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Comment 1: Is there any reference or rationale for the determination of the watershed boundaries? 

Response:  

Thank you for your comments. The determination of watershed boundaries is very important. Our 

previous manuscript did not provide a detailed description of our method for determining watershed 

boundaries. In fact, when we established the dataset, we used the watershed boundaries provided by 

the HydroSHEDS dataset. We then screened the watersheds based on their area and deleted the 

watersheds with an area of less than one thousand square kilometers. We have added a description 

of the method for determining watershed vector boundaries in the data section. The modified details 

are as follows: 

“….  

To delineate watershed boundaries consistently across China, we utilized the HydroSHEDS dataset 

(Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales; Lehner et 

al., 2008), which provides high-resolution hydrologic information derived from SRTM elevation 

data. Based on the D8 flow direction scheme, the outlet of each basin was determined and used to 

extract the upstream contributing area. To ensure data consistency and model applicability, we 

performed area-based filtering and excluded small basins with an area less than 1,000 km². This 

threshold was chosen to reduce the influence of spatial resolution mismatch and potential errors in 

meteorological data aggregation. As a result, a total of 544 basins were retained, representing a wide 

range of hydrological and climatic conditions across China. The final basin boundaries are shown 

in Figure 1(a), and outlet locations are provided in Supplementary Figure S1. 

….” 

 

Comment 2: The abbreviations of the models in the article are very confusing. Please explain them 

uniformly in the appropriate place. 

Response:  

Thank you for your reminder. Our study did use 7 different models. To make the article easier for 

readers to understand, we have declared an abbreviation for each model after it is mentioned for the 



first time. At the same time, we have summarized the detailed information of all the models used in 

this study into a table (as shown in Table 3). This table will be added to the new manuscript. 

The specific table content is as follows: 

“….  

Table 3 The details for all the models. 

Categories Model Model inputs Training set Testing set 

process-based 

model 

EXP-HYDRO meteorological forcings 

October 1, 1975, 

to September 30, 

1995 

October 1, 1995, 

to September 30, 

2015 

Xin’anjiang meteorological forcings 

Deep learning 

model 
LSTM 

meteorological forcings, static 

basin attributes 

alternative 

hybrid model 

EXP-IN-LSTM 

EXP-HYDRO predicted runoff, 

meteorological forcings, static 

basin attributes 

XAJ-IN-LSTM 

Xin’anjiang predicted runoff, 

meteorological forcings, static 

basin attributes 

differentiable 

hybrid model 

EXP-dPL 
meteorological forcings, static 

basin attributes 

XAJ-dPL 
meteorological forcings, static 

basin attributes 

 

….” 

 

Comment 3: Line 284 describes the PUB test method. Why are the remaining 9 clusters used for 

training? 

Response:  

Thank you for your careful review. We used 5-fold cross validation to test the generalization ability 

of the model when extrapolating ungauged basins. Specifically, we first randomly divided 544 

basins into five clusters. Four of the five clusters were used as training sets, and the model was 

trained during the training period of these four clusters. Then the prediction performance of the 

model was tested using the remaining test period data. The purpose of this is to ensure that the model 



has neither been exposed to any data from the test basin during training nor learned any data from 

the test basin during the test period. Ensure that the test of the model's generalization ability spans 

both space and time. There is a problem with our statement here, and we will describe the pub test 

scheme in more detail in the new manuscript. The modified details are as follows: 

“….  

The validation process is as follows: the model is trained using the training period data from the 

basins in four of the clusters, and its performance is validated on the test period data from the 

remaining a cluster. 

….” 

 

Comment 4: The authors claim that the differentiable mixed hydrological model can output 

unobserved intermediate hydrological variables, but there is no data to support this. 

Response:  

Thank you very much for your valuable comment. One of the potential advantages of the 

differentiable hybrid hydrological model is that it can output relatively reliable intermediate 

hydrological variables under the premise of runoff as the target variable. In our original manuscript, 

we hoped to illustrate that the model can output reliable intermediate hydrological variables by 

calculating the closure of the water budget. Specifically, when the evapotranspiration output by the 

differentiable hybrid hydrological model is used to measure the water budget, the number of basins 

that achieve closed balance increases significantly. Therefore, we believe that the model can output 

relatively reliable intermediate hydrological variables on the basis of having ideal prediction 

performance, and its output evapotranspiration can also better conform to physical consistency, so 

the model can output relatively reliable intermediate hydrological variables. 

However, as you mentioned, the reliability of the hydrological variables output by the model can be 

most directly illustrated by directly comparing the intermediate hydrological variables output by the 

differentiable hybrid model with the observed values. Therefore, we add a comparative analysis of 

the hydrological variables output by the model and the corresponding observed values (ERA5-Land). 

The specific results and analysis will be added to the new manuscript, as follows: 

“….  

4.6 Validation of Intermediate Hydrological Variables 



To further assess the physical consistency and interpretability of the differentiable hybrid 

hydrological model, we evaluated its ability to reproduce intermediate hydrological variables that 

were not used as training targets. Specifically, we focused on three key variables: evapotranspiration, 

soil water, and snowpack. These variables were output by the differentiable hybrid model during 

the testing period (1995–2015), and compared with corresponding reanalysis estimates from the 

ERA5-Land dataset. Figure x illustrates the time series of the spatial average (across 544 basins) 

for the three variables. All time series were normalized prior to plotting to facilitate shape 

comparison. As shown, the outputs from the hybrid model (blue lines) closely follow the seasonal 

and interannual variations of the ERA5-Land estimates (orange dashed lines) across all three 

variables. This suggests that the model not only provides accurate runoff predictions, but also 

captures physically plausible hydrological states and fluxes. To quantify this consistency at the basin 

scale, the Pearson correlation coefficient between the output time series and ERA5-Land reference 

time series was calculated for each basin and each variable. The median correlation across all basins 

reached 0.71 for evapotranspiration, 0.64 for soil water, and 0.52 for snowpack. 

These results demonstrate the hybrid model’s ability to internally simulate key components of 

the hydrological cycle, even though these variables were never directly used in model training or 

supervision. The snowpack correlation, although slightly lower, can be attributed to the fact that 

some basins are located in warm regions with negligible snow accumulation. Moreover, 

uncertainties in the reanalysis-based "reference" values may also affect the observed correlations. 

Overall, these findings confirm that the differentiable hybrid modeling framework can generate 

physically meaningful intermediate states, further supporting its potential for interpretable 

hydrological modeling and process-informed regional analysis. 



  

Figure x. Comparison between the outputs of the differentiable hybrid model and ERA5-

Land reanalysis data for three intermediate hydrological variables (evapotranspiration, soil water, 

and snowpack) during the testing period (1995–2015). All values are normalized, and each curve 

represents the spatial average across 544 basins. 

….” 

 

Comment 5: What does the spatial distribution map in Figure 12 mean? A detailed explanation 



should be given in the image caption. 

Response:  

Thank you for your careful review and helpful suggestion. We agree that the caption of Figure 12 

lacked sufficient detail to help readers interpret the spatial distribution maps. In the revised 

manuscript, we have clarified that the maps on the left side of each subpanel display the spatial 

distribution of NSE values under PUB test for each hybrid model, while the scatter plots on the right 

compare PUB and regional performances at the basin level. The colors of the dots represent the 

basin clusters. We have now updated the figure caption as follows: 

“….  

Figure 12. Comparison of PUB performances of four hybrid models (EXP-IN-LSTM, XAJ-IN-

LSTM, EXP-dPL, and XAJ-dPL) under two meteorological datasets (ERA5-Land and CN05.1). 

For each model and forcing case, the left-side map shows the spatial distribution of the NSE 

values for each basin under PUB test, with warmer colors indicating lower NSE performance and 

cooler colors indicating higher performance. The right-side scatter plots compare PUB model 

performance (y-axis) to regional model performance (x-axis) for each basin. Each point represents 

a basin, and point colors correspond to different clusters. The dashed 1:1 line serves as a reference 

for comparing PUB and regional performances. 

….” 

 

Comment 6: Why do you use the runoff predictions for water balance assessment? What is the 

purpose of calculating the water imbalance ratio? Please add an explanation. 

Response:  

Thank you for your insightful reminder. In Section 4.5, we used the runoff predictions and 

evapotranspiration output by the differentiable hybrid model to calculate the water imbalance ratio. 

Because for basins with different dry and wet conditions, the imbalance degree of water 

conservation under the same error term is not exactly the same. For example, because the predicted 

runoff is 10 mm higher than the difference between precipitation and evapotranspiration, the 

reliability of the prediction results for basins with daily average precipitation of 50 mm and 1 mm 

is obviously far apart. Therefore, we chose to use the ratio of the error term to precipitation to 

measure the physical consistency of the runoff prediction results used in different basins and the 



reliability of the model output evapotranspiration. The resulting enhanced water balance closure 

ability shows the potential of differentiable hybrid models in improving the understanding of 

regional water resources availability. We have followed your suggestion and added relevant 

explanations. The added explanations are as follows: 

“….  

The water balance closure is assessed based on the outputs of the differentiable hybrid models, 

which are able to output predicted runoff and evapotranspiration (ET). To evaluate the physical 

consistency of these predictions, the sum of model-predicted streamflow and ET is compared against 

total precipitation during the testing period. To ensure comparability across catchments with varying 

climatic conditions, the water imbalance ratio (ε/P) is adopted. This ratio is defined as the absolute 

difference between precipitation and the sum of streamflow and ET, normalized by total 

precipitation. This ratio reflects the extent to which model outputs satisfy the fundamental water 

balance constraint. Using this ratio enables a consistent and interpretable measure of physical 

plausibility across diverse hydrological regimes. A lower imbalance ratio indicates better water 

budget closure, suggesting that the model not only produces accurate runoff predictions but also 

maintains hydrological consistency in terms of mass conservation. This evaluation provides insights 

into the model’s ability to simulate key hydrological variables in a physically meaningful way. 

….” 

 

Comment 7: There is an error in the labeling of Figure 11. Two sub-figures (b) appear. Please 

modify them. 

Response:  

Thank you for your valuable correction. We have corrected the subfigure labels to avoid duplication. 

The Sankey diagram previously labeled as Figure 11(b) has now been relabeled as Figure 11(c), and 

the subsequent subplots have been updated accordingly. The modified Figure 11 and its caption are 

as follows: 

“….  



  

Figure 11. Comparison of hybrid model performances across basins using ERA5-Land and 

CN05.1 precipitation data. (a) Spatial distribution of the best-performing hybrid models under 

ERA5-Land forcing. (b) Spatial distribution under CN05.1 forcing. (c) Sankey diagram showing 

the consistency of best-performing models across datasets. (d) Number of best-performing basins 

for each model in the 9 major river basins. (e) Number of best-performing basins in the 7 climate 

sub- regions. 



….” 

 

We would like to thank the editors and reviewers once again for their valuable suggestions on our 

manuscript. We have incorporated these suggestions into the revised manuscript. Looking forward 

to hearing from you. 

Chunxiao Zhang 

Corresponding author 

E-mail address: zcx@cugb.edu.cn 
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