## Supporting Information for

## Exploring Diverse Modeling Schemes for Runoff Prediction: An Application to 544 Basins in China

Yuqian Hua, Heng Lia, Chunxiao Zhanga,b\*, Dingtao Shenc,d, Bingli Xuc, Min Chenf,g,h, Wenhao Chua, Rongrong Li

<sup>a</sup> School of Information Engineering, China University of Geosciences in Beijing, Beijing, China.

<sup>b</sup> Observation and Research Station of Beijing Fangshan Comprehensive Exploration, Ministry of Natural Resources, Beijing, China.

<sup>c</sup> Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, Central China Normal University, 430079, Wuhan, China.

<sup>d</sup> College of Urban and Environmental Sciences, Central China Normal University, 430079, Wuhan, China.

<sup>e</sup> Department of Information and Communication, Academy of Army Armored Forces, Beijing, China.

<sup>f</sup> Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing, Jiangsu, China.

<sup>8</sup> International Research Center of Big Data for Sustainable Development Goals, Beijing, China.

<sup>h</sup> Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu, China

<sup>i</sup> Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

Submitted to Hydrology and Earth System Sciences

\*Corresponding author: C. Zhang

School of Information Engineering, China University of Geosciences in Beijing, No. 29,

Xueyuan Road, Haidian District, Beijing 100083, China

Email: zcx@cugb.edu.cn

## Contents

| Table S1 Basin distribution information of China's nine river systems.            | l |
|-----------------------------------------------------------------------------------|---|
| Table S2 Basin distribution information of China's seven climate regions          | 1 |
|                                                                                   |   |
| Table S3 EXP-HYDRO model hydrological parameters meaning and value range table    |   |
| Table S4 Xin'an jiang model hydrological parameters meaning and value range table |   |
| Table S5 The details for all the hybrid models                                    | 3 |
| Table S6 The data sources of indexs in Figure 13.                                 | 3 |
| Figure. S1. Spatial distribution of outlets in 544 basins.                        | 3 |
| <b>Figure. S2.</b> The time series of runoff over 15 gauged basins.               | 4 |

Table S1 Basin distribution information of China's nine river systems.

| River system_id | River system name              | Basins number |
|-----------------|--------------------------------|---------------|
| 1               | Southeast Basin                | 18            |
| 2               | Haihe River Basin              | 16            |
| 3               | Huaihe River Basin             | 30            |
| 4               | Yellow River Basin             | 72            |
| 5               | Continental Basin              | 52            |
| 6               | Songhua and Liaohe River Basin | 90            |
| 7               | Southwest Basin                | 61            |
| 8               | Yangtze River Basin            | 146           |
| 9               | 9 Pearl River Basin            |               |

Table S2 Basin distribution information of China's seven climate regions.

| Region_id | Region name                         | Basins number |
|-----------|-------------------------------------|---------------|
| 1         | Mid-temperate arid regions          | 21            |
| 2         | Temperate semi-arid regions         | 30            |
| 3         | Mid-temperate semi-humid regions    | 75            |
| 4         | Warm temperate semi-humid regions   | 75            |
| 5         | Northern subtropical humid regions  | 190           |
| 6         | Plateau temperate semi-arid regions | 112           |
| 7         | Marginal humid tropical regions     | 41            |

 Table S3 EXP-HYDRO model hydrological parameters meaning and value range table.

| Parameters       | Description                                        | Units                | Lowe limit | Upper limit |
|------------------|----------------------------------------------------|----------------------|------------|-------------|
| f                | the rate of decline in runoff from catchmentbucket | mm <sup>-1</sup>     | 0.0        | 0.1         |
| $S_{\text{max}}$ | Maximum storage of the catchment bucket            | mm                   | 100.0      | 1500.0      |
| $Q_{max}$        | Maximum subsurface runoff at full bucket           | mm/day               | 10.0       | 50.0        |
| $D_{\mathrm{f}}$ | Thermal degree-day factor                          | mm/day/°C            | 0.0        | 5.0         |
| $T_{\text{max}}$ | Temperature above which snow starts melting        | $^{\circ}\mathrm{C}$ | 0.0        | 3.0         |
| т                | Temperature below which precipitation is           | 9.0                  | 2.0        | 0.0         |
| $T_{\min}$       | snow                                               | °C                   | -3.0       | 0.0         |

Table S4 Xin'anjiang model model hydrological parameters meaning and value range table.

| Parameters | Description                                                   | Units | Lowe limit | Upper limit |
|------------|---------------------------------------------------------------|-------|------------|-------------|
| UM         | areal mean tension water storage in the upper layer           | mm    | 0.1        | 20          |
| LM         | areal mean tension water storage in the lower layer           | mm    | 60         | 90          |
| DM         | areal mean tension water storage in the deep layer            | mm    | 60         | 120         |
| C          | conversion coefficient of deep evapotranspiration             |       | 0.01       | 0.2         |
| В          | exponent of the tension water capacity curve                  |       | 0.1        | 0.4         |
| K1         | outflow coefficients of the free water storage to interflow   | -     | 0.01       | 0.7         |
| K2         | outflow coefficients of the free water storage to groundwater | -     | 0.01       | 0.7         |
| K3         | recession constant of the lower interflow storage             | -     | 0.01       | 0.9         |

 Table S5 The details for all the hybrid models.

| Models Model inputs |                               | Training set                            | <b>Testing set</b>                      |
|---------------------|-------------------------------|-----------------------------------------|-----------------------------------------|
|                     | EXP-HYDRO predicted runoff,   |                                         |                                         |
| EXP-IN-LSTM         | 5 meteorological forcings,    |                                         |                                         |
|                     | 15 static basin attribute     |                                         |                                         |
|                     | Xin'anjiang predicted runoff, | October 1,<br>1975, to<br>September 30, | October 1,<br>1995, to<br>September 30, |
| XAJ-IN-LSTM         | 5 meteorological forcings,    |                                         |                                         |
|                     | 15 static basin attribute     |                                         |                                         |
| EXP-dPL             | 5 meteorological forcings,    | 19955                                   | 2015                                    |
|                     | 15 static basin attribute     |                                         |                                         |
| XAJ-dPL             | 5 meteorological forcings,    |                                         |                                         |
|                     | 15 static basin attribute     |                                         |                                         |

**Table S6** The data sources of indexs in Figure 13.

| Index       | Precipitation | Runoff                   | Evapotranspiration |
|-------------|---------------|--------------------------|--------------------|
| Observation | ERA5 /CN05.1  | VIC-CN05.1               |                    |
| LSTM        | ERA5 /CN05.1  | predicted by LSTM        |                    |
| EXP-IN-LSTM | ERA5 /CN05.1  | predicted by EXP-IN-LSTM | ERA5               |
| XAJ-IN-LSTM | ERA5 /CN05.1  | predicted by XAJ-IN-LSTM | ERAS               |
| EXP-dPL     | ERA5 /CN05.1  | predicted by EXP-dPL     |                    |
| XAJ-dPL     | ERA5 /CN05.1  | predicted by XAJ-dPL     |                    |
| EXP-dPL-ET  | ERA5 /CN05.1  | predicted by EXP-dPL     | output by EXP-dPL  |
| XAJ-dPL-ET  | ERA5 /CN05.1  | predicted by XAJ-dPL     | output by XAJ-dPL  |

Figure. S1. Spatial distribution of outlets in 544 basins

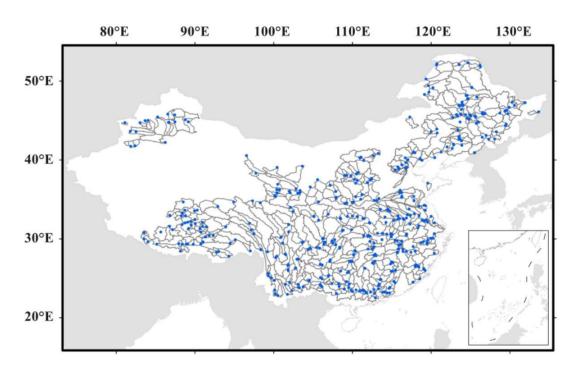
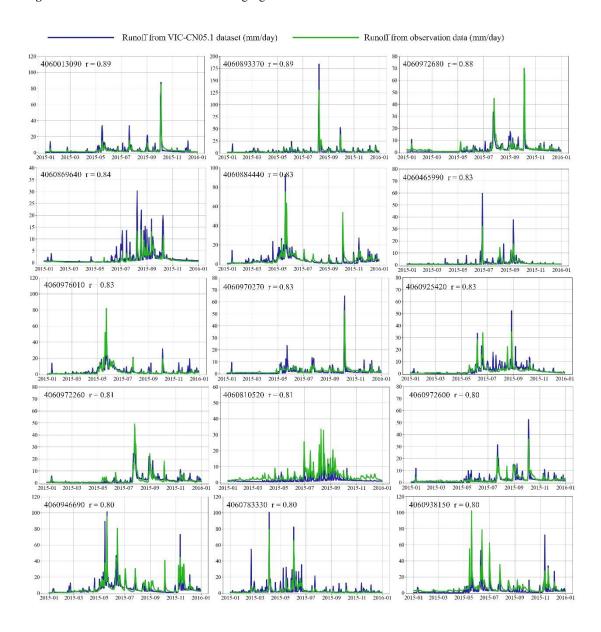




Figure. S2 The time series of runoff over 15 gauged basins

