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Abstract. Near-surface wind speed (NSWS) plays a critical role in water evaporation, air quality, and energy production. 

Despite its importance, NSWSHowever, changes in NSWS over South Asia, a densely populated and climate-sensitive region, 

remain underexplored. This study aims to understandassess and quantify the uncertainties in theNSWS projections of NSWS 

over South Asia, particularly in relation towith a focus on internal variability. Utsilizing a 100-member large ensemble 

simulation from the Max Planck Institute Earth System Model, we identified the Interdecadal Pacific Oscillation (IPO) as the 20 

leadingdominant climate mode of internal variability influencing South Asianaffecting NSWS in the near future. Our findings 

revealresults show that the IPO could significantly impact future NSWS, with its positive phase being linked to strengthened 

of the IPO enhances regional westerly flows and increased NSWS across South Asia. Notably, the study shows thatwinds, 

leading to an increase in NSWS. Importantly, accounting for the impactinfluence of the IPO could reduce NSWSreduces 

projection uncertainty of NSWS by up to 8% in the near future and 15% in the far future. This highlightsThese findings 25 

highlight the keycritical role of internal variability, particularlyespecially the IPO, in modulating regional NSWS projections. 

By reducingnarrowing uncertainties in these projections, our findings can inform , this work supports improved planning for 

climate adaptation strategies for South Asia, helping optimizeand wind energy assessments in the context of changing 

windsdevelopment in South Asia. 
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1 Introduction 

Near-surface wind speed (NSWS), observed at approximately 10 meters above ground level, is a crucial meteorological 

variable. As a key driver in the hydrological cycle, NSWS directly impacts water evaporation and runoff (Roderick et al., 

2007). Additionally, NSWS is essential for air quality management by influencing the dispersion of atmospheric pollutants 35 

(Jacobson and Kaufman, 2006). Its importance extends to the renewable energy sector, particularly in wind energy generation, 

where fluctuations in NSWS can significantly affect the energy output of both onshore and offshore wind farms, as highlighted 

by recent research (Pryor and Barthelmie, 2021; Shen et al., 2024). In 2020, wind energy contributed 6.1% of global electricity 

generation, with projections indicating an increase in its share as the adoption of renewable energy grows to meet international 

goals for carbon emissions reduction and climate change mitigation (Antonini and Caldeira, 2021; Council, 2023).  40 

External forcings that can drive NSWS changes include greenhouse gas emissions (Zha et al., 2021b; Shen et al., 2022a), 

aerosols (Bichet et al., 2012), volcanic eruption (Shen et al., 2025b), surface roughness related to vegetation changes (Vautard 

et al., 2010), as well as land use and land cover change (Minola et al., 2021). Climate teleconnections such as the Atlantic 

Multidecadal Oscillation (AMO) (Li et al., 2024), Interdecadal Pacific Oscillation (IPO) (Shen et al., 2021a), and the North 

Atlantic Oscillation (Minola et al., 2016) are significant modes of internal variability. Overall, these factors can be categorized 45 

as either external forcings or internal variability drivers, and NSWS changes are driven by a combination of both  (Wu et al., 

2017; Zha et al., 2024). 
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1 Introduction 50 

Near-surface wind speed (NSWS), observed at approximately 10 meters above ground level, is a crucial meteorological 

variable. As a key driver in the hydrological cycle, NSWS directly impacts water evaporation and runoff (Roderick et al., 

2007). Additionally, NSWS is essential for air quality management by influencing the dispersion of atmospheric pollutants 

(Jacobson and Kaufman, 2006). Its importance extends to the renewable energy sector, particularly in wind energy generation, 

where fluctuations in NSWS can significantly affect the energy output of both onshore and offshore wind farms, as highlighted 55 

by recent research (Pryor and Barthelmie, 2021; Shen et al., 2024). In 2020, wind energy contributed 6.1% of global electricity 

generation, with projections indicating an increase in its share as the adoption of renewable energy grows to meet international 

goals for carbon emissions reduction and climate change mitigation (Antonini and Caldeira, 2021).  

External forcings that drive changes in NSWS include greenhouse gas emissions (Zha et al., 2021b), aerosols (Bichet et al., 

2012), volcanic eruption (Shen et al., 2025a), surface roughness related to vegetation changes (Vautard et al., 2010), as well 60 

as land use and land cover change (Minola et al., 2021; Zhang and Wang, 2021). Climate teleconnections such as the Atlantic 

Multidecadal Oscillation (AMO) (Li et al., 2024), Interdecadal Pacific Oscillation (IPO) (Shen et al., 2021a), El Niño–Southern 

Oscillation (Li et al., 2025), and the North Atlantic Oscillation (Minola et al., 2016) are significant modes of internal variability. 

Overall, these factors are typically categorized as either external forcings or internal variability drivers, with NSWS changes 

resulting from the combined influence of both (Wu et al., 2017; Zha et al., 2024; Andres-Martin et al., 2023). 65 

The pressure gradient force predominantly controls changes in mean NSWS, with large-scale atmospheric circulation patterns 

playing a pivotal role at regional scales (Minola et al., 2023).(Minola et al., 2023; Chuan et al., 2024; Zha et al., 2022; Zha et 

al., 2021a). Variations in these patterns are largely manifestations of internal variability, though external forcings like 

greenhouse gases and aerosols also exert some influence (Jiang and Zhou, 2023). Understanding the degree to which NSWS 

changes can be(Jiang and Zhou, 2023; Chen and Dai, 2024; Grant et al., 2025; Jiang et al., 2023; Liu et al., 2022; Xue et al., 70 

2023). Understanding the degree to which NSWS changes are attributed to internal variability is essential for assessing the 

role of anthropogenic influences in past changes and for making reliable projections of future trends. However,  our current 

knowledge in this area remains limited. 

Previous studies have investigated long-term NSWS changes over South Asia (Jaswal and Koppar, 2013; Saha et al., 2017; 

Das and Roy, 2024). For example, South Asian NSWS experienced a significant decline from 1961 to 2008 (Jaswal and Koppar, 75 

2013), with a more pronounced decrease along the eastern coast compared to the western coast (Saha et al., 2017). However, 

only a few of these studies have attributed the observed changes to internal variability. Moreover, in model projections, NSWS 

shows considerable uncertainty in South Asia: Coupled Model Intercomparison Project phase 5 (CMIP5) models suggest an 

increase in NSWS on the eastern coast but a decrease on the western coast and northern regions by the end of the 21st century 

(Saha et al., 2017), while CMIP6 models project a decrease in NSWS over South Asia in the near future, followed by an 80 

increase (Shen et al., 2022a). These discrepancies emphasize the substantial uncertainties in projecting future NSWS changes 

over South Asia. 
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Distinguishing the effects of internal variability from external forcing in NSWS changes using only observational data or a 

single simulation is challenging, as they provide just one realization (Shen et al., 2021b; Deng et al., 2024; Pryor et al., 2025). 

To isolate the signals of internal variability, we utilize large-ensemble simulations (LEs). These simulations share identical 85 

greenhouse gas emission scenarios and boundary conditions but differ only in initial condition disturbances (Deser et al., 2020). 

The multi-member ensemble mean (MMM) of the LEs represents the effects of external forcings, while differences among 

members reflect the impacts of internal variability (Mitchell et al., 2017; Li et al., 2019; Wu et al., 2021). In this study, we 

specifically use a 100-member Max Planck Institute Earth System Model (MPI-ESM), which has been compared its historical 

performance with observation-based data, and applied to project NSWS changes (Zha et al., 2021b; Shen et al., 2022a). 90 

Therefore, our objectives are to (i) identify the leading mode of internal variability affecting near-future NSWS changes over 

South Asia and (ii) quantify the uncertainties of NSWS projections associated with internal variability. The remainder of this 

paper is structured as follows: Section 2 presents data and methods; Section 3 discusses the results; and the summary and 

discussion are provided in Section 4. These findings offer valuable insights for better understanding regional NSWS changes 

from the perspective of internal variability. 95 

 

2 Material and Methods 

2.1 Reanalysis data 

To evaluate the ability of MPI-ESM to reproduce the historical NSWS trend over South Asia, we utilize several up-to-date 

reanalysis datasets. These include NSWS data from the Japanese Meteorological Agency (JRA-55JRA55) (Kobayashi et al., 100 

2015), which is considered the most representative of observed NSWS over India (Das and Baidya Roy, 2024); the National 

Meteorological Information Center of the China Meteorological Administration (CRA-40) (Liu et al., 2023), which has been 

shown to outperform other datasets for NSWS over China (Shen et al., 2022b)CRA40), which has been shown to outperform 

other datasets for NSWS over China  (Liu et al., 2023; Shen et al., 2022c); and the European Centre for Medium-Range 

Weather Forecasts atmospheric reanalysis fifth generation (ERA5) (Hersbach et al., 2020), a global reanalysis with the highest 105 

spatial resolution (Bell et al., 2021).(Bell et al., 2021). All reanalysis datasets cover a common period from 1970 to 2020, 

except for CRA-40CRA40, which spans from 1979 to 2020. To facilitate comparison, all reanalysis datasets have been 

bilinearly interpolated to a uniform spatial resolution of 1.5° x 1.5°. 

2.2 Large-ensemble simulations 

The 100-memberIn this paper we selected the MPI-ESM LE primarily for its large ensemble size (100 members), which is 110 

well-suited for isolating internal variability. Other available LEs have smaller ensemble sizes (40–50 members), which may 

reduce their effectiveness in detecting internal variability (Milinski et al., 2020). The MPI-ESM has a horizontal spatial 

resolution of T63 (~1.9°) and 47 vertical layers extending up to 0.01 hPa in the atmosphere. The historical simulations of MPI-

ESM span from 1850 to 2005, following the protocol established within the framework of CMIP5. The representative 

concentration pathway scenarios, RCP4.5 and RCP8.5, with radiative forcings increasing by 4.5 W/m² and 8.5 W/m², 115 

respectively, by 2100, are performed for the period from 2006 to 2099 (Maher et al., 2019). The individual members of the 
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MPI-ESM ensemble differ only in their initial conditions (Bittner et al., 2016)While data from 2006 to 2020 are technically 

part of the RCP experiment, they no longer represent the future from today’s perspective. Therefore, we define 2021 as the 

beginning of the future period, and designate 1970–2020 and 2021–2099 as the present and future periods, respectively. The 

individual members of the MPI-ESM ensemble differ only in their initial conditions (Bittner et al., 2016), with branching times 120 

for each member from the preindustrial control run detailed in (Maher et al., 2019). These "initial condition disturbances" refer 

to slight variations in the starting conditions of each member, introduced to capture a range of possible outcomes driven by 

internal variability.(Deser et al., 2020; Phillips et al., 2014; Schneider et al., 2011). 

2.3 Inter-member EOF 

To identify the dominant spatial modes that account for the differences in NSWS trends across ensemble members, we employ 125 

an inter-member empirical orthogonal function (EOF) (Smith and Jiang, 1990; Hannachi et al., 2007). For inter-member EOF, 

the member index replacing the time index in a conventional EOF analysis. In other words, the decomposition is applied to an 

M×N matrix, where M represents the number of ensemble members (100 in this case), and N denotes the number of grid points 

over the South Asia region. Each row of the matrix contains the spatial pattern of NSWS trends for a single ensemble member. 

This analysis can help us yield the leading spatial modes that explain inter-member differences in NSWS trends, along with 130 

the associated principal component (PC) scores that characterize the magnitude of each mode across ensemble members. 

2.32.4 Isolating external and internal forcing signals 

Considering the member discrepanciesdifferences among ensemble members of the MPI-ESM arising from random internal 

variabilities, the internal variability can be isolated by the deviations in each member from the MMM: 

𝐴(𝑖) = 𝐴𝑓𝑜𝑟𝑐𝑒𝑑 + 𝐴𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑖), 𝑖 = 1,2,3 ⋯ 100      (1) 135 

where 𝐴𝑓𝑜𝑟𝑐𝑒𝑑 is the MMM of the MPI-ESM, which denotes the response to external forcings. 𝐴𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑖) is the residual of 

the original 𝐴(𝑖) minus the external forced response. 𝐴𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑖) varies among different members and shows the variability 

associated with internal variability. 

2.42.5 IPO and AMO definitions  

The climate teleconnection index used to represent the IPO is often derived using an empirical orthogonal function (EOF)EOF 140 

method applied to sea surface temperature (SST), as outlined by Mantua and Hare (2002b). In this study, the IPO index is 

defined as the 9-year running mean of the principal component (PC)Mantua and Hare (2002b). In this study, the IPO index is 

defined as the 9-year running mean of the PC score from the EOF of detrended annual SST over the North Pacific (20°N–

70°N, 120°E–100°W). Similarly, the AMO index is defined as the 10-year running mean of detrended, annually averaged SST 

over the North Atlantic (0°N–60°N, 80°W–0°W) (Trenberth and Shea, 2006).(Trenberth and Shea, 2006). As both the IPO 145 

and AMO indices are derived from detrended SSTs, they are inherently detrended and minimally affected by long-term global 

warming. For this analysis, both indices are calculated for each member in the LEs. 

2.52.6 Quantifying the contributions of IPO/AMO to NSWS 

The impacts of IPO are roughly extracted by removing the NSWS variations that are linearly related to the IPO index from 9-

year running mean of NSWS, as: 150 
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𝑁𝑆𝑊𝑆(𝑖, 𝑡) = 𝑟(𝑖)𝑁𝑆𝑊𝑆,𝐼𝑃𝑂 × 𝐼𝑃𝑂(𝑖, 𝑡) + 𝑁𝑆𝑊𝑆𝑛𝑜𝑛−𝐼𝑃𝑂(𝑖, 𝑡), 𝑖 = 1,2,3 ⋯ 100     (2) 

where 𝑟(𝑖)𝑁𝑆𝑊𝑆,𝐼𝑃𝑂 =
𝜕 𝑁𝑆𝑊𝑆(𝑖,𝑡)

𝜕𝐼𝑃𝑂(𝑖,𝑡)
 is the regression coefficient of IPO index and the 9-year running mean NSWS within member 

i during 1974–2095. This extended period ensures statistical robustness by including multiple IPO cycles, thus effectively 

isolating the persistent, long-term influence of the IPO and reducing sampling uncertainty (Huang et al., 2020a; Jiang and 

Zhou, 2023). Thus, 𝑟(𝑖)𝑁𝑆𝑊𝑆,𝑃𝐷𝑂 × 𝐼𝑃𝑂(𝑖, 𝑡) represents the IPO-related component of the NSWS over South Asia in the 155 

member i and the 𝑁𝑆𝑊𝑆𝑛𝑜𝑛−𝐼𝑃𝑂(𝑖, 𝑡) represents the IPO-independent NSWS component without the IPO-induced variations 

for each member (Fig. S1). Similar methods are also applied to study the contribution of AMO to NSWS. Following the 

timeframes selected in (Dreyfus et al., 2022), we set the 2021–2050 as the near-term and 2021–2095 as the full 21st century to 

compare the contribution of IPO across different periods. Further details of the quantification method are provided in Figure 

S1. 160 
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Figure 1. Temporal NSWS changes over South Asia. Annual mean near-surface wind speed (NSWS) trends under the RCP8.5 scenario for (a) the 100-

member ensemble mean of MPI-ESM, (b) inter-member standard deviation, (c) the mean trend of the 10 members with the highest increase in NSWS over 

South Asia, and (d) the mean trend of the 10 members with the highest decline in NSWS over South Asia between 2021 and 2050. Slant hatching denotes 165 

trends that passed a significance test with P < 0.05. The box in (a) to (d) highlights the South Asia region (5°N–30°N, 65°E–90°E). (e) Time series of the 9-

year running mean of NSWS anomalies (relative to the 1980–2010 mean). Purple, dark-blue, and green solid lines represent reanalysis data from CRA40, 

ERA5, and JRA55, respectively. Gray and brown solid lines represent the ensemble mean of all members of MPI-ESM for the present (1970–201420) and 

future (20215–2099), with light-gray and light-brown lines indicating the associated 5th and 95th percentiles. Orange and blue solid lines represent the 

ensemble mean of the ten simulations with maximum and minimum trends in NSWS. Dashed lines refer to the maximum and minimum ranges of MPI-ESM. 170 

 

3 Results 

3.1 Present and near-future South Asian NSWS 

To evaluate the ability of MPI-ESM in simulating NSWS, we compared its historical simulation over 1970–2020 with three 

reanalysis datasets. The MPI-ESM successfully reproduces the current slowdown of the NSWS trend, as seen in all reanalysis 175 

datasets, with comparable magnitudes of interdecadal variability (Fig. 1e). Note that the 2021–2099 data are based on the 

RCP8.5 scenario, whereas the 2006–2020 data follow the RCP4.5 scenario, aiming to reflect real-world conditions as closely 

as possible. Figure S2 further presents the mean NSWS trend over South Asia for each dataset. Specifically, the historical 

mean NSWS trends over South Asia are estimated to be –0.049, –0.037, –0.064, and –0.045 m s⁻¹ per 30 years for MPI-ESM, 

CRA40, ERA5, and JRA55, respectively. The results suggest that the decreasing trend of NSWS is generally captured by the 180 

MMM of MPI-ESM. Similarly, most regions in the reanalysis datasets also exhibit a reduction in NSWS. The differences 

between MPI-ESM and the reanalysis data may arise from that the ensemble mean tends to suppress internal variability, as 

such variability is random across individual members and can be averaged out. These findings indicate that the MPI-ESM 

large ensemble reasonably reproduces the historical NSWS trend, and that internal variability plays a significant role in shaping 

this trend over South Asia. Moreover, Figure S3 illustrates a good agreement in the 850 hPa wind climatology during the 185 

historical period between MPI-ESM and three reanalysis datasets. The model reproduces key large-scale circulation features, 

such as the easterlies over the western Pacific and the westerlies over the Indian Ocean, supporting its credibility in simulating 

historical NSWS patterns. Under the high-emission scenario of RCP8.5, the externally forced annual NSWS in the MMM of 

MPI-ESM exhibits a hiatusrelatively stable phase over South Asia in the near term, reflecting inter-decadal variability. Notably, 

significant increases in NSWS are observed over the central and eastern coasts of India, contrasted by pronounced decreases 190 

over northern regions (Fig. 1a). The large standard deviation observed in the NSWS trends among members is comparable to 

the long-term trend (Fig. 1b), suggesting a substantial impact of internal variability on NSWS trends. Furthermore, theAlthough 

the decreasing trend of NSWS in the MMM of MPI-ESM MPI-ESM successfully reproduces the current slowdown of the 

NSWS trend, as seen in all reanalysis datasets, with comparable magnitudes of interdecadal variability (Fig. 1e). Although the 

decreasing trend persists throughout the 21st century, significant uncertainty remains in near-term projections, as reflected by 195 

the large spread among members. The NSWS trends for this period range from −0.20 to 0.34 m s⁻¹ per 30 years, with the 5th 

to 95th percentile spread of −0.17 to 0.11 m s⁻¹ per 30 years.  
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To further quantify the impact of internal variability, we analyzed NSWS trends within two extreme groups: the ten members 

with the largest increases in NSWS (Max10) and the ten with the largest decreases (Min10). The Max10 group displays 

pronounced increasing trends across most of South Asia (Fig. 1c), while the Min10 group primarily exhibits significant 200 

decreasing trends over northwestern South Asia (Fig. 1d). The average trend in the Min10 and Max10 groups is −0.18 m s⁻¹ 

per 30 years and 0.14 m s⁻¹ per 30 years, respectively. The diversity in NSWS changes between these two groups, despite 

identical external forcing, underscoreshighlighting the significant role of internal variability in influencing South Asian NSWS. 
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 205 

Figure 2. The leading inter-member EOF pattern of the NSWS trend over South Asia and the associated sea surface temperature trend under the 

RCP8.5 scenario between 2021 and 2050. (a) AnThe first mode of an EOF analysis wasthat applied to the 100 members' NSWS trends over South Asia 

(5°N–30°N, 65°E–90°E) in MPI-ESM, with the . Inter-member index replacing the time index in a conventional EOF analysis.based on a 100×N matrix, 

where N is the number of grid points over South Asia. (see Method). (b) The group differences between the mean trend of the ten members with the highest 

decline in NSWS over South Asia and the ten members with the highest increase. The box in (a) and (b) highlights the South Asia region. (c) The regression 210 

pattern between the PC score of (a) and the sea surface temperature trends of corresponding members. Slashes denote regions are significant at the 95% 

confidence level. 
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To identify the leading mode of internal variability affecting NSWS and its associated SST pattern, we performed an inter-

member EOF analysis. As shown in Fig. 2a, NSWS exhibits a uniform enhancement across South Asia, accounting for 54.6% 215 

of the total variance. This spatial pattern closely resembles the trend differences observed between the Max10 and Min10 

groups (Fig. 2b), indicating that the EOF analysis successfully captures the leading mode of NSWS variability among members. 

Internal climate variability stemsrefers to the natural fluctuations of the climate system that occur in the absence of external 

forcing, arising from the non-linearnonlinear dynamical processes intrinsic to the climateatmosphere, the ocean, and 

particularly the coupled ocean–atmosphere system, with ocean-atmosphere coupling playing a crucial role (Deser et al., 220 

2010).(Deser et al., 2010). The regression coefficient between the leading PC of NSWS trends and the SST trends of 

corresponding members from 2021 to 2050 is shown in Fig. 2c. The regression analysis reveals a significant cooling trend 

over the North Pacific and a significant warming trend over the tropical central-eastern Pacific, resembling a classical IPO-

like mode (Mantua and Hare, 2002a).. This alignment highlights the IPO's role in modulating large-scale tropical atmospheric 

circulation, suggesting a strong link between surface and low-level tropospheric winds over South Asia. Moreover, to assess 225 

the robustness of these findings under different warming scenarios, we compared the results from the RCP4.5 scenario with 

those under RCP8.5, finding that the spatial patterns are quite similar (Fig. 3). 
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Figure 3. The leading inter-member EOF pattern of the NSWS trend over South Asia and the associated sea surface temperature trend under the 

RCP4.5 scenario between 2021 and 2050. (a)–(c) Same as in Figure 2, but for the representative concentration pathway 4.5 (RCP4.5). 230 

 

3.2 Quantifying the contribution of IPO 

Previous works have seldom linkedexplored the connection between low-level tropospheric winds withand NSWS (Wu et al. 

2017). ChangesHowever, changes in low-level tropospheric winds can affectmodify the vertical distribution of momentum, 

thereby leading to changes in wind shear between different atmospheric layers (Jacobson and Kaufman, 2006).(Jacobson and 235 

Kaufman, 2006). Figure 4 illustrates the regression coefficient between the leading PC of NSWS trends and the trends in winds 

at 850 hPa and 10m. During the positive phase of the IPO, anomalous easterly winds over the tropical Indian Ocean are 

observed (Fig. 4a). This anomaly in tropical oceanic low-level tropospheric winds counteracts the climatological mean state 

(Fig. 4b), suggesting a weakening of the Walker Circulation. The resulting anomalous descending motion triggers anticyclonic 

circulation to the northwest of the Maritime Continent, akin to the Gill response (Gill, 2007).(Gill, 2007). The associated 240 

westerly winds, part of this anticyclone pattern near the Indian Ocean, enhance the climatological westerlies over South Asia. 

The MPI-ESM also provides data on surface meridional and zonal winds, allowing for exploration of the relationship between 

winds at 850 hPa and the surface. The spatial distributions of the regressed and climatological 10m winds (Figs. 4c and 4d) 

closely resemble those of the 850 hPa winds over South Asia (Figs. 4a and 4b), highlighting the consistency of atmospheric 

circulation changes within the region’s lowest atmospheric layer.  245 
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To quantify the IPO’s effect on NSWS changes over South Asia in the near future, we isolated the IPO-related NSWS changes 

by removing the NSWS changes linearly related to the IPO index in each member (see Section 2.56). Histogram analysis 

reveals a narrowing in the distribution of NSWS trends over South Asia after removing the IPO's effect, with the standard 

deviation in the members’ trends decreasing by approximately 8%, from 0.09 to 0.08 m s⁻¹ per 30 years (Fig. 5a).  Although 

modest, these reductions suggest that the uncertainty in NSWS trend projections over South Asia could be reduced by 250 

improving our ability to predict the IPO in the future. Applying this method to far-future projections for the 21st century 

(2021−2095) further confirms the sensitivity of these conclusions to the selected period and underscores the significance of 

long-term changes, which can be compared with inter-decadal variability in the near future. As expected, by eliminating the 

IPO’s influence, projection uncertainty is significantly reduced by 15%, nearly double the reduction observed in the near future 

(Fig. 5b). 255 
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Figure 4. Large-scale circulations associated with the inter-member EOF and climatological circulations under the RCP8.5 scenario between 2021 

and 2050. (a) The regression pattern between the PC score and the trends of corresponding members' zonal wind (shading) and wind (vector) at 850 hPa. 

Shading and vectors denote significance at the 0.10 level. (bc) Climatological zonal wind (shading) and wind (vector) at 850 hPa from 2021 to 2050 across 

all members of MPI-ESM. (cb) Same as (a), but for winds near the surface. (d) Same as (bc), but for winds near the surface. 260 

 

Notably, a recent study shows that over land in Asia, projection uncertainty is mostly dominated by model uncertainty, with 

internal variability accounting for around 20% of the total uncertainty (Zhang and Wang, 2024). This highlights the significant 

role of the IPO, whose contributions of 8% and 15% represent 40% and 75% of the internal variability in different future 

periods, respectively. This robust quantification supports the conclusion that NSWS projections are significantly affected by 265 

the IPO, with its influence growing and extending through the end of this century. 

 

Figure 5. Histograms of the NSWS trend over South Asia in the future under the RCP8.5 scenario with and without the impact of the IPO. (a) 

Histograms and fitted distribution lines of the area-averaged South Asian NSWS trend derived from the 100 MPI-ESM ensemble members from 2021 to 2050. 

The gray bars and black fitted curves show the frequency of the occurrence of NSWS trends, while the red bars and red fitted curves represent the frequency 270 

of NSWS trends with the IPO’s influence removed through linear regression against the IPO index in individual runs. (b) Same as (a), but for the period from 

2021 to 2095. 

 

4 Conclusion and Discussion 
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In this study, LEs from the MPI-ESM are used to project future changes in NSWS over South Asia. We identify the IPO as 275 

the leading mode of internal variability affecting South Asian NSWS in the near future. A positive IPO phase is conducive to 

enhancingenhances westerly flowswinds over South Asia, leading to an increaseresulting in increased NSWS. Furthermore, 

we quantify the impactinfluence of the IPO, finding and find that theremoving its impact can reduce uncertainty in NSWS 

projections could be reduced by approximately 8% in the near-term and 15% in the long-term after removing the IPO’s effect.. 

While these reductions may seem modest, they are crucialimportant for regional planning, especiallyparticularly in wind-280 

sensitive sectors such as energy production, agriculture, and disaster risk management.  

Our findings significantly enhanceimprove the understanding of the linkagerelationship between internal variability and 

regional NSWS changes. Given the substantial IPO-related uncertainty in, future NSWS changes, future researchstudies should 

also consider other internal interdecadal climate variabilities that could impactmay affect NSWS. The AMO, for instance, is 

another important oscillation known to influence tropical atmospheric circulation (Zhang et al., 2019). However, our analysis 285 

using a similar quantification method showsreveals that the AMO’s contribution to NSWS changes is minimal, 

underscoringfurther highlighting the IPO’s predominancedominant role of the IPO in influencingmodulating NSWS over 

South Asia in the near future (Fig. 6).6). The limited impact of the AMO on projected NSWS may partly be due to its longer 

oscillation period, which reduce its relevance over shorter time scales and may be masked by external forcings over longer 

periods. Additionally, the large geographic distance between the Atlantic and South Asia likely weakens the AMO’s influence 290 

via teleconnection pathway, especially under strong external forcings. 
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Figure 6. Histograms of the NSWS trend over South Asia under the RCP8.5 scenario with and without the impact of the AMO between 2021 and 

2050. (a) Histograms and fitted distribution lines of the area-averaged South Asian NSWS trend derived from the 100 MPI-ESM ensemble members from 295 

2021 to 2050. The gray bars and black fitted curves show the frequency of the occurrence of NSWS trends, while the red bars and red fitted curves represent 

the frequency of NSWS trends with the AMO’s influence removed through linear regression against the AMO index in individual runs. 

 

To date, few studies have systematically evaluated the ability of MPI-ESM, comparing to other models, to simulate the 

mechanisms by which the IPO influences atmospheric variables and associated SST variability in the western Pacific and 300 

Indian Oceans. Nonetheless, existing research has shown that MPI-ESM performs reasonably well in simulating key features 

of the Indian and East Asian summer monsoons (Guo et al., 2016). Similarly, studies by Prasanna et al. (2020) and Henley et 

al. (2017) indicate that CMIP5 models, including MPI-ESM, can generally reproduce the IPO and associated circulation 

features over South Asia. Furthermore, MPI-ESM has been applied in past studies to investigate IPO-related variability and 

has demonstrated some skills in capturing its key spatial and temporal characteristics (Huang et al., 2020a; Huang et al., 2020b), 305 

lending confidence to its representation of internal variability in this study. However, Henley et al. (2017) also noted that many 

CMIP5 models underestimate the ratio of decadal-to-total SST variance, suggesting that the IPO’s actual influence on variables 

like NSWS may be stronger than currently simulated. 

The resolution of the LE used in this study may not be high enough, limiting the climate model'slimit its ability to 

simulatecapture regional details of NSWS inover South Asia, where the terrain iswhich features complex. There is also room 310 

terrain. Several areas for improvement in this work, whichremain and should be addressed in future research: (i) Future studies 

should incorporate additional LEs, with a sufficiently large ensemble size (Milinski et al., 2020), to enhance the robustness of 

these conclusions, which currently rely heavily on this model. (ii) The "hist-resIPO" experiment in CMIP6 historical 

simulations (Zhou et al., 2016), which includes all forcings used in CMIP6 historical simulations but restores SST to model 

climatology plus observed historical anomalies in the tropical IPO domain, could provide deeper insights into the dynamic 315 

mechanisms of IPO-related tropical SST's influence on regional NSWS changes. (iii) Future improvements in predicting the 

IPO, potentially achievable through the Decadal Climate Prediction Project(Milinski et al., 2020), to enhance the robustness 

of these conclusions that currently rely heavily on a single model. (ii) The "hist-resIPO" experiment in CMIP6 (Zhou et al., 
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2016), may enhance the reliability of NSWS projection over South Asia.which includes all forcings used in CMIP6 historical 

simulations but restores SST to model climatology plus observed historical anomalies in the tropical IPO domain, could offer 320 

deeper insights into the dynamic mechanisms through which IPO-related tropical SST's influence on regional NSWS changes. 

(iii) Improvements in IPO prediction, potentially achievable through the Decadal Climate Prediction Project in CMIP6, may 

enhance the reliability of future NSWS projections over South Asia (Zhou et al., 2016).  

Additionally, future research should focus on extreme wind events against the backdrop of consistently decreasing average 

NSWS, especially with the background as year-maximum NSWS events are projected to increase in frequency in South Asia 325 

(Yu et al., 2024). 

 

Although this study emphasize the role of the IPO in reducing NSWS projection uncertainty over South Asia, accurately 

predicting decadal IPO variations remains a major challenging (Pang et al., 2025). This limitation hampers the reliability of 

regional wind projections and highlights the need for improved prediction of internal climate variability. In addition, because 330 

our analysis is based on a single-model ensemble, the projection spread reflects internal variability only. Inter-model 

uncertainty, shown in other studies to exceed any single mode of internal variability, has yet to be assessed and should be a 

focus of future multi-model research. Finally, extreme wind events under a background of declining mean NSWS also merit 

attention, particularly as year-maximum NSWS events are projected to become more frequent in South Asia (Yu et al., 2024; 

Zha et al., 2023). 335 
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