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Key point

e Cumulative Change of Mainland Indochina Southwest Monsoon (MSwM) new definition
index improves understanding of monsoon transitions.

e Anomalous trends of Subtropical Westerly Jet and Tropical Easterly Jet are linked to changes
in wind patterns and monsoon timing.

e Anomalous Sea surface temperatures impact moisture transport during MSwM Retreat

phases.
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Plain Language Summary

The study investigates the delay withdrawal of the Mainland Indochina Southwest Monsoon (MSwM)
by using spatial trend connections with meteorological and oceanic factors. The new Cumulative
Change-Point Monsoon (CPM) definition index well described the definition of monsoon seasonal
shifting. The results show that the subtropical westerly jet is getting stronger while the tropical easterly
jet is getting weaker within these years. This influences the regional wind patterns and delays the
monsoon withdrawal. The study highlights the critical role of ocean-atmosphere interactions and local
atmospheric circulation in influencing the summer monsoon. Specifically, warmer sea surface
temperatures in the Indian Ocean enhance moisture transport through strengthened southwesterly
winds, while atmospheric pressure gradients drive moisture convergence over the region. These
processes contribute to prolonged monsoon seasons, increasing the risk of floods and disrupting
agricultural schedules, which significantly impact water management and farming in Mainland

Indochina.

Abstract

The study investigates the key factors that cause the Mainland Indochina Southwest Monsoon (MSwM)
to delay withdrawal, utilizing a spatial trend correlation between the monsoon index and various
meteorological and oceanic variables such as sea surface temperature (SST), zonal winds, and moisture
transport. A significant strengthening trend in the Subtropical Westerly jet (SWJ) and a weakening
Tropical Easterly jet (TEJ) not only impacts regional wind patterns but also delays the monsoon
departure. The anomalous South China Sea and the equatorial Indo-Pacific Ocean surface temperature
(SSTA) further contribute to these delayed withdrawals, and there is a significant correlation between
the MSwM withdrawal index and SSTA, moisture transport, and essential atmospheric factors. The
results clarify MSwM dynamics, offering significant insights for future climate research associated
with MSwM. The study also suggests that the variability of ocean-atmosphere interactions and local
atmospheric circulation patterns is critical for understanding monsoon variability, which has a potential
impact on climate predictions, water resource management, and agriculture practices over Mainland

Indochina.

Keywords: Mainland Indochina, Monsoon Withdrawal, MSwM, SWJ, TEJ, ENSO

1 Introduction

In tropical Asia, the summer monsoon system is one of the most significant meteorological
phenomena in the Northern Hemisphere. This monsoon onset and withdrawal are the most notable

intraseasonal variable in monsoon systems. The beginning of the summer rainy season, extensive
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convection, and a rapid change in atmospheric circulation characterize this period (Aung et al., 2017;
Bordoni & Schneider, 2008; Salinger et al., 2014). Based on previous science literature of the Asia|—
Pacific monsoon classification, there are three primary types of summer monsoons, East Asian
EASM), Indian—SM), and Western North Pacific. —(WNPSM) monsoons (B. Wang & H(i,
2002),( Supplementary Fig S-1). The eastern bay of Bengal (EBOB), as known as the mainland-
Indochina region (MIC) study area (Fig. 1Fig—ta) is situated in a transitional zone between the (IS
(India Summer Monsoon) and the WNPSM (Western North Pacific Summer Monsoon) systems (O

& Jonah, 2024). The monsoon indices had been developed to study the transition and boundary
between the Indian Summer Monsoon (ISM) and East Asian Summer Monsoon (EASM) (Cao et al.,
2012), characterize monsoon onset and withdrawal using rainfall-based metrics (Bombardi et al., 2019;
S. Zhang et al., 2024), and define these phases through circulation-based approaches (L. Chen et al.,
2023; Hu et al., 2022). The MIC also features complex terrain, with high mountain ranges and long
costal area. Simply, the MIC dominates a unique position between the southern areas of East and
Middle East Asia, where this monsoon system over MIC exhibiting transitional characteristics between
the two monsoon systems (Y. Zhang et al., 2002a). Consequently, significant variation in agricultural
planting and ploughing times occur over MIC affected by the monsoon rainfall (‘F_iggliig.—l-b*

depending upon the early or late monsoon onset or withdrawal.
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Fig. 1 (a) Topography (m) of the study area, including mainland Indochina. (b) Daily rainfall (mm) during the MSwM season. (c)
Climatological onset and (d) withdrawal dates of MSwM with standard deviation values (shaded, days). This figure was created with
Python 3.10 (Matplotlib 3.5.2 [https://matplotlib.org/], Cartopy 0.20.0 [https://pypi.org/project/Cartopy/]).

A range of onset and withdrawal indices has been established, based on rapid changes in extensive
atmospheric structures. Especially, the most commonly used atmospheric variables for defining onset
and withdrawal indices include rainfall (Ajayamohan et al., 2009; Colbert et al., 2015; Htway &
Matsumoto, 2011; Vijaya Kumari et al., 2018), and reversable component wind (CY Li, 1999; Li et

al., 2010; Webster & Yang, 1992). In addition to precipitation and circulation, the thermal and moisture

characteristics of the atmosphere also serve as an important indicator for describing the progression of

the monsoon season (Song et al., 2025; H. Zhang et al., 2012). The summer monsoon typically onset

to MIC between mid-May and early June, with slight variations in indices and statistics (Mao & Wu,
2007; Oo,2023a; Ren et al., 2022; B. Wang & Ho, 2002). The MSwM withdrawal displayed significant
interannual variability, with a extent of one to two weeks may vary among the earliest and latest

withdrawals based on climatological data (Evan & Camargo, 2011; Oo, 2023a)._In addition to ENSO

recent studies have demonstrated that mid-high latitude systems also have significant impacts on
4
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ENSO, East Asian monsoon onset and withdrawal, which should also be briefly reviewed (Hu et al|,

2020, 2025)

The global wind circulation and the El Nifio Southern Oscillation (ENSO) have been widely
studied for their influence on the interannual variability of monsoon onset (Roxy et al., 2014; R. Wu,
2017), the formation of South Asia's subtropical high (Q Guo, 1988; B. Wang et al., 2008; Y. Zhang
et al., 2002b), and fluctuations in local sea surface temperature (SST) (Salinger et al., 2014; Xu et al.,
2023). Based on these long-term physical atmospheric variables data, this study seeks to examine the
factors contributing to the delay withdrawal of the MSwM, with superior weight on ocean-atmosphere
interactions and zonal wind dynamics, which have been insufficiently explored in this area, since
monsoon rains are crucial for agriculture and fill up water supplies (Win Zin & Rutten, 2017; Zin Mie
Mie Sein et al., 2015). In this study, we present the variability of withdrawal dates over interannual
scale. Due to the significant up trending of local withdrawal date of MSwM, derived from the
combination of reversal of winds circulation (Ramage, 1971) and vertical moisture flux transport
changes (Fasullo & Webster, 2003). We investigate the mechanism driver of these delay withdrawal

and potential driver of continues untimely rainfall aftter MSwM withdrawal.

2 Data and Method

The study utilizes data from five sources:

1. Department of Meteorology and Hydrology, Myanmar (DMH): Daily observed rainfall, sea
level pressure, and annual onset and withdrawal dates for significant regions were collected from
DMH, which operates 79 meteorological stations nationwide. This data help assess validate of
reanalysis datasets.

2. NCEP/NCAR Reanalysis: This dataset provides zonal (u) and meridional (v) wind components,
specific humidity (q), geopotential height (z), and vertical velocity (w) at atmospheric isobaric
levels in the troposphere for wind analysis (Kanamitsu et al., 2002).

3. European Centre for Medium-Range Weather Forecasts - ECMWF: ERAS5 offers reanalysis
data with a 0.25° geographical resolution for global climate analysis, including sea level pressure
(SLP), moisture flux convergence (MFC), and outgoing longwave radiation (OLR) for the period
from 1991 to 2020 (Hersbach et al., 2020).

4. Unified Gauge-Based Analysis of Global Daily Precipitation (CPC): This dataset provides
rainfall data (M. Chen et al., 2008; Jiao et al., 2021).

5. Hadley Centre: Hadley Centre Sea Surface Temperature dataset (HadISST) (Selman & Misra,
2014).
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2.1.1 Definition of Monsoon onset and withdrawal by CPM index
The MSwM region is defined by coordinates 10°N—-30°N and 85°E—-110°E (Fig. 1; see Appendix
for additional details). We examine seasonal fluctuations in the moisture budget and extensive

atmospheric circulation, as established by:

Equation 1

_ 300hPa @_ a_w
MFC == [0 e Vo (U =P-E+7

This equation was developed from a prior study on the variability of the Asian Monsoon (Walker et
al., 2015). In this context, Moisture Flux Convergence (MFC) is a vital quantity that delineates the
equilibrium of moisture in the atmosphere. The initial segment of the equation encapsulates the
dynamic component, represented by the divergence of moisture flow "(Uq).V p” denotes the
movement and accumulation of moisture resulting from wind patterns. This dynamic element is
essential for comprehending how atmospheric circulation patterns affect moisture availability. The
second component, “P - E + dW/ 0t” signifies the thermodynamic equilibrium of moisture inside the
system. P represents precipitation, E signifies evaporation, and dW/dt reflects temporal variations in
water storage. This relationship illustrates how thermodynamic mechanisms regulate the moisture

budget and influence the overall climate dynamics of the monsoon zone.

By integrating dynamic and thermodynamic aspects, the cumulative change of the MSwM
(CPM) index provides a strong framework for analyzing the behavior of the monsoon circulation over
time. Building upon the MFC, we define the Cumulative Change of the MSwM (CPM) index of onset

and withdrawal as follows:

Equation 2

MSwM (CPM) = % * (D(U1-Uz) + D(P1-P2) + D(MFC) + D(TPuer) + D(OLR))

These five diagnostic variables were used to characterize the onset and withdrawal of the monsoon

over the transitional Mainland Indochina (MIC) region, outgoing longwave radiation (OLR), vertically

integrated moisture flux convergence (MFC), net precipitation (TpNet), meridional shear in zonal

winds (U1-U2), and pressure gradient (P1-P2). These variables are physically consistent with the

governing moisture budget equation. We determine the normalized values for each factor annually for
statistical investigation. The cumulative value change from positive to negative, or vice versa, is
verified for further statistical calculations. “D” in Equation (2) expresses the date when the state shifts
of positive or negative (+ to - or - to +) values and typically represents the change or difference in the

standardize values of each variable in a year.
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Thus, changes in MFC directly link large-scale circulation dynamics with rainfall variabilit\l

while TpNet (P—E) and OLR confirm convective activity and cloud cover. In this equation, D (U1}
U2) and D(P1 - P2) represent the differences in zonal winds and pressure between the southern and
northern regions of the Mainland Indochina (MIC). Specifically, the southern region (90°-100°E, 10°—
15°N) reflects the influence of the broad Indochina Peninsula, where the southwest monsoon winds
are most active, while the northern region (95°-100°E, 25°-30°N) captures the terrain-influenced
pressure dynamics near the eastern Tibetan Plateau (Fig. 1Fis—ta) and the southwest monsoon win

withdrawal pattern (Fig. 1Fis—td), we take pressure readings that are different from longitude range

as two distinct regions. The meridional shear in the 850-hPa zonal winds and the pressure gradient
between northern and southern regions which is driving monsoon flows, the key indicators of monsoon
circulation, are averaged across two distinct regions: the southern MIC (90E-100E, 10N-15N), referred
to as (UL,P1), and the northern MIC (95E-100E, 25N-30N), designated as (U2,P2). This approach

follows the Gill-type tropical circulation response (Gill, 1980), where deep convection excites

westward-propagating Rossby wave responses that enhance southwesterlies to the west of the

convention center, and the South China Sea—Bay of Bengal circulation system provides a dynamical

link between ISM and WNPSM (B. Wang et al., 2009; X. Wang & Zhou, 2024). Consequently, thp

five indices together capture the coupled thermodynamic and dynamic drivers of monsoon evolution

in this transitional region. The term D(MFC) captures the cumulative changes in moisture transpor[t

and convergence, essential for monsoon rainfall, while D(TPnet) represents net precipitation changes,
indicating monsoon withdrawal as well as onset by rainfall and D(OLR) the changes in outgoing
longwave radiation, closely linked to convective activity and cloud cover to confirm monsoon rainfall,
respectively. We calculate the mean change date of the standardized positive/negative value of the
outgoing longwave radiation (OLR), the vertically integrated moisture budget transition (MFC), the
net precipitation (TpNet), the meridional shear wind (U1-U2) (U-wind), and the pressure differential
(P1-P2) (dP). The first day of three consecutive positive or negative days is taken into consideration
when determining the change date. Next, we obtained each variable's change point dates for every year.
Lastly, the climatology data for every term date was acquired (Supplementary Table S1). We used
these findings to compute the MSwM Change Point Index, which is the arithmetic mean onset dates,
withdrawal dates, and season length (Supplementary Table S4). A student's t-test is used to calculate
the correlation coefficients of these findings at the 95% level of significance. This rounded approach

allows for a comprehensive assessment of the interrelationships among these parameters, simplifying

the identification of key onset (Fig. 1Eie—tc) and withdrawal (Fig. 1Fie—td). Moreover, commoild
statistical methods such as correlation (Krugman et al., 2018), regression (Ma, 2019), random forest
(Breiman, 2001), box and whisker (Schmidhammer, 2000) are also applied in the study at necessary
parts.
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The Random Forest technique, a widely used ensemble machine-learning method, was utilized to
find the relative relevance of variables controlling monsoon withdrawal and rainfall. It generates
several decision trees during training by sampling subsets of data and features, hence mitigating
overfitting and enhancing generalization (Breiman, 2001). Our study incorporated input variables
comprising atmospheric and hydrological factors, including Outgoing Longwave Radiation (OLR),
Net Precipitation (Net), Moisture Flux Convergence (MFC), Zonal Wind Shear (U), and Pressure
Differential (dP). Each tree generated a prediction, and the final output was ascertained by averaging
(for regression tasks) or by majority voting (for classification tasks). Box and whisker plots were
employed to graphically encapsulate the distributions of essential variables across various phases of
the monsoon season (Schmidhammer, 2000). It is good to examine the day-of-year distributions for
monsoon withdrawal timing based on many factors, including dP, U, MFC, Net Precipitation, and
OLR. This analysis clearly exhibited variability and key tendencies in the data, highlighting the
contribution of specific variables to withdrawal patterns. For example, zonal wind shear (U) exhibits
narrower variability, indicating a more consistent relationship with withdrawal timing compared to

other factors.
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3 Results and Discussion

3.1 Climatology Outlook

(a) Daily Variations of Variables

g
owo
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Normalized Value

Cumulative Change
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(c) Heatmap of Daily Variability

Variables
OLR Net MFC UV dp
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Normalized Vatue
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uv OLR dp MFC OLR
MFC Onset (14-May)

Fig. 2 Daily and cumulative variations of monsoon parameters with their seasonal progression. (a) Daily variations of normalized
parameters: pressure gradient (dP; red), wind shear (UV; yellow), moisture flux convergence (MFC; green), net precipitation (Net;
blue), and outgoing longwave radiation (OLR; purple). (b) Cumulative changes of the same parameters with identical color coding. (c)
Color strip timeseires showing the daily variability of all parameters throughout the year. Vertical dotted lines indicate monsoon onset
(green; 14-May) and withdrawal (red; 4-Oct), with light green shading highlighting the monsoon active period in (Fig a nd b). All
parameters are normalized and calculated according to Egs. (1) and (2). This figure was created using Python 3.10 with Matplotlib
3.5.2 (https://matplotlib.org/) and Seaborn.

Fig. 2 explained how the MSwM (CPM) index is constructed by combining both thermodynamic
and dynamic climatology daily contribution (Fig. 2.a) and their cumulative change (Fig. 2.b) of same
variables. Cumulative change curves (CMFC, Cdp, Cwind) help track the transitions in atmospheric
conditions that define the onset and withdrawal of the monsoon. The simultaneous positive and
negative shifts in MFC, OLR, pressure differentials, and wind shear facilitate the identification and
calculation of monsoon onset and withdrawal. Both figures underscore the significance of cumulative
effects in the MSwM index, where prolonged alterations over several days in moisture flux, wind shear,
and pressure differentials signify critical transitions in the monsoon cycle, thereby illustrating the
seasonal progression of the monsoon in contrast to mere daily variations. The Color strip timeseries
(Fig. 2.c) support more clarity transaction of monsoon season by same variables values. The

climatology dates for each year are shown in Table S-1 and S-2 of the supplemental material.
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However, the small asynchrony among variables in Fig. 2 arises because each diagnostic reflects

different aspects of the monsoon system with distinct adjustment timescales: dynamical fields (wind

shear, pressure gradient) respond rapidly to convective heating through Gill-type circulation, while

thermodynamic fields (MFC, TpNet, OLR) involve moisture storage and cloud-radiation feedbacks

that introduce short lags (Gill, 1980; B. Wang et al., 2009). The CPM index minimizes this effect by
averaging across all five variables, so that the central onset and withdrawal dates are robust, while the

spread provides an objective measure of uncertainty.

Some studies have indicated that the monsoon onset over the Bay of Bengal is significantly

correlated with that over the South China Sea and India (Xing et al., 2016). The India Monsoon Index

(IMI) , the Webster and Yang monsoon index for Asia (WYT), the West North Pacific monsoon index

et al., 1999; B. Wang et al., 2001, 2004; Webster & Yang, 1992). However, seasonal wind variation

and uniform rainfall can also be used to designate MSwM zones as sub-regions (Oo, 2022a, 2023b).
In terms of annual variability, MSwM and other South Asian monsoon indicators show a comparable

time-series pattern and a positive moderate connection (Supplementary Fig S-6).
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(a) Mianland-Indochina Southwest Monsoon
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(b) Mainland Indochina Southwest Monsoon

104 [ Onset
[ Withdrawal
8
w
[
7]
o]
O 6
k]
]
o
E 4
=]
-4
2‘
0
-15 -10 -5 Q 5 10 15 20

Day of Year (deviation from long-term mean)

Fig. 3 (a) Interannual variability of MSwM onset (green line) and withdrawal (vellow line) dates, with trends. (b) Frequency distribution
of deviations from mean onset and withdrawal dates, with implications for Indochina agriculture. This figure was created with Python
3.10 (Matplotlib 3.5.2 [hups://matplotlib.org/]).

Examining the distribution patterns of the onset and withdrawal dates of the MSwM across
MIC is interesting, despite the MSwM index reflecting changes in the whole MIC rather than a specific
region within its domain. In this study, we only consider interannual variability over southern region
(95E-100E, 10N-15N) (“S” area in Fig. 1Fig—t.b) where is the first onset point (during onset) and lait
withdrawal point (during withdrawal) in north-south-north shifting of monsoon characteristic due to
its role in the migration of the Intertropical Convergence Zone (ITCZ), which shifts northward during
boreal summer, initiating intense convective activity and precipitation. At this latitude, the strong land-
ocean thermal contrast generates a pressure gradient, drawing moist southwesterly winds from the
Indian Ocean that converge and bring rainfall (Goswami & Xavier, 2005). This region aligns with the
early onset of monsoon rainbands and moisture convergence observed in climatological data, as well
as the geographical position of southern Myanmar, India and Sri Lanka, which are the first landmasses
to experience the advancing monsoon (K Lau, 2000). Fig. 3.a shows interannual variation of onset and
withdrawal dates with their trend including whisker statistical box. It indicates the timing of onset and

withdrawal phases, which are vital for understanding how the regional monsoon system is developing.
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Over the MIC, early or delayed onset and withdrawal of the monsoon can dramatically affect the
seasonal rainfall patterns, which may lead to regional crop production and society plans. The trend
lines in both phases suggest possible long-term shifts in monsoon behavior (Fig. 3.a), may be influence
of the broader climatic drivers such as variability of ENSO or Indian Ocean dipole (IOD) (Ding et al.,
2011a; B. Wang & Ho, 2002). While ENSO/IOD influence monsoon dynamic circulation, their direct

impact on MSwM onset timing is secondary to regional thermodynamics (Oo, 2021, 2022b; Oo et al.,
2025; Oo & Jonah, 2024), The timeseriestime-series of dynamic and thermodynamic trend displayed

that withdrawal dates are significantly greater variation than onset dates within five variables of CPM
index for each year especially in dynamic boundary (Fig. 4). The frequency distribution of deviations
from the mean onset and withdrawal dates (Fig. 3.b), which explained that onset and withdrawal date
may early or delay generally one to two weeks (5 to 7 days as usual in general). The longest delay
(early) withdrawal phases occurred with 20 days (15 days) during this 30-year study period 1991-2020.
The onset phases are generally characterized by a rapid shift in moisture flux and dynamic
transformations over MIC, whereas the withdrawal phases occurs more gradually and may be affected
by extensive atmospheric patterns (Seager et al., 2010), including modifications in subtropical jets,
mid-latitude disturbances, and tropical easterly waves, which can introduce variability in the timing of

the retreat (Hu et al., 2019).
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withdrawal (Oo etl. 2023)-This2023). This figure was created with Python 3.10 (Matplotlib 3.5.2 [https.//matplotlib.org/]).
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Fo-reach-this-conclusion,—we-will-gofurtherinto-the-next-seetion—The interannual variations of thp
Mainland Indochina Southwest Monsoon (MSwM) onset and withdrawal dates from 1991 to 2020

reveal a clear divergence in behavior between the two phases when analyzed through thermodynami¢

ig. 4). The onset phase shows minimal lon

and dynamic components using the CPM index

change, with weak regression slopes of +0.09 days/year for the thermodynamic component and +0.19

days/year for the dynamic component, both statistically insignificant (Fig. 4.b). In contrast, thp

withdrawal phase exhibits a significant delay. especially in the dynamic processes, with a regressiof
slope of +0.80 days/year and a moderate correlation (R?2 = 0.35, CC = 0.59). The thermodynami¢

component also shows a positive trend, albeit weaker, at +0.45 days/year (R? = 0.21, CC = 0.46

indicating that dynamic atmospheric factors, such as upper-level wind changes, are increasingl

contributing to the delayed monsoon withdrawal (Fig. 4.a).

The random forest analysis further supports these findings. For onset prediction, the Net heat

flux (Net) and Moisture Flux Convergence (MFC) are the most important factors, reflecting the

dominant role of thermodynamic processes (Fig. 4.c). For withdrawal prediction, however, the 850

hPa zonal wind (U) emerges as the most critical driver, followed by pressure gradient (dP), with MF

ig. 4.d). Regarding seasonal rainfall, all five parameters (U, dP, MFC, Ne

laying a secondary role

thermodynamic factors on rainfall variability.

The box-whisker plot (Fig. 4.f) shows that MFC and OLR tend to correspond with delayed

OLR) contribute relatively evenly (Fig. 4.¢), highlighting the coupled influence of both dynamic ang

withdrawal dates, suggesting that lingering moisture convergence and persistent convective activit

can postpone the withdrawal phase. This aligns with previous findings that regional convective

systems and late-season tropical cyclones (Akter & Tsuboki, 2014; Fosu & Wang, 2015; Oo et all,

2024) can sustain rainfall events even after large-scale monsoon winds weaken (Chou et al., 2009].
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These results collectively point to a dynamic-thermodynamic asymmetry: while monsoon onset is

controlled primarily by energy build-up and moisture availability, the withdrawal is increasingly

modulated by dynamic atmospheric circulation anomalies, such as upper-level wind changes and

tropical disturbances from the South China Sea (X. Wang & Zhou, 2024).

The analysis suggests that the two phases of monsoon are influenced by distinct mechanisms

with weak interdependence. The onset phase remains stable over the study period, primarily driven by

thermodynamic factors, while the withdrawal phase shows a significant delay due to dynamic factors

(Fig. 4). This decoupling might be explained by different large-scale climate processes governing the

two phases: onset is mainly linked to pre-monsoon land-sea thermal contrasts and moisture build-u

whereas withdrawal is more sensitive to post-monsoon circulation shifts, tropical cyclone activity, and

upper-level wind anomalies. However, this finding also highlights the need for further research into

potential indirect links, such as how early or late onsets may influence intra-seasonal rainfall breaks

which in turn could modulate withdrawal characteristics.

3.2 Variation of MSwM withdrawal dates and Rainfall in October

The first Empirical Orthogonal Function (EOF) modes of October rainfall and mean sea level
pressure over the study area, and their normalized principal components (PCs) expressed in Fig. SFig-
5. The first EOF for rainfall, explaining 34.4% of the variance (Fig. 5Fig—5.a) and the first EOF for
MSLP, explaining a larger 81.5% of variance, indicating its stronger influence on regional climate (Fig.
5Fig—5.b). Positive and negative eigenvectors suggest the impact of MSLP and rainfall distribution
over withdrawal phases that reduction in rainfall and increasing in pressure. The regression between
monsoon withdrawal dates by MSwM definition index (CPM) and regional rainfall explained positive
relations (green areas in Fig. 5Eig—5.c) suggest that the index can significantly reflect the October
rainfall over the study area with 95% confidence. This show CPM index is significantly reflected to
southern MIC (“S” area in Fig. 1Fie—t.b), where is the last point of monsoon withdrawal, regional
rainfall during withdrawal phases. Moreover, PCs time series of rainfall (RF), and SLP, from 1991 to
2020 (Fig. 5Fig—5.d), are comparing with monsoon withdrawal dates and the correlation between
withdrawal dates and SLP shows 0.41, and between RF exhibited 0.24, with statistically confidence
(p > 0.05). However, the weak correlation between withdrawal timing and PCs RF suggests that while
the timing of monsoon withdrawal affects the overall seasonal rainfall, it does not directly influence
the spatial distribution of rainfall. This is because spatial distribution is primarily governed by local
factors such as topography, moisture transport, and mesoscale atmospheric dynamics rather than the
withdrawal timing alone. A late withdrawal may extend the period of rainfall over certain regions,
increasing total rainfall. This dominant EOF modes capture the large-scale spatial variability of
October rainfall and sea level pressure pattern, which is vital for understanding the dynamics of the
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transition from the warm wet southwest monsoon to the cold dry northeast monsoon season over MIC

(Hannachi, 2004; Oo, 2022c¢; X. Wu & Mao, 2018).

(a) EOF1 Rainfall 34.4% (b) EOF1 MSLP 81.5% 20N (c) Regression of MSWM vs Rainfall

30°N

25°N-

20°N+

15°N -+

{
e ’ 95°E 105°E s 95°E 105°E
[ SEEEEEEEEES | °E
-0.10 -0.05 000 005 010 -0.10 -0.05 0.00 0.05
Eigenvector Eigenvector
(d) Timeseries
3
2_
o o
SR | L B Wi ) PN bA
-1 W\/V v
._2-
[—RrRF ——sp Withdrawal | (cc=052(p<0.01)) (CC=-0.27 (p~0.05)]
-3 v T T T T T
1990 1995 2000 2005 2010 2015 2020

Year

Fig. 5 First EOF modes of (a) rainfall and (b) Slp. (c) The regression values of withdrawal CPM indexd and regional october rainfall
with dotted area of 95% statistically confident by t-test. (d) The interannual varaition of normalized PCs of first two EOF and normalized
MSwM withdrawal dates with their correlation CC by respective color. The horizontal red dotted sperated the late (>0.5) and early (<
-0.5) witdrawal years by their normalized anoamlies varues. This figure was created with Python 3.10 (Matplotlib 3.5.2
[https://matplotlib.org/], Cartopy 0.20.0 [hitps://pypi.org/project/Cartopy/]).

In addition, the SLP patterns are directly related to the atmospheric circulation that initiatives
rainfall and weather conditions over the region (Loikith et al., 2019). The shift in the SLP pattern could
indicate changes in the positioning of the low-level monsoon winds and subtropical high-pressure
systems, which bring the moisture-flux into mainland Indochina (Liu et al., 2021) (Fig S-5 in
supplementary ). The PCs associated with these modes provide a temporal perspective, indicating how
these dominant patterns advance over time. To perform composite analysis we collected eight delay
withdrawal years (2006, 2007, 2009, 2015, 2016, 2017, 2018 and 2020) and eight early withdrawal
years (1991, 1992, 1995, 1996, 2001, 2002, 2004 and 2019) by anomalies timeseries with PCs, we
collected positive(negative) 0.5 ( +/- renormalize 5-7 days) values years into late (early) withdrawal

years.
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3.3 Composite

The composite anomalies analysis of three majors’ variables what are used to define monsoon

column) and late years (middle column), with their percentage difference (last column) over mainland
Indochina, were compared. The analysis indicates notable patterns in the distribution of monsoonal

rainfall, especially in southern MIC. The difference % map delineates areas where rainfall has either

also result significantly in the same region as shown in Fig. 6Fig—6.c. This confirmed that the most
accurate classification skill of the MSwM CPM index over this southern MIC region as in (Fig. SFig:
5.0).

(a) Early_Rainfall (b) Late_Rainfall (c) ARainfall

85°E

40 80 -100 -!0 5 50 180
mm

(e) Late_MFC
30°N

85°E __95°E 105°E
80

gcm=2s71

(h) Late_OLR
N

25°N
20°N

15°N
10:N b .‘

T
85°E __ 95°E__ 105°E

2 18 -0 -5 10
wm~2 (%)

Fig. 6 Climatological anomalies mean rainfall (mm), MFC (g/cm?/s) and mean OLR (Wm?) for (a,d,g) early years, (b,e,h) late years,
and (c,fi) the percentage difference, illustrating changing moisture dynamics over mainland Indochina. Red dotted show the area of
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95% statistically confident by t-test. This figure was created with Python 3.10 (Matplotlib 3.5.2 [https://matplotlib.org/], Cartopy 0.20.0
[https://pypi.org/project/Cartopy/]).

Changes in Moisture Flux Convergence (MFC) also impact rainfall patterns, with decreased

MEFC potentially reduction rainfall and increasing it, leading to wet conditions (Fig. 6Fig—6.c and dj.
I

The figure compares climatologically to mean MFC in low-lying areas over southern MIC show

similar negative/ positive patterns is validationvalidated by their different values (Fig. 6Fie—6.1). Samp
|
patterns are also found for OLR of early and late withdrawal years over southern MIC. Thus, the

MSwM CPM index is significantly reflected in this area.

N (a) October_850hPa_Wind_Corr o (b) October_200hPa_Wind_Corr

60°N

60°

N (c) October MFC Corr

60°

oq M o J - i, - ° . o
30 0°E 60°E 100°E 140°E 30 §0°E 60°E 100°E 140°E
., (€) October_500hPa_Omega_Corr . (f) October_500hPa_Geopotential_Corr
60°N 60°N I
30°N ' ] 30°N

3 ?0"’E 60°E 100°E 140°E e §0°E 60°E 100°E 140°E

-0.8 04 06 08

Fig. 7 Correlation between withdrawal date and October (a) 850 hPa wind, (b) 200 hPa wind, (c) MFC, (d) SLP, (e) 500 hPa Omega,
and (f) 500 hPa geopotential, highlighting the drivers of monsoon withdrawal in mainland Indochina. Dotted shows the area of 90%
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statistically confident by t-test. This figure was created with Python 3.10 (Matplotlib 3.5.2 [htips://matplotlib.org/], Cartopy 0.20.0
[https://pypi.org/project/Cartopy/]).

The correlation between these various atmospheric variables, showing how relation of these
variables with the delayed monsoon withdrawal (Fig. 7Fig—7). The correlation between the withdrawal
date and wind speed was calculated at each grid point, analyzing the withdrawal date against both the
u-component and v-component speed. Statistical significance was determined using a student’s t-test,
with the dotted areas marking regions where the correlation is significant at the 90% confidence level.
The correlations for 850 hPa wind speed (Fig. 7Fig—7.a) expose strong negative relationships over
MIC, indicating that weaker low-level winds contribute to the delay in withdrawal. This aligns with
the positive-negative-positive trend pattern as in the Fig. 8Fie—8.a and c, where negative correlations
suggest a weakened low-level wind over MIC. In contrast, the 200 hPa wind correlation (Fig. 7Fig-
7.b) shows a positive relationship, particularly over the northern regions, suggesting stronger upper-
level winds during delayed monsoon retreat periods, which likely strengthens the subtropical westerly
jet (SWJ) region and weakening in Tropical Easterly Jet region (TEJ). The SW1J, defined as a dominant
westerly wind stream at approximately 200 hPa in mid-latitudes, and the TEJ, a tropical Easterly wind
at similar altitudes. Similar patterns are also exhibited in trend plots Fig. 8Fig—8. b and d. A delayed
withdrawal sustains the thermal gradient between the Indian Ocean and the Asian continent,
maintaining a strong meridional temperature gradient in the upper troposphere and thereby intensifying
the SWIJ. Simultaneously, the TEJ weakens due to reduced upper-tropospheric divergence and the

diminishing impact of tropical heating as the monsoon season transitions.

The correlation with Moisture Flux Convergence (MFC) (Fig. 7Fie—7.c) also specifies a
significant positive relationship in key study areas and positive trends also exhibited over same area
(Fig S-7 in supplementary). This positive trend suggests that delayed monsoon withdrawal is
associated with stronger moisture convergence, trapping moisture likely to experience rainfall in
southern MIC for a longer period and it’s also association with previous composite analysis as in Fig.
6Fig—6. The Sea Level Pressure (SLP) correlation (Fig. 7Fig—7.d) also shows a study area of negative
correlation, which suggests that lower pressure systems dominate during delayed withdrawal,
promoting cyclonic activities that extend the monsoon season and rainfall. Meanwhile, the positive
correlations with 500 hPa Omega (Fig. 7Eig—7.¢) highlight the role of vertical motion over southern
MIC, where positive Omega values (upward motion) correlate with a delayed withdrawal, can lead to
cloud formation and rainfall if the conditions are right. Moreover, the 500 hPa geopotential positive
correlations (Fig. 7Fie—7.1) also show a weakened mid-tropospheric ridge over the subtropics with
positive trend (Fig S-7 in supplementary), leading to the late monsoon withdrawal as the atmospheric

circulation shifts.
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The wind trends and anomalies highlight a significant alteration in both the lower (850 hPa)
and upper (200 hPa) wind patterns (Fig. 8Fig—8). The 850 hPa wind pattern (Fig. 8Fie—8.a) indicate's
a weakening easterly flow over the South China Sea and southern MIC, and the 200 hPa wind trend
(Fig. 8Fig—8.b) indicates an intensification of the westerly flow linked to the SWJ, enhancing th|3
upward motion and which may lead to anomaly lower-upper dynamic circulation patterns, and it may
lead to delaying the timing of seasonal withdrawal of the monsoon. There is a noticeable positive-
negative zonal wind anomaly pattern, especially at the 200 hPa level, in the difference in wind structure

between late and early years (late years minus early years) at both altitudes, and this pattern changes

significantly over time (Fig. 8Fig—8.c and d). Delays in the MSwM withdrawals are directly affectelli
by changes in jet stream dynamics, such as the strengthening of the SWJ and the weakening of the
Tropical Easterly Jet (TEJ). The results of these additional investigations provided confirmation of this
pattern of dynamic abnormality. Specifically, across the SWJ and TEJ regions, variations in wind
intensity and direction are critical in affecting the delayed withdrawal trend, according to the CPM
index analysis of these dynamic circulation patterns. Important regions where wind anomalies are
strongly linked to delayed withdrawal are highlighted by the plus and minus signs in the Fig. 8. This
emphasizes as they indicate critical areas where wind anomalies are closely associated with delayed

withdrawal.
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Fig. 8 The spatial trend of (a) 850hPa horizontal moisture transport(g/kgs™') and 200hPa wind component (m/s). Percentage difference
(late minus early) in horizontal wind patterns at (c) 850 hPa, and (d) 200 hPa between late and early years of MSwM withdrawal month
October during 1991-2020. Red and grey dotted show the area of 95% statistically confident by t-test. This figure was created with
Python 3.10 (Matplotlib 3.5.2 [https://matplotlib.org/], Cartopy 0.20.0 [https://pypi.org/project/Cartopy/]).

The vertical structure of zonal wind, vertical motion, and moisture transport, comparing early

and late years of the monsoon are exhibited in Fig. 9Fig—9. The cross-section of vertical velocity over

mainland Indochina, which is essential for understanding how wind circulation at different

atmospheric layers contributes to vertical motion and convective processes (Kotal et al., 2014; Sawyer,

found exceeds and shifts northward during the late years as a reverse (Fig. 9Fig—9.b). This reflects a

strengthening in monsoon intensityintensity. and this is consistent with the observed weakening of TEJ,

which decreases upper-level divergence and leads to delayed monsoon withdrawal.

The strong walker circulation over the study regions in the early years (Fig. 9Fig-—9.c), and

weakens in the late years (Fig. 9Fig—9.d) are suggestings that the significant of TEJ and vertical

circulation have declined, contributing to the delayed monsoon withdrawal. The reduced convective
activity and moisture transport highlights how weaker jets are affecting monsoon dynamics (Roxy et
al., 2015).
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(a,c) for early years , (b,d) for late years. Grey dotted show the area of 95% statistically confident by t-test. This figure was created
with Python 3.10 (Matplotlib 3.5.2 [https://matplotlib.org/], Cartopy 0.20.0 [https://pypi.org/project/Cartopy/]).

it

Fhe—anabysis—The weakening of the Tropical Easterly Jet (TEJ) and the concurren

intensification of the Subtropical Westerly Jet (SWJ) exert a pivotal control on the monsoo

n

withdrawal process through modifications of the upper-tropospheric thermodynamic and dynami

structures. A pronounced negative trend in the 200 hPa zonal wind over the tropical belt signifies

weakening TEJ, while an enhanced westerly anomaly over the subtropics indicates a strengthenin

SWI (Fig. 8.b and d). This shift reflects a northward migration of the jet core and a weakening of th

upper-level Easterly ventilation, which reduces the divergent outflow critical for maintaining dee

convection during the mature monsoon phase. The low-level wind trends (Fig. 8.a and ¢) depict
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weakening of the 850 hPa monsoon westerlies, leading to reduced moisture convergence over the Indo-

China Peninsula, as supported by the negative moisture flux convergence correlations. Furthermore

)

the suppressed ascending motion at mid-troposphere levels (Fig. 7.e), coupled with positive 500 hPa [Formatted: Font color: Blue
geopotential height anomalies (Fig. 7.1), signify the onset of mid-level atmospheric stabilization and {F‘"matte": Font color: Blue
the collapse of the monsoon thermal structure. [F"ma“ed‘ Font color: Blue
{ Formatted: Font color: Blue

The vertical cross-sections reveal that during the late years, corresponding to delayed

withdrawal events, the upper-tropospheric divergence weakens (associated with TEJ weakening),
while the upper-level westerly shearing and subsidence induced by the intensified SWJ strengthen (Fig. { Formatted: Font color: Blue
9.c and d) This enhanced subsidence promotes tropospheric drying and suppression of convection, [Formatted: Font color: Blue

which together act as a dynamical brake on the monsoon system. facilitating its withdrawal.

Collectively, these findings exhibited the barotropic and baroclinic adjustments in the upper-level

circulation, where the interaction between the weakening TEJ and the intensifying SWJ modifies the

large-scale monsoon dynamics, disrupts the monsoon Hadley circulation, and accelerates the seasonal

transition toward the dry post-monsoon regime.

o e he o of—atmospnhe nfluencino he—delaved—M

upper-tevelwesterliesintensify- This conclusion lends credence to those earlier findings (Krishnamurti

et al., 2012; Roxy et al., 2015). In addition, prior research has demonstrated the connection between

sustained moisture transport and extended convective activity with the monsoon, which is supported
by the positive link between moisture flux convergence and delayed monsoon withdrawal (Goswami
et al., 2006). The atmospheric dynamics anomaly, specifically the weakening of the TEJ and the
intensification of the SWJ, are significant variables influencing the noted trend of delayed monsoon

withdrawal.
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Fig. 1016 Regression between Aug-Sep Sea surface temperatures (SSTs) and (a) MSwM withdrawal dates, (b) October tropical easterly
Jet, (c) October sub-tropical westerly jet, (d) October rainfall over MIC and (e) October 850hPa moisture divergent. Dotted hatches
mean 95% confident area by t-test statically. The red boxed show MSwM region and red dotted box show the area in the Pacific with
the strongest negative positive correlation. (f) Correlation heatmap between variables used in this study. DMH refers to the MSwM
withdrawal dates from National weather services recorded. This figure was created with Python 3.10 (Matplotlib 3.5.2
[https://matplotlib.org/], Cartopy 0.20.0 [hitps://pypi.org/project/Cartopy/]).

The relationship between August-September SST anomalies and the delayed withdrawal of the
MSwM showing not significant correlation over the equatorial Pacific Ocean (Fig S-9, supplementary),
indicating that negative anomaly SSTs in this region are associated with delayed monsoon withdrawal

(Fig. 10Fig—1+0.a). This is constant with the role of warm SSTs over Indochina region are maintaininlg
I

convective activity (Roxy et al., 2015; Krishnan et al., 2016) and preventing the on-time withdrawal
of the monsoon however cold SSTs over Nifio3-4 region does not directly impact on withdrawal dates.
The red dotted boxed region shows the area in the Pacific with the strongest negative/positive
correlation, suggesting a link between SST anomalies in the central Pacific and the timing of monsoon

withdrawal. The relationship between SST and the tropical easterly jet (TEJ) and subtropical westerly

S-9.b, supplementary) suggests that warmer SSTs exceeding the strength of TEJ
25
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This agreed with the previous trend and composite finding (Fig. 8Fig—8) that the weakening of the TEJ
is a critical factor in delaying the monsoon withdrawal. The weakening of the TEJ boost the lower-
level monsoon circulation to endure for an extended duration over MIC (Huang et al., 2020; Sreekala
et al., 2014). In contrast, Fig. 10Eie—10.c shows a negative regression between SST and SWJ, this
demonstrates that cooler SSTs over same area also strengthen the SWJ. This finding supports the idea
that a positive anomalies SWJ also impact to delayed withdrawal (Dimri et al., 2015; Sreekala et al.,

2014).

The Aug-Sep SST of tropical Pacific and Indian ocean and rainfall within October can also
predict to MIC October rainfall. The negative correlation otherwise (La Niiia) in the equatorial Pacific
and the negative Indian Ocean Dipole (IOD) mode are associated with exceeding rainfall over MIC
(Fig. 10Fig—0.d), which is a mark of a extended monsoon (as mentioned in Fig. 4Fig—4). This
association supports the earlier finding that increased SSTs are associated with extended rainfall during
the late monsoon, especially in the central Pacific and the Indo-Pacific Warm Pool (Ghosh et al., 2009;
Sabeerali et al., 2014). Furthermore, the pattern of connection associates with the impact of global
climate models like the El Nifio-Southern Oscillation (ENSO), which changes regional SSTs and

rainfall distributions in the Indo-Pacific area.

To confirm this SST anomaly influence over regional rainfall or moisture flux patterns, we
performed the correlation between 850-hPa moisture transport strength over MIC and Indo-Pacific
SST (Fig S-9.e, supplementary). The negative regression coefficients over the central Pacific and the
northern western Indian Ocean indicate that negative ENSO and IOD enhance moisture transport at

lower levels (Fig. 10Eig—10.e). However, ENSO significantly influences the monsoon onset in the

Indochina region, where El Niflo tends to delay onset, as seen in the central Pacific's warm SSTs

positively correlated and regressed with later onset (Fig.S-10). These vice versa correlation and

regression results all together point to the critical role of SSTs in driving the extended moisture
convergence that maintains convective activity and delays monsoon withdrawal (Roxy et al., 2019;

Sharmila et al., 2013)._While this study identifies ENSO and IOD as key modulators of MSWM onset

and withdrawal, emerging evidence suggests that Arctic-monsoon teleconnections may also play arole.

Recent work demonstrates that MSWM intensity anomalies can drive September Arctic Sea ice

variability via atmospheric bridges (Than Oo et al., 2025). Moreover, (S—Chen et al., (2024) and :
Cheng et al., (2025) highlight Arctic sea ice potential feedback on tropical modes (ENSO/IOD), which

in turn affect monsoon dynamics. Although our analysis focuses on tropical drivers, the bidirectional

nature of these interactions, particularly the Arctic’s indirect influence on withdrawal via ENSO/IOD,

and this should be prioritized for further investigation.
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In addition, the correlation matrix in Fig. 10Fic—10.f summarizes the links among the maih
variables of the research, including the MSwM withdrawal index, TEJ, SWJ, rainfall (RF), 850-hPIa
moisture transport, and indices indicative of ENSO and IOD. This exhibited the anomalous SSTs,
especially in the central Pacific and northern Indian Ocean, significantly influence the intensity of the
TEJ and SW1J, as well as moisture transport and rainfall patterns. The weakened TEJ, strengthened
SW1, and positive moisture convergence led to the well-known delay of MSwM departure
+1). The results align with the current literature connecting SST anomalies, major climate models lik
ENSO and IOD, and monsoon variability (Ding et al., 2011b; Jia et al., 2013; Krishnamurthy &
Kirtman, 2009). Comprehending these linkages enhances long-term predictions and prepares

agricultural systems for modifications in the southwest monsoon departure date from MIC.

s / SRV : - = PR
20°E 60°E 100°E 140°E 180° AA0™\N AOQ™N

(b) Early Withdrawal Years

140°E 180° AAG N AOO™\N

Fig. 1111 Air-Sea interaction Dynamical schematic of (a) late and (b) early withdrawal years. This figure was created with Python 3.1p
(Matplotlib 3.5.2 [https.//matplotlib.org/], Cartopy 0.20.0 [htips://pypi.org/project/Cartopy/]).

4 Conclusion

Focusing on the timing of the monsoon onset and withdrawal, the study offers vital insights into

the changing dynamics and interannual variability of the Mainland Indochina Southwest Monsoon
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(MSwM). With the development of the Cumulative Change of the MSwM (CPM) index, a more
thorough knowledge of monsoon transitions may be achieved than with typical daily measurements.

This index effectively captures the continuous build-up of crucial atmospheric components.

Withdrawal timing has been noticeably delayed over the past few decades, according to the
findings, which also show clear patterns in the start and withdrawal phases. SWJ and the TEJ, which
control the monsoon withdrawal processes, have had a significant impact on this delay. Additionally,
the MSwM atmospheric circulation and moisture transport are significantly influenced by SST
anomalies, especially in the western Pacific and Indian Oceans. In mainland Indochina, extended
monsoon seasons increase the risk of flooding and interfere with agricultural cycles, underscoring the

urgent need for efficient water management and flexible farming techniques.

As conclusion, the MSwM CPM index is a great tool for tracking monsoon variability, and the
framework it gives for studying how climate change is affecting the regional monsoon system through
composite correlation and trend analysis is invaluable. Improving our understanding of monsoon
behavior and constructing more accurate prediction models will require further studies, specifically on
the teleconnection mechanisms between large-scale climatic drivers (such ENSO and 10D) and

MSwM.
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Data Availability
Source Data

All Reanalysis rainfall, wind components, OLR, and Mean Seal Level Pressure netcdf4 data for this

study were downloaded from the NCEP and ECMWEF data portal.

The historical record of onset and withdrawal dates by DMH of Myanmar the actual monthly rainfall
observation data and mean sea level pressure data from 79 observation stations used to support the
findings of this study was provided under permission by Myanmar's Department of Meteorology and
Hydrology (DMH) and hence cannot be freely distributed. Requests for access to these data should be

made to the Director-General of DMH, Myanmar. https://www.moezala.gov.mm/

Software availability

Open Grads (http://opengrads.org/ ), Climate data operator (https://code.mpimet.mpg.de/ ), Python and

IBM SPSS are mainly used for this study. Among these first two are open-source applications for

everyone. Codes are also available upon request.
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