Response to Editor

Title: QBOi El Niño Southern Oscillation experiments: Teleconnections of the QBO

5 Authors: Hiroaki Naoe, et al.

WCD manuscript on EGUsphere, MS No: egusphere-2025-1148

The authors would like to thank both Reviewers and the Editor for their time and effort in reviewing our manuscript entitled "QBOi El Niño Southern Oscillation experiments: Teleconnections of the QBO". Above all, the authors are deeply grateful for the many insights gained by reading the papers recommended by the reviewers. We incorporate their valuable comments and suggestions on how our proposed revised manuscript addresses their concerns. Our reviewer responses and revision are shown in blue text whereas reviewers' and Editor's comments are shown in black. Individual responses to the Editor are as follows.

15 Black: Editor's comments

Blue: Authors response to the Editor

To Editor:

20

EC1: 'Editor Comment on egusphere-2025-1148', David Battisti, 17 May 2025

Dear Dr. Naoe and colleagues:

Both Anonymous referees have posted their comments on your manuscript (WCD 2024-1148). As per WCD policy, you are now to post a response on how you will address the referee's comments — after which I will make a decision on the manuscript. Both reviewers have made excellent comments on the manuscript and call for revisions (one major, one minor). To provide guidance in revising the manuscript so that it is acceptable for publication in WCD, below I itemize the issues that I expect will be addressed in a revised manuscript. I will also post these on the WCD page for the manuscript.

Both anonymous reviewers feel this is a worthwhile manuscript for publication in WCD, and I agree.

The opening paragraph by Reviewer #1 has a very succinct summary of the paper, followed by 8 bulleted points that contain either comments or suggestions. I strongly recommend you address all the comments, and adopt all the suggestions. In particular, the reviewer notes that the text is not sufficiently critical of the model results concerning the impact of the QBO on the polar vortex (Figs. 1 and 2), stating: "only ECCAM5, WACCM and MRI are reasonably correct for neutral ENSO,

but none get El Nino right. Maybe ECCAM5 and MRI get LaNina right (relative to ERA5)." I agree: only two of the models get within 1/2 the amplitude of the observed for the ENSO neutral case (MRI and WACCM), and only the MRI model also shows a stronger impact on the QBO on the vortex under La Nina conditions than under El Nino conditions (but even that model has the wrong sign response for El Nino conditions). The reviewer also asks for more clarification on the text on lines 221-226, and clarification on the statistical significance when multiple indices are used in the identification of the QBO. Reviewer #1's suggestion "to include more in-text references to figure panels being discussed" would really help the reader.

In particular, the reviewer notes that the text is not sufficiently critical of the model results concerning the impact of the QBO on the polar vortex (Figs. 1 and 2), stating: "only ECCAM5, WACCM and MRI are reasonably correct for neutral ENSO, but none get El Nino right. Maybe ECCAM5 and MRI get LaNina right (relative to ERA5)." I agree: only two of the models get within? the amplitude of the observed for the ENSO neutral case (MRI and WACCM), and only the MRI model also shows a stronger impact on the QBO on the vortex under La Nina conditions than under El Nino conditions (but even that model has the wrong sign response for El Nino conditions).

Thank you very much for your suggestions to note that the text is not sufficiently critical of the model results concerning the impact of the QBO on the polar vortex (Figs. 1 and 2). We revise the text to add these points and delete unnecessary descriptions.

The tracking change of old L251-255 is as follows:

"Most of the model correlations show smaller uncertainty than ERA5 due to having larger sample sizes. They have significant correlations over a range of altitudes only in a particular experiment. For example, at some altitudes GISS has a significant correlation in EN, MIROC-AGCM in LN, MRI-ESM2.0 in LN, WACCM in CTL, and MIROC-ESM has a significant correlation only in the lower stratosphere in CTL. LMDz has no or little correlations between the equatorial QBO winds and the polar vortex wind for any of the experiments. Models (ECHAM5sh, EMAC, EC-EARTH, MIROC-ESM, MRI-ESM2.0, and WACCM) have positive correlation profiles in ENSO-neutral, albeit weak compared to reanalysis. Most models do not show a significant correlation in EN, and only four models (MRI-ESM2.0, ECHAM5sh, EMAC, and MIROC-AGCM) out of 9 reproduce observed positive correlations with confidence intervals excluding zero at some altitudes. It is noted in Fig. 2 of Kawatani et al. (in revision) from their simple, time-height cross-section of the monthly and zonal-mean zonal winds over the equator in the EN and LN simulations that the QBO in the ECHAM5sh for the EN experiment is irregular, with stalling in downward phases of easterlies and westerlies. They showed that the QBOs in GISS and LMDz for the LN experiment are more irregular, and westerly phases sometimes fail to propagate into the lower stratosphere. These results ..."

The tracking change of old L294-297 is as follows:

35

50

55

"... Holton-Tan relationship in all three experiments (CTL, EN and LN). Only two of the models reproduce observed responses within a half of the amplitude for the ENSO-neutral case (MRI-ESM2.0 and WACCM), and only the MRI-ESM2.0 also shows a stronger impact on the QBO on the vortex under the LN condition than under EN condition (however, that model

has the wrong sign response for EN). In LN, four models (ECHAM5sh, GISS, MIROC-AGCM, and MRI-ESM2.0) tend are better atte reproducinge the observed response, peaking at a slight amplitude of 3~36 m s⁻¹ in the polar vortex region. Some models have significant composite differences of zonal wind in a particular experiment at 60° N and 10 hPa. For example, GISS and ECHAM5sh shows a significant difference in EN-peaking at 7 m s⁻¹, and WACCM in CTL and a significant LN response just equatorward of 60 °N."

- The reviewer also asks for more clarification on the text on lines 221-226, and clarification on the statistical significance when multiple indices are used in the identification of the QBO.
- The analysis in the Walker Section initially used a consistent QBO definition and target season across all models. Specifically, we define the QBO using the zonal-mean zonal wind at 70 hPa during JJA. The corresponding figures are included in Fig. R2-3 of the responses to Reviewer #2 and supplementary material. With this uniform framework, we identify a coherent signal, but we want to enhance this signal and capture the strongest response in each model. To do so, we allow for slight adjustments in the QBO definition (70 or 85 hPa and JJA or SON) and in the target season (ranging from May to November), when necessary. We clarify this process in the revised text of Section 5.2. Importantly, when a model's QBO definition differs from the standard (70 hPa during JJA), we account for the increased flexibility by applying a Bonferroni correction. This reduces the significance threshold (alpha) from 0.05 to 0.025 or lower, depending on the number of alternative definitions tested. The significance threshold (also called the significance level) determines the p-value below which the null hypothesis is rejected. If the p-value is smaller than α, we reject the null hypothesis and consider the result statistically significant. We will clarify this point in the revised version of Section 2.
 - > Reviewer #1's suggestion "to include more in-text references to figure panels being discussed" would really help the reader.

Thank you very much for the suggestion from Reviewer #1 and the Editor. We revise the text to include more in-text references to figure panels being discussed.

Reviewer #2 also has excellent major comments and I strongly recommend you address them in your revised manuscript. In particular, Reviewer #2 asks for more discussion and analysis of why almost all the models do not reproduce three of the four teleconnections examined, and I agree. In some cases, further analysis may be required to support these discussions (e.g., is there a relationship between the model biases in the strength of the simulated QBO (in either neutral, El Nino and La Nina conditions) and the strength of the polar vortex response? Is there a relationship between the model biases in the strength of

the polar vortex and the polar vortex response? Is there a relationship between biases in the extratropical stratospheric winds and the weakness in the impact of the QBO phase on the polar vortex?).

We appreciate your helpful suggestions. In the revised manuscript, we include more discussion and analysis of why almost all the models do not reproduce teleconnections examined. Please see our response to Reviewer #2 major comment R2-1 in more detail. Here, a summary of this discussion is as follows:

QBOi ENSO experiments

- ENSO modulation of the QBO in our QBOi ENSO experiments is investigated by a core paper of Kawatani et al. (in revision). https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3270/
 - QBOs in some models are irregular, from a simple, time-height cross-section of the monthly and zonal winds in the El Nino and La Nina simulations, as shown in Figure 2 of Kawatani et al.
- 110 a) QBO teleconnections to polar vortex

- Problems of QBO teleconnection to the stratospheric polar vortex were investigated in detail by previous studies (Bushell et al., 2022; Anstey et al., 2022). As Anstey et al. (2022) described, the strength of the QBO teleconnection to the NH winter stratospheric polar vortex was shown to correlate with the amplitude of the QBO at 50 hPa. This altitude is the strongest correlation with the vortex in observations.
- Most models show poor performance of QBO amplitude at 50 hPa while climatological polar vortices in NH winter can be reproduced with their strength. These results are consistent with the hypothesis that unrealistically weak low-level QBO amplitude can weaken the teleconnection.
- 120 b) QBO teleconnections to subtropical jet
 - Models with larger QBO amplitudes do not necessarily exhibit stronger jet responses, nor do models with smaller amplitudes consistently show weaker responses. This means that neither the QBO amplitude nor the APJ position explains the inter-model spread in the QBO-APJ connection. Other factors may determine the QBO-APJ connection in the model.
- 125 c) QBO teleconnections to tropical precipitation
 - The combination of stratospheric and tropospheric biases in the tropics weakens the QBO signal reaching the tropical troposphere and contributes to inter-model differences in both the timing and spatial manifestation of the teleconnection.

Reviewer #2 also notes that previous work suggested that a measure of the efficacy of a model to reproduce QBO's impact on the polar vortex (the Holton-Tan effect) seen in observations is sensitive to the level that is used as an index of the QBO, and that model differences in the QBO justify the use of model-specific indices. Please address this point in your revised manuscript. Also, if you did choose levels to define the QBO that were model-specific, would the QBOs simulated by the models still be only half as strong as that observed (as documented in Fig. 3)? Would that still be the leading candidate for the weak relationships between the QBO phase, ENSO phase and polar vortex?

We appreciate your helpful suggestions. As we already described before, the problems of QBO teleconnection to the stratospheric polar vortex were investigated in the previous studies in detail. The QBO teleconnection to the NH winter stratospheric polar vortex is the strongest in observations when the QBO index is taken at 50 hPa (Anstey et al. 2022). Thus, we want to do model-observation comparison by applying the same QBO phase definitions to the models that are optimal for observed teleconnections, in order to determine if observed teleconnections are present in the model runs, without adjusting them on a model-by-model basis, for all analyses presented in this article.

140

145

150

155

160

In order to answer Reviewer #2 and Editor questions, we check levels to define the QBO that are based on observational studies (i.e., at 50 hPa) and that are based from a model specific level (i.e., at 30 hPa), as shown in Fig. R2-4 of the responses to Reviewer #2. Both panels (QBO50 and QBO30) show that most models underestimate QBOs and they are struggling to reproduce observed polar vortex responses to the QBO. Please see our response to Reviewer #2 major comment R2-4 in more detail.

Finally, Reviewer #2 asked why a different analysis procedure was used to examine the relationship between the QBO phase and the Walker circulation than that used to examine the other three teleconnections and whether the teleconnections were stronger for the Walker circulation simply because optimal pressure levels and seasons were chosen. I am not to bothered by this because, to be frank, the evidence presented in this section is pretty damning. Contrary to the description in the text, the observed relationship between the Walker circulation and the phase of the QBO shown is not well reproduced by most of the models for either La Nina or El Nino conditions. For La Nina conditions (Fig. 11), the anomalies in the zonal winds over the Pacific show a slightly westward shifted Walker circulation, whereas the models b,d,g,h and i shows a weakened Walker circulation (in phase anomalies of the opposite sign as the climatology aloft) and model e shows only easterly anomalies everywhere. The agreement during El Nino conditions is even worse (Fig. 12). [By the way, please note the contour interval for the anomalies in these figures. They seem to be much coarser than the discretized colorbars.] Stepping back a bit, I wonder whether the relationship between the QBO phase and the Walker circulation is poor because the band to define (5S-5N) the Walker circulation may be too narrow; 10S to 10N would better capture the zonal wind anomalies associated with the Walker circulation. Based on Fig. 17.17 of Wallace et al (2023), I expect this isn't the answer -- but it might be worth checking.

Thanks for your comments and suggestions. In response, we revise the analysis using the 10°S-10°N band, which better captures the zonal wind anomalies. The updated main figures now reflect this broader latitude band. Additionally, to provide more context and clarity, we include the results from our initial analysis, which focused on the target season JJA and used the standard QBO definition (zonal-mean zonal wind at 70 hPa during JJA) in the supplementary material. One of these figures (LN experiment) is presented in Figs. R1-1 (and R2-3; both figures are the same) of the responses to the reviewers. Such supplementary figures allow readers to better understand the progression of our approach. We also slightly adjust the main figures to align more closely with the standard QBO definition and the JJA season. The manuscript text will be revised accordingly to enhance clarity and ensure that the description of model performance is accurate.

170

165

Minor comments:

Does the GPCP bar in panel 9b stop the top of the plot, or does it run off scale? Why isn't there an error bar on this bar?

The GPCP bar runs off scale, so much so that even the error bar doesn't appear. The reason, to some extent, for this is the large signal due to the QBO-ENSO aliasing the manuscript discusses. We have produced two sets of figures for this plot, one where the y axis limits are set based on the GPCP bar and the other, like the original, where the limits are fixed to make the plot clearer. Both have positive and negative factors, and we provide the full figure in the revised Supplementary material of Fig. S8.

180

175

In Fig. 10, is the temperature also the zonal mean over the western Equatorial Pacific, or is it a zonal mean?

The temperature is also the mean over the western equatorial Pacific only. Thank you for the question; the revised manuscript clarifies this issue.

185

Lines 777-790: These statements are inconsistent with the published papers, dating back as far as Hoerling et al. (1987). Atmosphere general circulation models DO robustly reproduce the nonlinearity in the atmospheric response to warm and cold ENSO phases, given El Nino and La Nina SST anomalies.

Thank you for your suggestions. Our understanding is that observational evidence of mutual interactions between ENSO and QBO exists, but this possibility has not been widely studied using CMIP-class, climate model simulations. The observed ENSO-QBO relationship in current climate models is generally poorly reproduced, likely as a consequence of the coarse spatial resolution and the reliance on stationary parameterizations.

Serva, F., Cagnazzo, C., Christiansen, B., Yang, S.: The influence of ENSO events on the stratospheric QBO in a multi-model ensemble, Clim. Dyn., 54, 2561-2575, 2020, https://doi.org/10.1007/s00382-020-05131-7

Also, given the very weak relationship between the QBO phase, the ENSO phase, and the tropical anomalies shown in this study, it is unlikely that weaker ENSO events or ENSO events with less dramatic changes in the location of tropical convection than used in this study would yield further insights.

We agree with your second point that it is unlikely that weaker ENSO events or ENSO events with less dramatic changes in the location of tropical convection because of a weak relationship between the QBO phase, the ENSO phase, and the tropical anomalies are shown in this study. But, one study indicated that QBO is also influenced by the tropical SSTs in the Central Pacific (Shibata and Naoe, 2022), so that we believe that it will be worth further study of the role of ENSO flavors in the QBO-ENSO teleconnection.

205

Shibata K, Naoe H, 2022: Decadal amplitude modulations of the stratospheric quasi-biennial oscillation, J. Meteorol. Soc. Japan, 100, 29-44, https://doi.org/10.2151/jmsj.2022-001

Response to Reviewer 1

Title: QBOi El Niño Southern Oscillation experiments: Teleconnections of the QBO

Authors: Hiroaki Naoe, et al.

215 WCD manuscript on EGUsphere, MS No: egusphere-2025-1148

The authors would like to thank the reviewer for your time and effort in reviewing our manuscript entitled "QBOi El Nino Southern Oscillation experiments: Teleconnections of the QBO". Above all, the authors are deeply grateful for the many insights gained by reading the papers recommended by the reviewers. We will incorporate his/her valuable comments and suggestions on how our proposed revised manuscript will address your concerns. Our reviewer responses and revision plan are shown in blue text whereas reviewer's comments are shown in black. Individual responses are as follows.

Black: Reviewers comments

Blue: Authors response to the reviewer

225

230

235

240

220

To Reviewer 1:

RC1: 'Comment on egusphere-2025-1148', Anonymous Referee #1, 21 Apr 2025

This study uses ERA5 data and a multi-model ensemble of APARC QBOi models to investigate how QBO teleconnections are modulated by ENSO. To separate the QBO and ENSO signals, simulations were conducted with annually-repeating prescribed SSTs corresponding to idealized El Nino or La Nina conditions. Models are unable to represent the observed (ERA5) enhanced Holton-Tan effect during La Nina, where QBO W favors a stronger NH winter polar vortex. Models are also unable to represent the observed increase in SSWs during El Nino. Overall, the polar vortex responses to the QBO are much weaker than to ENSO in the models. In addition, the equatorward shift of the boreal winter Pacific subtropical jet (APJ) observed during QBO W in not seen in the models. In the tropics, the model experiments do not show a robust or coherent QBO influence on precipitation. It was further found that QBO effects on the Walker circulation exhibit a complex dependence on season, longitude, and phase of ENSO. They that suggested that weakness of the QBO polar vortex coupling in the models might arise from systematically weak QBO amplitudes at lower levels in the equatorial stratosphere, polar vortex biases in winter, and inadequate representation of stratospheric-troposphere coupling, while an inadequate representation of QBO effects in the tropical troposphere might arise from the systematically weak QBO amplitudes at lower levels, precipitation bias, and inadequate representation of the Walker circulation in these models. This paper documents the results of a

considerable effort in the QBOi community, with well-organization presentation and choice of figures. The narrative provides an authoritative interpretation of the detail and status of observed and modeled QBO/ENSO influences on the extratropics. I recommend publishing with minor revision.

245

- R1-1. Idealized time mean La Nina and El Nino states. Would the model results be noticeably different for a time-varying ENSO (then binned by ENSO phase), versus two perpetual ENSO phases? It seems possible that the two-state method represents an upper bound on possible effects.
- In the context of tropical teleconnections, the two-state method versus a time-varying method might result in different model responses. In the tropics, a continuous ENSO state creates a different set of climatologies for the ITCZ, the Walker circulation, etc., which affect the way intraseasonal variability behaves in the model. Whether the two-state method is an upper bound on possible effects is less clear, since the evidence is not conclusive on why tropical precipitation responds to the QBO, but it is a fair hypothesis that needs to be tested.
- In the extratropics, QBO teleconnections are largely affected by tropical circulation and ENSO states, by means of subtropical jets, PNA pattern responses, stratospheric circulation including QBO itself, etc. Thus, the two-state method versus a time-varying method might result in different model responses in the extratropical teleconnections, too.
- R1-2. 1216-217, Fig. 13: This is a kind of discretized time-height section. It is similar to Reed et al.'s original 1961 figure which shows a time-height section of zonal wind. The Hovmoller diagram was originally defined to be the variation of geopotential height or another quantity near 60N as a function of longitude and time. It was generalized to mean a longitude-time diagram, which is usually used to indicate wave propagation. You have a table with dependence on season and altitude and you are not discussing wave propagation in longitude. Please use the phrase "season-altitude variation" instead of Hovmoller diagram to indicate what you are showing.

Thanks for this helpful clarification. Our analysis does not involve wave propagation in longitude. So, we revise the text accordingly without using "Hovmöller diagram".

L216-217 (old): "Hovmoller diagram" is deleted.

Fig. 13 caption: "Schematic Hovmoller diagram showing" is replaced with "Occurrence of"

270

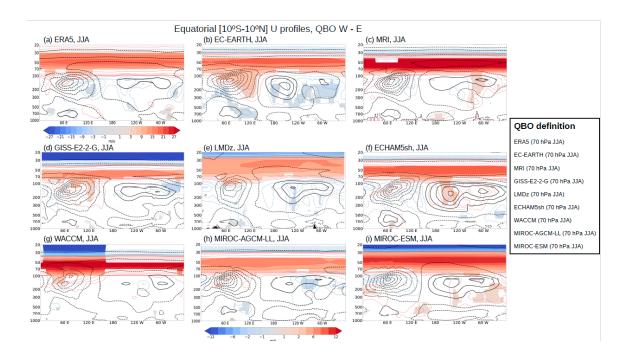
R1-3. 1221-226: "when the QBO phase is not defined by the preferred 70 hPa level" does this mean that there are other ways to define it or that sometimes the 70 hPa level index isn't well defined? In this discussion of how multiple indices affect significance calculations, please give a sense of the meaning and outcome. For example, If you use more than one index

definition at different levels, perhaps one might ascribe reduced significance to a result, but in your method it appears that alpha is reduced, therefore implying greater significance. A little more information would be helpful for understanding this paragraph.

Thank you for this thoughtful comment. The analysis in the Walker Section initially used a consistent QBO definition and target season across all models. Specifically, we define the QBO using the zonal-mean zonal wind at 70 hPa during JJA. Figure R1-1 (Fig. S10) shows the initial results for LN experiment and other figures are included in the revised supplementary material (Figs. S9, and S11) for consistency. With this uniform framework, we identify a coherent signal, but we want to enhance this signal and capture the strongest response in each model. To do so, we allow for slight adjustments in the QBO definition (70 or 85 hPa and JJA or SON) and in the target season (ranging from May to November), when necessary. These adjustments aim to capture the most robust response while maintaining a physically consistent framework. We have clarified this process in the revised text. Importantly, when a model's QBO definition differs from the standard (70 hPa during JJA), we account for the increased flexibility by applying a Bonferroni correction. This reduces the significance threshold (alpha) from 0.05 to 0.025 or lower, depending on the number of alternative definitions tested. The significance threshold (also called the significance level) determines the p-value below which the null hypothesis is rejected. If the p-value is smaller than α, we reject the null hypothesis and consider the result statistically significant. We clarify this point in the revised version of Section 2.

The tracking change of old L221-226 is as follows:

280


285

290

295

300

"ENSO composites in observations are done in the extratropics and subtropics for individual seasons (Sections 3, 4, and 5.2) and in the tropics for individual months (Section 5.1). In Section 5.2, tThe Bonferroni correction, as described by Holm (1979), is used for the two-sided *t*-test when the QBO phase is not defined by using the preferred 70 hPa level during June-July-August (JJA). In this method, the *p*-value-significance level of the statistical test is adjusted by dividing it by *m*, the number of tests performed, becoming more restrictive by increasing the confidence level. For instance, if the QBO definition is modified by season only, m = 2; if it is modified by both season and vertical level, m = 3. Accordingly, $\alpha' = \alpha/m$, where $\alpha = 0.025$ (the 5% significance level for a two-sided test), and α' denotes the adjusted *p*-valuethreshold-; implying that the corresponding p-value has to be smaller to reject the null hypothesis."

- Figure R1-1. Climatology (black contours) and QBO Westerly (W) minus Easterly (E) differences (shading and colored contours) in equatorial zonal wind profiles, averaged over 10° S-10° N, from the LN experiment for the QBO models. Black contours are drawn at 4 m s-1 intervals, and colored contour follow the same scale as the shading, as indicated in the color bar. The target season is JJA for all models, with the QBO phase defined at 70 hPa during JJA. Only statistically significant zonal wind differences at the 95% confidence level are shaded.
- 325 (Figures for CTL, LN, and EN experiments are added in the supplementary material of Figs. S9–11.)

- R1-4. Fig.1: It looks like only ECCAM5, WACCM and MRI are reasonably correct for neutral ENSO, but none get El Nino right. Maybe ECCAM5 and MRI get LaNina right (relative to ERA5).
- Thank you very much for your suggestions to note that the text is not sufficiently critical of the model results concerning the impact of the QBO on the polar vortex (Fig. 1). We revise the text to add these points and delete an unnecessary description.

 The tracking change of old L251-255 is as follows:
 - "Most of the model correlations show smaller uncertainty than ERA5 due to having larger sample sizes. They have significant correlations over a range of altitudes only in a particular experiment. For example, at some altitudes GISS has a significant correlation in EN, MIROC AGCM in LN, MRI ESM2.0 in LN, WACCM in CTL, and MIROC ESM has a significant

correlation only in the lower stratosphere in CTL. LMDz has no or little correlations between the equatorial QBO winds and the polar vortex wind for any of the experiments. Models (ECHAM5sh, EMAC, EC-EARTH, MIROC-ESM, MRI-ESM2.0, and WACCM) have positive correlation profiles in ENSO-neutral, albeit weak compared to reanalysis. Most models do not show a significant correlation in EN, and only four models (MRI-ESM2.0, ECHAM5sh, EMAC, and MIROC-AGCM) out of 9 reproduce observed positive correlations with confidence intervals excluding zero at some altitudes."

R1-5. Fig. 2: Only MRI seems to represent the basic sense of the ERA5 signal.

Again, in the revised text, we add critical points of the model results and delete an unnecessary description.

The tracking change of old L294-300 is as follows:

350

"Only two of the models reproduce observed responses within a half of the amplitude for the ENSO-neutral case (MRI-ESM2.0 and WACCM), and only the MRI-ESM2.0 also shows a stronger impact on the QBO on the vortex under the LN condition than under EN condition (however, that model has the wrong sign response for EN). In LN, four models (ECHAM5sh, GISS, MIROC-AGCM, and MRI-ESM2.0) tend are better atto reproducinge the observed response, peaking at a slight amplitude of $3\sim36$ m s⁻¹ in the polar vortex region. Some models have significant composite differences of zonal wind in a particular experiment at 60° N and 10 hPa. For example, GISS and ECHAM5sh shows a significant difference in EN-peaking at 7 m s⁻¹, and WACCM in CTL and a significant LN response just equatorward of 60 °N."

R1-6. Fig. 4 caption: suggest adding information to the effect of "La Nina, CTL, and El Nino, from left to right", to orient the reader about the order of the triplets, and maybe move to near the beginning of the caption.

Thank you very much for your suggestion. We move this description to near the beginning of the caption and change the order of the triplets as the reader is easy to identify them.

The tracking change of Fig. 4 caption is as follows:

- "Figure 4: SSW statistics ... daily data. The order of triplets from left to right are La Nina (LN, purple), ENSO neutral winter experiment (CTL, grey), and El Nino (EN, brown). Frequency ... ENSO neutral winter experiment (CTL, grey), El Niño (EN, brown), and La Niña (LN, purple)."
- R1-7. l356: suggest refer to (Fig. 4c). In this paragraph, and at times elsewhere, it might be beneficial to include more in-text references to figure panels being discussed.

Thank you very much for the suggestion from Reviewer #1 and the Editor. We revise the text to include more in-text references to figure panels being discussed.

The tracking change of old L353-355 is as follows:

- "Consistent with this expectation, in ERA5 during La Niña (the leftmost triplet of Fig. 4c), the final warming date in La Niña years is more delayed than that in ENSO-neutral and El Niño years. GISS and MRI-ESM2.0 exhibit later final warming dates in LN than in EN, which is similar to the observed response (Fig. 4c)."
 - R1-8. 1387, 150W-150E: How sensitive are results in Figs. 6 and 7 to the choice of longitude band?
- Thanks for the suggestion. We test the sensitivity of the QBO-APJ connection to the choice of longitudinal domain: (a) 150°E–150°W, as used in the original manuscript, (b) 130°E–120°W, as used in Anstey et al. (2022), and (c) 120°–180°E, as used in Park et al. (2022) (Figs. R1-2a–c, respectively). The domain adopted by Anstey et al. (2022) spans a broader longitudinal range than that used in this study, while the domain of Park et al. (2022) focuses on a region upstream of the jet core. Although a few models exhibit domain-dependent responses, the results are overall insensitive to the choice of longitudinal domain.
 - Anstey, J. A., Simpson, I. R., Richter, J. H., Naoe, H., Taguchi, M., Serva, F., ... & Yukimoto, S. (2022). Teleconnections of the quasi biennial oscillation in a multi model ensemble of QBO resolving models. Quarterly Journal of the Royal Meteorological Society, 148(744), 1568-1592.
- Park, C. H., Son, S. W., Lim, Y., & Choi, J. (2022). Quasi biennial oscillation related surface air temperature change over the western North Pacific in late winter. International Journal of Climatology, 42(8), 4351-4359.

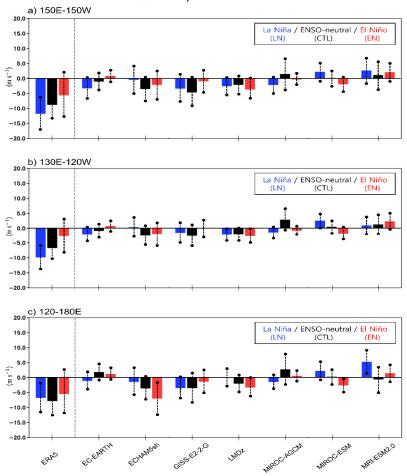


Fig. R1-2. Sensitivity of the QBO-APJ connection to the longitudinal domain.

Response to Reviewer 2

Title: QBOi El Niño Southern Oscillation experiments: Teleconnections of the QBO

Authors: Hiroaki Naoe, et al. 395

WCD manuscript on EGUsphere, MS No: egusphere-2025-1148

The authors would like to thank the reviewer for your time and effort in reviewing our manuscript entitled "QBOi El Niño Southern Oscillation experiments: Teleconnections of the QBO". Above all, the authors are deeply grateful for the many insights gained by reading the papers recommended by the reviewers. We will incorporate your valuable comments and suggestions in our revised manuscript to address your concerns. Our reviewer responses and revision plan are shown in blue text whereas reviewer's comments are shown in black. Individual responses are as follows.

Black: Reviewers comments

405

400

415

Blue: Authors response to the reviewer

To Reviewer 2:

RC2: 'Comment on egusphere-2025-1148', Anonymous Referee #2, 01 May 2025 reply

410 review of "QBOi El Nino Southern Oscillation experiments: Teleconnections of the QBO" by Naoe et al

This study aims to examine how QBO teleconnections are modulated by ENSO using a multi-model ensemble of QBOi models. The specific simulations examined are simulations in which SSTs are either climatological, El Nino, or La Nina, which allows for examining potential nonlinearities between QBO teleconnections and ENSO teleconnections. The use of ~10 models allows for assessment of model sensitivity and robustness. The authors examine four different QBO teleconnections - polar vortex response, subtropical jet, tropical precip, and Walker Cell. They conclude that the QBOi models generally fail to simulate the first three of these teleconnections, and hence it is difficult to conclude anything as to the possibility of ENSO and QBO teleconnections interacting. They find a robust effect of the QBO on the Walker Cell, however, the specifics of the QBO phase and season with maximum impact differ across the models.

420 While the paper should eventually be publishable in WCD, major revisions are needed first.

major comments:

R2-1. For the first three teleconnections where the models generally fail in the multi-model mean, there are still several models which are relatively more successful in capturing the observed response. There is no discussion of why there is spread across models for two of these teleconnections (vortex response and subtropical jet), while there is a very limited discussion of the third (namely Figure 10). The paper should include a detailed discussion for all three teleconnections as to possible causes of the intermodel spread in how well the models are doing. This could be similar to Figure 10, but instead of T100hPa, the authors could consider horizontal or vertical resolution, the mean state of the vortex or subtropical jet position, meridional width of the simulated QBO, strength of the QBO in each model in the lowermost stratosphere, strength of the QBO in the midstratosphere, etc. All of these factors could plausibly be linked to why some models are better than others, and by exploring all of them the paper might be able to provide some insights to model developers as to what needs to be improved.

We appreciate your helpful suggestions. In the revised manuscript, we include more discussion and analysis of why almost all the models do not reproduce teleconnections examined.

a) Discussion for QBO teleconnections to polar vortex

425

430

435

440

445

450

455

ENSO modulation of the QBO in the QBO is El Nino Southern Oscillation experiments is investigated by a core paper of Kawatani et al. (in revision; https://egusphere.copernicus.org/preprints/2024/egusphere-2024-3270/)

One of general characteristics of these experiments is that in the lower stratosphere, the westerly phase duration is generally longer in the La Nina simulations compared to the El Nino simulations. The downward propagation of QBO westerly and easterly phases to the lower stratosphere is more rapid during El Nino, which is a common characteristic among the models. However, QBOs in some models are irregular, from a simple, time-height cross-section of the monthly and zonal mean zonal winds over the equator in the El Nino and La Nina simulations for each model, as shown in Figure 2 of Kawatani et al. It is found that the QBO in the ECHAM El Nino experiment is irregular, with occasionally occurring in downward phases of easterlies and westerlies. The QBOs in GISS and LMDz La Nina experiments are more irregular, and westerly phases sometimes fail to propagate into the lower stratosphere.

Next, the QBO teleconnection problems relating to the stratospheric polar vortex teleconnection were investigated in more detail by previous studies (Bushell et al., 2022; Anstey et al., 2022). Figure 3 of Anstey et al. (2022) showed January correlation between vortex strength and equatorial wind at different altitudes for all models that performed CTL and for reanalyses. The strength of the QBO teleconnection to the NH winter stratospheric polar vortex was shown to correlate with the amplitude of the QBO at 50 hPa, which is the altitude that shows the strongest correlation with the vortex in observations. Most models show a statistically significant correlation at some altitudes, but the altitudes of peak correlation differ among models.

Figure 4 (b) of Anstey et al. (2022) showed January QBO-vortex correlation using 50 hPa QBO, versus QBO amplitude at 50 hPa. Models with weaker 50 hPa QBO amplitude show weaker correlation in January between the 50 hPa QBO wind and the polar vortex, consistent with the hypothesis that unrealistically weak low-level QBO amplitude can weaken the teleconnection.

In order to answer Reviewer #2 and Editor questions, we examine whether model performance of (a) QBO amplitude and/or (b) climatological polar night jet strength is related to the ability of model to capture the QBO-induced polar vortex responses (Fig. R2-1), assuming that the HTR relationship (polar vortex) route of the QBO teleconnection can be influenced by these two factors. The QBO amplitude is defined as the root mean square of the deseasonalized zonal wind time series at 50 hPa, multiplied by $\sqrt{2}$, following Dunkerton and Delisi (1985). QBO amplitudes at 50 hPa for most models are poor performance, in agreement with previous studies (Bushell et al., 2022; Anstey et al., 2022). It seems that larger QBO amplitudes at 50 hPa for models have larger polar vortex responses compared to the other models (but sometime wrong sign). Fig. R2-1(b) shows that climatological polar vortices in NH winter can be reproduced with observed strength. These results are consistent with the hypothesis that unrealistically weak low-level QBO amplitude can weaken the teleconnection.

These discussion points are added in Section 3.1.

460

465

470

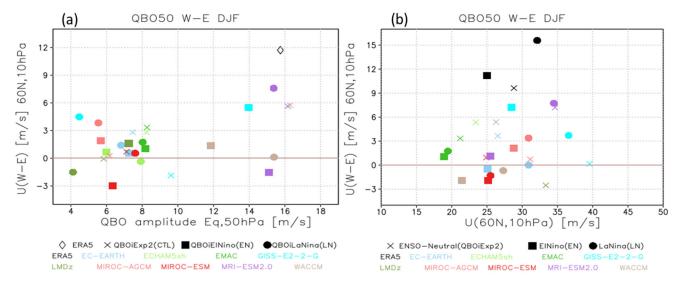
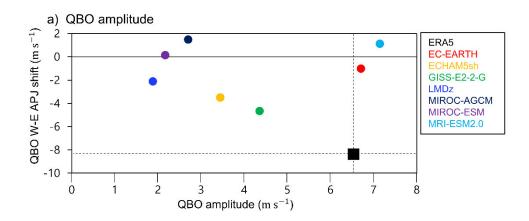


Fig. R2-1. (a) Relationship between QBO amplitude at 50 hPa and composite difference of zonal-mean zonal wind (QBO50 W-E) at 60N and 10 hPa for CTL, El and LN experiments plus ERA5 (1959-2021) in units of m/s. The QBO definition index at 50 hPa is used. (b) Relationship between NH wintertime climatological zonal wind at 60N and 10 hPa and composite difference of zonal-mean zonal wind (QBO50 W-E) at 60N and 10 hPa for CTL, EN, and LN experiments including the ENSO neutral, El Nino, and La Nina winters for ERA5 in units of m/s.

b) Discussion for QBO teleconnection to subtropical jet


Given that the subtropical jet route of the QBO teleconnection can be influenced by (a) the QBO amplitude and/or (b) the climatological position of the subtropical jet (Garfinkel and Hartmann, 2011), we examine whether model performance in simulating these two factors is related to the ability of model to capture the QBO-induced shift of the Asian-Pacific jet (APJ) (Fig. R2-2). Here, the QBO amplitude is defined as the root mean square of the deseasonalized zonal wind time series at 70

hPa, multiplied by √2, following Dunkerton and Delisi (1985) and Bushell et al. (2022). The climatological position of the APJ is defined as the latitude of the maximum zonal-mean wind averaged over the APJ sector (150°E–150°W). Consistent with previous studies (Bushell et al., 2022; Anstey et al., 2022), most QBOi models underestimate the QBO amplitude. Only two models show a comparable QBO amplitude to the reanalysis. However, model biases in QBO amplitude do not affect those in the QBO-APJ connection (Fig. R2-2a). Models with larger QBO amplitudes do not necessarily exhibit stronger jet responses, nor do models with smaller amplitudes consistently show weaker responses. A similar result is also found in the APJ position (Fig. R2-2b). These results suggest that neither the QBO amplitude nor the APJ position explains the inter-model spread in the QBO-APJ connection. Other factors, such as transient and stationary eddies, may determine the QBO-APJ connection in the model. This possibility needs to be explored in a future study.

This discussion is added at the end of Section 4 and supplementary material of Fig. S3.

480

485

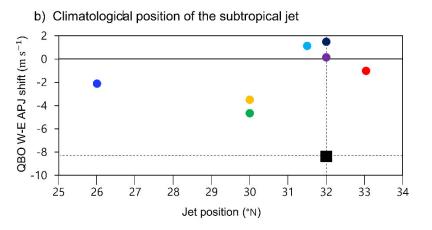


Fig. R2-2. Relationship between the QBO-induced APJ shift index and (a) QBO amplitude, and (b) subtropical jet latitude during ENSO-neutral (CTL) years.

References:

- 495 Garfinkel, C. I., and Hartmann, D. L.: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs, J. Atmos. Sci., 68, 1273–1289, 2011.
 - Dunkerton, T.J. and Delisi, D.P. (1985) Climatology of the equatorial lower stratosphere. Journal of the Atmospheric Sciences, 42, 376-396.
- Bushell, A.C., Anstey, J. A., Butchart, N., Kawatani, Y., Osprey, S.M., Richter, J. H., 20 others: Evaluation of the Quasi-500 Biennial Oscillation in global climate models for the SPARC QBO-initiative, Q. J. Roy. Meteor. Soc., 148, 1459–1489, 2022. Anstey, J. A., Simpson, I. R., Richter, J. H., Naoe, H., Taguchi, M., Serva, F., 23 others: Teleconnections of the quasi-biennial oscillation in a multi-model ensemble of QBO-resolving models, Q. J. Roy. Meteor. Soc., 148, 1568–1592. https://doi.org/10.1002/qj.4048, 2022.

c) Discussion for QBO teleconnection to tropical precipitation

Several potential biases likely influence the tropical route of QBO teleconnections. Most proposed mechanisms linking the QBO to the tropical surface rely on interactions between the lowermost stratosphere and the uppermost troposphere. A key bias common to many models, including those used in this study, is a weak QBO amplitude in the lower stratosphere, which limits the effectiveness of stratosphere–troposphere coupling processes (Oueslati et al., 2013; Richter et al., 2020; García-510 Franco et al., 2023). Additionally, models exhibit persistent tropospheric biases, including the double Intertropical Convergence Zone (ITCZ) and unrealistic rainfall intensity distributions. These biases typically stem from model parameterizations, notably in convection and cloud microphysics schemes (Hagos et al., 2021). The combination of these stratospheric and tropospheric biases likely weakens the QBO signal reaching the tropical troposphere and contributes to intermodel differences in both the timing and spatial manifestation of the teleconnection. This helps explain why some models produce stronger signals during certain seasons or in particular regions compared to others.

This discussion is added at the end of Section 5.1.

- Hagos, S. M., Leung, L. R., Garuba, O. A., Demott, C., Harrop, B., Lu, J., & Ahn, M. S. (2021). The relationship between precipitation and precipitable water in CMIP6 simulations and implications for tropical climatology and change. *Journal of Climate*, *34*(5), 1587-1600.
- Richter, J. H., Anstey, J. A., Butchart, N., Kawatani, Y., Meehl, G. A., Osprey, S., & Simpson, I. R. (2020). Progress in simulating the quasi-biennial oscillation in CMIP models. *Journal of Geophysical Research: Atmospheres*, 125(8), e2019JD032362.
- Oueslati, B. and Bellon, G.: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models, J. Climate, 26, 2931–2946, 2013.

On the topic of Figure 10, what is the correlation and slope of the best-fit line? Is the relationship statistically significant?

On the topic of Figure 10, the correlation of the best-fit line for all the data is -0.48 with a p-value of 0.02 according to a t-test of the Pearson correlation coefficient, indicating that the relationship is significant. However, these metrics are sensitive to the experiment, since a larger (in magnitude) correlation coefficient is found for El Niño conditions (r = -0.82) and a lower coefficient for La Niña experiments (r = -0.2).

R2-2. For the QBO signal in reanalysis, do you try to regress out a lingering signal of ENSO before plotting wqbo minus eqbo? Line 476-479 seems to indicate you don't do this, and it isn't clear whether this is done for the other teleconnections either. If this is not done, then comparing the observed signal to the model signal isn't a fair comparison as there will still be a residual signal from SSTs.

First, we do not consider ENSO to be a confounding factor in this study because our simulations explicitly isolate ENSO conditions. We know the idealized QBOi simulations cannot be directly compared to e.g. ERA5. Thus, this point is acknowledged in the revision of Section2:

540

550

555

"We note that the QBOiENSO experiments are idealized, therefore we mostly rely on observation-based datasets to determine whether the model responses are at least qualitatively in agreement with the (short) observational record."

We do not see clear advantages of regressing out an ENSO signal, compared to compositing on ENSO phase. In lines 476-479, for example, our composites of the observed precipitations (here GPCP, not a reanalysis) are made for El Nino and La Nina events. In this way, our comparison is 'apples-to-apples'. Regressing out an ENSO signal would make our analysis incomparable to our experiments.

R2-3. For the fourth teleconnection examined, the Walker Cell one, the authors adopt a completely different methodology than for the first three. Why for this section only do you play with the season and pressure level, but for earlier sections you don't? For the first three the models did a poor job, and now for this teleconnection they appear to be doing ok. Is this success for the Walker Cell just because you are giving the models lots of opportunities to succeed? Why not use this methodology for earlier sections too? Either way, the fact that a single paper is using very different methodological approaches for different sections is confusing, and leads to the (in my opinion misleading) impression that the models are much better at the QBO-> Walker Cell connection than the others.

Thanks for your comments and suggestions. To provide more context and clarity in the Walker circulation section, we also apply the same methodology used in the earlier sections, using a fixed QBO definition (in terms of season and vertical level) across all models. Our initial analysis reveals a coherent response in the Walker circulation compared to other sections. Figure R2-3 shows the initial results for LN experiment and other figures are included in the revised supplementary material for consistency (Figs. S9–11). Given this encouraging result, we explore whether the signal can be further strengthened by tailoring the QBO definition to each model, as a way to account for differences in how models represent the QBO vertical structure and timing.

565

585

560

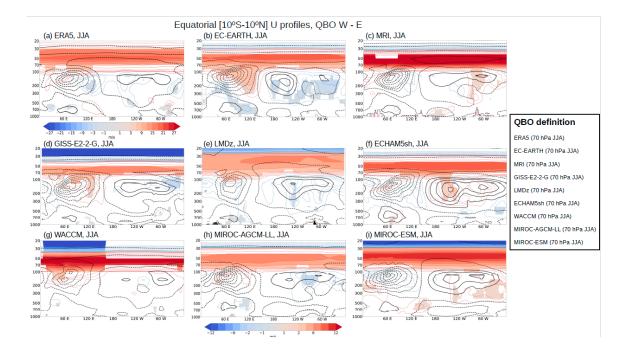


Figure R2-3. Climatology (black contours) and QBO Westerly (W) minus Easterly (E) differences (shading and colored contours) in equatorial zonal wind profiles, averaged over 10° S-10° N, from the LN experiment for the QBOi models. Black contours are drawn at 4 m s-1 intervals, and colored contour follow the same scale as the shading, as indicated in the color bar. The target season is JJA for all models, with the QBO phase defined at 70 hPa during JJA. Only statistically significant zonal wind differences at the 95% confidence level are shaded.

This point is included at the beginning of Section 5.2:

"In this subsection, we examine whether a QBO impact on the Walker circulation can be detected across different ENSO phases. A recent study (Rodrigo et al., 2025) showed that in reanalyses the QBO signal in the divergent circulation is strongest over the Maritime Continent region in boreal summer (JJA), followed by autumn (SON), and weakest in winter. However,

under El Niño and La Niña conditions this timing may slightly shift, potentially due to the ENSO influence on the QBO itself (Taguchi, 2010b; Kawatani et al., in revision). Additionally, model diversity and biases in the simulated QBO (Bushell et al., 2022) could lead to inter-model variations in the simulated QBO teleconnection. We begin the analysis by applying a common QBO definition and target season to all models, using the zonal-mean zonal wind at 70 hPa during JJA to define the QBO. With this approach, we identify a coherent signal, characterized by anomalous westerlies in the upper troposphere and anomalous easterlies in the lower troposphere over the Indian Ocean-Maritime Continent, in observations and some models (Figures S9, S10, and S11). To enhance this signal and capture To identify the strongest signal response in each model, we conduct a thorough search, allow slight adjustments todefining the QBO definition and target season when necessaryat slightly different seasons and vertical levels. The Bonferroni correction (Holm, 1979; see Section 2) is applied to the two-sided *t*-test when the QBO definition deviates from the preferred a level or season other than 70 hPa level during JJA is used to define the QBO phase."

595

600

610

615

620

One possibility of these more coherent responses is that the zonal circulation in these SST forced simulations is similar enough amongst models, due to the SST forcing, that the response is relatively more similar, whereas other aspects of the response, such as tropical precipitation, the polar vortex and the subtropical jet may be less constrained by the experimental setup. It is also plausible that the mechanisms that drive the Walker cell response are better represented in these models, given the relatively large static stability anomaly shown in the results, one could reasonably suspect that this mechanism could be large enough in the models to produce a consistent response.

R2-4. To be specific, previous work which allowed for different vertical levels to define the QBO can lead to very different conclusions as to whether models capture the HT effect of the polar vortex. See Rao et al 2020a. It could also be that the seasonality of the HT effect differs from one model to the next. It would be interesting to see if the QBO models still struggle to represent the HT effect if the authors adopted Rao et al's methodology.

As described in the method section, we do model-observation comparison by applying the same QBO phase definitions to the models that are optimal for observed teleconnections, in order to determine if observed teleconnections are manifested in the model runs. Thus, we use 'standard' indices (e.g., 50-hPa equatorial wind for the QBO), without adjusting them on a model-by-model basis, for all analyses presented in this article.

In Rao et al. (2020a), on the other hand, their QBO was defined at 30 hPa instead of 50 hPa, because some models largely underestimate the QBO magnitude in the lower stratosphere and for some models the QBO is difficult to detect at 50 hPa, and because the westerly phase lasts nearly as long as the easterly phase at 30 hPa.

These results suggest that our method is rather focuses on the identification of model biases by optimizing the observed teleconnections while Rao et al.'s method is to focus on the detection of model QBO signal, i.e., by maximizing the models' signals. In Garcia-Franco et al. (2022), when looking at Rao et al. (2020), which used QBO definitions at 30 hPa, they demonstrated that this level was not the most suitable for the tropical route.

An investigation of seasonality of Holton-Tan effect using different pressure levels would be a certainly interesting topic. But we think that only after identifying existing model biases that are done in the present work, we can move on to the next step, such a study of seasonality drift of Holton-Tan relationship using the phase-angle technique. Moreover, present-day simulations might be more appropriate to perform this kind of investigation, to better compare models and observation-based datasets.

630

650

655

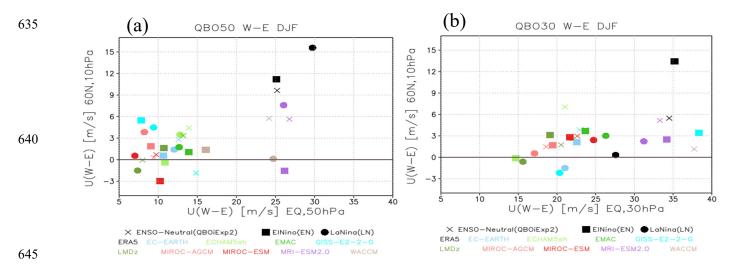


Fig. R2-4. Relationship of composite difference of zonal-mean zonal wind between polar vortex responses at 60N and 10 hPa and QBO definition at 50 hPa (QBO50, left panel) and at 30 hPa (QBO30, right panel).

In order to answer Reviewer #2 and Editor questions, we check levels to define the QBO that are based on observational studies (i.e., at 50 hPa) and that are based on model specific level (i.e., at 30 hPa), as shown in Fig. R2-4. Both panels (QBO50 and QBO30) show that most models underestimate equatorial QBO composite differences at 50 hPa compared to those at 30 hPa and they are struggling to reproduce observed polar vortex responses to the QBO. For some models the QBO is difficult to detect at 50 hPa, similar to those described in Rao et al. (2020a), which was on CMIP models. In observations, a QBO response is large in La Nina in the left panel (QBO50) while a QBO response is largest in El Nino in the right panel (QBO30). As described in the Introduction, previous studies investigating the joint effects of QBO and ENSO on polar vortex

As described in the introduction, previous studies investigating the joint effects of QBO and ENSO on polar vortex variability in winter suggested that their interactions are nonlinear insofar as the Holton-Tan relationship is found to be significant in the La Nina phase but much weaker in the El Nino phase (Wei et al., 2007; Garfinkel and Hartmann, 2008; Calvo

et al., 2009; Richter et al., 2011; Hansen et al., 2016). This means that our QBO-vortex responses in the observation classified in the ENSO phase using QBO50 is more consistent with previous studies.

This discussion is added in Section 3.1 and supplementary material of Fig. S1.

minor comments:

1. Somewhere in the paragraph from lines 109 to 116, and also near line 124, Rao et al 2020b should be cited and discussed Thank you for the helpful suggestion for this topic. We revise the text to cite this reference as they explored and evaluated three dynamical pathways for impacts of the QBO on the troposphere.

A discussion is added in the introduction around old L115:

"Also, Rao et al. (2020b) explored and evaluated three dynamical pathways (stratosphere polar vortex, North Pacific through the subtropical downward arching zonal wind, and tropical convection pathways) for impacts of the QBO on the troposphere, using the state-of-the-art CMIP5/6 models with a spontaneously generated QBO. They found that more than half of the models can reproduce at least one of the three pathways, but few models can reproduce all of the three routes."

2. Line 135: Trascasa-Castro et al 2019 and Weinberger et al 2019 should be cited and discussed

Thank you for the helpful suggestion. We revise the text to cite these references about the relationship between ENSO and SSWs.

A discussion is added in the introduction around old L135:

"For example, there is no indication of any nonlinearities between EN and LN, while SSW frequencies for EN and LN are both similar, using a chemistry-climate model (Weinberger et al., 2019). Trascasa-Castro et al. (2019) investigated the effect of variations in ENSO amplitude on European winter climate with idealized SST anomalies, and they did not find evidence of a saturation of the stratospheric pathway due to strong El Nino forcing, as suggested in previous literature."

3. line 142-146: Ma et al should be cited and discussed

Thank you for the helpful suggestion. We revise the text to cite this reference as QBO and ENSO have a nonlinear combined effect on North Atlantic surface pressure anomalies.

A discussion is added in the introduction around old L145-147:

"During El Niño, a stronger subtropical jet and the warmer polar vortex were present under QBO-W, while QBO anomalies in the tropical stratosphere were diminished and the poleward extent and amplitude of the QBO induced mean meridional circulation was reduced. Ma et al. (2023) assessed the synergistic effects of QBO and ENSO on the North Atlantic winter atmospheric circulation using model output and reanalysis data and found that the QBO and ENSO have a nonlinear combined effect on North Atlantic surface pressure anomalies, which arises because different pathways are preferred for different combinations of QBO and ENSO. In contrast, the polar vortex weakens ..."

4. line 199: Pahlavan et al should be cited.

695

700

705

This reference is included in the revised text.

technical edits aren't included in this round, but will be provided after the major comments are addressed.