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24 Abstract
25 Hydrological modeling plays a key role in water resource management and flood forecasting.

26 However, in China with diverse geography and complex climate types, a systematic evaluation of
27 different modeling schemes for large-sample hydrological datasets is still lacking. This study
28 preliminarily constructed a dataset of catchment attributes and meteorology covering 544 basins
29 in China, and systematically evaluated the applicability of process-based models (PBMs), long
30  short-term memory (LSTM) models, and hybrid modeling methods. The results demonstrated: (1)

31  The accuracy of meteorological data critically impacts the prediction performance of hydrological
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32 models. High-quality precipitation data enables the model to better simulate the runoff generation
33 process in the basin, thereby improving prediction accuracy. (2) The hybrid modeling method
34 possesses regional modeling capabilities comparable to those of LSTM model. It also demonstrates
35  strong generalization capabilities. In predicting ungauged basins, the hybrid model exhibits greater
36  stability than the LSTM model. (3) Among the two hybrid modeling methods, the differentiable
37 hybrid modeling scheme offers a deeper understanding and simulation of hydrological processes,
38  along with the ability to output unobserved intermediate hydrological variables, compared to the
39  alternative hybrid modeling schemes. Its prediction results are more consistent with the water
40 balance of the basin. The research results provide a systematic analysis for evaluating the
41  applicability of different hydrological modeling methods in 544 basins in China, offering

42 important guidance for the selection and optimization of future hydrological models.

43 1. Introduction

44 1.1 Challenges in hydrological modeling for China’s basins
45 Global water resources management and hydrological process simulation play a key role in

46 responding to climate change and human activity pressures (Devitt et al., 2023). Accurate
47  hydrological modeling can provide a basis for scientific decision-making for sustainable water
48  resources management, prediction of extreme events, and protection of natural ecosystems (Hoy,
49  2017; Satoh et al., 2022). Among many hydrological variables, daily runoff is particularly widely
50  used. For example, understanding flow patterns (Brunner et al., 2020), efficient water resources
51  management (Patle and Sharma, 2023), reservoir operation and flood prediction (Mangukiya and
52 Sharma, 2025; Mangukiya and Yadav, 2022). However, with the increasing complexity and

53  uncertainty of basin hydrological processes, the applicability and predictive ability of traditional
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54  process-based models (PBMs) in practical applications face many challenges, such as insufficient

55  data and complex parameterization.

56 China is located in a densely populated area in East Asia. The rational management of water
57  resources is crucial to economic and social development. Therefore, the role of hydrological
58  modeling in decision support systems has become increasingly prominent (Yin et al., 2018).
59  However, the diversity of topography and the complexity of climate result in significant variations
60 in hydrological processes between basins. This has led to the fact that hydrological models based
61  on physical processes have only achieved certain success in predicting runoff in some basins. For
62  example, Zhang et al. (2024) used the Xin’an jiang model to predict the runoff in the Suihe and
63  Zuohe River basins, and X. Liu et al. (2022) integrated the VIC, Xin’an jiang, and DTVGM models
64  for the Ganjiang River basin. Such models often produce deviations due to insufficient data,
65  structural design defects, or improper parameterization schemes (Dembé&éet al., 2020; Herrera et
66 al., 2022; Koch et al., 2016; Silvestro et al., 2015), making it difficult to accurately capture the
67  complex hydrological behavior of the basin. At the same time, with the large-scale growth and
68  sharing of basin data sets, the development of deep learning technology worldwide has provided
69 new tools for hydrological modeling. Especially under the condition of sufficient data, deep
70  learning models such as long short-term memory (LSTM) networks can effectively capture
71 complex nonlinear relationships and provide high-precision predictions by learning large-sample
72 hydrological datasets. However, the applicability and predictive ability of deep learning methods
73 in China's complex hydrological environment have not been fully verified. Hydrological modeling
74  based on a large-sample hydrological dataset whose basins covering various river systems and

75  climate regions in China can provide a relatively clear benchmark. This benchmark can assist in
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76  improving relevant hydrological models to solve the runoff prediction problem in China and

77 catchments with similar basin conditions.

78 1.2 Hydrological modeling methods
79 For runoff prediction, existing hydrological modeling methods primarily include process-

80  based models, deep learning models , and hybrid modeling methods that couple the two. Process-
81  based models focus on the physical mechanisms of hydrological processes, provide theoretical
82  support and interpretability, and are particularly suitable for explicitly describing the dynamic
83  hydrological behavior of a basin. However, this type of model emphasizes the uniqueness of
84  hydrological processes and shows that it is impossible to effectively solve different hydrological
85  processes in different basins with a unified approach (Bl&chl et al., 2019). Even when used to
86  model hydrology for a single basin, such models typically require a substantial amount of high-
87  quality input data and involve a degree of subjectivity and complexity in the parameterization

88  process. This significantly impacts their applicability and accuracy.

89 In contrast, deep learning models, such as long short-term memory networks (LSTM), learn
90 the dynamic characteristics of basin hydrological processes through historical data, can effectively
91  capture nonlinear relationships, and do not need to rely on precise physical parameters as PBMs.
92  LSTM has attracted great interest in the field of hydrology, and has shown high prediction accuracy
93  and stability in predicting various hydrological variables, including soil moisture (Fang et al., 2017;
94 J. Liu et al., 2022; O. and Orth, 2021), runoff (Feng et al., 2020; Kratzert et al., 2019a), river
95  temperature (Qiu et al., 2021; Rahmani et al., 2023), and dissolved oxygen (Kim et al., 2021; Zhi
96 et al., 2021). This type of model excels in data collaboration (Fang et al., 2022) and therefore
97  thrives in big data environments (Kratzert et al., 2019a; Tsai et al., 2021). This type of model

98  performs well in data-driven collaboration and thrives in big data environments. However, deep
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99  learning (DL) methods are not without limitations. On one hand, they may struggle with poor
100  extrapolation ability in the absence of physical constraints, which can limit the model's
101 generalization capability when confronted with unknown climate conditions or long-term
102  predictions, potentially resulting in increased prediction errors and even physically unreasonable
103 results. On the other hand, compared to PBMs that offer clear explanations of physical mechanisms,
104  the predictive results of DL lack interpretability. The variable relationships represented by DL may
105  rely on statistical correlations present in the data rather than true physical causal relationships,

106  which affects its applicability under varying hydrological conditions.

107 To address the limitations of the two aforementioned modeling approaches, hybrid modeling
108 methods have been proposed (Konapala et al., 2020; Willard et al., 2021). The integration of deep
109  learning models and process-based models (PBMs), along with the development of hybrid systems,
110  has been recognized as a promising method for effectively enhancing runoff prediction (Slater et
111 al., 2023). This modeling scheme not only retains the theoretical foundation and interpretability of
112 PBMs but also leverages the robust data fitting capabilities of DL. Common hybrid schemes

113 currently include alternative hybrid modeling scheme and differentiable hybrid modeling scheme.

114 Alternative hybrid modeling scheme commonly employs DL as a post-processing tool to
115  adjust the discrepancies between PBM outputs and actual observations by utilizing PBM outputs
116  as additional input features. For instance, runoff, soil moisture, and snow cover are used as inputs
117 to DL (Amendola et al., 2020; Frame et al., 2021; Wang et al., 2023). Such schemes have been
118  tested in various regions (Cho and Kim, 2022; Shen et al., 2022). DL is trained in a supervised
119  manner, involving only minor modifications to the existing PBMs, which allows for the

120  preservation of valuable physical knowledge inherent in the PBM.
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121 Differentiable hybrid modeling scheme is made possible by the emergence of automatic
122 differentiation (auto-diff) technology (Baydin et al., 2018). Automatic differentiation technology
123 calculates gradients automatically through the chain rule, thus avoiding the trouble of manually
124 deriving derivatives and expediting the computation of complex gradients in deep neural networks.
125  This technological advancement addresses the challenge of combining DL with PBMs and
126  significantly enhances the integration of deep learning models into process-based models.
127 Specifically, this hybrid modeling approach neuralizes the process-based model and adjusts model
128  parameters by back propagating gradients based on daily prediction results. This method retains
129  the interpretability of the process model while improving prediction accuracy through deep
130  learning. Additionally, within this unified differentiable architecture, neural networks can
131  selectively replace inaccurate process representations and parameterizations found in process-
132 based models. Due to the innovative nature of this approach, it has garnered significant attention
133 from researchers and has led to the development of multiple variants and adaptations (Frame et al.,

134  2021; HGge et al., 2022; Jiang et al., 2020; Li et al., 2023).

135 1.3 Research gap and study objectives
136 There remains a gap in research regarding the applicability and performance comparison of

137 various hydrological modeling methods in China basins. This highlights a notable research deficit
138 in the field of hydrological modeling for large-sample hydrological datasets of China. Although
139 some scholars have explored different modeling approaches and conducted theoretical analyses
140  and empirical studies, the applicability and predictive capabilities of existing models still require
141 systematic evaluation, especially in the context of China's complex hydrological environment.
142 Specifically, several issues persist in the current research: (1) Comparative studies primarily focus

143 on specific river basins or small sample datasets. For instance, the studies conducted by Wu et al.
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144  (2024), Dong et al. (2024), and Xu et al. (2023) centered on small-scale river basins, namely the
145  Weihe River, Lancang River, and Yellow River, respectively. The lack of systematic evaluation
146 across large-sample hydrological datasets limits the feasibility of model promotion and application.
147  Therefore, a systematic evaluation based on large-sample hydrological datasets can not only
148 enhance the generalization ability of the model but also provide a more reliable reference for
149  hydrological predictions nationwide. (2) The guiding principles for model selection in basins with
150  different climatic and attribute characteristics are not yet clear, leading to a lack of relevance in
151  practical applications and difficulty in identifying the optimal modeling methods. In-depth
152  research is needed on the adaptability of different hydrological models in various basin
153 environments, which will help improve modeling efficiency and enhance the stability of
154  predictions. (3) Existing research on the application effects of hybrid modeling methods in China
155  basins, along with their comparative analysis with single models, remains relatively insufficient,
156 resulting in a lack of comprehensive understanding of the relative advantages of different hybrid
157 modeling methods. This limits the further development and optimization of hybrid modeling
158  methods in hydrological prediction. A systematic evaluation of the performance of hybrid
159  modeling methods can not only reveal their potential advantages over traditional methods but also
160  provide directions for future model improvements, offering more accurate and reliable tools for

161  simulating and predicting complex hydrological systems.

162 To address these issues—namely, the limited large-sample studies, unclear model selection
163 guidelines, and insufficient analysis of hybrid models—this study systematically evaluates the
164  applicability of three common hydrological modeling approaches using a comprehensive large-
165  sample hydrological dataset for China. By comparing and analyzing the performance of different

166 models in daily runoff prediction, the study seeks to provide scientific guidance for the selection
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167  and application of hydrological models. Specifically, the dataset encompasses 544 basins across
168  nine river systems and seven climate regions in China. It integrates multiple data sources, including
169  remote sensing products and reanalysis data, to relatively accurately describe basin attributes and
170  meteorological characteristics. For each basin, the dataset includes vector boundaries and time
171 series data. The static attribute dataset consists of 6 categories and 15 types. Hydrological and
172 climate attributes are derived by calculating relevant indices from the aforementioned
173 meteorological data, while topographical, soil, vegetation, and geological characteristics are
174  extracted from publicly available global datasets. The hydrological models evaluated in this study
175 include: process-based models (EXP-HYDRO model, Xin’an jiang model), deep learning models
176  (LSTM), alternative hybrid hydrological models (EXP-IN-LSTM, XAJ-IN-LSTM), and
177 differentiable hybrid hydrological models (EXP-dPL, XAJ-dPL). To ensure a fair evaluation, the
178  training periods, testing periods, and the prediction in ungauged basins (PUB, Hrachowitz et al.,
179 2013; Sivapalan et al., 2003) scheme for all models were consistent. In addition to prediction
180  performance, this study also assessed the water balance of each basin using the prediction results
181  of different models. Based on this work, the study not only reveals the applicability of different
182 models in China's basins but also fills the gap in existing research on model comparison in large-
183  sample hydrological datasets and complex basin environments. Furthermore, it provides a
184  performance benchmark and guidance for the selection and improvement of hydrological modeling

185  methods in China in the future.

186
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187 2. Data

188 2.1 Study Areas
189 In China, obtaining a datasets for Large-scale hydrological studies is challenging for two

190  main reasons. Firstly, accurate daily runoff observation data often needs to be kept confidential.
191  Secondly, the start and end times, as well as the quality of data from hydrological observation
192  stations across different regions, can vary significantly. Additionally, the diverse topography and
193  climate conditions in China mean that some watersheds lack essential meteorological and
194  hydrological observation stations (Meng et al., 2017). The primary goal of this study is not to
195  provide a reliable hydrological dataset. Instead, the basic requirement for the dataset is to ensure
196  that the catchment areas encompass a range of climatic and topographic conditions found across
197  China. To meet these requirements, global river network data (Lehner et al., 2008) and DEM
198  elevation data were utilized to delineate the basin vector boundaries. The outlet locations of each
199  catchment (see Figure S1 in Supplementary Materials) were determined using the D8 flow
200  direction scheme. Furthermore, to facilitate the extraction of meteorological forcing data, basins
201 smaller than 1000 km=3were excluded from the analysis. Ultimately, the vector boundaries of 544
202  basins were delineated, as shown in Figure 1(a). These 544 basins represent a variety of terrains—
203 including plateaus, plains, and mountains—with average altitudes ranging from 0 to 5000 m. The
204  catchment areas included in this dataset span various types of basins within China's nine river
205  systems (Figure 1(c)) and seven climate regions (Figure 1(d)). Detailed information regarding each

206  river system and climate zone is presented in Table S1 and Table S2 of Supplementary Materials.
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209 Figure 1. Spatial distribution of 544 basins. Basin boundaries (a) and areas (b) of the 544
210 basins included in this study. The six defined macro-zones are indicated in blue and purple
211 arrows. (b) and (d) are the divisions of China's nine river systems and seven climate regions,
212 respectively. (The map of China used in this study is from https://www:.tianditu.gov.cn/.)
213 2.2 Meteorological forcing and Runoff
214 The meteorological data used in this study are sourced from the ERA5 (Hersbach et al.,

215 2020) and CNO05.1 datasets (Gao et al., 2013). The meteorological forcing elements and their units

216 provided by these datasets are shown in Table 1. We selected these two datasets to extract basin-

217  scale meteorological elements based on the following considerations: (1) ERA5 dataset: Although

218  previous studies (Jiao et al., 2021; Liu et al., 2024) have demonstrated that the meteorological data

219 from ERADS exhibit certain deviations in Asia, the ERA5 dataset still offers significant advantages.
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220 It not only provides a wide variety of meteorological element types but also has an extensive daily
221 meteorological data time span, ensuring dataset completeness. (2) CNO05.1 dataset: This dataset is
222 interpolated from observational data collected from over 2,400 meteorological stations across
223 China. Therefore, it can relatively accurately characterize the trends in meteorological changes in
224  the country and offers high spatial resolution and applicability. Utilizing global-scale
225  meteorological data (such as ERAB) alongside more precise meteorological data for specific
226  research areas (such as CN05.1) to evaluate the applicability of different hydrological models can
227 not only enhance the robustness of the evaluation results but also help to verify the differences and

228  applicability of various meteorological data in hydrological predictions.

229 Table 1 Meteorological forcings data for 544 basins.

Variable name Description Unit
total_precipitation_sum Average daily precipitation m
temperature_2m 2 m daily mean air temperature K
potential_evaporation_sum Total potential evapotranspiration m
surface_pressure Near-surface daily average Pa
surface_solar_radiation_downwards_sum Short-wave radiation Jim?

230 The runoff data provided by the originates from VIC-CNO05.1 dataset (Miao and Wang, 2020),

231 which is consistent with the total runoff simulated by the Global Runoff Data Center
232 (UNH/GRDC). Due to the high confidentiality surrounding China's runoff observation data, the
233 number of basins with available runoff data is limited, and the start and end times of the runoff
234  time series vary among different basins. Relying solely on available observational data for
235  calibration may lead to systematic deviations in the runoff data across all basins. The daily runoff
236  time series of each basin outlet were obtained. In order to verify the feasibility of this method, the

237 daily runoff time series of 15 basin outlets with runoff observation data and the runoff hydrograph

11
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238 of actual observation data are shown in Supplementary Figure S2. It can be seen that although it
239 has not been strictly calibrated, the daily runoff time series extracted using the above method can
240  basically reflect the actual runoff change trend of the basin. The aim of this study is not to provide
241  a highly precise basin hydrological dataset but to construct a relatively comprehensive large-
242  sample dataset encompassing meteorological, hydrological, and attribute data for basins across

243 different topographic and climatic regions of China.

244 2.3 Static catchment attributes

245 When performing regional modeling, the static attributes of the basin are used as inputs to
246  the model, facilitating the model's ability to learn and extract information related to rainfall-runoff
247 behavior while distinguishing between different basins. This enables the model to interpret the
248  unique characteristics of each basin, thereby improving the accuracy of runoff predictions, as
249  demonstrated by Kratzert et al. (2019b). Therefore, in addition to extracting daily meteorological
250  forcing and runoff data for each basin, the dataset used in this study also includes static basin
251  attribute data. This dataset comprises 15 attributes categorized into six groups: meteorology,
252 hydrology, topography, soil, vegetation, and geology. Among these, meteorological and
253 hydrological attributes are calculated based on the meteorological and runoff time series of each
254 basin. Other static attribute data are derived from global data products based on the vector
255  boundaries of each basin. The abbreviations, meanings, and sources of each static attribute are
256 presented in Table 2. While existing large-sample hydrological datasets (such as CAMELS (Addor
257 et al,, 2017) and Caravan (Kratzert et al., 2023)) offer a richer variety of static attributes, our
258  research goal is not to pursue dataset completeness. Instead, we aim to utilize relatively available
259  datasets to evaluate the performance of different models in China. The six categories of static

260  attributes broadly cover the primary factors affecting the hydrological behavior of the basin.

12
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261 Among them, meteorological and hydrological attributes have the most direct and significant
262 impact on runoff, while topography, soil, vegetation, and other attributes can help model to
263  enhance the understanding of basin characteristics from the perspectives of spatial distribution and
264  hydrological processes. Additionally, these static attributes can be obtained through global data

265  products and basin vector boundary calculations, reducing reliance on region-specific data.

266 Table 2 Static basin attributes data for 544 basins.

Variable name Description Unit Source
area Basin area km? This study
srftopo Surface (rock + ice) elevation m Amante and Eakins (2009)
slope_avg Mean subgrid slope (inner slope) m/m Amante and Eakins (2009)
wcap Maximum soil water capacity Kg/m? Hagemann and Stacke (2015)
wava Plant available water Kg/m? Hagemann and Stacke (2015)
fveg Fractional vegetation cover climatology relative to LSM / Hagemann (2002)
lai Leaf area index m2/m? Hagemann (2002)
p_mean Mean daily precipitation m This study
pet_mean Mean daily potential evapotranspiration m This study
aridity Ratio of Mean PET to Mean Precipitation - This study
frac_snow Fraction of precipitation falling on days with temp <0 °C - This study
high_prec_freq Frequency of days with < 5x mean daily precipitation - This study
high_prec_dur Average duration of high precipitation events - This study
(number of consecutive days with < 5x mean daily precipitation)
low_prec_freq Frequency of dry days (< 1 mm/day) - This study
low_prec_dur Average duration of dry periods - This study

(number of consecutive days with precipitation <1 mm/day)

267 To facilitate reference and application by researchers in other regions, we have made the
268  global data products used and the code for extracting watershed attributes publicly available. We
269  hope this will enhance the transparency and reproducibility of our research, making it easier for

270  researchers in other regions to replicate and expand upon our methods.

271 3. Methodology

272 3.1 Experimental design
273 When extracting data based on the basin vector boundary, it is essential to ensure the

274 consistency of the time span for both runoff and meteorological data. To eliminate potential

13
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275  deviations caused by differing start and end times across various data sources, the time range for
276 all data is standardized from October 1, 1975, to September 30, 2015. For different hydrological
277 models, the training and testing periods are uniformly established: the training period spans from
278  October 1, 1975, to September 30, 1995, while the testing period extends from October 1, 1995,
279  to September 30, 2015. This consistent division facilitates an accurate evaluation of the fitting and
280  predictive capabilities of different models concerning the runoff process. Furthermore, to further
281  assess the generalization performance of the models, a five-fold cross-validation method is
282  implemented. Specifically, the 544 basins are divided into five relatively even clusters (with each
283  cluster containing either 109 or 108 basins, as shown in Figure 2). The validation process is as
284  follows: the model is trained using the training period data from the basins in nine of the clusters,
285  and its performance is validated on the test period data from the remaining cluster. This operation
286 is repeated in a loop, with each iteration designating a different cluster as the ungauged basin,
287  thereby allowing for the evaluation of the predictive performance of each basin treated as an

288  ungauged basin.

14
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Figure 2. Overview of the experimental design.

3.2 Process-based models
The PBMs evaluated in this study include EXP-HYDRO model (hereafter called EXP) (Patil

and Stieglitz, 2014) and the Xin'anjiang model (hereafter called XAJ) (Ren-Jun, 1992). The model
architectures of both are shown in Figure 3. EXP-HYDRO is a conceptual hydrological model that
operates on a daily time step and adheres to the law of water balance. The inputs driving the model

consist of precipitation, temperature, and day length. The hydrological variables that the model

15
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297  can output include snow accumulation, snowmelt, evapotranspiration, soil moisture, and runoff.
298  The calibration of the model is governed by six physically meaningful hydrological parameters
299  (the specific meanings of these parameters are provided in Table S3 of Supplementary Materials).
300 The original version of the Xin'anjiang model is a rainfall-runoff model designed for hydrological
301 forecasting in humid and semi-humid regions (Ren-Jun, 1992). To enhance the model's
302  applicability under complex climatic conditions, this study employs a simplified version of the
303  Xin'anjiang model, as depicted in Figure 3(b). The simplified model retains four main subprocesses
304  from the original Xin'anjiang model: evapotranspiration, runoff generation, runoff separation, and
305  runoff routing. While the original model considered the impact of impervious surfaces on runoff,
306 this aspect has been simplified in the current study to better align with research needs and data
307  characteristics. Nevertheless, the model retains its core hydrological processes and can effectively
308 simulate the hydrological behavior of the basin. The evapotranspiration module accounts for
309 evaporation from three layers of soil (upper, lower, and deep layers) and calculates the
310  evapotranspiration for each layer using an empirically defined formula based on the soil moisture
311  content and evapotranspiration rates. The runoff generation module simulates moisture
312 distribution and initiates runoff formation. The generated runoffs are subsequently separated into
313 surface runoff, convergence, and groundwater by the runoff separation module based on free water
314  storage. Finally, the runoff routing module directs the water flow to the basin outlet for surface
315  runoff and into linear reservoirs for groundwater flow. A total of 8 hydrological parameters are
316  integrated into the adjusted Xin'anjiang model. Further details can be found in Table S4 of

317  Supplementary Materials.

16
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Figure 3. The structure of the EXP-HYDRO (a) and adapted Xin’anjiang model (b).

3.3 Deep learning model
With the continuous advancement of deep learning technology, its applications in the field of

hydrology are also expanding. This study utilizes the classic LSTM model as a representation of a
purely data-driven approach. LSTM, a type of recurrent neural network (RNN), was first proposed
by Hochreiter and Schmidhuber (1997). Kratzert et al. (2018) applied the LSTM model to rainfall-

runoff modeling. The specific structure of the LSTM model can be described by the following

equations:
i[t] = o(Wix[t] + U;h[t — 1] + b)) D
flt] = o(Wex[t] + Ush[t — 1] + by) 2)
glt] = tanh(Wyx[t] + Ugh[t — 1] + by) 3)
olt] = a(W,x[t] + U,h[t — 1] + b,) 4)
clt] = flt]Oclt — 1] + i[t]Og[t] (%)
h[t] = o[t]Otanh(c[t]) (6)
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333 where i[t], f[t], and o[t] are the input, forget, and output gates, respectively, g[t] is the cell input,
334 X[t] is the network input at time step t (1 < t << T), and h[t-1] is the recurrent input c[t-1] of the

335  cell state at the previous time step. o(-) is the sigmoid activation function, tanh(-) is the hyperbolic
336 tangent function, and © is an element-wise multiplication. Intuitively, the cell state (c[t])
337  characterizes the memory of the system. These are modified by a combination of (i) the forget gate
338 (f[t]) and (ii) the input gate (i[t]) and the cell update (g[t]). Ultimately, the output gate (o[t])

339 controls the flow of information from the state to the model output.

340 The LSTM model architecture used in this study to predict daily runoff in China consists of
341 a hidden layer with 256 hidden units. The regional LSTM model uses 20 input features: 5
342 meteorological forcings and 15 static basin attributes. All input data are normalized before training.
343 Additionally, to ensure that the model learns the temporal variation of runoff while taking into
344  account training efficiency, we input a sequence of 365 days into the network for each batch size
345  and use asliding window of 31 days to learn all sequences. Furthermore, to understand the impact
346  of basin attributes on runoff, the operation of basin attributes across different basins also follows
347 the aforementioned sliding window learning rules. The LSTM employs the Adaptive Moment
348 Estimation algorithm (Adam, Kingma and Ba, 2014) to estimate model parameters. The initial
349  learning rate is set to 0.01, and the maximum number of training iterations is set to 150. All the

350  LSTM models are trained using the specified hyperparameters.

351 3.4 The hybrid models
352 Both alternative hybrid modeling and differentiable hybrid modeling schemes are designed

353 to couple the advantages of PBM and DL models. The architectures of the two types of models are
354  shown in Figure 4. PBM represents both the EXP and XAJ models, which are utilized to extract

355  and characterize the physical mechanisms involved in hydrological processes. LSTM serves as

18



https://doi.org/10.5194/egusphere-2025-1161
Preprint. Discussion started: 2 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

356  either a post-processing tool or a differentiable component, integrating with PBM to create
357  alternative hybrid models and differentiable hybrid models. In the alternative hybrid modeling
358  scheme depicted in Figure 4(a), LSTM functions as a post-processing tool to adjust discrepancies
359  between the PBM outputs and observations. This model's input includes not only the results
360 predicted by PBM but also the input variables of the pure data-driven model, including
361  meteorological forcing and static basin attributes. This approach allows the alternative hybrid
362  modeling method to retain the explanatory power of the physical mechanisms inherent in the
363  process model while leveraging LSTM's capability to effectively capture nonlinear relationships,
364  thereby compensating for the limitations of PBMs in large-sample hydrological datasets and
365 complex basins. In the differentiable hybrid modeling scheme shown in Figure 4(b), discrete
366 ordinary differential equations based on PBM are encoded into standard recurrent neural network
367 (RNN) units, encompassing the water balance law and fundamental hydrological processes.
368  Simultaneously, the neural network acts as a parameterized channel, incorporating static attributes
369  asadditional input variables into the overall model framework for joint optimization. This enables
370  the model to dynamically adjust hydrological parameters based on the characteristics of basin
371 attributes, overcoming the traditional physical process models' reliance on fixed parameterization,

372 and adapting to runoff relationships across different basins and climatic conditions.
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(a) (b)

373
374 Figure 4. The structure of the hybrid hydrological models.
375 Specifically, the hybrid hydrological models developed in this study include four types: (1) a

376  alternative hybrid model that uses EXP-predicted runoff values as an additional input to LSTM
377 (EXP-IN-LSTM); (2) a alternative hybrid model that uses XAJ-predicted runoff values as an
378  additional input to LSTM (XAJ-IN-LSTM); (3) a differentiable hybrid model that retains the EXP
379  structure while incorporating the LSTM network for parameter learning (EXP-dPL); and (4) a
380 differentiable hybrid model that retains the XAJ structure while incorporating the LSTM network
381  for parameter learning (XAJ-dPL). The details for all the hybrid models trained and tested in this
382 study—including input data, training sets, testing sets, and inputs—are presented in Table S5 of

383  Supplementary Materials.

384 4. Results and discussion

385 4.1 Meteorological forcing assessment
386 Figure 5 shows the spatial distribution of average annual precipitation and average daily

387  temperature for each station under different datasets. Overall, although neither of the two
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388  meteorological datasets has been corrected using station observation data, their spatial
389  distributions are largely similar. Precipitation exhibits a decreasing trend from the southeastern
390  coast to the northwestern inland areas. Temperature decreases with increasing latitude in the east,
391 and the temperatures in the Qinghai-Tibet Plateau are relatively low due to the influence of altitude
392 and terrain. It should be noted that by observing the frequency distribution curves of the average
393 annual temperature and average daily temperature of 544 basins, it can be seen that the overall
394  temperature distribution in the two datasets is quite similar. However, the distribution of the
395  precipitation data shows significant differences. The precipitation data provided by ERA5 varies
396  greatly between different basins, showing some extremely wet or extremely dry basins, while the

397  precipitation data provided by CNO05.1 is relatively uniform across basins.
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ggg Figure 5. Spatial distribution of precipitation and temperature in 544 basins using ERA5
400 and CNO5.1 Datasets.

401 In order to further explore the differences and systematic biases in various meteorological
402  datasets, the Budyko framework (Budyko and Miller, 2010) was employed to determine the impact
403  of different precipitation data on the water balance of various basins. This framework links climate
404  with basin runoff and evapotranspiration in a simple and intuitive manner, aiming to facilitate the
405  analysis of how evapotranspiration and runoff in each basin are influenced by available energy
406  and precipitation. Figure 6 shows a scatter plot of the evaporation index (EI, the ratio of annual
407  average evapotranspiration to annual average precipitation) and the drought index. When using the
408  same runoff and evapotranspiration data, the precipitation data provided by ERAS resulted in more
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409  basins (111) violating the water-heat balance. In these relatively humid basins, the relationship
410  between precipitation and evaporation did not adequately satisfy the water-heat balance conditions.
411 In contrast, when using CN05.1 data, fewer basins (12), concentrated in humid basins at medium
412 and high altitudes) violated the water-heat balance. It should be noted that this difference may be
413 related to the quality and processing methods of the data source. On one hand, ERAS5 is a global
414  meteorological model, and its precipitation data has not been corrected using station observation
415  data, which may lead to significant deviations. On the other hand, the runoff data product used in
416 this study was simulated by the VIC model, which uses CN05.1 meteorological data. VIC (Liang
417  etal., 1994) is a hydrological model based on physical processes, incorporating the equations of
418  water conservation and energy conservation into its implementation logic to ensure the scientific
419  and physical consistency of the simulation. This results in fewer basins violating the water-heat
420  balance when using CNO5.1 precipitation data to validate the Budyko framework. When
421  establishing large-sample hydrological datasets cross different regions, it is necessary to consider
422 the water budget balance at the watershed scale. We recommend that future studies aimed at
423  creating accurate large-sample hydrological datasets in China should consider the water and
424 energy balance of each watershed while fully calibrating each dataset, especially for high-altitude

425  watersheds that are relatively humid.
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427 Figure 6. Water balance for 544 basins, illustrated in a Budyko scheme for ERA5 (a) and
428 CNO05.1 (b). Markers are coloured by the basin mean elevation.
429 4.2 Performance comparison of process-based models
430 Figure 7 shows the runoff prediction performance of different PBMs for 544 basins. Overall,

431 both the EXP and XAJ models demonstrate greater accuracy in representing the rainfall-runoff
432 relationship for the wetter basins in the southeast compared to the inland basins in the northwest.
433 The prediction skills of both PBMs show significant improvement when using precipitation data
434  from CNO5.1 as input, in contrast to using ERA5 precipitation data. Notably, for the XAJ model,

435  the median NSE across the 544 basins reaches 0.63 when using CNO05.1 precipitation data.
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436
437 Figure 7. Performance of process-based hydrological models during the testing period
438 (1995.10.1-2015.9.30). Spatial distributions of the Nash-Sutcliffe efficiency (NSE) for EXP-
439 HYDRO model and Xin’anjiang model. The NSE colormap is capped within [0, 1] for
440 better visualization.
441 Furthermore, the specific performance differences of different PBMs in each basin are

442 compared. Figures 8(a) and 8(b) show which PBMs exhibit better prediction performance in each
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443  basin under varying precipitation data. In general, the source of precipitation data significantly
444 influences the selection of PBMs for most basins. This means that for the same basin, if the input
445  precipitation data sources differ, the choice of PBM should be adjusted accordingly. Additionally,
446 some basins show consistent selection preferences under the two sets of precipitation data. For
447  instance, in most basins located in the middle and lower reaches of the Yangtze River and the
448  southeastern rivers, which are relatively humid, the XAJ model is a better choice than the EXP
449 model under different precipitation data. Despite the differences in precipitation data, the EXP
450  model consistently outperforms the other models for most basins in the Haihe River system. For
451 nearly half of the basins (247), the EXP model demonstrates superior prediction performance when
452 using ERAS precipitation data, while the XAJ model performs better with CNO5.1 data. This
453 indicates that the applicable PBM for the same basin may change solely due to variations in
454  precipitation data. Thus, in addition to the climatic characteristics of the basin, the accuracy and
455  reliability of meteorological data play a crucial role in determining the prediction performance of

456  PBMs.
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460 4.3 Performance and generalization of LSTM
461 Figure 9 shows the prediction performance of the purely data-driven LSTM model in regional

462  modeling and PUB under different precipitation data sources. Similar to performances in large-
463  sample hydrological datasets of other regions, the LSTM model also demonstrates strong
464  capabilities in handling large amounts of hydrological data and excels in runoff prediction in large-
465  sample hydrological dataset in China. Specifically, when using ERAS precipitation data, the

466  median NSE of LSTM across 544 basins reaches 0.57 (NSE = 0.55 is considered the threshold

467  for good performance (Knoben et al., 2019; Newman et al., 2015)). When using CNO05.1
468  precipitation data, the median NSE for LSTM in regional modeling and PUB reached an
469  impressive 0.95 and 0.93, respectively. This phenomenon may be due to the runoff data product
470  used in this study, which is also simulated using CN05.1 data (as described in Section 4.1). The
471 use of CNO05.1 precipitation data enables other subsequent models to demonstrate excellent

472 prediction performance, a point that will not be revisited in the following sections.

473 It is worth noting that under different precipitation data, when the PUB of 544 basins was
474 conducted using five-fold cross-validation, the prediction skills were comparable to those of
475  regional modeling. This indicates that the LSTM model also possesses strong generalization ability
476 in China's basins, achieving more accurate hydrological predictions in ungauged basins by learning
477 from hydrological data of other basins. Surprisingly, under the ERAS precipitation data conditions,
478  the PUB results for some basins outperformed the prediction performance of regional modeling.
479 In theory, regional modeling uses data from all basins for training and is generally regarded as
480  providing superior predictions, especially for individual basins. When a basin's own data is
481  included in the training set, the model is expected to perform better in predicting that basin's runoff.

482 However, as illustrated in the scatter plot at the bottom of Figure 9, there are instances where the
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483  PUB performance exceeds that of regional modeling when different precipitation data are used.
484  Notably, under the ERA5 conditions, the number of such basins is higher. This phenomenon may
485 indicate that the ERAS precipitation data exhibits a certain degree of non-uniformity among
486  different basins (as shown in Figure 5), which affects the effectiveness of regional modeling. The
487  accuracy and spatial consistency of meteorological data jointly determine their impact on the
488  predictive performance of hydrological models. This not only influences the model's
489  representation of hydrological processes but may also significantly shape its generalization
490  performance. Therefore, we suggest that future related studies should comprehensively consider

491  the differences in training samples while also taking into account the accuracy of model input data.
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493 Figure 9. LSTM models prediction performances using ERA5 and CNO5.1 precipitation
494 data.

495 4.4 Performance and selection of hybrid models
496 Figure 10 shows the prediction performance of four alternative and differentiable hybrid

497  hydrological models for regional modeling across 544 basins. When the model input is based on
498  the CNO5.1 dataset, the overall performance of the different hybrid models aligns closely with that
499  of the pure LSTM model, and the spatial distribution characteristics of the NSE across the 544
500 basins are also highly similar. However, when the ERAS precipitation data is used for regional
501  modeling, the distribution of NSE varies among the basins. Although the median NSE of each
502  hybrid model and the pure LSTM model across the 544 basins is generally consistent, coupling
503  the process-based model (PBM) with LSTM results in a more stable prediction performance across
504  different basins. This improvement may be attributed to the fact that the differentiable hybrid
505  model follows to the law of water balance during the modeling process, avoiding the sacrifice of
506  performance in more challenging basins in order to improve the overall performance across all
507  basins. Therefore, the modeling strategy that couples PBM with deep learning, particularly the
508  differentiable hybrid hydrological model, can not only maintain overall prediction accuracy but
509 also enhance the spatial robustness of the model and balance prediction skills across different

510  basins.
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511
512 Figure 10. Four hybrid models prediction performances using ERA5 and CN05.1

513 precipitation data.

514 Further analysis of the specific performance of different basins under various hybrid models

515 is presented in Figure 11 (2) and (b), which show the distribution of the optimal hybrid model for

516  each basin based on two sets of precipitation data. In general, under the two precipitation datasets,

517  CNO5.1 and ERAD, the alternative hybrid modeling scheme—where the predicted values of the

518

519

PBMs are used as an additional input for deep DL—exhibits superior performance across more

basins than the differentiable hybrid modeling scheme, which involves parameterizing the process

520  model and coupling it with DL. Although the optimal hybrid model for some basins remains

521  consistent regardless of the precipitation data used as input, for most basins, changes in the input

522 data lead to a shift in the most suitable hybrid model. This phenomenon indicates that the accuracy

523

31
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524 Figures 11 (c) and (d) show the distribution of the best hybrid models across various water
525  systems and climate regions. The results indicate that the Yellow River Basin and the Songliao
526  River Basin show a clear preference for alternative hybrid modeling methods. Notably, in the
527 Songliao River Basin (climate region 3), the EXP-INLSTM model outperforms others in a greater
528  number of basins. This may be attributed to the fact that the EXP-HYDRO model includes rain-
529  snow partitioning and snowmelt modules specifically designed to address snow storage, allowing
530  for a more accurate representation of the influence of snow on runoff. Additionally, in climate
531 region 6 (the high-altitude region of the Qinghai-Tibet Plateau), the EXP-dPL model demonstrates
532 strong suitability when using CNO05.1 data. This area is influenced by the combined effects of
533  perennial snow and frozen ground, while the high-latitude climate region 3 is primarily impacted
534 by seasonal snow. This distinction indicates that although the hybrid modeling scheme coupling
535  EXP and LSTM generally outperforms the combination of XAJ and LSTM in basins affected by
536 snow storage, further subdivision reveals that different hybrid methods involving EXP and LSTM

537  may be better suited for basins with varying snow characteristics

538 Moreover, the optimal hybrid model for most basins is influenced by the source of
539  meteorological data. In humid regions, such as the middle and lower reaches of the Yangtze River
540  and the Southeastern Rivers, the hybrid models combining XAJ and LSTM generally outperforms
541  the hybrid models of EXP and LSTM across different precipitation datasets. Conversely, in the
542  Haihe River, the EXP and LSTM hybrid model consistently represents the best choice for most
543  basins. In other basins with varying climatic characteristics, the hybrid models of EXP and LSTM
544  demonstrate better predictive performance under ERAS data, whereas the XAJ and LSTM hybrid
545  model performs better under CN05.1 data. This further confirms the impact of the accuracy and

546  reliability of meteorological data on the selection of hybrid hydrological models.
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548 Figure 11. Comparison of hybrid models performances across basins using ERA5 and
549 CNO05.1 precipitation data.
550 To evaluate the generalization ability of different hybrid hydrological models, the same PUB

551 scheme for pure LSTM described in Section 4.3 was adopted to conduct 5-fold cross-validation
552 on 544 basins. The prediction performance of each hybrid model, using different precipitation data
553  as input, is shown in Figure 12. Overall, the prediction performance distribution of various hybrid
554  hydrological models across the 544 basins is relatively consistent under the same input data. With
555  ERAD precipitation data, the hybrid model that performed best in the PUB is EXP-dPL, with a
556  median NSE of 0.55. In contrast, under CNO5.1 precipitation data, XAJ-dPL demonstrates the best
557 generalization ability, achieving a median NSE of 0.95. It is worth noting that when different
558  meteorological data are used as input, the differentiable hybrid model exhibits better predictive
559  performance than the alternative hybrid model in the PUB. This indicates that the differentiable
560  modeling scheme can enhance the adaptability and generalization performance of the hybrid model

561  inungauged basins.

562 The scatter plots in Figure 12 show the comparison of NSE values between regional modeling
563 and PUB for each basin. Under CNO5.1 precipitation data, when XAJ-dPL was tested through 5-
564  fold cross-validation, the prediction performance of certain basins exceeded that of regional
565  modeling significantly. This phenomenon indicates that not all basins require their own historical
566  data for training when making hydrological predictions. In some cases, modeling based on the
567  hydrological information from other basins in the region can achieve better prediction results. This
568  further verifies the potential of hybrid modeling strategies, particularly differentiable hybrid

569  modeling methods, in enhancing model extrapolation capabilities and generalization performance.
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Figure 12. Comparison of PUB performances of four hybrid models.

4.5 Evaluation of water budget closure
To verify the physical consistency of the prediction results from different models, the water

budget closure and water imbalance ratio for 544 basins were calculated during the test period.
This study used a adapted long-term water budget for each basin (Tan et al., 2022; Wang et al.,
2014) to evaluate the basin water balance closure:

IP—ET-Ql=¢ @)

Where P is precipitation from ERA5 or CN05.1 dataset, ET is evapotranspiration (observations
provided by ERA5 or output of differentiable hybrid models), Q is runoff (observations or
predictions from different models), and ¢ is the water budget imbalance. The smaller the value of

€, the better the water budget balance of the basin.

Figure 13 shows the difference of the annual water budget closure (g) and the water imbalance

ratio (¢/P) for 544 basins among different models. The detailed data sources for runoff and

35

EGUsphere\



https://doi.org/10.5194/egusphere-2025-1161
Preprint. Discussion started: 2 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

584  evapotranspiration associated with the various indicators in the figure are provided in Table S6 of
585  Supplementary Materials. The results show that when the simulated runoff from different hybrid
586 models replaces the observed values, the basin's water balance closure does not change
587  significantly. However, when the evapotranspiration data output by EXP-dPL replaces the original
588 ET data, the overall water imbalance across the 544 basins is significantly reduced. This
589  phenomenon indicates that, under the framework of EXP-dPL, the model's runoff output can not
590  only maintain high prediction accuracy but also conform better to the water budget constraint,
591  reflecting good physical consistency. It should be noted that the dataset used in this study has not
592  been strictly calibrated against actual observation sites, which may be one of the reasons why the
593  ET data output by XAJ-dPL caused a deterioration in water balance closure in some basins.
594  Nevertheless, the above results can still prove to a certain extent that the differentiable hybrid
595  modeling method can not only provide high-precision runoff predictions, but also output
596  intermediate hydrological variables that align with hydrological mechanisms. This ensures better
597 compliance with physical constraints while maintaining prediction performance. Therefore, the
598  differentiable hybrid modeling scheme represents a modeling approach that balances both physical

599  consistency and prediction skills.

ERAS CN05.1

Water Budget Closure

- — & £ 2 & &
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Figure 13. Distribution of annual (a) water budget closure (g) and (b) water imbalance
ratio (¢/P) for all 544 basins during the test period.

5. Conclusion
This study systematically evaluated the hydrological modeling of a large-sample hydrological

dataset for 544 basins in China, analyzed the applicability of multiple hydrological models in
complex hydrological environments, and provided a valuable basis for the selection and
optimization of future hydrological models. Through a comparison of different hydrological
modeling methods, the study reached the following three main conclusions:

(1) The accuracy and reliability of meteorological data have a key impact on the predictive
performance of hydrological models. For most basins in China, changes in the source of
meteorological data may lead to differences in the performance of similar models.
Accurate precipitation data can help models better simulate the runoff generation process
in the basin, thereby more effectively capturing the hydrological characteristics of the
basin. During the selection and application of models, the quality and adaptability of
meteorological data are crucial factors that determine the model's predictive capability.

(2) The hybrid modeling method shows strong predictive performance and generalization
capabilities. In the prediction of ungauged basins, whether using ERA5 or CNO05.1
precipitation data, the generalization ability of the hybrid modeling method surpasses that
of the pure LSTM maodel. This indicates that the hybrid model is better equipped to adapt
to the basins with different hydrological characteristics, providing more stable prediction
results. This highlights the advantages of hybrid modeling methods in complex
hydrological environments and their robust adaptability across various regions and

climatic conditions.
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624 (3) Compared with alternative hybrid modeling schemes, the differentiable hybrid modeling
625 scheme achieves a deeper understanding of hydrological processes. Due to the seamless
626 coupling of process-based models, the differentiable hybrid hydrological model can

627 output unobserved intermediate hydrological variables. At the same time, the runoff

628 prediction results of this hybrid modeling scheme are more consistent with the water

629 budget balance at the basin scale, providing more comprehensive and accurate support
630 for hydrological prediction.

631 Although this study provides a relatively systematic evaluation of hydrological modeling in

632  China's basins, the meteorological and runoff data used have not been corrected, which may limit
633  the applicability of the dataset. Future studies should consider using observational data for
634  correction to enhance the dataset's reliability and further improve the accuracy of model
635  predictions. While this study primarily focuses on basins in China, it is hoped that the methods
636  and datasets presented in this research can serve as a reference for other regions lacking

637  observational data and promote similar hydrological modeling efforts worldwide.
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