_dur Average duration of high precipitation events 

(number of consecutive days with ≤ 5× mean daily precipitation) 

- This study 

low_prec_freq Frequency of dry days (< 1 mm/day) - This study 

low_prec_dur Average duration of dry periods 

(number of consecutive days with precipitation < 1 mm/day) 

- This study 

To facilitate reference and application by researchers in other regions, we have made the 267 

global data products used and the code for extracting watershed attributes publicly available. We 268 

hope this will enhance the transparency and reproducibility of our research, making it easier for 269 

researchers in other regions to replicate and expand upon our methods. 270 

3. Methodology 271 

3.1 Experimental design 272 

When extracting data based on the basin vector boundary, it is essential to ensure the 273 

consistency of the time span for both runoff and meteorological data. To eliminate potential 274 
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deviations caused by differing start and end times across various data sources, the time range for 275 

all data is standardized from October 1, 1975, to September 30, 2015. For different hydrological 276 

models, the training and testing periods are uniformly established: the training period spans from 277 

October 1, 1975, to September 30, 1995, while the testing period extends from October 1, 1995, 278 

to September 30, 2015. This consistent division facilitates an accurate evaluation of the fitting and 279 

predictive capabilities of different models concerning the runoff process. Furthermore, to further 280 

assess the generalization performance of the models, a five-fold cross-validation method is 281 

implemented. Specifically, the 544 basins are divided into five relatively even clusters (with each 282 

cluster containing either 109 or 108 basins, as shown in Figure 2). The validation process is as 283 

follows: the model is trained using the training period data from the basins in nine of the clusters, 284 

and its performance is validated on the test period data from the remaining cluster. This operation 285 

is repeated in a loop, with each iteration designating a different cluster as the ungauged basin, 286 

thereby allowing for the evaluation of the predictive performance of each basin treated as an 287 

ungauged basin. 288 
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 289 

Figure 2. Overview of the experimental design. 290 

3.2 Process-based models 291 

The PBMs evaluated in this study include EXP-HYDRO model (hereafter called EXP) (Patil 292 

and Stieglitz, 2014) and the Xin'anjiang model (hereafter called XAJ) (Ren-Jun, 1992). The model 293 

architectures of both are shown in Figure 3. EXP-HYDRO is a conceptual hydrological model that 294 

operates on a daily time step and adheres to the law of water balance. The inputs driving the model 295 

consist of precipitation, temperature, and day length. The hydrological variables that the model 296 
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can output include snow accumulation, snowmelt, evapotranspiration, soil moisture, and runoff. 297 

The calibration of the model is governed by six physically meaningful hydrological parameters 298 

(the specific meanings of these parameters are provided in Table S3 of Supplementary Materials). 299 

The original version of the Xin'anjiang model is a rainfall-runoff model designed for hydrological 300 

forecasting in humid and semi-humid regions (Ren-Jun, 1992). To enhance the model's 301 

applicability under complex climatic conditions, this study employs a simplified version of the 302 

Xin'anjiang model, as depicted in Figure 3(b). The simplified model retains four main subprocesses 303 

from the original Xin'anjiang model: evapotranspiration, runoff generation, runoff separation, and 304 

runoff routing. While the original model considered the impact of impervious surfaces on runoff, 305 

this aspect has been simplified in the current study to better align with research needs and data 306 

characteristics. Nevertheless, the model retains its core hydrological processes and can effectively 307 

simulate the hydrological behavior of the basin. The evapotranspiration module accounts for 308 

evaporation from three layers of soil (upper, lower, and deep layers) and calculates the 309 

evapotranspiration for each layer using an empirically defined formula based on the soil moisture 310 

content and evapotranspiration rates. The runoff generation module simulates moisture 311 

distribution and initiates runoff formation. The generated runoffs are subsequently separated into 312 

surface runoff, convergence, and groundwater by the runoff separation module based on free water 313 

storage. Finally, the runoff routing module directs the water flow to the basin outlet for surface 314 

runoff and into linear reservoirs for groundwater flow. A total of 8 hydrological parameters are 315 

integrated into the adjusted Xin'anjiang model. Further details can be found in Table S4 of 316 

Supplementary Materials. 317 
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 318 

Figure 3. The structure of the EXP-HYDRO (a) and adapted Xin’anjiang model (b). 319 

3.3 Deep learning model  320 

With the continuous advancement of deep learning technology, its applications in the field of 321 

hydrology are also expanding. This study utilizes the classic LSTM model as a representation of a 322 

purely data-driven approach. LSTM, a type of recurrent neural network (RNN), was first proposed 323 

by Hochreiter and Schmidhuber (1997). Kratzert et al. (2018) applied the LSTM model to rainfall-324 

runoff modeling. The specific structure of the LSTM model can be described by the following 325 

equations: 326 

𝑖[𝑡] = 𝜎(𝑊𝑖𝑥[𝑡] + 𝑈𝑖ℎ[𝑡 − 1] + 𝑏𝑖) (1) 327 

𝑓[𝑡] = 𝜎(𝑊𝑓𝑥[𝑡] + 𝑈𝑓ℎ[𝑡 − 1] + 𝑏𝑓) (2) 328 

𝑔[𝑡] = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥[𝑡] + 𝑈𝑔ℎ[𝑡 − 1] + 𝑏𝑔) (3) 329 

𝑜[𝑡] = 𝜎(𝑊𝑜𝑥[𝑡] + 𝑈𝑜ℎ[𝑡 − 1] + 𝑏𝑜) (4) 330 

𝑐[𝑡] = 𝑓[𝑡]⨀𝑐[𝑡 − 1] + 𝑖[𝑡]⨀𝑔[𝑡] (5) 331 

ℎ[𝑡] = 𝑜[𝑡]⨀𝑡𝑎𝑛ℎ(𝑐[𝑡]) (6) 332 
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where i[t], f[t], and o[t] are the input, forget, and output gates, respectively, g[t] is the cell input, 333 

x[t] is the network input at time step t (1 ≤ t ≤ T), and h[t-1] is the recurrent input c[t-1] of the 334 

cell state at the previous time step. σ(∙) is the sigmoid activation function, tanh(∙) is the hyperbolic 335 

tangent function, and ⨀ is an element-wise multiplication. Intuitively, the cell state (c[t]) 336 

characterizes the memory of the system. These are modified by a combination of (i) the forget gate 337 

(f[t]) and (ii) the input gate (i[t]) and the cell update (g[t]). Ultimately, the output gate (o[t]) 338 

controls the flow of information from the state to the model output. 339 

The LSTM model architecture used in this study to predict daily runoff in China consists of 340 

a hidden layer with 256 hidden units. The regional LSTM model uses 20 input features: 5 341 

meteorological forcings and 15 static basin attributes. All input data are normalized before training. 342 

Additionally, to ensure that the model learns the temporal variation of runoff while taking into 343 

account training efficiency, we input a sequence of 365 days into the network for each batch size 344 

and use a sliding window of 31 days to learn all sequences. Furthermore, to understand the impact 345 

of basin attributes on runoff, the operation of basin attributes across different basins also follows 346 

the aforementioned sliding window learning rules. The LSTM employs the Adaptive Moment 347 

Estimation algorithm (Adam, Kingma and Ba, 2014) to estimate model parameters. The initial 348 

learning rate is set to 0.01, and the maximum number of training iterations is set to 150. All the 349 

LSTM models are trained using the specified hyperparameters. 350 

3.4 The hybrid models 351 

Both alternative hybrid modeling and differentiable hybrid modeling schemes are designed 352 

to couple the advantages of PBM and DL models. The architectures of the two types of models are 353 

shown in Figure 4. PBM represents both the EXP and XAJ models, which are utilized to extract 354 

and characterize the physical mechanisms involved in hydrological processes. LSTM serves as 355 
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either a post-processing tool or a differentiable component, integrating with PBM to create 356 

alternative hybrid models and differentiable hybrid models. In the alternative hybrid modeling 357 

scheme depicted in Figure 4(a), LSTM functions as a post-processing tool to adjust discrepancies 358 

between the PBM outputs and observations. This model's input includes not only the results 359 

predicted by PBM but also the input variables of the pure data-driven model, including 360 

meteorological forcing and static basin attributes. This approach allows the alternative hybrid 361 

modeling method to retain the explanatory power of the physical mechanisms inherent in the 362 

process model while leveraging LSTM's capability to effectively capture nonlinear relationships, 363 

thereby compensating for the limitations of PBMs in large-sample hydrological datasets and 364 

complex basins. In the differentiable hybrid modeling scheme shown in Figure 4(b), discrete 365 

ordinary differential equations based on PBM are encoded into standard recurrent neural network 366 

(RNN) units, encompassing the water balance law and fundamental hydrological processes. 367 

Simultaneously, the neural network acts as a parameterized channel, incorporating static attributes 368 

as additional input variables into the overall model framework for joint optimization. This enables 369 

the model to dynamically adjust hydrological parameters based on the characteristics of basin 370 

attributes, overcoming the traditional physical process models' reliance on fixed parameterization, 371 

and adapting to runoff relationships across different basins and climatic conditions. 372 
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 373 

Figure 4. The structure of the hybrid hydrological models. 374 

Specifically, the hybrid hydrological models developed in this study include four types: (1) a 375 

alternative hybrid model that uses EXP-predicted runoff values as an additional input to LSTM 376 

(EXP-IN-LSTM); (2) a alternative hybrid model that uses XAJ-predicted runoff values as an 377 

additional input to LSTM (XAJ-IN-LSTM); (3) a differentiable hybrid model that retains the EXP 378 

structure while incorporating the LSTM network for parameter learning (EXP-dPL); and (4) a 379 

differentiable hybrid model that retains the XAJ structure while incorporating the LSTM network 380 

for parameter learning (XAJ-dPL). The details for all the hybrid models trained and tested in this 381 

study—including input data, training sets, testing sets, and inputs—are presented in Table S5 of 382 

Supplementary Materials. 383 

4. Results and discussion 384 

4.1 Meteorological forcing assessment 385 

Figure 5 shows the spatial distribution of average annual precipitation and average daily 386 

temperature for each station under different datasets. Overall, although neither of the two 387 
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meteorological datasets has been corrected using station observation data, their spatial 388 

distributions are largely similar. Precipitation exhibits a decreasing trend from the southeastern 389 

coast to the northwestern inland areas. Temperature decreases with increasing latitude in the east, 390 

and the temperatures in the Qinghai-Tibet Plateau are relatively low due to the influence of altitude 391 

and terrain. It should be noted that by observing the frequency distribution curves of the average 392 

annual temperature and average daily temperature of 544 basins, it can be seen that the overall 393 

temperature distribution in the two datasets is quite similar. However, the distribution of the 394 

precipitation data shows significant differences. The precipitation data provided by ERA5 varies 395 

greatly between different basins, showing some extremely wet or extremely dry basins, while the 396 

precipitation data provided by CN05.1 is relatively uniform across basins. 397 
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 398 
Figure 5. Spatial distribution of precipitation and temperature in 544 basins using ERA5 399 

and CN05.1 Datasets. 400 

In order to further explore the differences and systematic biases in various meteorological 401 

datasets, the Budyko framework (Budyko and Miller, 2010) was employed to determine the impact 402 

of different precipitation data on the water balance of various basins. This framework links climate 403 

with basin runoff and evapotranspiration in a simple and intuitive manner, aiming to facilitate the 404 

analysis of how evapotranspiration and runoff in each basin are influenced by available energy 405 

and precipitation. Figure 6 shows a scatter plot of the evaporation index (EI, the ratio of annual 406 

average evapotranspiration to annual average precipitation) and the drought index. When using the 407 

same runoff and evapotranspiration data, the precipitation data provided by ERA5 resulted in more 408 
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basins (111) violating the water-heat balance. In these relatively humid basins, the relationship 409 

between precipitation and evaporation did not adequately satisfy the water-heat balance conditions. 410 

In contrast, when using CN05.1 data, fewer basins (12), concentrated in humid basins at medium 411 

and high altitudes) violated the water-heat balance. It should be noted that this difference may be 412 

related to the quality and processing methods of the data source. On one hand, ERA5 is a global 413 

meteorological model, and its precipitation data has not been corrected using station observation 414 

data, which may lead to significant deviations. On the other hand, the runoff data product used in 415 

this study was simulated by the VIC model, which uses CN05.1 meteorological data. VIC (Liang 416 

et al., 1994) is a hydrological model based on physical processes, incorporating the equations of 417 

water conservation and energy conservation into its implementation logic to ensure the scientific 418 

and physical consistency of the simulation. This results in fewer basins violating the water-heat 419 

balance when using CN05.1 precipitation data to validate the Budyko framework. When 420 

establishing large-sample hydrological datasets cross different regions, it is necessary to consider 421 

the water budget balance at the watershed scale. We recommend that future studies aimed at 422 

creating accurate large-sample hydrological datasets in China should consider the water and 423 

energy balance of each watershed while fully calibrating each dataset, especially for high-altitude 424 

watersheds that are relatively humid. 425 
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 426 
Figure 6. Water balance for 544 basins, illustrated in a Budyko scheme for ERA5 (a) and 427 

CN05.1 (b). Markers are coloured by the basin mean elevation. 428 

4.2 Performance comparison of process-based models 429 

Figure 7 shows the runoff prediction performance of different PBMs for 544 basins. Overall, 430 

both the EXP and XAJ models demonstrate greater accuracy in representing the rainfall-runoff 431 

relationship for the wetter basins in the southeast compared to the inland basins in the northwest. 432 

The prediction skills of both PBMs show significant improvement when using precipitation data 433 

from CN05.1 as input, in contrast to using ERA5 precipitation data. Notably, for the XAJ model, 434 

the median NSE across the 544 basins reaches 0.63 when using CN05.1 precipitation data. 435 
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 436 

Figure 7. Performance of process-based hydrological models during the testing period 437 

(1995.10.1–2015.9.30). Spatial distributions of the Nash-Sutcliffe efficiency (NSE) for EXP-438 

HYDRO model and Xin’anjiang model. The NSE colormap is capped within [0, 1] for 439 

better visualization. 440 

Furthermore, the specific performance differences of different PBMs in each basin are 441 

compared. Figures 8(a) and 8(b) show which PBMs exhibit better prediction performance in each 442 

https://doi.org/10.5194/egusphere-2025-1161
Preprint. Discussion started: 2 June 2025
c© Author(s) 2025. CC BY 4.0 License.



26 

basin under varying precipitation data. In general, the source of precipitation data significantly 443 

influences the selection of PBMs for most basins. This means that for the same basin, if the input 444 

precipitation data sources differ, the choice of PBM should be adjusted accordingly. Additionally, 445 

some basins show consistent selection preferences under the two sets of precipitation data. For 446 

instance, in most basins located in the middle and lower reaches of the Yangtze River and the 447 

southeastern rivers, which are relatively humid, the XAJ model is a better choice than the EXP 448 

model under different precipitation data. Despite the differences in precipitation data, the EXP 449 

model consistently outperforms the other models for most basins in the Haihe River system. For 450 

nearly half of the basins (247), the EXP model demonstrates superior prediction performance when 451 

using ERA5 precipitation data, while the XAJ model performs better with CN05.1 data. This 452 

indicates that the applicable PBM for the same basin may change solely due to variations in 453 

precipitation data. Thus, in addition to the climatic characteristics of the basin, the accuracy and 454 

reliability of meteorological data play a crucial role in determining the prediction performance of 455 

PBMs. 456 
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  457 

Figure 8. Comparison of EXP-HYDRO model and Xin'anjiang model performances in 458 

different basins using ERA5 and CN05.1 precipitation data. 459 
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4.3  Performance and generalization of LSTM 460 

Figure 9 shows the prediction performance of the purely data-driven LSTM model in regional 461 

modeling and PUB under different precipitation data sources. Similar to performances in large-462 

sample hydrological datasets of other regions, the LSTM model also demonstrates strong 463 

capabilities in handling large amounts of hydrological data and excels in runoff prediction in large-464 

sample hydrological dataset in China. Specifically, when using ERA5 precipitation data, the 465 

median NSE of LSTM across 544 basins reaches 0.57 (NSE ≥ 0.55 is considered the threshold 466 

for good performance (Knoben et al., 2019; Newman et al., 2015)). When using CN05.1 467 

precipitation data, the median NSE for LSTM in regional modeling and PUB reached an 468 

impressive 0.95 and 0.93, respectively. This phenomenon may be due to the runoff data product 469 

used in this study, which is also simulated using CN05.1 data (as described in Section 4.1). The 470 

use of CN05.1 precipitation data enables other subsequent models to demonstrate excellent 471 

prediction performance, a point that will not be revisited in the following sections. 472 

It is worth noting that under different precipitation data, when the PUB of 544 basins was 473 

conducted using five-fold cross-validation, the prediction skills were comparable to those of 474 

regional modeling. This indicates that the LSTM model also possesses strong generalization ability 475 

in China's basins, achieving more accurate hydrological predictions in ungauged basins by learning 476 

from hydrological data of other basins. Surprisingly, under the ERA5 precipitation data conditions, 477 

the PUB results for some basins outperformed the prediction performance of regional modeling. 478 

In theory, regional modeling uses data from all basins for training and is generally regarded as 479 

providing superior predictions, especially for individual basins. When a basin's own data is 480 

included in the training set, the model is expected to perform better in predicting that basin's runoff. 481 

However, as illustrated in the scatter plot at the bottom of Figure 9, there are instances where the 482 

https://doi.org/10.5194/egusphere-2025-1161
Preprint. Discussion started: 2 June 2025
c© Author(s) 2025. CC BY 4.0 License.



29 

PUB performance exceeds that of regional modeling when different precipitation data are used. 483 

Notably, under the ERA5 conditions, the number of such basins is higher. This phenomenon may 484 

indicate that the ERA5 precipitation data exhibits a certain degree of non-uniformity among 485 

different basins (as shown in Figure 5), which affects the effectiveness of regional modeling. The 486 

accuracy and spatial consistency of meteorological data jointly determine their impact on the 487 

predictive performance of hydrological models. This not only influences the model's 488 

representation of hydrological processes but may also significantly shape its generalization 489 

performance. Therefore, we suggest that future related studies should comprehensively consider 490 

the differences in training samples while also taking into account the accuracy of model input data. 491 

  492 
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Figure 9. LSTM models prediction performances using ERA5 and CN05.1 precipitation 493 

data. 494 

4.4 Performance and selection of hybrid models 495 

Figure 10 shows the prediction performance of four alternative and differentiable hybrid 496 

hydrological models for regional modeling across 544 basins. When the model input is based on 497 

the CN05.1 dataset, the overall performance of the different hybrid models aligns closely with that 498 

of the pure LSTM model, and the spatial distribution characteristics of the NSE across the 544 499 

basins are also highly similar. However, when the ERA5 precipitation data is used for regional 500 

modeling, the distribution of NSE varies among the basins. Although the median NSE of each 501 

hybrid model and the pure LSTM model across the 544 basins is generally consistent, coupling 502 

the process-based model (PBM) with LSTM results in a more stable prediction performance across 503 

different basins. This improvement may be attributed to the fact that the differentiable hybrid 504 

model follows to the law of water balance during the modeling process, avoiding the sacrifice of 505 

performance in more challenging basins in order to improve the overall performance across all 506 

basins. Therefore, the modeling strategy that couples PBM with deep learning, particularly the 507 

differentiable hybrid hydrological model, can not only maintain overall prediction accuracy but 508 

also enhance the spatial robustness of the model and balance prediction skills across different 509 

basins. 510 
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 511 

Figure 10. Four hybrid models prediction performances using ERA5 and CN05.1 512 

precipitation data. 513 

Further analysis of the specific performance of different basins under various hybrid models 514 

is presented in Figure 11 (a) and (b), which show the distribution of the optimal hybrid model for 515 

each basin based on two sets of precipitation data. In general, under the two precipitation datasets, 516 

CN05.1 and ERA5, the alternative hybrid modeling scheme—where the predicted values of the 517 

PBMs are used as an additional input for deep DL—exhibits superior performance across more 518 

basins than the differentiable hybrid modeling scheme, which involves parameterizing the process 519 

model and coupling it with DL. Although the optimal hybrid model for some basins remains 520 

consistent regardless of the precipitation data used as input, for most basins, changes in the input 521 

data lead to a shift in the most suitable hybrid model. This phenomenon indicates that the accuracy 522 

and reliability of meteorological data significantly influence the selection of hybrid models. 523 
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Figures 11 (c) and (d) show the distribution of the best hybrid models across various water 524 

systems and climate regions. The results indicate that the Yellow River Basin and the Songliao 525 

River Basin show a clear preference for alternative hybrid modeling methods. Notably, in the 526 

Songliao River Basin (climate region 3), the EXP-INLSTM model outperforms others in a greater 527 

number of basins. This may be attributed to the fact that the EXP-HYDRO model includes rain-528 

snow partitioning and snowmelt modules specifically designed to address snow storage, allowing 529 

for a more accurate representation of the influence of snow on runoff. Additionally, in climate 530 

region 6 (the high-altitude region of the Qinghai-Tibet Plateau), the EXP-dPL model demonstrates 531 

strong suitability when using CN05.1 data. This area is influenced by the combined effects of 532 

perennial snow and frozen ground, while the high-latitude climate region 3 is primarily impacted 533 

by seasonal snow. This distinction indicates that although the hybrid modeling scheme coupling 534 

EXP and LSTM generally outperforms the combination of XAJ and LSTM in basins affected by 535 

snow storage, further subdivision reveals that different hybrid methods involving EXP and LSTM 536 

may be better suited for basins with varying snow characteristics 537 

Moreover, the optimal hybrid model for most basins is influenced by the source of 538 

meteorological data. In humid regions, such as the middle and lower reaches of the Yangtze River 539 

and the Southeastern Rivers, the hybrid models combining XAJ and LSTM generally outperforms 540 

the hybrid models of EXP and LSTM across different precipitation datasets. Conversely, in the 541 

Haihe River, the EXP and LSTM hybrid model consistently represents the best choice for most 542 

basins. In other basins with varying climatic characteristics, the hybrid models of EXP and LSTM 543 

demonstrate better predictive performance under ERA5 data, whereas the XAJ and LSTM hybrid 544 

model performs better under CN05.1 data. This further confirms the impact of the accuracy and 545 

reliability of meteorological data on the selection of hybrid hydrological models. 546 
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 547 
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 Figure 11. Comparison of hybrid models performances across basins using ERA5 and 548 

CN05.1 precipitation data. 549 

To evaluate the generalization ability of different hybrid hydrological models, the same PUB 550 

scheme  for pure LSTM described in Section 4.3 was adopted to conduct 5-fold cross-validation 551 

on 544 basins. The prediction performance of each hybrid model, using different precipitation data 552 

as input, is shown in Figure 12. Overall, the prediction performance distribution of various hybrid 553 

hydrological models across the 544 basins is relatively consistent under the same input data. With 554 

ERA5 precipitation data, the hybrid model that performed best in the PUB is EXP-dPL, with a 555 

median NSE of 0.55. In contrast, under CN05.1 precipitation data, XAJ-dPL demonstrates the best 556 

generalization ability, achieving a median NSE of 0.95. It is worth noting that when different 557 

meteorological data are used as input, the differentiable hybrid model exhibits better predictive 558 

performance than the alternative hybrid model in the PUB. This indicates that the differentiable 559 

modeling scheme can enhance the adaptability and generalization performance of the hybrid model 560 

in ungauged basins. 561 

The scatter plots in Figure 12 show the comparison of NSE values between regional modeling 562 

and PUB for each basin. Under CN05.1 precipitation data, when XAJ-dPL was tested through 5-563 

fold cross-validation, the prediction performance of certain basins exceeded that of regional 564 

modeling significantly. This phenomenon indicates that not all basins require their own historical 565 

data for training when making hydrological predictions. In some cases, modeling based on the 566 

hydrological information from other basins in the region can achieve better prediction results. This 567 

further verifies the potential of hybrid modeling strategies, particularly differentiable hybrid 568 

modeling methods, in enhancing model extrapolation capabilities and generalization performance. 569 
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 570 

 Figure 12. Comparison of PUB performances of four hybrid models. 571 

4.5 Evaluation of water budget closure 572 

To verify the physical consistency of the prediction results from different models, the water 573 

budget closure and water imbalance ratio for 544 basins were calculated during the test period. 574 

This study used a adapted long-term water budget for each basin (Tan et al., 2022; Wang et al., 575 

2014) to evaluate the basin water balance closure: 576 

|P − ET − Q| = ε (7) 577 

Where P is precipitation from ERA5 or CN05.1 dataset, ET is evapotranspiration (observations 578 

provided by ERA5 or output of differentiable hybrid models), Q is runoff (observations or 579 

predictions from different models), and ε is the water budget imbalance. The smaller the value of 580 

ϵ, the better the water budget balance of the basin. 581 

Figure 13 shows the difference of the annual water budget closure (ε) and the water imbalance 582 

ratio (ε/P) for 544 basins among different models. The detailed data sources for runoff and 583 
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evapotranspiration associated with the various indicators in the figure are provided in Table S6 of 584 

Supplementary Materials. The results show that when the simulated runoff from different hybrid 585 

models replaces the observed values, the basin's water balance closure does not change 586 

significantly. However, when the evapotranspiration data output by EXP-dPL replaces the original 587 

ET data, the overall water imbalance across the 544 basins is significantly reduced. This 588 

phenomenon indicates that, under the framework of EXP-dPL, the model's runoff output can not 589 

only maintain high prediction accuracy but also conform better to the water budget constraint, 590 

reflecting good physical consistency. It should be noted that the dataset used in this study has not 591 

been strictly calibrated against actual observation sites, which may be one of the reasons why the 592 

ET data output by XAJ-dPL caused a deterioration in water balance closure in some basins. 593 

Nevertheless, the above results can still prove to a certain extent that the differentiable hybrid 594 

modeling method can not only provide high-precision runoff predictions, but also output 595 

intermediate hydrological variables that align with hydrological mechanisms. This ensures better 596 

compliance with physical constraints while maintaining prediction performance. Therefore, the 597 

differentiable hybrid modeling scheme represents a modeling approach that balances both physical 598 

consistency and prediction skills. 599 

 600 
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 Figure 13. Distribution of annual (a) water budget closure (ε) and (b) water imbalance 601 

ratio (ε/P) for all 544 basins during the test period. 602 

5. Conclusion 603 

This study systematically evaluated the hydrological modeling of a large-sample hydrological 604 

dataset for 544 basins in China, analyzed the applicability of multiple hydrological models in 605 

complex hydrological environments, and provided a valuable basis for the selection and 606 

optimization of future hydrological models. Through a comparison of different hydrological 607 

modeling methods, the study reached the following three main conclusions: 608 

(1) The accuracy and reliability of meteorological data have a key impact on the predictive 609 

performance of hydrological models. For most basins in China, changes in the source of 610 

meteorological data may lead to differences in the performance of similar models. 611 

Accurate precipitation data can help models better simulate the runoff generation process 612 

in the basin, thereby more effectively capturing the hydrological characteristics of the 613 

basin. During the selection and application of models, the quality and adaptability of 614 

meteorological data are crucial factors that determine the model's predictive capability. 615 

(2) The hybrid modeling method shows strong predictive performance and generalization 616 

capabilities. In the prediction of ungauged basins, whether using ERA5 or CN05.1 617 

precipitation data, the generalization ability of the hybrid modeling method surpasses that 618 

of the pure LSTM model. This indicates that the hybrid model is better equipped to adapt 619 

to the  basins with different hydrological characteristics, providing more stable prediction 620 

results. This highlights the advantages of hybrid modeling methods in complex 621 

hydrological environments and their robust adaptability across various regions and 622 

climatic conditions. 623 
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(3) Compared with alternative hybrid modeling schemes, the differentiable hybrid modeling 624 

scheme achieves a deeper understanding of hydrological processes. Due to the seamless 625 

coupling of process-based models, the differentiable hybrid hydrological model can 626 

output unobserved intermediate hydrological variables. At the same time, the runoff 627 

prediction results of this hybrid modeling scheme are more consistent with the water 628 

budget balance at the basin scale, providing more comprehensive and accurate support 629 

for hydrological prediction.  630 

Although this study provides a relatively systematic evaluation of hydrological modeling in 631 

China's basins, the meteorological and runoff data used have not been corrected, which may limit 632 

the applicability of the dataset. Future studies should consider using observational data for 633 

correction to enhance the dataset's reliability and further improve the accuracy of model 634 

predictions. While this study primarily focuses on basins in China, it is hoped that the methods 635 

and datasets presented in this research can serve as a reference for other regions lacking 636 

observational data and promote similar hydrological modeling efforts worldwide. 637 
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