QBOi El Niño_Southern Oscillation experiments: Teleconnections of the QBO

Naoe, Hiroaki¹, Jorge L. García-Franco², Chang-Hyun Park³, Mario Rodrigo⁴, Froila M. Palmeiro^{4,5}, Federico Serva⁶, Masakazu Taguchi⁷, Kohei Yoshida¹, James A. Anstey⁸, Javier García-Serrano^{4,9}, Seok-Woo Son³, Yoshio Kawatani¹⁰, Neal Butchart¹¹, Kevin Hamilton¹², Chih-Chieh Chen¹³, Anne Glanville¹³, Tobias Kerzenmacher¹⁴, François Lott¹⁵, Clara Orbe¹⁶, Scott Osprey¹⁷, Mijeong Park¹³, Jadwiga H. Richter¹³, Stefan Versick¹⁴, Shingo Watanabe^{18, 19}

¹Meteorological Research Institute (MRI), Tsukuba, 305-0052, Japan

²National School of Earth Sciences (Escuela Nacional de Ciencias de la Tierra), UNAM, CDMX, 04510, Mexico

10 ³School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea

⁴Group of Meteorology, Universitat de Barcelona, Barcelona, 08028, Spain

⁵CMCC Foundation - Euro-Mediterranean Center on Climate Change, Bologna, 40127, Italy

⁶Institute of Marine Sciences, National Research Council (CNR-ISMAR), 00133, Italy

⁷Department of Earth Science, Aichi University of Education, Kariya, 448-0001, Japan

15 Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, V8N 1V8, Canada

⁹Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain

¹⁰Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan

¹¹Met Office, Exeter, EX1 3PB, UK

30

¹²International Pacific Research Center (IPCC) University of Hawaii, Honolulu, 96822, USA

10 13U. S. National Science Foundation National Center for Atmospheric Research (NSF NCAR), Boulder, 80305, USA

¹⁴Karlsruher Institut für Technologie (KIT), Karlsruhe, 76131, Germany

¹⁵Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure, Paris, 75231, France

¹⁶National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies (GISS), New York, 10025, USA

25 ¹⁷Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, OX1 3PU, UK

¹⁸Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236-0001, Japan

Correspondence to: Hiroaki Naoe (hnaoe@mri-jma.go.jp)

September August, 2025

Revised, to be submitted to Weather and Climate Dynamics

Abstract. This study investigates examines Quasi-Biennial Oscillation (QBO) teleconnections and their modulation by the El Niño-Southern Oscillation (ENSO), using a multi-model ensemble from of the Atmospheric Processes And their Role in Climate (APARC) QBO initiative (QBOi) models. Some difficulties arise in Analyzing examining observed QBO-ENSO

¹⁹Advanced Institute for Marine Ecosystem Change, Tohoku University, Sendai, 980-8578, Japan

teleconnections is challenging because it is difficult to from separate distinguishing the respective influences of QBO and ENSO influences outside of the QBO region, due to aliasing between the QBO and ENSO overing the historical record. To isolateseparate these the QBO and ENSO signals, simulations awere conducted with annually_repeating prescribed sea-surface temperatures representingeorresponding to idealized El Niño andor La Niña conditions (the QBOi EN and LN experiments, respectively). In LN, four out of nine models are to reproduce the observed Holton-Tan relationship within a half of the observed amplitude. In the Arctic winter climate, higher frequencies of sudden stratospheric warmings (SSWs) occur more frequently are found in EN than in LN₃₅ however, and unlike in the observations, there is no discernible differences of in SSW frequencyies between QBO westerly (QBO-W) and QBO easterly (QBO-E) phases. The Asia-Pacific subtropical jet (APJ) shifts significantly equatorward during QBO-W compared to QBO-E in observations, butwhile this the APJ-shift is not robust across models, regardless of the ENSO phases. In the tropics, the sign and spatial pattern of the QBO precipitation response vary widely across models and experiments, indicating that any potential QBO signal is strongly modulated by the prevailing ENSO phases of ENSO. Overall, the QBOi models exhibitshow unrealistically weak QBO wind amplitudes in the lower stratosphere, which mayeould explainexplain the weak polar vortex and APJ responses, as well as and the weak precipitation signals in the tropics. In contrast, tThe QBO teleconnection withto the Walker circulation during in boreal summer and fautumn shows a consistent signals in both across observations and and most models. Specifically, with the QBO-W phase is characterized by featuring upper-level westerly and lower-level easterly anomalies over the Indian Ocean-Maritime Continent relative to the QBO-E-phase, although theits amplitude and timing of these anomalies remainare model-dependent. Notably, the This influence impact of the QBO phase on the Walker circulation appears not to be insensitive to the ENSOthe phase of ENSO.

Short summary (500 characters, incl. spaces)

45

55

65

Links between the stratospheric Quasi-Biennial Oscillation (QBO) and atmospheric circulations in the tropics, subtropics, and polar regions, as well as and their modulation by the El Niño—Southern Oscillation, are examined through model experiments. The QBO—polar vortex—QBO connection links is are reproduced by a multi-model ensemble at about within a half of the observed amplitude. Weak Poor performance of QBO signals in the se tropics, subtropics, and polar regions is likely due to unrealistically weak QBO amplitudes in the lower stratosphere.

Key words: stratosphere-troposphere coupling, teleconnection, QBO, ENSO

1 Introduction

80

85

The Quasi-Biennial Oscillation (QBO) and the El Niño—Southern Oscillation (ENSO) are the leading modes of climate variability in the tropical stratosphere and tropical troposphere, respectively. The QBO is a semi-periodic wind variation characterized by downward-propagating easterly and westerly wind regimes in the equatorial stratosphere, with an average period of aboutapproximately 28 months (Baldwin et al., 2001; Anstey et al., 2022b). It represents The QBO is an important source of predictability due to its long timescale and its-teleconnections extending beyondoutside the tropical stratosphere. The QBO is primarily driven by vertical momentum fluxes from due to upward-propagating equatorial wave activity generated by tropospheric convective systems (Lindzen and Holton, 1968; Holton and Lindzen, 1972; Plumb and McEwan, 1978).

Over the past twoa couple of decades, atmospheric general circulation models (AGCMs) and Earth system models (ESMs) are have being increasingly included developed to include an internally—generated QBOs to represent more realistic modes of internal variability (e.g. Butchart et al., 2018). To simulate a realistic QBO, Mmost of these models require parameterization of unresolved gravity waves to simulate an internally generated QBO, including specific treatments conditions of parameterized and/or resolved convection, high horizontal and vertical resolution, and weak implicit and explicit grid-scale dissipation (Anstey et al., 2022b). Although the QBO is primarily an equatorial stratospheric phenomenon, it influences impacts the climate system beyondoutside this region throughvia teleconnections. We can obtain a deepermore in depth understanding of QBO teleconnections—including (extratropical impacts, tropical and subtropical effects impacts, and their interactions with other phenomena—)can be achieved by intercomparing many state-of-the-art, stratosphere-resolving models that simulate a QBO-like oscillations in the tropical stratosphere.

The QBO ean-influences the Northern Hemisphere (NH) winter stratosphere by modulating planetary-scale waves that affectdistort the stratospheric polar vortex. The observed statistical relationship between the QBO phase and polar vortex strength is commonly referred to as the Holton-TanHolton-Tan effect (Holton and Tan, 1980, 1982). When the QBO in the lower stratosphere (~50 hPa) is in its westerly phase (QBO-W), the polar vortex tends observed to be stronger and colder, and a reducing the likelihood of sudden stratospheric warming (SSW) events is reduced. Conversely, during when the QBO is in its easterly phase (QBO-E), the stratospheric polar vortex is weaker, warmer, and more disturbed. The underlying mechanisms underlying for this effect have been extensively investigated examined in both by many observational and modeling studies. The mechanism proposed by Holton and Tan (1980) proposed that explain this effect relationship results from involves a latitudinal shift of the zero-wind line, which acts as an effective waveguide for upward-propagating planetary waves in the NH winter stratosphere (Holton and Tan, 1980; Baldwin et al., 2001; Anstey and Shepherd, 2014; Watson and Gray, 2014; Gray et al., 2018; Lu et al., 2020; Anstey et al., 2022b). A related similar but distinct mechanism suggests that involves planetary waves interacting with the zonal wind anomalies associated with the QBO-induced secondary circulation, without not requiring zero-wind line induced wave breaking induced by the zero-wind-line (Ruzmaikin et al., 2005;

Naoe and Shibata, 2010; Garfinkel et al., 2012b; White et al., 2015; Naoe and Yoshida, 2019; Rao et al., 2020; Anstey et al., 2022b). A tropospheric pathway of the Holton-TanHolton-Tan relationship has also been proposed. In Tthis mechanism, involves Rossby waves propagateing from regions of tropical convection to higher latitudes, including the Aleutian low-pressure region, and disturb the stratospheric polar vortex is disturbed bythrough the subsequent upward wave activity flux into the stratosphere, which is modulated bythrough tropospheric processes (Yamazaki et al., 2020). Although the relative importance of these different mechanisms remains somewhat unclear, due to the QBO's long timescale these teleconnections may enhancelead to increased the predictability of the extratropical stratosphere on sub-seasonal time scales due to the QBO's long periodicity (Boer and Hamilton, 2008; Scaife et al., 2014; Garfinkel et al., 2018).

ItThe QBO has also been suggested tothat the QBO affects the tropical troposphere by modifying deep convective activity and vertical wind shear nearalong the tropopause (Gray et al., 1992; Collimore et al., 2003). The QBO-induced zonal-mean meridional circulation modulates the temperature vertical temperature profile in the equatorial upper troposphere—and—lower stratosphere (UTLS), producingleading to a QBO signature in tropical tropopause temperature and wind. Although the notionidea of a "direct effect" of the QBO on the tropical and subtropical UTLS had been discussed in the literature since the 1960s, it was not yet widely accepted until the early 2000s (Hitchman et al., 2021). Recently a possible downward influence of the QBO on the tropical troposphere has also been found in the Madden–Julian Oscillation (MJO) (Yoo and Son, 2016; Marshall et al., 2016; Son et al., 2017; Martin et al., 2021; Elsbury et al., 2025). For more recent reviews of stratosphere—troposphere coupling in the tropics, see Haynes et al. (2021) and Hitchman et al. (2021).

Observational and modeling studies suggest that the interannual variability of tropical precipitation is, at least partially, modulated by the phase of the QBO (Collimore et al., 2003; Liess and Geller, 2012; Gray et al., 2018). In observations, the QBO signal in tropical precipitation shows zonally asymmetric patterns, for example e.g., wetter conditions in the eastern Pacific Intertropical Convergence Zone (ITCZ) during QBO-W compared to QBO-E (Gray et al., 2018). Serva et al., 2022). The similarity between the QBO and ENSO signals in observations may result from eould potentially be eaused by the higher number of El Niño events coinciding with QBO-W than with QBO-E (García-Franco et al., 2022). Serva et al. (2022) analyzed the simulated precipitation in Atmospheric Model Intercomparison Project (AMIP)-type simulations from the first phase of Quasi-Biennial Oscillation initiative (QBOi) experiments (Butchart et al., 2018), and They found that those simulations have a limited ability to reproduce the observed modulation of the tropical tropopause—level processes, even after removing subtracting the variability associated with the ENSO index. In these sea-surface temperature (SST)-forced, free-running simulations, the east Pacific ITCZ precipitation response to the QBO, which resembles the observed pattern, is reproduced simulated by many, though not all, models (Fig. 11 of Serva et al. (2022)). However, the simulated QBO signal inon the tropopause is generally underestimated or not-unrealistic in these models.

<u>In additionAlso</u>, Rao et al. (2020b) explored <u>and evaluated</u> three dynamical pathways<u>through the</u> (stratosphere polar vortex, North Pacific <u>viathrough the</u> subtropical downward arching zonal winds, and tropical convection <u>pathways</u> for <u>QBO</u> impacts of the <u>QBO</u> on the troposphere, using the state-of-the-art CMIP5/6 models with a spontaneously generated QBO. They found that more than half of the models <u>couldean</u> reproduce at least one of the three pathways, but few models <u>couldean</u>

reproduce all of the three routepathways. Using similar SST-forced, as well as coupled ocean_atmosphere coupled simulations with a single model, García-Franco et al. (2023) suggested that the simulated precipitation response to the QBO strongly is heavily dependent on the state of ENSO and the Walker circulation, the strength of the QBO and the ocean_atmosphere coupling.

135

140

150

155

160

165

In the subtropics, the QBO has a direct influence one of the QBO modulates the subtropical jet bythrough itsthe QBO secondary circulation. Observational studies have indicated that the QBO can affect the subtropical jet variability, particularly especially in the Pacific sector (e.g. Garfinkel and Hartmann, 2011a; 2011b). During QBO-W, a horseshoe-shaped zonal wind anomaly forms in the UTLS upper troposphere and lower stratosphere associated with anthe equatorward shift of the Asian-Pacific jet (APJ) (Crooks and Gray, 2005; Simpson et al., 2009); This and the resultant response is evident found even in the East Asian near the surface over East Asian (Park et al., 2022; Park and Son, 2022). A study using a QBO-resolving multi-model ensemble found no clear evidence of a QBO teleconnection to the subtropical Pacific-sector jet (Anstey et al., 2022c), whereas while another multi-model study found that seven out of 17 models captured this effect (Rao et al., 2020b).

ENSO teleconnections to the NH winter stratosphere have been widely reported in numerousa large number of observational studies (van Loon and Labitzke, 1987; Camp and Tung, 2007; Garfinkel and Hartmann, 2007; Song and Son, 2018) and in modeling studies (Taguchi and Hartmann, 2006; García-Serrano et al., 2017; Palmeiro et al., 2017, 2023; Trascasa-Castro et al., 2019; Weinberger et al., 2019). During El Niño winters, the polar vortex tends to beis weaker, and the polar region becomesis warmer compared tothan ENSO-neutral wintersyears, whereas while during strong La Niña winters; are associated with a weakening of the Aleutian low and destructive linear interference with the climatological wave pattern was identified (Iza et al., 2016). Observations indicateshowed that SSW events occur more frequently preferentially during both El Niño and La Niña winters than during ENSO-neutral winters (Butler and Polvani, 2011; Garfinkel et al., 2012a). However, there might be-sampling errors may arise due to the relatively short observational record (Domeisen et al., 2019), and the reported increased in SSWs during La Niña winters iswere sensitive to the SSW definition of SSWs used (Song and Son, 2018). The Oobserved relationships between ENSO and SSWs were often not reproduced replicated inby models. Models typically often simulated ENSO events and teleconnections that appearwere considerably more linear thancompared to the available observational evidencedata suggests (Domeisen et al., 2019). For example, simulations with a chemistry-climate model showedthere is no indication of any nonlinearities between El Niño and La Niña EN and LN, and while SSW frequencies for both phases EN and LN were found to beare both similar, using a chemistry climate model (Weinberger et al., 2019). Trascasa-Castro et al. (2019) investigated the effect of variations in ENSO amplitude variations on European winter climate using with idealized SST anomalies and they did not findfound no evidence of a saturation inof the stratospheric pathway underdue to strong El Niñno forcing, as suggested in previous literature. Systematic model biases in atmospheric winds and temperatures likelywould affect the representation of the ENSO_SSW teleconnection (Tyrrell et al., 2022).

ENSO <u>exertshas</u> significant impacts on <u>the</u> global atmospheric circulations, and QBO teleconnections may also be <u>modulated influenced</u> by El Niño and La Niña. The QBO itself is affected by ENSO, with weaker QBO amplitude and faster QBO phase propagation under El Niño than <u>under La Niña conditions</u> (Taguchi, 2010a). Previous studies <u>that</u> investigatinged

the joint effects of QBO and ENSO on winter polar vortex variability in winter have suggested that their interactions are nonlinear, withinsofar as the Holton-TanHolton-Tan relationship is found to be being significant during the La Niña phase but much weaker during the El Niño phase (Wei et al., 2007; Garfinkel and Hartmann, 2008; Calvo et al., 2009; Richter et al., 2011; Hansen et al., 2016). A recent observational study (Kumar et al., 2023) examined investigated the combined effects of the QBO and ENSO inon-modulating the extratropical winter troposphere during the 1979–2018 period. They found that during La Niña, QBO signals in the polar vortex were amplified, and the polar vortex and subtropical jet were enhanced under QBO-W. During El Niño, a stronger subtropical jet and athe warmer polar vortex were present under QBO-W. Ma et al. (2023) assessed the synergistic effects of the QBO and ENSO on the North Atlantic winter atmospheric circulation using model output and reanalysis data, and foundshowing that the QBO and ENSO have theira nonlinear combined effect on North Atlantic surface pressure anomalies, which arises from because different pathways depending on are preferred for different the QBO and ENSO combinations of QBO and ENSO. In contrast, Walsh et al. (2022) demonstrated that the polar vortex weakens more strongly when El Niño coincides withand QBO-E-easterly occur together than would be expected from by the sum of their individual effects (Walsh et al., 2022). However, there remains no clear lake of consensus on the nature of nonlinearity in QBO-ENSO teleconnections withining the extratropical circulation of the NH winter stratosphere.

In the tropical troposphere, the QBO and ENSO teleconnections remain less understood than those in the extratropics. Only Aa limitedrelatively small number of studies have analyzed tropical tropospheric QBO teleconnections using models capable of that simulateing the QBO (Rao et al., 2020; García-Franco et al., 2022, 2023; Serva et al., 2022). As noted by García-Franco et al. (2022, 2023), the observational record is likely too short to separate QBO teleconnections in the tropical troposphere from the strong influence of ENSO, sincebeeause El Niño winters often coincide with the westerly phase of the QBO.

The goal of thispresent study isaims to reexamine QBO teleconnections to both the extratropics and tropics and but now address combined QBO_ENSO influences using a new dataset of idealized ENSO experiments. Model experiments, that which can are capable of separateing the influences of QBO and ENSO influences on the extratropical and tropical troposphere outside of the QBO region, are a-valuable tools to for investigating study the modulation of QBO teleconnections by ENSO. To isolate the QBO teleconnections from the ENSO influences of ENSO, we conduct model integrations with annually_repeating prescribed SSTs representative characteristic of typical El Niño and La Niña conditions, thereby removing ENSO diversity from consideration.

The Quasi Biennial Oscillation initiative (QBOi), an international project supported by the World Climate Research Programme (WCRP) core project Atmospheric Processes And their Role in Climate (APARC), has focused on assessing internally generated QBOs in climate models and improving model simulation of understanding of how to simulate a realistic QBO (Butchart et al., 2018; Anstey et al., 2022a,c; Bushell et al., 2022; Richter et al., 2022). In order to investigate study QBO and ENSO teleconnections and their mutual interactions, QBOi has coordinated additional experiments building on the QBOi phase-1 experiments, referred to here as the "QBOiENSO" experiments. These experiments employusing participating QBOi atmospheric general circulation models (AGCMs) and Earth System Models (ESMs) forced by prescribed "perpetual El Niño" and "perpetual La Niña" SSTs (Kawatani et al., 2025).

In this paper, we have examined QBO teleconnections modulated by ENSO and evaluate their robustness using athis multimodel ensemble of QBO-resolving models that have run the QBOiENSO experiments; We compare these results and evaluated them by comparison with those from against the QBOi phase-1 "Experiment 2", which represents the control case of ENSO-neutral conditions. Further details of how the QBOiENSO experiments and design are constructed can be provided found in Kawatani et al. (2025). The structure of this paper is as follows: Section 2 describes the datasets of the QBOiENSO experiments and observations, along with and the analyticals methods employed. Section 3 characterizes the combined effects of QBO-ENSO teleconnections on the polar winter stratosphere (Holton-TanHolton-Tan relationship). Sections 4 and 5 present the subtropical and tropical impacts of the QBO modified by ENSO, respectively. Finally, Section 6 provides more discussion and a summary of our findings and discussion.

2 Data and Methods

205

210

220

We use nine AGCMs and ESMs participating in the QBOi project, and conducting three experiments. The first one is the QBOi Experiment 2 using a climatological annual cycle of SST and sea ice conditions (Butchart et al., 2018). We hereafter refer to it as the control (CTL) experiment. The other two experiments are the QBOiENSO experiments, QBOiElNino and QBOiLaNina (Kawatani et al., 2025). They are also time-slice experiments consistent with the QBOi Experiment 2 design, but with prescribed "perpetual El Niño" and "perpetual La Niña" SST anomalies are used here. They are referred to hereafter as the EN and LN experiments, respectively. The models that performed the CTL, EN, and LN experiments are EC-EARTH3.3 (hereafter EC-EARTH for short), ECHAM5sh, EMAC, GISS-E2-2G (GISS-for short), LMDz6 (LMDz-for short), MIROC-AGCM-LL (MIROC-AGCM-for short), MIROC-ESM, MRI-ESM2.0, and CESM1(WACCM5-110L) (WACCM for short). Their characteristics have been described in Butchart et al. (2018) and Kawatani et al. (2025). MRI-ESM2.0 (Yukimoto et al., 2019) is an updated version of the model documented in Butchart et al. (2018), and it includes changes aimed at improving the modelled QBO (Naoe and Yoshida, 2019). The lengths of Mmodel integrations years for each of the three experiments are presented in Table 1. Due to data availability issues, EMAC is not included in the results in Sections 4 and 5.1 below.

Table 1. The length of the Mmodel integrations years

Model name	Years	
	¹ QBOi Exp2	² QBOi ENSO
³ EC-EARTH	101-yr	101-yr
⁴ ECHAM5sh	50-yr	40-yr
EMAC	106-yr	106-yr
GISS-E2-2G	3×30 -yr	3×30 -yr
LMDz	70-yr	82-yr

MIROC-AGCM	3 × 30-yr	100-yr
MIROC-ESM	3×100 -yr	100-yr
MRI-ESM2.0	30-yr	50-yr
⁵ WACCM	3 x 30-yr	100-yr

¹QBOi Experiment 2 (or CTL experiment)

240

245

250

255

Observed teleconnections are quantified using a modern reanalysis dataset, the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth generation atmospheric reanalysis (ERA5; Hersbach et al., 2020) overin 1959–2021. The representation of the QBO in ERA5 as compared to other reanalyses is evaluated by Pahlavan et al. (2021) and Naoe et al. (2025). Observed precipitation is evaluated using the dataset of the Global Precipitation Climatology Project (GPCP; Adler et al., 2003, 2016) dataset overin 1979–2022. Because the The design of QBOiENSO experiments used the Japan Meteorological Agency's (JMA) defined NINO.3 index (https://ds.data.jma.go.jp/tcc/tcc/products/elnino/index/index.html), and so the classification of ENSO phases is based on this index. We note that the QBOiENSO experiments are idealized; therefore, we mostly rely on observation-based datasets to determine whether the model responses are at least qualitatively in agreement with the (short) observational record.

To determine if observed teleconnections are <u>well represented manifested</u> in the model runs, <u>the</u> models and observations are compared by applying the same QBO phase definitions to the models that are optimal for <u>the</u> observed teleconnections. Here, we use 'standard' indices (e.g., 50-hPa equatorial wind for the QBO), without adjusting them on a model-by-model basis, for all analyses presented in Sections 3, 4 and 5.1. This <u>ean-facilitates</u> comparison with other works. As noted by Anstey et al. (2022c), different QBO indices can maximize the response of different teleconnections (e.g. Gray et al., 2018). Thus, making these choices can account for <u>the</u> diversity of QBO signals (tropical convection, Walker circulation, subtropical jet response, extratropical basic-state zonal-mean flow for the <u>Holton TanHolton-Tan</u> effect_a etc.), which may lead to variations in the diagnosed QBO teleconnections. Zonal wind biases need to be carefully considered when defining the QBO phases in model outputs, as noted by Serva et al. (2022). Here, QBO phases are identified when the deseasonalized westerly and easterly zonal-mean zonal wind (QBO-W and QBO-E) averaged over 5° S-5° N (weighted by cosine of latitude) exceeds a given threshold value at selected pressure levels. -Specifically, QBO-W and QBO-E are classified from <u>the</u> December-January-February (DJF) zonal wind at 50 hPa using > 0.5 σ (standard deviation) and < -0.5 σ in Section 3.1 (Figs. 2 and 3), using \geq 0 m s⁻¹ and < 0 m s⁻¹ in Section 3.2 (Fig. 5), using \geq 2 m s⁻¹ and \leq -2 m s⁻¹ in Section 5.1 (Figs. 8, 9, and 10), and from <u>the</u> February-March zonal wind at 70 hPa using > 0.5 σ and < -0.5 σ in Section 4 (Figs. 6 and 7). In Section 5.2, the strongest signal in each model is identified, considering model diversity and biases in the simulated QBOs and tropical convection, from May to November

²QBOi ENSO experiments (QBOiElNino and QBOiLaNina experiments)

³EC-EARTH3.1 for QBOi Exp2 and EC-EARTH3.3 for QBOi ENSO

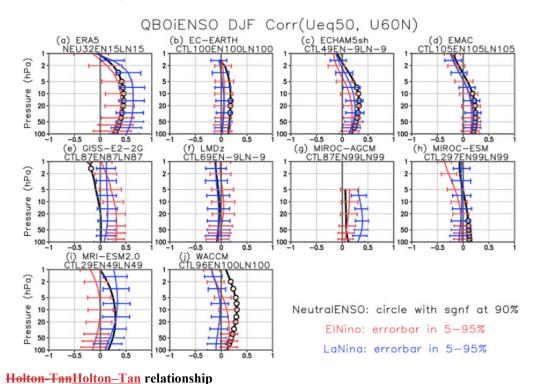
⁴Only the realization labelled r2i1p1 is used in ECHAM5sh.

⁻⁵CESM1 (WACCM5-110L) is abbreviated to WACCM.

with QBO definitions provided in the legend of Figs. 11 and 12; the analysis is summarized in Fig. 13. This approach is used to highlight the model dependency and seasonality of the QBO signal on the Walker circulation. Using a common definition for QBO phases in terms of the pressure level and season provides similar but weaker results (see Figs. S9, S10 and S11 using the summer zonal wind at 70 hPa).

The ENSO composites in observations are obtained done in the extratropies and subtropies for individual seasons in (Sections 3, 4, and 5.2), whileand in the tropies for individual months in (Section 5.1). In Section 5.2, the Bonferroni correction, as described by Holm (1979), is used for the two-sided t-test when the QBO phase is not defined using the preferred 70 hPa level during June-July-August (JJA). In this method, the significance level of the statistical test is adjusted by dividing it by m, the number of tests performed, becoming more restrictive by increasing the confidence level. For instance, if the QBO definition is modified by season only, m = 2; if it is modified by both season and vertical level, m = 3. Accordingly, $\alpha' = \alpha/m$, where $\alpha = 0.025$ (the 5% significance level for a two-sided test), and α' denotes the adjusted threshold; implying that the corresponding p-value must has to be smaller to reject the null hypothesis.

260


3 QBO teleconnections: the extratropical routepathway

270

275

This section investigates the extratropical pathway of the QBO teleconnection modulated by ENSO, with a focus on the Holton–Tan effect and SSW statistics. A previous study onabout QBO teleconnections of the QBO inusing a multi-model ensemble of QBO-resolving models (Anstey et al., 2022c) found that QBOi models underestimated the polar vortex response to the equatorial zonal wind at 50 hPa compared within comparison to reanalyses. They suggested that thesesuch weak responses were likely due to model biaseserrors, such as systematically weak QBO amplitudes near 50 hPa, which affecteding the QBO teleconnection. Since Because most of the models used here forthat have run the QBOiEINino (EN) and QBOiLaNina (LN) experiments considered here are the same as those models whose QBOiExp2 (CTL) runs were analyzed by Anstey et al. (2022c) in their CTL experiments, the EN and LN runsexperiments may similarly underestimate the polar vortex response to the QBO. This section investigates the extratropical route of the QBO teleconnection modulated by ENSO. First, we examine the Holton Tan effect, and then show the SSW statistics.

3.1

10

Figure 1: Vertical profiles of the correlation coefficient between the QBO zonal wind at 50 hPa, averaged over 5° S-5° N, and the polar_vortex zonal wind at 55°-65° N duringin December January February (DJF) in CTL (black), EN (red), and LN (blue) experiments for QBOi models, as well as for and ENSO-neutral (black), El Niño (red), and La Niña (blue) winters in ERA5. Circles denote represent statistical significance at the 90 % level for the CTL/ENSO-neutral, and Red and bluehorizontal bars indicate represent the 5-95 % confidence interval ranges, using a bootstrap method repeating 1000 times for in EN / El Niño and LN / experiments for the models as well as El Niño and La Niña winters for ERA5, calculated using a bootstrap method with 1000 times repetition. The Nn umber of winters available for each model run and for each experiment (ENSO phase) is shown in are displayed at the upper panel. For example, "NEU32EN15LN15" in the ERA5 panel indicates means there are 32 ENSO-neutral, 15 El Niño, and 15 La Niña winters, respectively.

Figure 1 shows the <u>DJF</u> correlation coefficient in <u>DJF</u> between the 50 hPa equatorial zonal wind at 5° S–5° N and the polar vortex strength at different altitudes in the CTL, EN, and LN experiments, together with ENSO-neutral, El Niño, and La Niña winters <u>fromfor the ERA5</u> reanalysis. In <u>ERA5</u>the reanalysis, correlations <u>are maximized</u> over a <u>fairly deep layer of methodor the ENSO-neutral winters</u> is slightly stronger than that <u>duringof</u> El Niño <u>winters</u>. The uncertainty range (horizontal bars) <u>represents shows</u> the 5–95% <u>confidence intervals range</u> of correlation coefficients derived from bootstrap resampling. <u>Although For La Niña</u>, the confidence intervals <u>for La Niña clearly excludes</u> zero in the stratosphere, <u>whereas for El Niño theythe confidence for El Niño areis</u> close to zero at many altitudes, <u>indicating substantial demonstrating large</u> uncertainty in the strength of the correlation <u>especially during for El Niño and ENSO-neutral winters</u>.

Most of the model correlations exhibitshow smaller uncertaintiesy than ERA5 due to having larger sample sizes. Models such as (ECHAM5sh, EMAC, EC-EARTH, MIROC-ESM, MRI-ESM2.0, and WACCM) displayhave positive correlation profiles in CTLENSO-neutral, although these correlations are albeit weaker than incompared to ERA5 reanalysis. Most models do not show a significant correlations in EN; and only four models (MRI-ESM2.0, ECHAM5sh, EMAC, and MIROC-AGCM) out of nine9 reproduce observed positive correlations with confidence intervals excluding zero at certainsome altitudes. It is noted in Fig. 2 of Kawatani et al. (2025, their Fig. 2) presented from their simple; time—height cross-sections of the monthly

and zonal-mean equatorial zonal winds over the equator in the EN and LN-simulations, showing that the QBO in the ECHAM5sh infor the EN experimentwasis irregular, with stalling in the downward propagation phases of both easterlies and westerlies. They also showed that the QBOs in GISS and LMDz infor the LN-experiment were more irregular, with and westerly phases sometimes failing to propagate into the lower stratosphere. These results indicate that most models exhibits weak positive correlations consistent in with the same sign with as ERA5the reanalysis, but in most cases these correlations are not statistically significant. This suggests means that inter-model differences in the QBO—polar vortex relationship, or differences between experiments withinfor the same model, may not be clearly distinguishable.

Figure 2 presentsshows composite differences in of the zonal-mean zonal wind between QBO-W and QBO-E phases acrossing the CTL, EN, and LN experiments. ERA5 clearly captures represents the Holton-Tan relationship under all three ENSO conditions (neutral, El Niño, and La Niña). The QBO teleconnection to the NH winter stratospheric polar vortex is most strongly correlated the strongest in correlation with the QBO amplitude of the QBO-at 50 hPa (Anstey et al., 2022c). The difference in vortex strength difference in DJF between QBO-W and QBO-E peaks at approximately roughly 10 m s⁻¹ in the middle-mid-stratosphere (near 10 hPa) during DJF during for the ENSO-nNeutral and El Niño wintersgroups, with the strongestand the response occurring is strongest during in La Niña winters, reaching with a peak value of 15 m s⁻¹. No model reproduces the observed_-strength of the Holton-TanHolton-Tan relationship acrossin all three experiments (CTL, EN, and LN). Only two of the models (MRI-ESM2.0 and WACCM) exhibit reproduce observed responses within a-half of the observed amplitude in CTL for the ENSO-neutral case (MRI-ESM2.0 and WACCM). Furthermore, and only the MRI-ESM2.0 exhibits also shows a stronger QBO impact on the QBO on the vortex inunder the LN condition than undercompared with EN condition, although (however, this that model produces an incorrect has the wrong sign response infor EN). In LN, four models (ECHAM5sh, GISS, MIROC-AGCM, and MRI-ESM2.0) are-better at reproduceing the observed response, peaking at a modest slight amplitude of ~3 m s⁻¹ in the polar vortex region. GISS shows a significant difference in EN₇ and a significant LN response in LN just equatorward of 60° N.

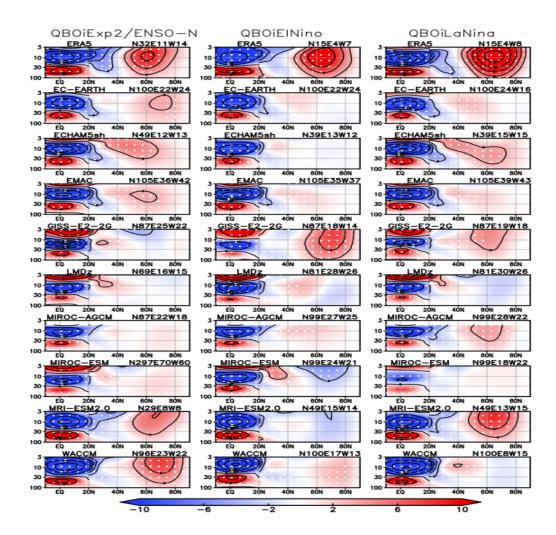
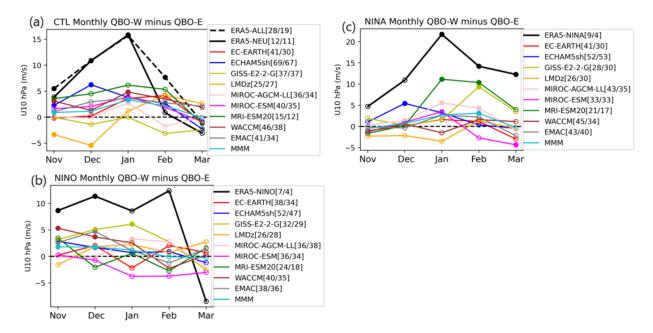



Figure 2: Composite differences inef the DJF_mean zonal-mean zonal wind between the QBO-W and QBO-E phases, shown in the pressure (in hPa)_and latitude domain, for in the CTL, EN, and LN experiments, as well as for including the ENSO_neutral, El Niño, and La Niña winters based onfor ERA5. QBO phases are classified using deseasonalized DJF zonal-mean zonal wind at 50 hPa, averaged over 5° S-5° N, with values greater than using > 0.5 σ indicating for QBO-W and less than < -0.5 σ indicating for QBO-E. Contour intervals are 3-(10) m s⁻¹ north (south) of 20° N and 10 m s⁻¹ south of 20° N. Dots indicate represent statistical significance at the 90 % confidence level. The Nnumber of winters available for each model run, along with the counts and numbers of QBO-E and QBO-W winters classification, is shown are displayed in the upper_right corner of each panel. For example, "N100E30W41" for CTL in EC-EARTH and QBOiExp2 indicates means there are a total of 100 winters in which, with 30 winters classified as QBO-E winters and 41 as QBO-W winters are classified.

One may ask whetherif a model-specific equatorial wind level, such as 30 hPa (e.g., Rao et al., 2020a), isean be more effective efficient for models to reproduce ing the QBO's impact on the polar vortex (the Holton TanHolton—Tan effect). We have examined then relationship of composite differences of zonal-mean zonal wind inbetween polar vortex responses at 60° N and 10 hPa againstand QBO definition at 50 hPa (QBO50) and at 30 hPa (QBO30) (Fig. S1). Most models underestimate the equatorial QBO composite differences at 50 hPa compared withto those at 30 hPa; and for some models, the QBO is difficult to detect at 50 hPa; tThese results are similar to those reported by described in Rao et al. (2020a); which was on for CMIP models. However, both panels (QBO50 and QBO30) show that most models underestimate equatorial QBOs amplitude and they are struggleing to reproduce the observed polar vortex responses to the QBO. We also have examined whether model performance in the QBO amplitude and/or climatological polar night jet strength relates related to athe model's ability of model—to capture the QBO-induced polar vortex responses (not shown), here—hypothesizing that the Holton—TanHTR relationship—(the polar vortex) route pathway of the QBO teleconnection—mayeould be influenced manifested by these two factors. QBO amplitudes at 50 hPa are poorly represented infor most models are poor performance, consistent in agreement with previous studies (Bushell et al., 2022; Anstey et al., 2022), while climatological polar vortices during NH winter are empty which that argued that unrealistically weak low-level QBO amplitudes can weaken the QBO teleconnections to the polar vortex

(Richter et al., 2022; Anstey et al., 2022c). In <u>summaryshort</u>, <u>across allfor any of the</u> three experiments, <u>the models</u> generallymore often than not show a stronger polar vortex during NH winter when the 50-hPa QBO wind is westerly, and a weaker vortex when it is easterly, consistent with, but weaker than, the observed response.

Figure 3: (a) Monthly differences (QBO-W minus QBO-E) inof the zonal-mean zonal wind at 10 hPa, averaged over 55°-65° N, as a measure of the stratospheric polar vortex strength for the CTL experiment, along with ENSO-neutral winters in ERA5. QBO phases are classified same-as in Fig. 2. Solid dots indicateshow statistically significant differences between the QBO-W and QBO-E phases at the 90 % confidence level, based onusing a Monte Carlo test. The Nnumbers in the legend represent the number of are the cases included in each QBO phase. The dashed line in panel (a) shows the QBO composite difference in ERA5 when all years (1959–2022) are included in the analysis. MMM denotesmeans then multi-model mean. (b) Same as (a) but for the EN experiment, along withincluding El Niño winters infor ERA5. (c) Same as (a) but for the LN experiment, along withincluding La Niña winters infor ERA5. The Nnumbers of QBO phase categories (QBO-W, QBO-E) categories for in ERA5 are (12, 11) induring ENSO-Neutral, (7, 4) induring El Niño, and (9, 4) during La Niña winters.

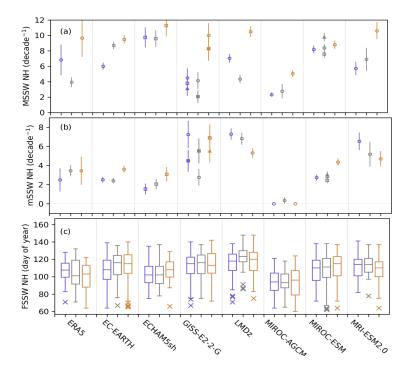
The Intraseasonal Holton—Tan effects are shown-investigated in Fig. 3, represented by which shows the composite difference (QBO-W minus QBO-E) of the monthly zonal-mean zonal wind at 10 hPa, 55°-65° N in the CTL, EN, and LN experiments, together with ERA5. In ERA5, presents-thea maximum Holton-TanHolton-Tan effect occurs in January, with a peak of 13 m s⁻¹ acrossfor all datathe mean (dashed black line in the top panel), but this difference is reducedlower in February during ENSO-neutral wintersyears (solid black line in Fig. 3a). The Sseasonal evolution of the Holton Tan Holton Tan effect differsis different between El Niño and La Niña winters; it appearsseems stronger in early and late winters duringfor the El Niño winters (Fig. 3bmiddle panel), and in mid-winter duringfor the La Niña winters (Fig. 3cbottom panel), However, although it should be notedeautioned that the sample sizes (number of W/E winters) are small for both El Niño and La Niña wintersgroups. Some models (MIROC-ESM and ECHAM5sh) in CTL show a similar seasonal cycle similar to that inas ERA5 for their CTL runs (significant for MIROC ESM and ECHAM5sh). By contrastAlso, GISS throughoutin all months, as well as LMDz and MIROC-AGCM in certaina few months, in CTL, exhibit a Holton-Tan relationshipan opposite sense to thatthe observed Holton Tan relationship for CTL. In EN, four models (GISS, WACCM, EMAC, and ECHAM5sh) capture the early_winter response in December, although it is not statistically significant. The Holton TanHolton Tan relationship duringin El Niño wintersyears mayeould depend on SSW occurrence because of the nonlinear joint effects of QBO and ENSO on the polar vortex, as discussed already explained in the Introduction. In LN, MRI-ESM2.0 and GISS reproduce explained in the Introduction. observed late-winter response relatively well, whereasand other models do not show noany response or even an opposite response.

3.2 SSW statistics

410

415

420


425

In this subsection, we examine the QBO impacts on SSW statistics modulated by ENSO and the QBO in the NHnorthern polar region. Previous observational studies have shown indicated that the ratio of SSW frequency between La Niña and ENSO-neutral winters is dependent on the specific definition details of the SSW definition (Butler and Polvani, 2011; Garfinkel et al., 2012a; Song and Son, 2018), and that SSW statistics are also influenced by have been shown to depend on model biases (Tyrrell et al., 2022). Figure 4 presents shows the frequencies of major SSWs and minor SSWs and final warming dates in the

445

450

dates <u>follows</u> is similar to what was proposed by previous studies (Charlton and Polvani, 2007; Butler et al., 2015). Major SSWs are <u>definedidentified</u> when <u>the</u> zonal-mean <u>zonal wind at 10 hPa and 60° N (U60)</u> westerlies in winter reverse are changed from westerlies to easterlies at 60° N and 10 hPa during winter. For mMinor SSWs are defined when, the zonal wind does not reverse but there is a change in sign of the meridional gradient of the zonal-mean temperature changes the sign without a reversal of U60. A Ffinal warming date refers to the seasonal transition from westerlyies to easterlyies, with winds remaining easterlyies thereafter for the next months.

<u>First, Wwe assesseonsider first</u>-the influence of ENSO on SSW frequencyies. In ERA5 (the leftmost triplet inef Fig. 4a panel), the frequencyies of major SSWs <u>areis</u> high in <u>ERA5</u>-during both El Niño and La Niña <u>wintersyears</u>, compared to ENSO-neutral <u>winters</u>. Thus, we expect that major SSW frequencies in the QBOi models would <u>resemble similar to</u>_the observations, <u>withand have</u> fewer events in CTL and more <u>events</u> in EN and LN-<u>experiments</u>. LMDz and GISS reproduce the <u>observed nonlinear observed ENSO</u> response to some extent (Fig. 4a). However, most models <u>simulateshow</u> more SSWs induring EN <u>butand they fail todo not</u> capture the <u>LN</u>-response in <u>LN</u> (e.g., EC-EARTH, MIROC-AGCM, <u>and MRI-ESM2.0</u>). Only one model (ECHAM<u>5</u>sh) <u>reproducesshows</u> the observed relationship between the frequency of minor <u>SSWswarmings</u> and the <u>ENSO</u> phase <u>of ENSO</u>, <u>showingand it has</u> similar frequencies in CTL and LN, and more events in EN.

Figure 4: SSW statistics ___ namely, the frequencies of (a) major SSWs, (b) minor SSWs, and (c) final SSW dates ___ in the Northern HemisphereNH forin the CTL, EN, and LN experiments infor the QBOi models, along withineluding ENSO_neutral, El Niño, and La Niña wintersyears infor ERA5, based on their daily data. The order of triplets from left to right isare LN/La Niñna (LN, purple), CTL / ENSO_neutral winter experiment (CTL, grey), and EN / El Niñno (EN, brown). The Ffrequency (number of events per decade) of (a) major SSWs is defined as the number of (reversals of the zonal-mean zonal wind at 10 hPa and 60° N; (U60), whileand the frequency of (b) minor SSWs is defined as the number of (reversals of 90°-60° N temperature gradient at 10 hPa without a U60 reversal, -) -occurring across full seasons. It is noted that multiple marker signs in the same experiment for a model indicate ensemble members (depending on data availability). Uncertainties are estimated at the 5-95% level based on bootstrapping of 10 years of winter months. (c) Boxplots of The final SSW date (day of year), is determined for considering full seasons, which is defined as ai-e., period from the westerlies onset of westerlies to the transitiontheir turn to easterlyies for ERA5 and QBOi models based on their daily data. Uncertainties are estimated at the 5-95% confidence level using bootstrapping of 10 years of winter months. Multiple markers within the same experiment of a model indicate ensemble members, depending on data availability.

The final warming date is <u>defined as when</u>the transition from winter westerlies to summer easterlies <u>occurs</u> in the polar stratosphere (Butler et al., 2015). If the <u>polar</u> stratosphere is warmer in the <u>polar regions</u>, the <u>transition of zonal</u> wind <u>transition</u> to easterlies occurs earlier, <u>whereasand</u> if it is colder, the transition is delayed. Hence, we assume that <u>induring</u> El Niño/-(La Niña) <u>wintersyears</u>, when the polar stratosphere <u>tends towould</u> be warmer/-(colder) as described in the Introduction, the final warming date <u>maymight occurhappen</u> earlier/-(later). Consistent with this expectation, in ERA5 during La Niña <u>winters</u> (the leftmost triplet of Fig. 4c), the final warming date is <u>more</u>-delayed <u>compared withthan that in</u> ENSO-neutral and El Niño <u>wintersyears</u>. GISS and MRI-ESM2.0 <u>also showexhibit</u> later final warming dates in LN <u>compared withthan in</u> EN, <u>consistent withwhich is similar to</u> the observed response (Fig. 4c). <u>In contrastOn the other hand</u>, <u>five models</u> (EC-EARTH, ECHAM5sh, LMDZ, MIROC-AGCM, and MIROC-ESM) <u>fail todo not</u> show earlier final warming dates in EN, <u>which is the opposite to</u> the observed response. These results <u>showimply</u> that the QBOi models have significant biases in reproducing observed SSWs statistics. Large inter-model variability is also <u>evidentdiagnosed inby means of</u> the Northern Annular Mode (NAM) index (Eyring et al., 2020) compositeding at 500 hPa, as shown in Fig. S2, where the geopotential heights during LN tend to be lower and <u>there are changes in</u> the intensity of the extratropical signature <u>differs</u> between LN and EN. Inter-model variability in the large-scale response to ENSO may also explain the spread in <u>SSW the</u> occurrence <u>of SSWs (e.g. i.e., in</u> the GISS and MIROC-ESM models in Fig. 4) due to differences in the simulated tropospheric forcing.

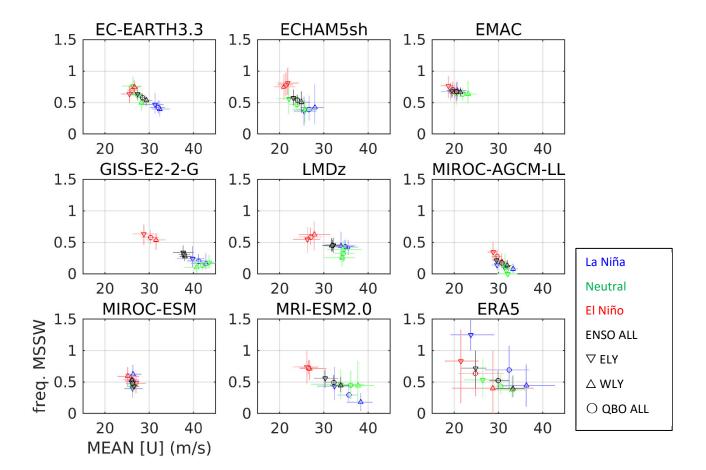


Figure 5: Scatter plots of between the winter-mean vortex strength at (60° N; and 10 hPa) versusand the major SSW frequency during DJF underfor different QBO and ENSO conditions. Major SSWs are definedidentified as a reversals of the daily zonal-mean zonal wind at 60°N and 10 hPa. QBO phases are classified using DJF-mean zonal-mean zonal wind anomalies at 50 hPa, averaged over 5° S−5° N, with anomaliesusing ≥ 0 m s⁻¹ indicating for QBO-W marked by up-pointing triangles (WLY in panel) and < 0 m s⁻¹ indicating for QBO-E marked by down-pointing triangles (ELY in panel). The sum of QBO-W and QBO-E is marked by circles (QBO ALL in panel). The Aanomalies are calculated for each ensemble member of each experiment infor the simulation data; for ERA5, they those ones are are calculated using all winters years from (1959 to -2021 seasons) for the ERA5 data. For ERA5, El Niño and La Niña winters in observations are identified when all three DJF months have the El Niño and La Niña classification flag, respectively. The Nnumbers of QBO phase categories (QBO-W, QBO-E) entegories for in ERA5 are (24, 15) during in ENSO-Nneutral, (5, 6) during in El Niño, and (9, 4) during in La Niña winters. For each condition, and each model, the data are randomly resampled 100 times with replacement, and then 95% confidence intervals ranges are calculated obtained and plotted.

Next, we <u>examine investigate</u> the influence of the QBO on major SSW frequencies modulated by ENSO <u>during in the NH</u> winter. Figure 5 shows scatter plots <u>of between</u> the climatological zonal-mean zonal wind at 60° N and 10 hPa <u>against and the mean</u> frequency of major SSWs <u>during in DJF under during two QBO W and QBO E years phases and for three ENSO conditions. In ERA5, major SSW frequencies under QBO and ENSO conditions are clearly <u>likely to be</u> distinguishable.</u>

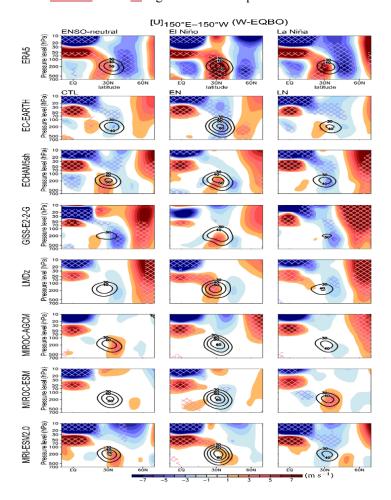
Averaged over all QBO conditions, the NH polar vortex is stronger duringin La Niña than during El Niño winters, while SSW frequencies are slightly higher duringin La Niña than during El Niño winters, and both are higher than during ENSO-neutral winters. Major SSW frequencies duringin La Niña winters are significantly higher under QBO-E and lower under QBO-W, whereas those duringin El Niño winters, they are indistinguishable between QBO-W and QBO-E. Most QBOi models exhibitare characterized by linear relationships distributions between SSW frequencies and the polar vortex strength. They generally simulate The EN experiment displays higher SSW frequencies of SSWs in EN than in the LN-experiment, with and SSW frequencies between QBO-W and QBO-E are little distinction indistinguishable between QBO-W and QBO-E. This indicates shows that polar vortex responses to ENSO conditions in the QBOi models are stronger than their responses to the QBOs phases in these models. Some models (EMAC, MIROC-AGCM, and MIROC-ESM) have very weak responses to both QBO and ENSO and QBO-conditions.

4 The subtropical jet routepathway of QBO teleconnections

500

505

520


525

530

This section examines the subtropical jet routepathway of the QBO teleconnection modulated by ENSO, focusing on the APJim the QBOi ENSO experiments. Only the late winter period of (February to March) is considered, when the subtropical routepathway is strongest in the observations (Garfinkel and Hartmann, 2011a; Park et al., 2022), is considered. Since the The subtropical jet change in response to the QBO is most pronounced infor the APJ, and so analyses are performed for the zonal wind averaged over the Pacific sector (150° E–150° W). The sensitivity of the QBO—APJ connection to the ENSO phase is also examined.

The QBO-W minus QBO-E (W–E) composite differences are shown in Fig. 6 for the ENSO-neutral, El Niño, and La Niña winters, using for both ERA5 and QBOi ENSO experiments. In ERA5During the ENSO neutral winter, thea QBO-W minus QBO-E anomaly exhibits a distinct horseshoe-shaped pattern extending from the tropical lower stratosphere to the subtropical lower troposphere during ENSO-neutral winters (top-left panel in Fig. 6). This anomaly is accompanied by a quasi-barotropic, easterly anomaly in the extratropics. More importantly, the zonal wind anomalies switch sign across the climatological APJ (contour), This indicatinges that the APJ shifts equatorward during the QBO-W winters compared withto the QBO-E winters. Most models underestimate or fail to reproduce the observed QBO-APJ connection. The dipolar wind anomalies are much weaker in five models (EC-EARTH, ECHAM5sh, GISS, LMDz, and MIROC-ESM) than those in observations in five models (i.e., EC-EARTH, ECHAM5sh, GISS, LMDz, and MIROC-ESM). Although one lobe of the dipolar wind anomalies is significant in ECHAM5sh and GISS, other models (i.e., EC-EARTH, LMDz, and MIROC-ESM) exhibit have statistically insignificant dipolar wind anomalies. MIROC-AGCM and MRI-ESM2.0 even produceexhibit anomalies of the opposite sign. Such a large inter-model spread is consistent with a previous workstudy (Anstey et al., 2022c). In ERA5, Tipe QBO-APJ connection differs between El Niño and La Niña winters (top-middle and top-right panels in Fig. 6; Garfinkel and Hartmann, 2010). As the APJ strengthens over the Pacific sector (150° E-150° W) in response to El Niño (compare climatological jet contours; Rasmusson and Wallace, 1983; Mo et al., 1998; Lu et al., 2008), the QBO-induced subtropical wind anomalies

intensify become stronger near the APJ corceenter during El Niño winters (top-middle panel; Ma et al., 2023). In contrast, the QBO-W minus QBO-EW-E anomalies switch sign across the climatological APJ during La Niña winters (top-right panel), whenes the APJ becomes slightly weaker (compare line-climatological jet contours in the top-left and top-right panels). The APJ's response to ENSO is consistently reproduced across models, whereas the ENSO modulation of the QBO-APJ connection exhibits shows a large inter-model spread. While all models capture a stronger APJ during-in EN than in LN

535

540

545

(compare-line <u>climatological jet</u> contours in the middle and right columns), they exhibit significant biases in reproducing the ENSO modulation of the QBO_APJ connection (filled contours).

Figure 6: QBO-W minus QBO-E composite differences inof zonal wind averaged over the Pacific sector (150° E-150° W) duringfor the ENSO-neutral (top-left), El Niño (top-middle), and La Niña (top-right) winters, as well asand those infor the CTL, EN, and LN experiments (left to right columns). Values that are sStatistically significant values at the 95% confidence level are indicated by cross-hatchinged. The Contour denotes the climatological jet, defined aswith a zonal wind speed equal to or greater than≥ 30 m s⁻¹. QBO phasesQBO-W and QBO-E phases are determineddefined using deseasonalized February—March zonal-mean zonal wind at 70 hPa, averaged over 5°S-5°N-at 70 hPa, withbeing > 0.5 σ indicating QBO-W and < -0.5 σ indicating QBO-E, respectively. The Nnumbers of QBO phase samples (QBO-W, QBO-E) eategories for in ERA5 are (10, 9) during in ENSO-Nneutral, (6, 3) during in El Niño, and (12, 7) during in La Niña winters.

The inter-model spread of the QBO subtropical routepathway is summarized by the APJ-shift index in Fig. 7. Theis APJ-shift index is derived from the QBO-W minus QBO-E zonal wind differences shown in Fig. 6. Specifically, it is defined asby the 250-hPa QBO zonal wind difference betweenfrom the northern flank (40°–50° N) and to the southern flank (20°–30° N) of the climatological APJ.—Negative values indicate that thean APJ shifts equatorward shift of the APJ during QBO-W relative compared to QBO-E. The observed APJ-shift index is significantly negative during the ENSO-neutral winter (black) and La Niña winter (blue) winters; but is-insignificant during El Niño (red) winters. This is consistent with dipolar wind anomalies switching sign across the climatological APJ during ENSO-neutral and La Niña winters, whereas while the change in APJ strengthening is more pronounced during El Niño winters (see Fig. 6). The APJ-shift index is not robust across models. None of the models show a statistically significant APJ shift in response to the QBO, regardless of the ENSO phase. This result suggests that QBOi models substantially significantly underestimate or fail to reproduce the subtropical routepathway of the QBO teleconnection and its modulation-modification by the ENSO.

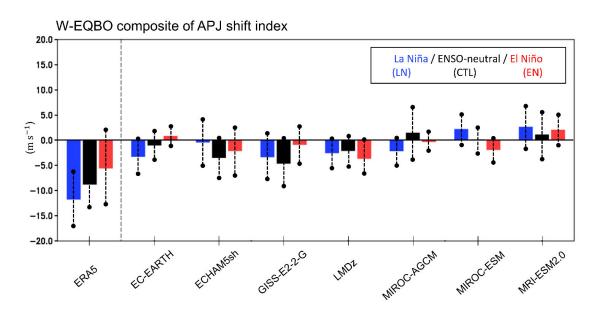


Figure 7: QBO-W minus QBO-E composite differences inof the Asia—Pacific Jet (APJ) shift index. The APJ_shift index is defined as the difference inof the 250-hPa zonal wind anomalies averaged over the Pacific sector (150° E 150° W) between the northern flank (40°-50° N) and the southern flank (20° N-30° N) of the climatological APJ core, averaged over the Pacific sector (150° E-150° W). AThe negative value indicates that the APJ shiftsmoves toward the equatorward during the QBO-W phase. The eComposite differences are shown for the LN/_La Niña or LN experiment (blue), CTL/ENSO-neutral or CTL (black), and EN/El Niño or EN experiment (red). The APJ shift indexvalues is are considered significant if the 5—95 % range of the bootstrap distribution (vertical dashed lines) does not include encompass zero.

Given that the subtropical jet routepathway of the QBO teleconnection can be influenced by the QBO amplitude and/or the climatological position of the subtropical jet (Garfinkel and Hartmann, 2011a), we examined whether model performance in simulating these two factors is related to the ability of a model to capture the QBO-induced shift of the APJ (Fig. S3). Here, the QBO amplitude is defined as the root-mean square of the deseasonalized zonal-wind time series at 70 hPa, multiplied by $\sqrt{2}$, following Dunkerton and Delisi (1985) and Bushell et al. (2022). The climatological position of the APJ is defined as the latitude of the maximum zonal-mean wind averaged over the APJ sector (150° E–150° W). Consistent with previous studies (Bushell et al., 2022; Anstey et al., 2022c), most QBOi models underestimate the QBO amplitude. Only two models show a comparable QBO amplitude comparable to the reanalysis. However, model biases in the QBO amplitude do not affect those in the QBO—APJ connection (Fig. S3a). Models with larger QBO amplitudes do not necessarily exhibit stronger jet responses, nor do models with smaller amplitudes consistently show weaker responses. A similar result is also-found form the APJ position (Fig. S3b). These results suggest that neither the QBO amplitude nor the APJ position explains the inter-model spread in the QBO—APJ connection. Other factors, such as transient and stationary eddies, may determine the QBO—APJ connection in the models. This possibility shouldneeds to be explored in a future studyies.

5 QBO teleconnections: the tropical routepathway

This section investigates the tropical routepathway of the QBO teleconnection modulated by ENSO, focusing on tropical precipitation and the Walker circulation.

5.1 Tropical precipitation

585

590

600

605

610

Several studies have <u>suggested</u> that the observed <u>QBO</u> signal from the <u>QBO</u> inon tropical precipitation depends on the underlying ENSO phase (e.g., Taguchi et al., 2010; García: Franco et al., 2022, 2023). This section <u>examines investigates</u> this hypothesis using these QBO models and experiments through the analyse of tropical precipitation and OLR. Figure 8 shows the DJF seasonal-mean precipitation differences between QBO-W and QBO-E in EN and LN, together with anomalies <u>duringfor</u> El Niño and La Niña winters <u>fromfor</u> GPCP. In the observations, the QBO signals are <u>strongestlargest</u> and statistically significant in the tropical Pacific and Indian <u>oQ</u>ceans, <u>consistent and are in good agreement</u> with previous analyses (Liess and Geller, 2012; García-Franco et al., 2022). The positive equatorial Pacific signal in the GPCP dataset, which resembles an El Niño anomaly (Dommenget et al., 2013; Capotondi et al., 2015), is particularly strong and statistically significant <u>duringin</u> DJF. This signal is associated with the three strongest El Niño events (1982–1983, 1997–1998, 2015–2016), coinciding with the westerly QBO phase (Fig. S4; and García-Franco et al., 2023).

Although most models do not <u>reproduceshow such</u> El_-Niño_-like precipitation anomaly patterns in either experiment, several models exhibit significant <u>precipitation</u> QBO-related <u>precipitation</u> signals. For example, GISS, ECHAM5sh, and MRI-ESM2.0 show significant QBO responses in <u>the EN experiment</u>, <u>which are comparable</u> in magnitude to the signal diagnosed in GPCP when considering all months (Fig. S5a), <u>thoughbut_weaker</u> than the <u>corresponding</u> observed signals <u>underin</u> El Niño

and La Niña conditions. However, the response in other models, the response is generally weaker, and the spatial distribution of the anomalies is not inconsistent across between models. In the LN-experiments, the models similarly also fail to do not show a clear precipitation signal in the Pacific, althoughbut EC-EARTH, ECHAM5sh, WACCM, and MIROC-ESM exhibits how a response several precipitation signals over the Indian Ocean and Australia. A multi-model mean response is shown in (Fig. S5), which illustrates the lack of model agreement, characterized by with a virtually zero the mean QBO signal effectively vanishing in a multi-model mean sense across the tropics. Thus, this result suggests that there is little lack of consensus among models agreement regarding both in the spatial distribution and the sign of the tropical precipitation response to the QBO phase. Figure S6These results are furtheralso supportsed by Fig. S6 this, which showsing DJF seasonal outgoing longwave radiation (OLR) differences between QBO-W and QBO-E in EN and LN, alongside together with ERA5. None of the models reproduce show anthe observed OLR signal comparable to observations, and some models (EC-EARTH, ECHAM5sh, LMDz, and GISS) show OLR (and precipitation; Fig. 8) responses that differ appear distinctly between EN and LN-experiments, in regions such as especially over the equatorial Pacific. In summary other words, there is no robust or consistent or robust precipitation response across models or experiments.

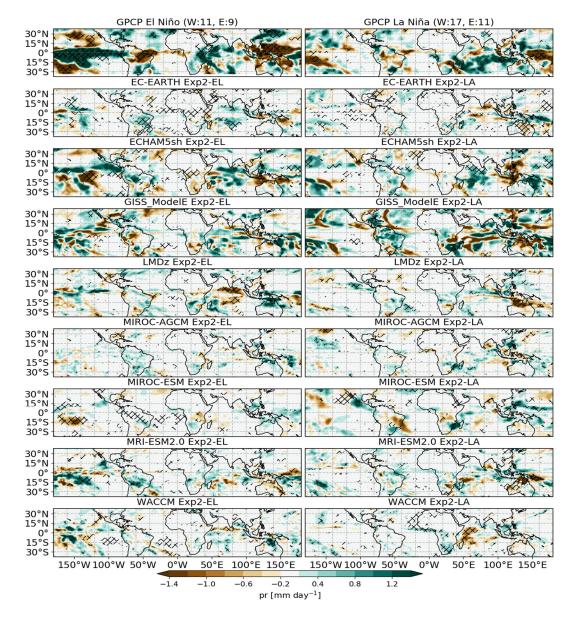


Figure 8: DJF seasonal_mean precipitation differences (mm day $^{-1}$) between (QBO-W andminus QBO-E) for (left) EN and (right) LN experiments infor the QBOi models, including El Niño and La Niña wintersyears fromin GPCP data. Hatching indicatesdenotes statistical significance at the 95% confidence level, determined byaccording to a bootstrap test for the observations and a two-sided t-test for models. The oObserved composite sample sizes (in months) are shown in parenthese in the GPCP panels. QBO phases are classified based onusing deseasonalized DJF_mean zonal-mean zonal wind averaged over 5° S 5° N at 50 hPa, averaged over 5° S 5° N, with values using $\geq 2 \text{ m s}^{-1}$ indicating for QBO-W and $\leq -2 \text{ m s}^{-1}$ indicating for QBO-E.

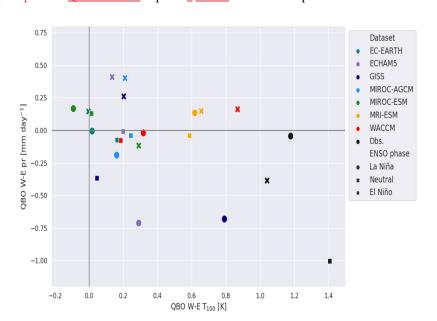

685

Figure 9: (a-b) Box plots of QBO-W minus QBO-E differences in DJF precipitation (mm day⁻¹) forin (a) the western equatorial Pacific (WEP) and (b) the EN3.4 region (5° S-5° N, 170°-120° W). Error bars represent the 95 % confidence interval. Note that the y-axis is fixed for clarity to make the plot clearer; however, but an alternative version with where the y-axis limits set according to are set based on the GPCP scalebar is provided in supplementary Fig. S8.

Previous studies have shown that the QBO signal during DJF is particularly strong prominent in specific particular regions of the tropical Pacific: the western equatorial Pacific (WEP₂) region (5° S–5° N, 120°–170° E) and the Niñno3.4 region (EN3.4, 5° S–5° N, 170°–120° W) (EN3.4; Gray et al., 2018; Serva et al., 2022; García-Franco et al., 2022). To test examine the extent to which precipitation sensitivity of precipitation in these regions is sensitive to the QBO phase, we analyze evaluated the area-averaged precipitation in both regions as a function of QBO and ENSO phases (Fig. S7). The QBOi models show considerable significant spread in the their climatology of precipitation climatology amounts. However, but all the simulations seem to reproduce the observed ENSO signal; i.e., wetter conditions in the EN3.4 region and drier conditions in the WEP in EN, withand the opposite pattern in LN, regardless of the QBO phase.

Figure 9 shows the area-averaged precipitation differences (QBO-W minus QBO-E) <u>for the WEP and EN3.4 per regions</u> for the or the CTL, EN, and LN experiments, along with ENSO—(Nneutral), El Niño, and La Niña experiments/winters <u>from</u>

GPCP.) In observations, the precipitation signal associated with the QBO during El Niño is opposite in sign to that <u>during</u> La Niña. However, these results should be interpreted with caution due to One must consider the very small sample size (approximately roughly 3_ to 5 winters in each composite) in these observations when interpreting these results. Regardless of the <u>observed</u> sign and magnitude of the <u>observed</u> response, the models <u>generally seem to show</u> disagreement on the sign of the precipitation response, i.e., comparing models in <u>each</u> the same experiment provides no consistent precipitation signal. For example, while the <u>QBO signal during</u> La Niña response is positive over the WEP in observations and most models agree, only <u>five</u> out of <u>seven</u> models <u>captureshow</u> thise positive response. When looking at individual models, GISS and MIROC-ESM <u>showagree that the positive</u> precipitation signals (QBO-W minus QBO-E) is positive in the WEP <u>acrossin</u> all their three experiments. However, but in the EN3.4 region, none of no the models reproduce consistent agrees on the sign of the precipitation <u>QBO-related</u> responses acrossin all three experiments for the EN3.4 region.

690

695

Figure 10: Scatter plot of DJF air_temperature differences at 100 hPa (QBO-W minus QBO-E_a in K) versus precipitation differences (QBO-W minus QBO-E_a in mm day⁻¹)_a. Bboth variables were averaged overing the western equatorial Pacific region. The correlation coefficient of the best-fit line for all the data, including observations, is -0.48, which is significant atto the 95% confidence level according to a t-test. (The correlation W without observations, the correlation is -0.25.) Under El Niño conditions, Thethe correlation coefficient changes when only El Niño conditions is are considered (r = -0.82) whileas well as underfor La Niña conditions experiments, it is(r = -0.20).

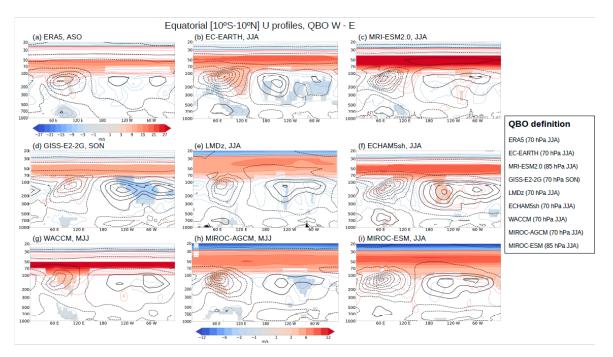
One <u>possible</u> reason for <u>thethis</u> inter-model and/or inter-experiment spread in <u>the-precipitation</u> response <u>eould beis</u> <u>variabilitythe model spread</u> in QBO-related temperature-<u>associated</u> anomalies at the equator, <u>arisingresulting</u> from the QBO-induced mean meridional circulation and thermal wind balance. The QBO's impact on the tropical tropopause layer (TTL) region is important for <u>itsthe QBO</u> teleconnection <u>viain</u> the tropical <u>pathwayroute</u> (Haynes et al., 2021, Hitchman et al., 2021).

Here, one A common hypothesis is that <u>when</u> if a cold QBO anomaly <u>occurslies</u> in the TTL, convection <u>vain</u> to <u>highergreater</u> altitudes, locally amplifying the zonal—mean QBO cold anomaly

(Tegtmeier et al., 2021). Figure 10 shows a scatter plot of the QBO-W minus QBO-E temperature differences of air temperature at 100 hPa versus the precipitation differences (QBO-W minus QBO-E) over the WEP. One might expected the weak of the web as a support of the web as a question whether models or experiments with a larger TTL temperature signals or static stability tomay also show a strongerlarger precipitation signals in precipitation. In this panel, ERA5 shows larger QBO differences in the W-E-TTL temperature signals diagnosed from ERA5 are larger than those of the models, withand are the strongest signals occurring duringfor El Niño winters. Also, The GPCP precipitation signal diagnosed in GPCP is also largest duringin El Niño, possibly due to the coincidence of the strongestlargest El Niño events with the westerly QBO phase. We confirmed an impact of Removing theese strongest El Niño events (1982–1983, 1997–1998, 2015–2016) significantly alterson the GPCP precipitation signal (Fig. S4). It is found that the impact is more dramatic over the all-year composites at the top, in which For the all-winter composites, the Pacific signal dramatically weakens disappears - when excluding not considering these cases (Fig. S4a, b). <u>During In</u> the El Niño winters, it is only the eastern portion of the Pacific that significantly changes significantly. There are Some models, such as GISS and ECHAM5sh, that exhibit have a strong temperature signals, such as GISS and ECHAM5sh, andwhich have a strong negative precipitation signals in LN. However, most models showhave modest positive temperature differences without a clear precipitation signal. Overall, the QBOi models underestimateshow unrealistically weak QBO wind amplitudes in the lower stratosphere (Bushell et al., 2022) and thuseorrespondingly showhave weak TTL temperature anomalies that are too weak in the TTL (Serva et al., 2022), which may earlied help explain their weak precipitation signals.

5.2 Walker circulation

730


735

740

In this subsection, we examine whether the a QBO's impact on the Walker circulation can be detected across different ENSO phases. A recent study (Rodrigo et al., 2025) showed that, in reanalyses, the QBO signal in the divergent circulation is strongest over the Maritime Continent region during boreal summer (JJA), followed by autumn (SON), and weakest in DJF winter. However, under El Niño and La Niña conditions, this timing may shift slightly-shift, potentially due to the ENSO's influence on the QBO itself (Taguchi, 2010b; Kawatani et al., 2025). Additionally, model diversity and biases in the simulated QBO (Bushell et al., 2022) may contribute eould lead to inter-model variations in the simulated QBO teleconnection. We begin our the analysis by applying a common QBO definition and target season across all models, using the zonal-mean zonal wind at 70 hPa during JJA to define the QBO phase. With this approach, we identify a coherent signal, characterized by anomalous westerlies in the upper troposphere and anomalous easterlies in the lower troposphere over the Indian Ocean–Maritime Continent region, in both observations and some models across the CTL, LN, and EN experiments (Figures S9, S10, and S11). To strengthenenhance this signal and capture the strongest response in each model, we allow minor slight adjustments to the QBO definition and target season when necessary. The Bonferroni correction (Holm, 1979; see Section 2) is applied to the two-sided t-test when a level or season other than 70 hPa during JJA is used to define the QBO phase.

Figure 11 <u>illustrates</u> the QBO zonal wind signal averaged over 10° S–10° N in the LN-experiment, represented by the QBO-W minus QBO-E composite (shading), with the climatological winds superimposed (black contours). <u>InFocusing on</u> ERA5 during La Niña (Fig. 11a), the August—September—October (ASO) <u>climatologymean state</u> <u>showsfeatures</u> upper-level easterlies over the Eastern Hemisphere and westerlies over the Western Hemisphere, with a weaker, opposite pattern in the lower troposphere. A distinct QBO signal is observed in the equatorial troposphere over the Indian Ocean—Maritime Continent.

This

signal is characterized by anomalous westerlies in the upper troposphere (red contours and shading) and anomalous easterlies in the lower troposphere (blue contours and shading). Relative to the climatology, this signal represents a weakening of the mean-zonal circulation over the Indian Ocean–Maritime Continent-region. Similar QBO-related anomalies to those observed in ERA5 for La Niña; — featuring upper-level westerlies and lower-level easterlies; — are also found in most models infor LN experiments (Figs. 11b—i), although their precise locations varyies and the lower-level anomalies are generally weaker. Specifically, the strongest signals are foundidentified in EC-EARTH, MRI-ESM2.0, LMDz, and MIROC-AGCM during JJA; GISS during SON; and in-WACCM during MJJ. In contrast, ECHAM5sh and MIROC-ESM showexhibit no significant signal. The QBO-W minus QBO-E composite in CTL shows a similar signal to that in LN in most models during JJAsummer or SONautumn (Fig. S12). This modulation of the tropical circulation by the QBO appears robust, despite variations differences in the-timing and longitudinal location.

765

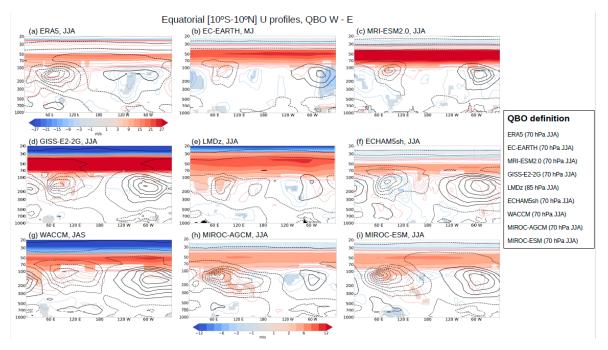


Figure 11: Climatology (black contours) and QBO-W Westerly (W) minus QBO-E-Easterly (E) differences (shading and colored contours) in equatorial zonal wind profiles, averaged over 10° S-10° N, from the LN experiment for the QBOi models, along with La Niña winters in ERA5. Black contours are drawn at 4 m s⁻¹ intervals. Colored contours use the same intervals as the shading, with red contours indicating positive differences and blue contours indicating negative differences. The target season for each panel is indicated in the title, with the QBO definition provided in the legend. In ERA5, 15 La Niña events are identified using the NINO3 index during DJF, and QBO phases they are classified based on deseasonalized zonal-mean zonal wind at 70 or 85 hPa in summer and autumn (see the legend), with values ≥ σ (standard deviation) indicating QBO-W and ≤ σ indicating QBO-E. In ERA5, 16 La Niña events are identified using the NINO3 index during DJF. The numbers of QBO phase categories (QBO-W, QBO-E) in ERA5 are (8, 8) for these events into 10 QBO-W and 5 QBO-E categories by analyzing the zonal mean zonal wind at 50 hPa in summer and autumn, with values ≥ 0 m s⁻¹ indicating QBO-W and ≤ 0 m s⁻¹ indicating QBO-E. Only statistically significant zonal wind differences at the 95 % confidence level are shaded. For models using with a QBO definition other than 70 hPa during JJA, the Bonferroni correction is applied (see Section 2). Note that the color bar for ERA5 differs due to because of the larger QBO amplitude.

During El Niño in ERA5 (Fig. 12a), the QBO signal in the equatorial troposphere resembles that observed during La Niña, although it occurs during JJA and is weaker. It also shows anomalous westerlies in the upper troposphere over the Indian Ocean–Maritime Continent and anomalous easterlies in the lower troposphere. As <u>infor</u> LN, this anomalous zonal circulation <u>indicates implies</u> a weakening of the climatological pattern. Comparable anomalies, <u>with featuring</u> upper-level westerlies and lower-level easterlies over the same region, are also present in most models. The strongest signals <u>are foundoceur</u> in EC-EARTH during MJ; in MRI-ESM2.0, GISS, LMDz, MIROC-AGCM, and MIROC-ESM during JJA; and in WACCM during JAS. ByIn contrast, ECHAM5sh shows only<u>displays</u> a weak response that differs from the other models.

820

825

830

835

Figure 12: Same as Figure 11, but for EN experiments, along withand El Niño events years in ERA5. In ERA5, 14 El Niño events are identified, withand OBO phase categories (OBO-W, OBO-E) of (7, 7) they are classified into 7 OBO-W and 7 OBO-E categories.

Figure 13 presents shows a summary diagram showing the timing and location of when and where the statistically significant QBO-W minus QBO-E composite differences in equatorial zonal wind (10° S-10° N) occur-across all three experiments, illustrating QBO-W minus QBO-E differences at three representative vertical levels (700, 100, and 70 hPa) and over the four standard seasons. These statistically significant signals are identified by analyzingexamining the influence of the OBO on zonal winds within the longitudinal band from 60° E toand 120° E. An example from the EC-EARTH CTL experiment is shownprovided in Fig. S13. The QBO phase is consistently defined forin the specific season indicated in the legend (i.e., it does not vary seasonally). In some models, the strongest signals occur during transitional periods between standard seasons; in such cases, so the corresponding symbols are placed accordingly. Across all three experiments, nearly all models, along with ERA5, exhibit a tropospheric signal characterized by upper-level (100 hPa) westerly and lower-level (700 hPa) easterly anomalies during various varying seasons from May to November.; This pattern suggestsing a weakening of the climatological Walker circulation over the Indian Ocean-Maritime Continent. Exceptions include GISS in CTL, MIROC-ESM in CTL and LN, and ECHAM5sh in LN and EN (see Figs. 11, 12, and S12). Overall, this figure illustrates that the QBO, when defined around JJAsummer and SONautumn, modulates the zonal circulation in the equatorial troposphere over the Indo-Pacific region. ERA5 shows a consistent signal during both La Niña and El Niño years, which is reproduced byin some models with slight variations in season, longitude, or the level used to define the QBO, but is absentmissing in others. It is important to Again, we note that the QBOiENSO experiments are idealized, and ERA5 should not be considered a definitive true benchmark.

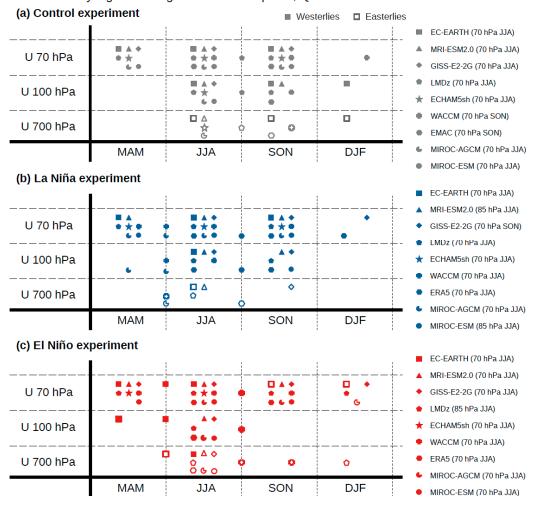


Figure 13: (a) Occurrence of a-statistically significant zonal wind signals by models, season, and altitude over the equatorial band (10° S-10° N₃) 60° E-120° E) band for the (a) CTL, (b) LN, and (c) EN experiments. The QBO-W minus QBO-E zonal wind signals are evaluated at three vertical levels and across the four standard seasons. Symbols are placed between standard seasons when the strongest signal occurs duringin an intermediate period. Filled symbols represent westerly anomalies, while open symbols indicate easterly anomalies. The QBO definition for each model and experiment is provided in the legend and are the same as Figures 11, 12, and S12.

6 Summary and Discussion

865

870

In this paper, we have examine QBO teleconnections modulated by and ENSO teleconnections in the Arctic stratosphere, the subtropical Pacific jet, and the tropical troposphere. We use Aa multi-model ensemble of QBO-resolving

models that performed the QBOiENSO experiments has been used to evaluate examine the robustness of these teleconnections. Difficulties can arise in Delistinguishing the respective influences of the QBO and ENSO influences on the extratropics and tropical troposphere can be challenging because of due to the observed aliasing between the QBO and ENSO these phenomena. To address this, Here we have attempted to separate these competing influences by conducting model integrations with annually repeating; prescribed SSTs that are representative characteristic of either strong El Niño or La Niña conditions, thereby simplifying the ENSO forcing compared in comparison withto the diversity of observed ENSO phases. We have reexamined QBO teleconnections to the extratropics and tropics that were previously explored in previous QBOi studies (Anstey et al., 2022c; Serva et al., 2022), but now focusing on addressing combined QBO—ENSO influences using this new QBOi dataset of QBOi idealized ENSO experiments.

The observed strength of correlation coefficients between the 50-hPa equatorial zonal wind and the strength of the polar vortex strength at stratospheric altitudes induring DJF exhibit considerableshows large uncertainty (Fig. 1a), but The models show less uncertainty because of their larger sample sizes (Fig. 1). Some models reproduce weaker correlations for a specific ENSO experiment, consistent with the observations, the confidence intervals clearly exclude zero at most altitudes during La Niña and ENSO neutral winters, while El Niño response is statistically significant over a smaller altitude range. The models show a smaller uncertainty due to their larger sample sizes (Fig. 1). Some models have weaker correlations for a particular ENSO experiment, similar to the observations. The Holton TanHolton—Tan relationship in ERA5 indicates that represents the polar vortex isbeing significantly stronger (weaker) under QBO-W (QBO-E) across for all the ENSO phases, with the strongest response occurring induring the La Niña phase. Nearly half of the models simulate exhibit a stronger polar vortex during NH winter under QBO-W for each experiment, consistent with; but much weaker than the observed response, reaching within at most a half of the observed amplitude (Fig. 2). The Seasonal evolution of the QBO in ERA5 reveals indicates a stronger signal in early (late) winter during for the El Niño and in late winter during (La Niña) winters. In the LN experiment, two out of nine models capture the observed late-winter response relatively well, while the and others models do not show little or noany response, or even the an opposite response direction (Fig. 3).

Major SSWs occur more frequently during both El Niño and La Niña winters than during ENSO-neutral winters in ERA5. Most models show an increased number of events during EN but fail to capture the LN response, suggesting that the QBOi models struggle to reproduce observed SSW statistics (Fig. 4). Major SSW frequencies vary strongly with both QBO and ENSO phases in ERA5, whereas SSW frequencies between QBO-W and QBO-E phases are indistinguishable in the models. These results indicate that polar vortex responses to idealized ENSO forcing in the QBOi models are strong, whereas responses to equatorial QBO phases are relatively weak (Fig. 5), independently from the level used to define the QBO (50 or 30 hPa).

One may ask if a model specific equatorial wind level such as 30 hPa can be more efficient for models to reproduce QBO's impact on the polar vortex (the Holton Tan effect) than the standard 50 hPa equatorial wind that are optimal for observed teleconnections. However, for both 30 hPa and 50 hPa QBO indices most models underestimate equatorial QBOs and they are struggling to reproduce observed polar vortex responses to the QBO. We have examined whether model performance of

QBO amplitude and/or climatological polar night jet strength is related to the ability of model to capture the QBO-induced polar vortex responses. QBO amplitudes at 50 hPa for most models are poor performance, while climatological polar vortices in NH winter can be reproduced with observed strength. This means that unrealistically weak low-level QBO amplitudes can weaken the QBO teleconnections to the polar vortex, as indicated by the previous QBOi multi-model ensemble studies (Richter et al., 2022; Anstey et al., 2022e).

910

915

920

925

930

935

Major SSWs occur frequently during both El Niño and La Niña winters, compared to ENSO-neutral, in ERA5. Most models show more events during EN but they do not catch the LN response, implying that the QBOi models have some trouble in reproducing observed SSWs statistics (Fig. 4). Major SSW frequencies in ERA5 show strong variation with QBO and ENSO phase. QBOi models are characterized by linear distributions between SSW frequencies and the polar vortex strength in NH winters (similar to ERA5) and overall the EN (LN) experiment displays high (relatively low) SSW frequencies (Fig. 5). SSW frequencies between QBO-W and QBO-E are indistinguishable in the models, indicating that polar vortex responses to the idealized ENSO forcing in the QBOi models are strong, while vortex responses to equatorial QBOs are fairly weak.

The APJ echanges in the APJ in response to the QBO are examined investigated (Figs. 6 and 7), with a focusing on the late winter, when the subtropical jet routepathway is strongest in the observations. Observational data In observations, show that the APJ shifts equatorward during QBO-W winters compared with QBO-E winters associated with the QBO westerly anomaly exhibits a distinct horseshoe-shaped pattern extending from the tropical lower stratosphere to the subtropical lower troposphere; , indicating that the APJ shifts equatorward during the QBO-W winter compared to the QBO-E winter. Hhowever, most models underestimate or fail to reproduce this the observed QBO_APJ relationship connection. The observed QBO_APJ connection differs between El Niño and La Niña. In observations, as the APJ strengthens over the Pacific sector in response to El Niño, the QBO subtropical wind anomalies become stronger near the APJ center during El Nino while they do not change much during La Niña as the APJ becomes slightly weaker. All models capture a stronger APJ in EN than in LN. The observed APJ shifts equatorward under QBO-W during the ENSO-neutral winter and La Niña winter winters, but it is is insignificant during El Niño winters. This APJ-shift index is not robust across models. None of the models show a statistically significant shift of the APJ in response to the QBO, regardless of the ENSO phase. -We have also examined whether the subtropical-jet pathwayroute of the QBO teleconnection iscan be influenced by the QBO amplitude and/or the climatological position of the subtropical jet. AlthoughM-most QBOi models underestimate the QBO amplitude, whereas models with larger QBO amplitudes do not necessarily exhibit stronger jet responses, nor do models with smaller amplitudes consistently show weaker responses. This means that neither the QBO amplitude nor the APJ position explains the inter-model spread in the QBO_ -APJ connection. Other factors, such as transient and stationary eddies, likely play a role inmay determineing the QBO_-APJ connection in the model.

The tropical routepathway of the QBO teleconnection modulated by ENSO is examined, focusing on tropical precipitation (Figs. 8–10) and the Walker circulation (Figs. 11–13). In the GPCP dataset,

The positive equatorial Pacific signal with in the GPCP dataset, which resembles an El Niño like anomaly in the for QBO-W minus QBO-E differences; is particularly strong and statistically significant during DJF₂₇ as shown by previous studies

that highlight the issue of strong ENSO events coinciding with the westerly phase (García-Franco et al., 2023). Although most of the models do not reproduceshow such El_-Niño_-like precipitation anomaly patterns in either the EN or LN experiments, some models (EC-EARTH, ECHAM5sh, WACCM and MIROC-ESM) show significant precipitation signals over the Indian Ocean and Australia (Fig. 8). The precipitation response to the QBO in these experiments varies bydepends on both the model, region, and ENSO phase, withas there is no consistent response across between the experiments for each model (Fig. 9). For example, the simulated and observed QBO signals in the Niño 3.4 region disagree on the magnitude and sign. To investigate explore the causes of discrepancies between models and versus observations differences, we analyze the strength of the QBO impact on the TTL region was analyzed, which it is considered to be important for the QBO teleconnection along in the tropical route pathway (Fig. 10). In particular, we verified whether the strength of the temperature anomaly could explain inter-model or inter-experiment differences in the precipitation signals. Overall, the QBO models produce too-weak wind amplitudes and too-weak temperature anomalies in the lower stratosphere_, which could help explain the weak precipitation signals.

Several potential biases likely influence the tropical route of QBO teleconnections. Most proposed mechanisms linking the QBO to the tropical surface rely on interactions between the lowermost stratosphere and the uppermost troposphere. A key bias common to many models, including those used in this study, is a weak QBO amplitude in the lower stratosphere, which limits the effectiveness of stratosphere troposphere coupling processes (Oueslati et al., 2013; Richter et al., 2020; García-Franco et al., 2022, 2023). Additionally, models exhibit persistent tropospheric biases related to tropical convection and precipitation, including biases in the strength and position of the ITCZ, tropical wave activity and unrealistic distributions of rainfall intensity (Oueslati et al., 2013, Norris et al., 2021). These biases typically stem from model parameterizations, notably in convection and cloud microphysics schemes (Hagos et al., 2021, Norris et al., 2021, Zhou et al., 2022). The combination of these stratospheric and tropospheric biases likely weakens the QBO signal reaching the tropical troposphere and contributes to inter-model differences in the magnitude, timing and spatial manifestation of the teleconnection.

The QBO teleconnection to the Walker circulation_in reanalyses_is strongest in reanalyses_over the Indian Ocean—Maritime Continent region duringin boreal summer, followed by autumn, and weakest in winter (Rodrigo et al., 2025). Tunder ENSO conditions, this timing may shift slightly shift, potentially due to ENSO's the influence of ENSO on the QBO itself, and Furthermore, model diversity and biases, as described above, may cause variability in the simulatinged QBO teleconnections to vary. Thus Here, we identified the strongest signal for each model, by defining the QBO across different seasons (JJA or SON) and vertical levels (85 or 70 hPa). In ERA5, the equatorial troposphere has Aa distinct QBO signal, that is characterized by upper-level westerly and lower-level easterly anomalies, is observed in the equatorial troposphere in ERA5 over the Indian Ocean—Maritime Continent region, which is does not have highvery sensitivitye to the ENSO phase. Most models reproduce a similar pattern across all three experiments, although the lower-level anomalies are generally weaker. This modulation of the tropical circulation by the QBO appears spatially consistent robust, although but its timing varies.

One possible explanation for the more coherent Walker circulation response is that the zonal circulation in the SST-forced simulations is sufficiently similar across models — owing to the SST forcing — that the responses remain relatively consistent. In contrast, other aspects of the response, such as the tropical precipitation, the polar vortex, and the subtropical jet, may be less constrained by the experimental setup. It is also plausible that the mechanisms driving the Walker cell response are better represented in these models. Given the relatively large static stability anomaly shown in the results (Fig. 10), one could reasonably suspect that this mechanism is strong enough in the models to produce a consistent response in the Walker circulation.

975

980

985

990

995

000

We now consider three issues <u>related to about</u> modelling <u>the complexity of QBO_ENSO interaction complexity</u> raised by these results: forced SSTs, the seasonality and <u>variability variation</u> of the Walker circulation, and biases in the QBO and other <u>processes diagnostics</u>.

First, tAMIP-type experiments, where idealized SST patterns and fixed external forcings are used, have been used here to examine QBO-ENSO teleconnections although it is noted that we do not have an observational verification for these experiments. However, the responses of the climate system's response to ENSO forcing tends to be nonlinear with respect to ENSO intensity and asymmetric with respect to ENSO the phases polarity of ENSO (Domeisen et al., 2019; Rao and Ren, 2016b, c). This nonlinearity complicates the identification of means that it is difficult to isolate physically meaningful mechanisms and limitsfrom such a nonlinear system and gain understanding of scientific insights into QBO_ENSO teleconnections. Therefore, cconducting idealized experiments, such as our QBOiENSO experiments, c that take into account the ENSO QBO diversity could help us to further clarify physically robustelucidate scientifically meaningful mechanisms within this in such a complex system. The experimental design of QBOiENSO (Kawatani et al., 2025) is annually repeating, using inflated monthly mean ENSO anomalies from the climatology. However, most QBOi models in the three experiments (CTL, EN, and LN) fail to reproduce QBO-related, El Niño-like precipitation anomalies as observed in the GPCP dataset, whereas such precipitation patterns are captured by some QBOi models in QBOi Experiment 1 of the AMIP-type with interannually varying SSTs (Serva et al., 2022) and by other models in AMIP-type experiments (García-Franco et al., 2022). It is noted that the experimental design of QBOiENSO (Kawatani et al., 2025) is annually locked with monthly mean anomalies from the climatology. For example, the precipitation responses to the QBO for the AMIP type experiments with interannually varying SSTs(Serva et al., 2022; García Franco et al., 2022)

(Serva et al., 2022; García-Franco et al., 2022) is different from those for the QBOi ENSO experiments with perpetual SSTs. The precipitation response to the QBO in the equatorial Pacific signal in the GPCP dataset shows a statistically significant, El-Niño like anomaly pattern. Most of the models do not show such El Niño like precipitation anomaly patterns in the CTL, EN or LN experiments, while such patterns were seen in some of the QBOi models in the QBOi Experiment 1 (Serva et al., 2022). This suggests that the QBO's downward influence on tropical precipitation may be overly sensitive to model physics or muted by the absence of SST feedbacks (García-Franco et al., 2023; Randall et al., 2024), or affected by biases in climatological winds and precipitation characteristics. making it difficult to detect with confidence.

The lack of a robust and coherent QBO-related precipitation signal across experiments and models highlights significant spread in how convection and circulation respond to a QBO foreing. This raises the possibility that the QBO's downward impact on tropical precipitation is too sensitive to model physics, or is perhaps muted by the lack of SST feedbacks (García-Franco et al., 2023, Randall et al., 2024) to be clearly detected.

010

015

020

025

030

035

Next, One of the most important points from this study is that Walker circulation would potentially play an important role in tropical teleconnections as well as extratropical teleconnections. We are interested in two distinct and documented El Niño patterns, Eastern Pacific (EP) versus Central Pacific (CP, or Modoki) El Niños, which make a large difference in the Hadley and Walker circulations and also have markedly different impacts on remote regions. One may doubt that weaker ENSO events or different ENSO flavors than those used in this study would yield further insights due to such ENSO events being associated with less dramatic changes in the location of tropical convection. However, the tropical SSTs in the Central Pacific substantially influences the QBO on decadal timescales (Shibata and Naoe, 2022). Thus, such idealized experiments forced with ENSO SST patterns would be beneficial for us to better achieve the changing impact of ENSO events on the QBO teleconnections. We are also interested in tropical convection being inherently coupled with the ocean. Long-term simulations from coupled global circulation models (CGCMs) would be a convenient tool for testing responses of QBO ENSO teleconnections associated with internal variability of the ocean-atmosphere coupled system (García-Franco et al., 2023; Randall et al., 2023).

Wwe emphasize have to underline the importance of seasonality infor shaping the combined effects of the QBO-and ENSO on the tropical troposphere. Our results indicate suggest that QBO teleconnections with the Walker circulation varyexhibit seasonally-variability and display a distinct zonally asymmetric pattern. These findings underscore emphasize the need for further investigation to clarifyelucidate the drivers of this the seasonal dependence, the causes nature of the asymmetry, and the underlying-mechanisms governing these interactions. We also note that tropical convection is inherently coupled with the ocean. Long-term simulations with coupled general circulation models (CGCMs) would provide a useful framework for testing QBO-ENSO teleconnections arising from internal variability of the coupled ocean-atmosphere system (García-Franco et al., 2023; Randall et al., 2023).

Finally, common systematic model biases hinder QBO teleconnections to both the extratropics and the tropical troposphere. In the extratropical stratosphere, the previous studies using QBO models have suggested that the systematic weakness of the QBO—polar vortex coupling arise in the models might arise from consistently systematically weak QBO amplitudes at lower levels in the equatorial stratosphere, biases in the wintertime polar vortex biases in winter, and inadequate representation of stratosphere coupling, etc. (Bushell et al., 2022; Richter et al., 2022; Anstey et al., 2022c). Our results confirm that these unrealistically weak low-level QBO amplitudes reduce the QBO teleconnections with both the polar vortex and the APJ.

. In our QBOiENSO experiments, such systematic model biases were also found because most of the modes were the same as the previous studies. In the tropics, models commonly exhibit weak QBO amplitudes in the lower stratosphere, which limit

the effectiveness of stratosphere–troposphere coupling processes (Oueslati et al., 2013; Richter et al., 2020; García-Franco et al., 2022, 2023). Unrealistic variability also emerges in QBOiENSO experiments, with occasional stalling of simulated QBOs (Kawatani et al., 2025). Additionally, persistent tropospheric biases related to tropical convection and precipitation are evident, including biases in the strength and position of the ITCZ, tropical wave activity, and unrealistic rainfall distributions. These shortcomings typically stem from model parameterizations, particularly those governing convection and cloud microphysics (Oueslati et al., 2013; Hagos et al., 2021; Norris et al., 2021; Zhou et al., 2022). The combination of these stratospheric and tropospheric biases likely weakens the QBO signal in the tropical troposphere and contributes to inter-model differences in the magnitude, timing, and spatial manifestation of the teleconnection.

040

045

050

1055

065

In the tropies, our results suggested that the systematic bias of the QBO impact on the tropical troposphere might arise from the systematically weak QBO amplitudes at lower levels, precipitation bias, and inadequate representation of the Walker circulation. Thus, the combination of several biases could be the reason why we have not seen a consistent signal of QBO teleconnections across the models and experiments. Therefore, it is plausible that consistency with observations will not improve without correcting such model biases. Currently, a Phase 2-project of the QBOi project Phase 2-is currently underway in progress to assess the impact of QBO biases by using zonal-mean nudginged toward observations in the QBO region. Biascorrected QBO amplitudes, achieved through nudging methods, may provide valuable insights for improving the representation of QBO teleconnections into both the extratropics and the tropical troposphere.

Data availability. The QBOi data archive was hosted by the Centre for Environmental Data Analysis (CEDA), UK, and data processing was performed on the JASMIN infrastructure. The ERA5 reanalysis data can be available be obtained from the ECMWF website (https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets). The El Niño Monitoring Index (NINO.3) was obtained derived from an ENSO monitoring site of the Japan Meteorological Agency's ENSO monitoring site (https://ds.data.jma.go.jp/tcc/tcc/products/elnino/index.html). The GPCP v2.3 data werewas downloaded from https://doi.org/10.7289/V56971M6 (Adler et al., 2016).

Author contribution. YK, KH, JA, and JHR designed the QBOi-ENSO_QBO experiments. FS, HN, KY, TK, SW, YK, JGS, FMP, PAB, FL, CO, JHR, and CCJ generatedereated the model_experimented data and uploaded them to the CEDA. HN, JLGF, CHP, MR, FMP, FS and MT conducted the analyses, prepared the figures, and contributed to the manuscript. JA, JGS, SWS, NB, and SO contributed to the interpretation of the results. The first draft of the manuscript was prepared by HN, with input from who involved all authors onfor the final version.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The Editor, Dr. Battisti, and two anonymous referees provided detailed and substantive reviews of the manuscript. Their efforts are greatly appreciated by the authors and contributed substantially to improving the final version. 070 All authors acknowledge the CEDA; forwhich kindly hostinged the QBOi data archive. -HN was supported by MEXT, JSPS KAKENHI (grant numbers: JP22H04493, JP24K07140); HN and KY were supported by JSPS KAKENHI JP24K00710. YK was supported by JSPS KAKENHI (JP22K18743) and by the Environment Research and Technology Development Fund (JPMEERF20242001) of the Environmental Restoration and Conservation Agency, provided by Ministry of the Environment of Japan. YK and SW were supported by JSPS KAKENHI (JP22H01303 and JP23K22574). SW was also supported by the 075 MEXT__Program for the aAdvanced sStudies of cClimate cChange pProjection (SENTAN) Grant Number JPMXD0722681344. The nNumerical simulations with theef MIROC models were performed onusing the Earth Simulator. CP and SS were funded by the Korea Meteorological Administration Research and Development Program under Grant (RS-2025-02307979). MR was supported by the 'Ayudas para la Formación de Profesorado Universitario' programme (FPU20/03517)_{.5} FMP was supported by the EU/HORIZON-funded MSCA-IF-GF SD4SP project (GA 101065820)_{.5} and JGS 080 acknowledges funding from the Spanish DYNCAST project (CNS2022-135312). The ECHAM5sh simulations were made possible performed thanks to an ECMWF Special Project awarded to FS. NB was funded by the Met Office Climate Science for Service Partnership (CSSP) China project under the International Science Partnerships Fund (ISPF). The AI program ChatGPT was used to refine the language in portions of the final draft. The manuscript does not contain any extended passages written by the AI program.

Review statement. This paper was edited by xxx and reviewed by xxx referees.

References

1090

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.

Adler, R., Wang, J. J., Sapiano, M., Huffman, G., Chiu, L., Xie, P.-P., Ferraro, R., Schneider, U., Becker, A., Bolvin, D., Nelkin, E., Gu, G., and NOAA CDR Program: Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly), National Centers for Environmental Information, https://doi.org/10.7289/V56971M6, 2016.

Anstey, J. A., and Shepherd, T. G.: High-latitude influence of the quasi-biennial oscillation, Q. J. R. Meteorol. Soc., 140, 1–21. http://doi.orgwiley.com/10.1002/qj.2132, 2014.

Anstey, J. A., Butchart, N., Hamilton, K., and Osprey, S. M.: The SPARC quasi-biennial oscillation initiative, Q. J. R. Meteorol. Soc., 148, 1455–1458, https://doi.org/10.1002/qj.3820, 2022a.

- Anstey, J. A., Osprey, S. M., Alexander, J., Baldwin, M. P., Butchart, N., Gray, L., Kawatani, Y., and Richter, J. H.: Impacts, processes and projections of the quasi-biennial oscillation, Nat. Rev. Earth Environ., 3, 588–603,
- 1100 https://doi.org/10.1038/s43017-022-00323-7, 2022b.
 - Anstey, J. A., Simpson, I. R., Richter, J. H., Naoe, H., Taguchi, M., Serva, F., Gray, L. J., Butchart, N., Hamilton, K., Osprey, S., Bellprat, O., Braesicke, P., Bushell, A. C., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Garcia, R. R., Holt, L., Kawatani, Y., Kerzenmacher, T., Kim, Y.-H., Lott, F., McLandress, C., Scinocca, J., Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Teleconnections of the quasi-biennial oscillation in a multi-model ensemble of QBO-resolving models,
- 1105 Q. J. R. Meteorol. Soc., 148, 1568–1592. https://doi.org/10.1002/qj.4048, 2022c.
 - Baldwin, M. P., Gray, L. J. Gray, Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999RG000073, 2001.
- Boer, G. J., Hamilton, K.; QBO influence on extratropical predictive skill, Clim. Dyn., 31, 987–1000,
- 1110 https://doi.org/10.1007/s00382-008-0379-5, 2008.
 - Bushell, A.C., Anstey, J. A., Butchart, N., Kawatani, Y., Osprey, S. M., Richter, J. H., Serva, F., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Garcia, R. R., Gray, L. J., Hamilton, K., Kerzenmacher, T., Kim, Y.-H., Lott, F., McLandress, C., Naoe, H., Scinocca, J., Smith, A. K., Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Evaluation of the Quasi-Bbiennial Ooscillation in global climate models for the SPARC QBO-initiative, Q. J. R. Meteorol. Soc., 148,
- 1115 1459–1489, https://doi.org/10.1002/qj.3765, 2022.
 - Butchart, N., Anstey, J. A., Hamilton, K., Osprey, S., McLandress, C., Bushell, A._C., Kawatani, Y., Kim, Y.-H., Lott, F., Scinocca, J., Stockdale, T., Bellprat, O., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Dobrynin, M., Garcia, R. R., García-Serrano, J., Gray, L. J., Holt, L., Kerzenmacher, T., Naoe, H., Pohlmann, H., Richter, J. H., Scaife, A. A., Schenzinger, V., Serva, F., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Overview of experiment design and comparison of
- models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi), Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, 2018.
 - Butler, A., and Polvani, L.: El Niño, La Niña, and stratospheric sudden warmings: Reevaluation in light of the observational record, Geophys. Res. Lett., 38, L13807, https://doi.org/10.1029/2011GL048084, 2011.
 - Butler, A., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A.: Defining sudden stratospheric warmings,
- 125 Bull. Amer. Meteorol. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015.
 - Butler, A. H., and Polvani, L. M.: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record, Geophys. Res. Lett., 38, L13807, https://doi.org/10.1029/2011GL048084, 2011.
 - Butler, A. H., Polvani, L. M., and Deser, C.: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections, Environ. Res. Lett., 9, 024014, DOI 10.1088/1748-9326/9/2/024014, 2014.
- Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A.: Defining sudden stratospheric warmings, Bull. Am. Meteor. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015.

- Calvo, N., Giorgetta, M. A., Garcia-Herrera, R., and Manzini, E.: Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations, J. Geophys. Res., 114, D13109, https://doi.org10.1029/2008JD011445, 2009.
- Camp, C. D., and Tung, K. K.: Stratospheric polar warming by ENSO in winter: A statistical study, Geophys. Res. Lett., 34, L04809₃₇ https://doi.org/10.1029/2006GL028521, 2007.
 - Capotondi, A., and Sardeshmukh, P. D.: Optimal precursors of different types of ENSO events, Geophys. Res. Lett., 42, 9952–9960, https://doi.org/10.1002/2015GL066171, 2015.
- Charlton, A. J., and Polvani, L. M.: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks, J. Clim., 20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007.
 - Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A., and Waliser, D. E.: On the relationship between the QBO and tropical deep convection, J. Clim., 16, 2552–2568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2, 2003.
- Crooks, S._A., and Gray, L._J.: Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset, J. Clim., 18, 996–1015, https://doi.org/10.1175/JCLI-3308.1, 2005.
- Domeisen, D. I., Garfinkel, C. I., and Butler, A. H.: The teleconnection of El Niño Southern Oscillation to the stratosphere, Rev. Geophys., 57, 5–47, https://doi.org/10.1029/2018rg000596, 2019.
 - Dommenget, D., Bayr, T., and Frauen, C.: Analysis of the nonlinearity in the pattern and time evolution of El Niño Southern Oscillation, Clim. Dynam., 40, 2825–2847, https://doi.org/10.1007/s00382-012-1475-0, 2013.
- Dunkerton, T.J.. and Delisi, D.P.: Climatology of the equatorial lower stratosphere, J. Atmos. Sci., 42, 376–396, 1985. Elsbury, D., Serva, F., Caron, J., Back, S.-Y., Orbe, C., Richter, J., Anstey, J. A., Bretonniere, P.-A., Butchart, N., Chen, C.-C., Garcia-Serrano, J., Glanville, A., Kawatani, Y., Kerzenmacher, T., Lott, F., Naoe, H., Osprey, S., Palmeiro, F. M., Son, S.-W., Taguchi, M., Versick, S., Watanabe, S., and Yoshida, K.: QBOi El Niño Southern Oscillation experiments: Assessing relationships between ENSO, MJO, and QBO, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3950, Weather
- Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P., Debeire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Koldunov, N., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V.,
- Massonnet, F., Müller, B., Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP, Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, 2020.

- García-Franco, J. L., Gray, L. J., Osprey, S., Chadwick, R., and Martin, Z.: The tropical route of quasi-biennial oscillation (QBO) teleconnections in a climate model, Weather Clim. Dynam., 3, 825–844. https://doi.org/10.5194/wcd-3-825-2022, 2022. García-Franco, J. L., Gray, L. J., Osprey, S., Jaison, A. M., Chadwick, R., and Lin, J.: Understanding the mechanisms for tropical surface impacts of the quasi-biennial oscillation (QBO), J. Geophys. Res., 128, e2023JD038474, https://doi.org/10.1029/2023JD038474, 2023.
- García-Serrano, J., Cassou, C., Douville, H., Giannini, A., and Doblas-Reyes, F. J.: Revisiting the ENSO teleconnection to the tropical North Atlantic, J. Clim., 30, 6945–6957, https://doi.org/10.1175/JCLI-D-16-0641.1, 2017.
 Garfinkel, C. I., and Hartmann, D. L.: Effects of the El Niño–Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere, J. Geophys. Res., 112, D19112, https://doi.org/10.1029/2007JD008481, 2007.
 - Garfinkel, C. I., and Hartmann, D. L.: Different ENSO teleconnections and their effects on the stratospheric polar vortex, J.
- Geophys. Res., 113, D18114₂- https://doi.org/10.1029/2008JD009920, 2008.

 Garfinkel, C. I., and Hartmann, D. L.: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs, J. Atmos. Sci., 68, 1273–1289, https://doi.org/10.1175/2011JAS3665.1, 2011a.

 Garfinkel, C. I., and Hartmann, D. L.: Influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part II: perpetual winter WACCM runs, J. Atmos. Sci., 68, 2026–2041, https://doi.org/10.1175/2011JAS3702.1,
- 1180 2011b.
 Garfinkel, C. I., Butler, A. H., Waugh, D. W., Hurwitz, M. M., and Polvani, L. M.: Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters?, J. Geophys. Res., 117, D19106, https://doi.org/10.1029/2012JD017777, 2012a.
- Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., and Waugh, D. W.: Does the Holton-Tan mechanism explain how the quasilike biennial oscillation modulates the Arctic polar vortex?, J. Atmos. Sci., 69, 1713–1733, https://journals.ametsoc.org/doi/10.1175/JAS-D-11-0209.1, 2012b.
 - Garfinkel, C. I., Schwartz, C., Domeisen, D. I. V., Son, S.-W., Butler, A. H., and White, I. P.: Extratropical atmospheric predictability from the Qquasi-Bbiennial Qoscillation in subseasonal forecast models, J. Geophys. Res., 123, 7855–7866₂- https://doi.org/10.1029/2018JD028724, 2018.
- Gray, L. J., Anstey, J. A., Kawatani, Y., Lu, H., Osprey, S., and Schenzinger, V.: Surface impacts of the Quasi Biennial Oscillation, Atmos. Chem. Phys., 18, 8227–8247, https://www.atmos-chemphys.net/18/8227/2018/, 2018.
 Gray, W. M., Scheaffer, J. D., and Knaff, J. A.: Influence of the stratospheric QBO on ENSO variability, J. Meteor. Soc. Japan, 70, 975–995, https://doi.org/10.2151/jmsj1965.70.5_975, 70, 975–995, 1992.
- Hagos, S. M., Leung, L. R., Garuba, O. A., Demott, C., Harrop, B., Lu, J., and Ahn, M. S.: The relationship between precipitation and precipitable water in CMIP6 simulations and implications for tropical climatology and change, J. Clim., 34, 1587–1600, https://doi.org/10.1175/JCLI-D-20-0243.1, 2021.

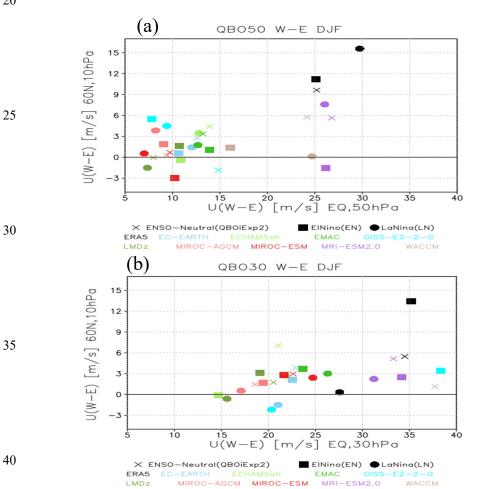
- Hansen, F., Matthes, K., and Wahl, S.: Tropospheric QBO-ENSO interactions and differences between the Atlantic and Pacific,
- 1200 J. Clim., 29, 1353–1368, https://doi.org/10.1175/JCLI-D-15-0164.1, 2016.
 - Haynes, P., Hitchcock, P., Hitchman, M., Yoden, S., Hendon, H., Kiladis, G., Kodera, K., and Simpson, I.: The influence of the stratosphere on the tropical troposphere, J. Meteorol. Soc. Japan. Ser. II, 99, 803–845, https://doi.org/10.2151/jmsj.2021-040, 2021.
 - Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A. Muñnoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R.,
- Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M.A., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G.,
 - de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global reanalysis, Quart. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
- Hitchman, M. H., Yoden, S., Haynes, P. H., Kumar, V., and Tegtmeier, S.: An observational history of the direct influence of the stratospheric equasi-biennial equasi-biennial
 - Holm, S.: A simple sequentially rejective multiple test procedure, Scand. J. Statist., 6, 65–70. https://www.jstor.org/stable/4615733, 1979.
- Holton, J. R., and Lindzen, R. S.: An updated theory for the quasi-biennial cycle of the tropical stratosphere, J. Atmos. Sci., 29, 1076–1080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2, 1972.
 - Holton, J. R., and Tan, H.-C.: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980.
 - Holton, J.R., and Tan, H.-C.: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere, J. Meteorol. Soc.
- 1220 Japan, Ser. II, 60, 140–148, https://doi.org/10.2151/jmsj1965.60.1_140, 1982.
 - Iza, M., Calvo, N., and Manzini, E.: The stratospheric pathway of La Niña, J. Clim., 29, 8899–8914, https://doi.org/10.1175/JCLI-D-16-0230.1, 2016.
 - Kawatani, Y., Hamilton, K., Watanabe, S., Anstey, J. A., Richter, J. H., Butchart, N., Orbe, C., Osprey, S. M., Naoe, H., Elsbury, D., Chen, C.-C., Garcia-Serrano, J., Glanville, A., Kerzenmacher, T., Lott, F., Palmerio, F. M., Park, M., Serva, F.,
- Taguchi, M., Versick, S., and Yoshioda, K.: QBOi El Niño Southern Oscillation experiments: Overview of experiment design and ENSO modulation of the QBO, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3270, Weather and Clim_ate Dyn_amics, accepted, 2025.
- Kumar, V., Yoden, S., and Hitchman, M. H.: QBO and ENSO effects on the mean meridional circulation, polar vortex,
- subtropical westerly jets, and wave patterns during boreal winter, J. Geophys. Res., 127, e2022JD036691. https://doi.org/10.1029/2022JD036691, 2022.

- Liess, S., and Geller, M. A.: On the relationship between QBO and distribution of tropical deep convection, J. Geophys. Res., 117, https://doi.orgwiley.com/10.1029/2011JD016317, 2012.
- Lindzen, R. S., and Holton, J. R.: A theory of the quasi-biennial oscillation, J. Atmos. Sci., 25, 1095-1107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2, 1968.
- Lopez-Parages, J., Rodriguez-Fonseca, B., Mohino, E., and Losada, T.: Multidecadal modulation of ENSO teleconnection with Europe in late winter: Analysis of CMIP5 models, J. Clim., 29, 8067–8081. https://doi.org10.1175/JCLI-D-15-0596.1, 2016.
- Lott, F., Rani, R., McLandress, C., Podglajgen, A., Bushell, A., Bramberger, M., Lee, H.-K., Alexander, J., Anstey, J., Chun, H.-Y., Hertzog, A., Butchart, N., Kim, Y.-H., Kawatani, Y., Legras, B., Manzini, E., Naoe, H., Osprey, S., Plougonven, R., Pohlmann, H., Richter, J. H., Scinocca, J., García-Serrano, J., Serva, F., Stockdale, T., Versick, S. Watanabe, S., and Yoshida, K.: Comparison between non-orographic gravity-wave parameterizations used in QBOi models and Strateole 2 constant-level balloons. Quart. J. Roy. Meteorol. Soc., 150, 1–16, https://doi.org/10.1002/qj.4793, 2024.
 - Lu, H., Hitchman, M., Gray, L., Anstey, J., and Osprey, S.: On the role of Rossby wave breaking in the quasi-biennial modulation of the stratospheric polar vortex during boreal winter₂₅ Q. J. R. Meteorol. Soc., 146, 1939–1959, https://doi.org/10.1002/qj.3775, 2020.
- Ma, T., Chen, W., An, X., Garfinkel, C. I., and Cai, Q.: Nonlinear effects of the stratospheric Qquasi-Bbiennial Qoscillation and ENSO on the North Atlantic winter atmospheric circulation, J. Geophys. Res., 128, e2023JD039537, https://doi.org/10.1029/2023JD039537, 2023.
 - Marshall, A. G., Hendon, H. H., Son, S.-W., and Lim, Y.: Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation, Clim. Dyn., 49, 1365–1377, https://doi.org/10.1007/s00382-016-3392-0, 2017.
- Martin, Z., Son, S.-W., Butler, A., Hendon, H., Kim, H., Sobel, A., Yoden, S., and Zhang, C.: The influence of the quasi-biennial oscillation on the Madden–Julian oscillation, Nat. Rev. Earth Environ., 2, 477–489, https://doi.org/10.1038www.nature.com/articles/s43017-021-00173-9, 2021.
 - Naoe, H., Kobayashi, C., Kobayashi, S., Kosaka, Y., and Shibata, K.: Representation of Qquasi-Bbiennial Qoscillation in JRA-3Q, J. Meteorol. Soc. Japan, 103, 233–255(EOR), https://doi.org/10.2151/jmsj.2025-012, 2025.
- Naoe, H., and Shibata, K.: Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation, J. Geophys. Res., 115, D19102, https://doi.org/doi:10.1029/2009JD012952, 2010.
- Naoe, H., and Yoshida, K.: Influence of quasi-biennial oscillation on the boreal winter extratropical stratosphere in QBOi experiments, Q. J. R. Meteorol. Soc., 145, 2755—2771, https://doi.org/10.1002/qj.3591, 2019.
 - Norris, J., Hall, A., Neelin, J. D., Thackeray, C. W., and Chen, D.: Evaluation of the tail of the probability distribution of daily and subdaily precipitation in CMIP6 models, J. Clim., 34, 2701–2721, https://doi.org/10.1175/JCLI-D-20-0837.1, 2021.

- Oueslati, B., and Bellon, G.: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models, J. Clim., 26, 2931–2946, https://doi.org/10.1175/JCLI-D-12-00314.1, 2013.
 - Pahlavan, H. A., Fu, Q., Wallace, J. M., and Kiladis, G. N.: Revisiting the quasi-biennial oscillation as seen in ERA5. Part I: Description and momentum budget, J. Atmos. Sci., 78, 673–691, https://doi.org/10.1175/JAS-D-20-0207.1, 2021.
- Palmeiro, F. M., García-Serrano, J., Ruggieri, P., Batt<u>é</u>e, L., and Gualdi, S.: On the influence of ENSO on sudden stratospheric warmings, J. Geophys. Res., 128, e2022JD037607, https://doi.org/10.1029/2022JD037607, 2023.
- Palmeiro, F., Iza, M., Barriopedro, D., Calvo, N., and Garcia-Herrera, R.: The complex behavior of El Niño winter 2015_2016. Geophys. Res. Lett., 44, 2902–2910. https://doi.org/10.1002/2017GL072920, 2017.
 - Park, C.-H., Son, S.-W., Lim, Y., and Choi, J.: Quasi-biennial oscillation-related surface air temperature change over the western North Pacific in late winter, Int. J. Climatol., 30, 4351–4359, https://doi.org/10.1002/joc.7470, 2022.
- Park, C.-H., and Son, S.-W.: Relationship between the QBO and surface air temperature in the Korean Peninsula, Atmosphere-(Korean Meteor. Soc.), 32, 39–49, (Lin Korean), https://doi.org/10.14191/Atmos.2022.32.1, 2022.
 - Plumb, R. A., and McEwan, A. D.: The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of the quasi-biennial oscillation, J. Atmos. Sci., 35, 1827–1839, https://doi.org/10.1175/1520-0469(1978)035<1827:TIOAFS>2.0.CO;2, 1978.
- Randall, D. A., Tziperman, E., Branson, M. D., Richter, J. H., and Kang, W.: -The QBO-MJO connection: A possible role for the SST and ENSO, J. Clim., 36, 6515–6531, https://doi.org/10.1175/JCLI-D-23-0031.1, 2023.
 - Rao, J., Garfinkel, C. I., and White, I. P.: Impact of the quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5/6 models, J. Clim., 33, 4787—4813, https://doi.org/10.1175/JCLI-D-19-0626.1, 2020a.
 - Rao, J., Garfinkel, C. I., and White, I. P.: How does the quasi-biennial oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models?, J. Clim., 33, 8975–8996, https://doi.org/10.1175/JCLI-D-20-0024.1, 2020b.
 - Rao, J., and Ren, R.: A decomposition of ENSO's impacts on the northern winter stratosphere: Competing effect of SST forcing in the tropical Indian Ocean, Clim. Dyn., 46, 3689–3707, https://doi.org10.1007/s00382-015-2797-5, 2016a.
 - Rao, J., and Ren, R.: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1.
 - Observations, J. Geophys. Res., 121, 9000-9016, https://doi.org10.1002/2015JD024520, 2016b.
- Rao, J., and Ren, R.: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2. Model study with WACCM, J. Geophys. Res., 121, 9017—9032, https://doi.org10.1002/2015JD024520, 2016c.
 - Richter, J. H., Anstey, J. A., Butchart, N., Kawatani, Y., Meehl, G. A., Osprey, S., and Simpson, I. R.: Progress in simulating the quasi-biennial oscillation in CMIP models, J. Geophys. Res., 125, e2019JD032362, https://doi.org/10.1029/2019JD032362, 2020.
- Richter, J. H., Butchart, N., Kawatani, Y., Bushell, A. C., Holt, L., Serva, F., Anstey, J., Simpson, I. R., Osprey, S., Hamilton, K., Braesicke, P., Cagnazzo, C., Chen, C.-C., Garcia, R. R., Gray, L. J., Kerzenmacher, T., Lott, F., McLandress, C., Naoe, H., Scinocca, J., Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Response of the quasi-biennial

- oscillation to a warming climate in global climate models, Q. J. R. Meteorol. Soc., 148, 1490–1518, https://doi.org/10.1002/qj.3749, 2022.
- Richter, J. H., Matthes, K., Calvo, N., and Gray, L. J.: Influence of the Quasi-Biennial Oscillation and El Niño-Southern Oscillation on the frequency of sudden stratospheric warmings, J. Geophys. Res., 116, D20111. https://doi.org10.1029/2011JD015757, 2011.
 - Rodrigo, M., García-Serrano, J., and Bladé, I.: Quasi-Biennial Oscillation influence on tropical convection and El Niño variability, Geophys. Res. Lett., 52, e2024GL112854, https://doi.org/10.1029/2024GL112854, 2025.
- Ruzmaikin, A., Feynman, J., Jiang, X., and Yung, Y. L.: Extratropical signature of the quasi-biennial oscillation, J. Geophys. Res., 110, D11111, https://doi.org/10.1029/2004JD005382, 2005.
 - Scaife, A. A., Athanassiadou, M., Andrews, M., Arribas, A., Baldwin, M., Dunstone, N., Knight, J., MacLachlan, C., Manzini, E., Muller, W. A., Pohlmann, H., Smith, D., Stockdale, T., and Williams, A.: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales, Geophys. Res. Lett. 41, 1752–1758,
- 1310 https://doi.org/10.1029/2004JD005382, 2014.
 - Serva, F., Anstey, J. A., Bushell, A. C., Butchart, N., Cagnazzo, C., Gray, L., Kawatani, Y., Osprey, S. M., Richter, J. H., and Simpson, I. R.: The impact of the QBO on the region of the tropical tropopause in QBOi models: present-day simulations, Q. J. R. Meteorol. Soc., 148, 1945–1964, https://doi.org/10.1002/qj.4287, 2022.
- Shibata, K., Naoe, H.: Decadal amplitude modulations of the stratospheric quasi-biennial oscillation, J. Meteorol. Soc. Japan, 100, 29–44, https://doi.org/10.2151/jmsj.2022-001, 2022.
 - Simpson, I. R., Blackburn, M., and Haigh, J. D.: The role of eddies in driving the tropospheric response to stratospheric heating perturbations, J. Atmos. Sci., 66, 1347–1365, https://doi.org/10.1175/2008JAS2758.1, 2009.
 - Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H., and Kim, J.: Stratospheric control of the Madden-Julian oscillation, J. Clim., 30, 1909–1922, http://journals.ametsoc.org/doi/10.1175/JCLI574, 2017.
- 1320 Song, K. and Son, S.-W.: Revisiting the ENSO–SSW relationship, J. Clim., 31, 2133–2143, https://doi.org/10.1175/JCLI-D-17-0078.1, 2018.
 - Taguchi, M.: Wave driving in the tropical lower stratosphere as simulated by WACCM. Part II: ENSO-induced changes for northern winter, J. Atmos. Sci., 67, 543–555. https://doi.org10.1175/2009JAS3144.1, 2010a.
- Taguchi, M.: Observed connection of the stratospheric Quasi-Biennial Oscillation with El Nino-Southern Oscillation in radiosonde data, J. Geophys. Res., 115, D18120. https://doi.org10.1029/2010JD014325, 2010b.
 - Taguchi, M., and Hartmann, D. L.: Increased occurrence of stratospheric sudden warmings during El Niño simulated by WACCM, J. Clim., 19, 324–332, doi:10.1175/JCLI3655.1, 2006.
 - Tegtmeier, S., Anstey, J., Davis, S., Ivanciu, I., Jia, Y., McPhee, D., Kedzierski, R. P.: Zonal asymmetry of the QBO temperature signal in the tropical tropopause region. Geophy. Res. Lett., 47, e2020GL089533.
- 1330 https://doi.org/10.1029/2020GL089533, 2020.

- Trascasa-Castro, P., Maycock, A. C., Yiu, Y. Y. S., and Fletcher, J. K.: On the linearity of the stratospheric and Euro-Atlantic sector response to ENSO, J. Clim., 32, 6607–6626, https://doi.org/10.1175/JCLI-D-18-0780.1, 2019.
- Tyrrell, N. L., Koskentausta, J. M., and Karpechko, A. Y.: Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases, Weather Clim. Dynam., 3, 45–58, https://doi.org/10.5194/wcd-3-45-2022, 2022.
- Van Loon, H., and Labitzke, K.: The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the Quasi-Biennial Oscillation, Mon. Weather Rev., 115, 357–369, https://doi.org/10.1175/1520-0493(1987)115<0357:TSOPVT>2.0.CO;2, 1987.
 - Walsh, A., Screen, J. A., Scaife, A. A., and Smith, D. M.: Non-linear response of the extratropics to tropical climate variability, Geophys. Res. Lett., 49, e2022GL100416, https://doi.org/10.1029/2022GL100416, 2022.
- Wang, J., Kim, H.-M., and Chang, E. K. M.: Interannual modulation of Northern Hemisphere winter storm tracks by the QBO, Geophys. Res. Lett., 45, 2786–2794, http://doi.orgwiley.com/10.1002/484-2017GL076929, 2018.
 - Watson, P. A. G., and Gray, L. J.: How does the quasi-biennial oscillation affect the stratospheric polar vortex?, J. Atmos. Sci., 71, 391–409, https://doi.org/10.1175/JAS-D-13-096.1, 2014.
- Wei, K., Chen, W., and Huang, R.: Association of tropical Pacific sea surface temperatures with the stratospheric Holton_-
- Tan oscillation in the Northern Hemisphere winter, Geophys. Res. Lett., 34, L16814, doi:10.1029/2007GL030478, 2007. Weinberger, I., Garfinkel, C. I., White, I. P., Oman, L. D., Aquila, V., and Lim, Y.-K.: The salience of nonlinearities in the boreal winter response to ENSO: Arctic stratosphere and Europe, Clim. Dyn., 53, 4591–4610, https://doi.org/10.1007/s00382-019-04805-1, 2019.
 - White, I. P., Lu, H., Mitchell, N. J., and Phillips, T.: Dynamical response to the QBO in the northern www.inter stratosphere:
- signatures in wave forcing and eddy fluxes of potential vorticity, J. Atmos. Sci., 72, 4487–4507, https://doi.org/10.1175/JAS-D-14-0358.1, 2015.
 - Yamazaki, K., Nakamura, T., Ukita, J., and Hoshi, K.: A tropospheric pathway of the stratospheric quasi_biennial oscillation (QBO) impact on the boreal winter polar vortex, Atmos. Chem. Phys., 20, 5111–5127, https://doi.org/10.5194/acp-20-5111-2020, 2020.
- Yoo, C., and Son, S.-W.: Modulation of the boreal wintertime Madden_Julian Oscillation by the stratospheric quasi-biennial oscillation, Geophys. Res. Lett., 43, 1392_-1398, https://doi.org/doi:10.1002/2016GL067762, 2016.
 - Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T. Y., Hosaka, M., Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The MRI Earth System Model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component, J. Meteorol. Soc. Japan, 97, 931–965,
- 1360 https://doi.org/10.2151/jmsj.2019-051, 2019.
 - Zhou, W., Leung, L. R., and Lu, J.: Linking large-scale double-ITCZ bias to local-scale drizzling bias in climate models, J. Clim₂₇, 35, 7965–7979, https://doi.org/10.1175/JCLI-D-22-0336.1, 2022.


QBOi El Nino Southern Oscillation experiments: Teleconnections of the QBO

Naoe, Hiroaki¹, Jorge L. García-Franco², Chang-Hyun Park³, Mario Rodrigo⁴, Froila M. Palmeiro^{4,5}, Federico Serva⁶, Masakazu Taguchi⁷, Kohei Yoshida¹, James A. Anstey⁸, Javier García-Serrano^{4,9}, Seok-Woo Son³, Yoshio Kawatani¹⁰, Neal Butchart¹¹, Kevin Hamilton¹², Chih-Chieh Chen¹³, Anne Glanville¹³, Tobias Kerzenmacher¹⁴, François Lott¹⁵, Clara Orbe¹⁶, Scott Osprey¹⁷, Mijeong Park¹³, Jadwiga H. Richter¹³, Stefan Versick¹⁴, Shingo Watanabe^{18,19}

10

Supplement figures

MIROC-ESM

Figure S1: Relationship <u>between of QBO-W minus QBO-E</u> composite differences <u>in of the</u> zonal-mean zonal wind (<u>in m s⁻¹</u>) <u>ofbetween 10-hPa</u> polar vortex at 60° N <u>and 10 hPa and QBO-W minus QBO-E</u> differences in the zonal-mean zonal wind at the QBO definition region of at (a) 50 hPa (QBO50, upper panel) and (b) at 30 hPa (QBO30, lower panel). Crosses, filled squares, and filled circles indicateThe ENSO-neutral / legend label indicates QBOiExp2 (CTL), the-El Niño / EN, and La Niña / LN winters in ERA5 or experiments in QBOi models, respectively ones indicate the EN and LN experiments.

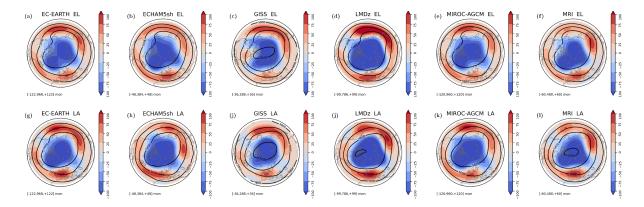
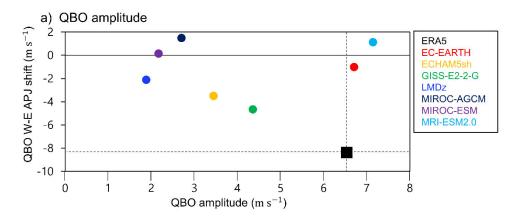



Figure S2: Northern annular mode (NAM) stereographic maps at 500 hPa forin EN and LN experiments infor the QBOi models, based on their-daily geopotential heightdaily data (m). Contour lines indicate the geopotential height during neutral NAMannular mode conditions. Colors representate the positive (strong vortex, above the 90th percentile) minus negative (weak vortex, below the 10th percentile) year-around anomalies based on the NAM index. Negative anomalies indicate lower geopotential heights.

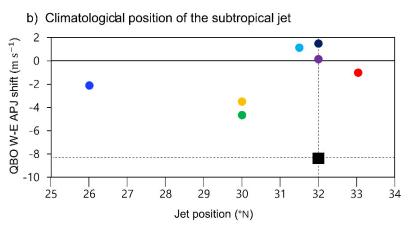


Fig. S3. Relationship between <u>QBO-W minus QBO-E differences in</u> the QBO induced APJ shift index and (a) QBO amplitude, and (b) subtropical jet latitude <u>for the CTL experiment / during ENSO-neutral (CTL) wintersyears</u>.

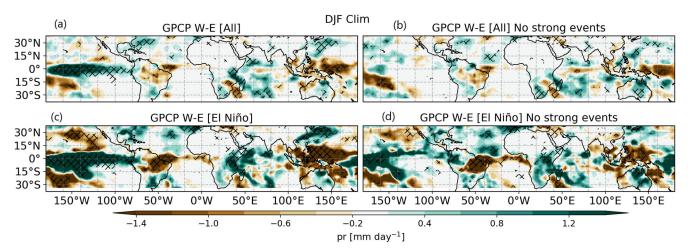


Figure S4. DJF eComposite differences in GPCP (1979—2021) <u>precipitation (mm day-1) during DJF between QBO-W and QBO-E phases for W-E QBO phases</u>, <u>for considering</u> (top) all winters and (bottom) only El Niñno winters and <u>The (left) panels</u> includeing the three strongest El Niño events, <u>whileor (the right panels) excluderemoving</u> them.

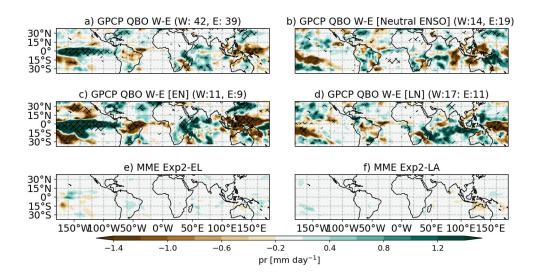


Figure S5. As in Figure 8, but showing the observed QBO signals (QBO-W minus QBO-W precipitation differences) during DJF for a) all DJF periods, and under b) ENSO-nNeutral, c) El NiñoEN, and d) La Niña wintersor LA conditions based on GPCP data.

The QBOi models are composited into a multi-model—mean, regridded to a common grid (the GPCP grid), and a multi-model mean ensemble (MME) differences are shown for the e) EN and f) LN experiments. The degree of Mmodel agreement—, defined as grid—points where at least 75% of the models agree on the sign of the signal—, is indicated by are hatchinged. The number of months used for each observed composite sizes in months is are shown in parenthesies in the GPCP panels.

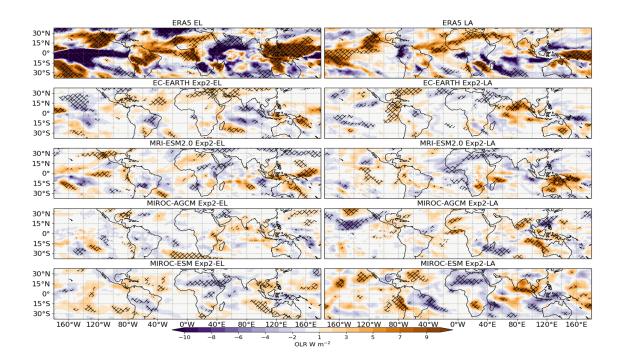


Figure S6: As Fig. 8, but for outgoing longwave radiation (OLR $_{\stackrel{\centerdot}{\bullet}}$) in W m $^{-2}$). ERA5 data are used as the observational benchmark. Only a subset of some models of the QBOi models provide cohort OLR output OLR for these experiments.



Figure S7: (Left) Box plots of deseasonalized precipitation (mm day⁻¹) averaged over_for_the western equatorial Pacific (WEP) region (5° S–5° N, 120°–170° E) and the EN3.4 region (5° S–5° N, 170°–120° W) for (a, c) LN and (b, d) EN experiments infor the OBOi models, together with El Niño and La Niña wintersyears in GPCP data, separated by datasets and QBO phases. QBO phases are classified using deseasonalized DJF mean zonal-mean zonal wind at 50 hPa, averaged over 5° S–5° N, at 50 hPa-with valuesusing ≥ 2 m s⁻¹ indicating for QBO-W and ≤ −2 m s⁻¹ indicating for QBO-E.

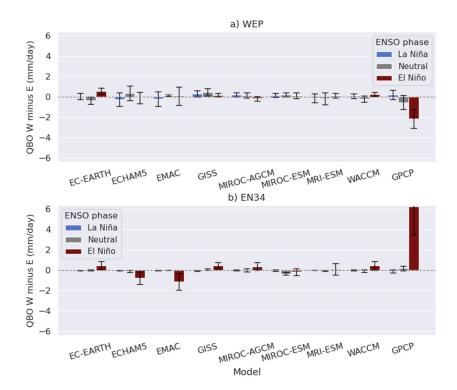


Figure S8: Same as Fig. 9, but with for the y-axis limits are set according to based on the GPCP scalebar.

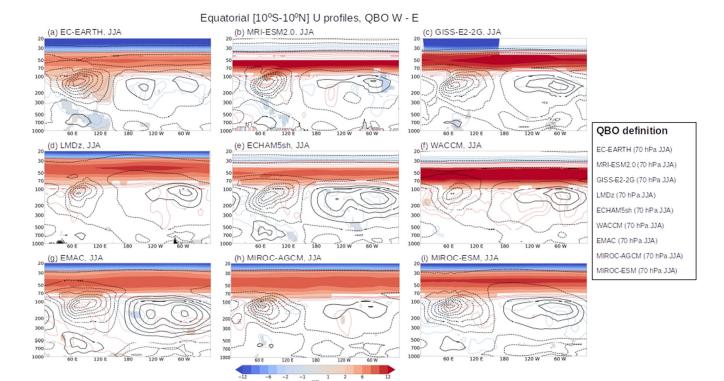


Figure S9: Climatology (black contours) and QBO-W minus QBO-E differences (shading and colored contours) in equatorial zonal wind (longitude-pressure section) profiles, averaged over 10° S-10° N, from the CTL experiment infor the QBOi models. Black contours are drawn at 4 m s⁻¹ intervals. Colored contours followuse the same intervals as the shading, with red contours indicating positive differences and blue contours indicating negative differences. The target season is JJA for all models, with the QBO phase defined at 70 hPa during JJA. Only differences statistically significant zonal-wind-differences at the 95% confidence level are shaded.

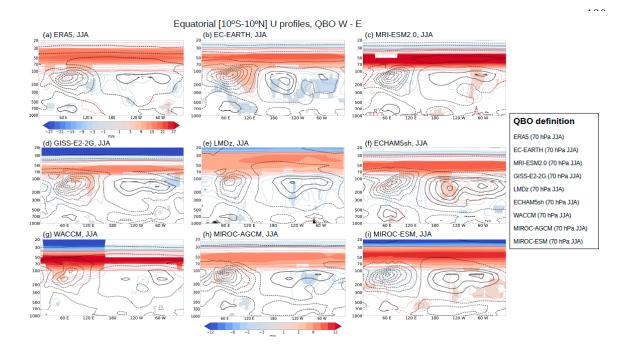


Figure S10: As in Same as Fig. ure S9, but for the LN experiment instead of CTL. Note that the ERA5 color scale bar for ERA5 differs due to because of the larger QBO amplitude.

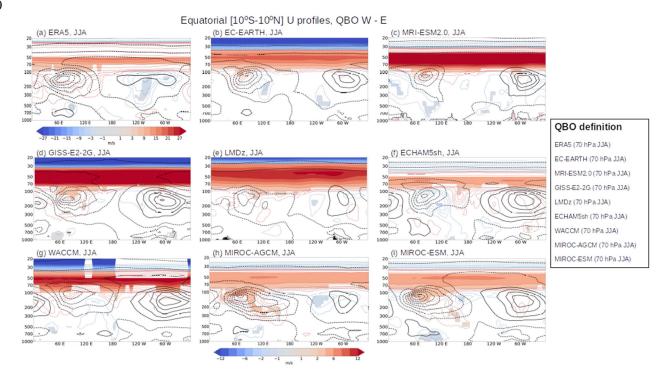


Figure S11: As in Same as Fig. ure S9, but for the EN experiment instead of CTL. Note that the ERA5 color scalebar for ERA5 differs due to because of the larger QBO amplitude.

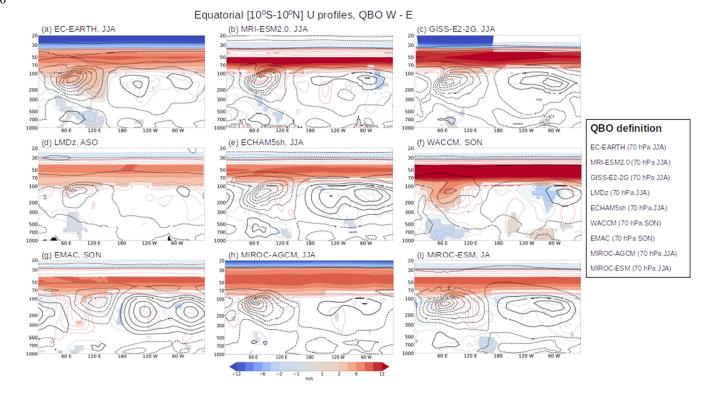
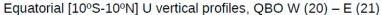



Figure S12: As in Same as Fig. ure 11, but for the CTL experiments. Note that t The EMAC model is used instead of ERA5, as because we have not considered ENSO_neutral years in the reanalysis are not considered.

(a) Statistically significant signals over the equator, QBO W (20) - E (21)

Control experiment U 70 hPa U 100 hPa U 700 hPa MAM JJA SON DJF Legend EC-EARTH (70 hPa JJA) Westerlies Easterlies

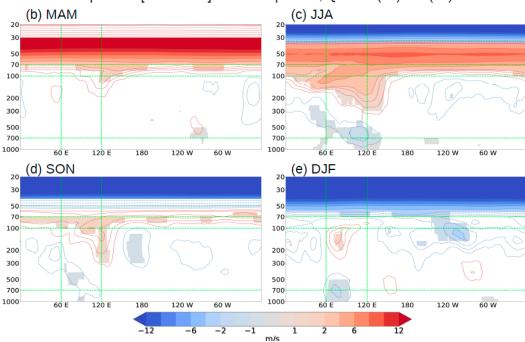


Figure S13: (a) Occurrence of a-statistically significant zonal wind signals by season and altitude over the equatorial band (10° S10° N₃) 60° E-120° E) band-for the EC-EARTH CTL experiment—(a). QBO-W minus QBO-E equatorial zonal wind (longitudepressure section)profile for the EC-EARTH CTL experiment during (b) MAM—(b), (c) JJA—(e), (d) SON—(d), and (e) DJF—(e).

Horizontal green dashed lines denote therepresentative vertical levels (700, 100, and 70 hPa), while vertical green dashed lines indicatemark the longitudinal band (60° E-120° E) used in the season—altitude diagram (panel a).