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Abstract. Peaks over threshold (POT) techniques are commonly used in practice to model tail behaviour of univariate variables.

The resulting models can be used to aid in risk assessments, providing estimates of relevant quantities such as return levels

and periods. An important consideration during such modelling procedures involves the choice of threshold; this selection
represents a bias-variance trade-off and is fundamental for ensuring reliable model fits. Despite the crucial nature of this

5 problem, most applications of the POT framework select the threshold in an arbitrary manner and do not consider the sensitivity
of the model to this choice. Recent works have called for a more robust approach for selecting thresholds, and a small number

of automated methods have been proposed. However, these methods come with limitations, and currently, there does not appear

to be a ‘one size fits all’ technique for threshold selection. In this work, we introduce a novel threshold selection approach that
addresses some of the limitations of existing techniques, which we have termed the Tail-informed threshold selection (TAILS)

10 method. In particular, our approach ensures that the fitted model captures the tail behaviour at the most extreme observations,
at the cost of some additional uncertainty. We apply our method to a global data set of coastal observations, where we illustrate

the robustness of our approach and compare it to an existing threshold selection technique and an arbitrary threshold choice.

Our novel approach is shown to select thresholds that are greater than the existing technique. We assess the resulting model fits
using a right-sided Anderson-Darling test, and find that our method outperforms the existing and arbitrary methods on average.

15 We present and discuss, in the context of uncertainty, the results from two tide gauge records; Apalachicola, US, and Fishguard,
UK. In conclusion, the novel method proposed in this study improves the estimation of the tail behaviour of observed coastal

water levels, and we encourage researchers from other disciplines to experiment using this method with their own data sets.

1 Introduction

Natural hazards such as flooding, earthquakes and wildfires devastate communities and livelihoods around the world. Extreme

20 value analysis (EVA) applied to the historical records of such events provides a useful tool for describing the frequency and
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intensity of these processes, and can be used by practitioners, community leaders, and engineers to prepare in advance for
catastrophic events. Example applications include flood risk assessment (D’Arcy et al., 2023), nuclear regulation (Murphy-
Barltrop and Wadsworth, 2024), ocean engineering (Jonathan et al., 2014), and structural design analysis (Coles and Tawn,

1994). Furthermore, stakeholders with assets spread across large geographical regions alse-utilise these tools to understand the

hazard-hazards across regional, continental, and global scales ;s

Coastal flood events, driven by high tides, surges, or waves, are commonly recorded at tide gauge stations, which cover large
proportions of the populated global coastline. When characterising extreme sea level events, these tide gauge records are a
primary source of information available to coastal managers. Due to the large number of sites involved, automated techniques
for the characterisation of extreme events are preferable.

The earliest EVA techniques used the annual maximum approach, whereby a theoretically motivated distribution is fitted

to the observed yearly maxima. However, this approach suffers from the drawback that only one observation is recorded

for each year, resulting in some-extreme-observations-being-disregardedinefficient use of the data. In practice, this can lead
to an incomplete picture of the upper tail ;—and-consequently;—and less accurate estimates of tail quantities, such as return
levels. Consequently, recent consensus has been to move away from the annual maximum approach (Pan-andRahman;2022)

Davison and Smith, 1990; Coles, 2001; Scarrott and MacDonald, 2012; Pan and Rahman, 2022).
As a result, the POT—peaks over threshold (POT) approach has become the most popular technique for EVA modelling;

see Section 3 and Coles (2001) for further details. This approach involves fitting a statistical model to data above some high
threshold. However, the choice of this threshold is not arbitraryconsequence-free, and inappropriate choices can result in poor
model fits and extrapolation into the tail. Traditional approaches rely on visual assessments of parameter stability above the
appropriate threshold. Such approaches suffer from subjectivity (Caballero-Megido et al., 2018) and the time input required
to apply such techniques to global tide gauge records is not feasible. Consequently, many efforts have been made to reduce
the time burden incurred by manual threshold selection. These include simplifications that allow large amounts of data to be
processed, but at the cost of accuracy, e.g., using a static threshold, such as the 0.98 quantile or a fixed number of exceedances
per year (Hiles et al., 2019; Collings et al., 2024). We refer to the approach of selecting a static 0.98 quantile across all sites (or
variables) as the Q98 approach henceforth. Other approaches aim to automate much of the subjective decision-making process

while retaining a flexible method that can capture the underlying behaviour of the physical processes (Solari et al., 2017,

Curceac et al., 2020; Murphy et al., 2025). However, as discussed in Section 3, many of these techniques are not sufficientl
robust or flexible and can perform poorly in practice.

In this study, our aim is to build upon existing techniques to provide a novel approach to automating threshold selection,
which is applicable to a wide range of datasets whereby the extremes are characterised by different drivers. As a motivating
example, we apply our method to a global dataset of 417 tide gauge records, demonstrating the performance of our approach
over a variety of locations and benchmarking against other commonly used techniques.

The layout of this paper is as follows; in Section 2 we introduce the dataset used in this study and in Section 3 we discuss

the common difficulties in using the POT approach across such a large, varied dataset, as well as some of the methods used to
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simplify the process. In Section 4, we describe our novel approach to automating threshold selection and explain the subjeetive
chetees-we-have-made-in-the-methedchoices of tuning parameters. In Section 5, we present the results of applying our method
to the global tide gauge dataset described in Section 2. In Section 6, we discuss our results in the context of uncertainty, bias,

and the underlying physical processesand-finalty, Finally, in Section 7, we provide a conclusion to our study.

2 Data

The locations of the considered tide gauge stations are illustrated in Figure 1. These data are obtained from the Global Extreme
Sea Level Analysis (GESLA) database (Haigh et al., 2023), version 3.1, which is a minor update to version 3 to include the
most recent years (2022-2024). The GESLA database was collated from many organisations that collect and publish tide gauge
data. The water level records are prepared using the quality control flags published by the-authers-Haigh et al. (2023) alongside
the data set, and duplicate timestamps in the records are also removed. The water level records that contain over 40 years of
good data (defined as at least 75% complete) are retained. This results in a total of 417 water level records from around the
world, which have an average record length of 66 years. The raw time series data are provided on a range of time steps (10, 15,
and 60 minutes), and so are interpetatedresampled to hourly resolution. A linear trend is calculated and removed to account for
mean sea level risechange. Daily maxima data are obtained from the hourly records, and the data is subsequently declustered
using a 4-day storm window to ensure event independence (Haigh et al., 2016; Sweet et al., 2020). Given the range of oceans

and coastlines covered, one would generally expect to observe a wide variety of tail behaviours across the records.
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Figure 1. Map of GESLA record locations with record lengths greater than 40 years. The two locations highlighted in red are Apalachicola,
US and Fishguard, UK, which are discussed in more detail in Section 5.4.

3 POT modelling

The POT approach, whereby a theoretically motivated distribution is fitted to the excesses of some high threshold (see, e.g.,

Coles, 2001), is the most common technique for assessing tail behaviour in environmental settings. Given any random variable
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X and a threshold u, the results of Balkema and de Haan (1974) and Pickands (1975) demonstrate that under weak conditions,
the excess variable Y := (X —u | X > u) can be approximated by a generalised Pareto distribution (GPD) — so long as the
threshold « is ‘sufficiently large’. The GPD has the form

~1/¢
H(y;a,£)=1—(1+i‘y> , y>0, (1)

+

where z; = max(0,z), 0 > 0, and &-denotes-anyreal-numberd € R. We refer to o and ¢ as the scale and shape parameters, re-
spectively, and we remark that the latter parameter quantifies important information about the form of tail phenomena; see Davi-

son and Smith (1990) for further discussion. A wide range of statistical techniques have been proposed, including both Bayesian
and frequentist frameworks, to fit the model in equation (1)
(Dupuis, 1999; Behrens et al., 2004; Northrop et al., 2017), although we note that maximum likelihood estimation (MLE) re-
mains the most common technique (e.g., Gomes and Guillou, 2015). Consequently, we restrict attention to MLE techniques
throughout this paper.

In many practical contexts, equation (1) is used to obtain estimates of return levels for some return period N of interest.
Such values offer a straightforward interpretation: the N -year-year return level is the value z that one would expect to
exceed once, on average, every N years. Return levels are easily obtained by inverting equation (1) (see Coles, 2001), and their
estimates are often used to inform decision making. For example, in the contexts of flood risk analysis and nuclear infrastructure
design, regulators typically specify design levels corresponding to return periods of N = 100 years (D’ Arcy et al., 2023) and
N = 10,000 years (Murphy-Barltrop, 2023), respectively.

The ambiguity of the statement ‘a sufficiently large threshold w’ requires careful consideration. This is a problem that is
commonly overlooked in many applications, and selecting a threshold u is entirely non-trivial. In particular, this selection
represents a bias-variance trade-off: selecting a threshold too low will induce bias by including observations that do not repre-
sent tail behaviour, while extremely high thresholds will result in more variability due to lower sample sizes. Furthermore, the
estimates of return levels are very sensitive to the choice of threshold, and biased estimates can significantly impact the cost
and effectiveness of certain infrastructures, such as flood defences (Zhao et al., 2024).

Owing to the importance of threshold choice, a plethora of methods have been proposed which aim to balance the aforemen-
tioned trade-off; see Belzile-et-al-(2023)-foran-extensive-? for a recent review of the literature. The standard and most-widely
used approach for threshold selection involves a visual assessment of the stability of the GPD shape parameter across a range of
increasing thresholds (Coles, 2001). This approach suffers from subjectivity in the choice of stable region. Furthermore, visual
assessments-assessment for individual sites is simply not feasible (within a reasonable time scale) for large scale applications.

Automatic approaches seek to remove this subjectivity by selecting a threshold based on some criterion or goodness-of-fit
metric; Wadsworth and Tawn (2012) and Northrop and Coleman (2014) utilise penultimate models and hypothesis testing;
Bader et al. (2018) and Danielsson et al. (2019) use goodness-of-fit diagnostics; Wadsworth (2016) utilise a sequential assess-
ment of a changepoint model; and Northrop et al. (2017) create a measure of predictive performance in a Bayesian framework.

Tancredi et al. (2006) avoid the prior selection of the threshold by employing a Bayesian mixture model where the threshold is
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estimated as part of the parameter estimation, allowing for straight-forward estimation of threshold uncertainty. In the applied
literature, Durocher et al. (2018) and Curceac et al. (2020) compare several automated goodness-of-fit approaches for selecting

an-appropriate-a threshold in the hydrological setting. Furthermore, Choulakian and Stephens (2001), Li et al. (2005) and Solari
et al. (2017) automate goodness-of-fit procedures and apply these techniques to a range of precipitation and river flow data
sets.

Recently, Murphy et al. (2025) proposed a novel threshold selection technique building on the work of Varty et al. (2021).
This method, termed the expected quantile discrepancy (EQD), aims to select a threshold « for which the sample excesses are
most consistent with a GPD model. We briefly outline this method below. Let x,, = (z1,...,z,,) be the sample of excesses
of some candidate threshold u, i.e., a sample from Y. For each candidate threshold, the EQD method assesses the expected
deviation between sample and theoretical quantiles at a set of fixed probabilities P, := {j/(m+1):j=1,...,m}, where
m denotes some large whole number. This assessment is done across a large number of bootstrapped samples, say B, to
incorporate sampling variability and stablise the threshold choice. More specifically, letting 2% denote the b bootstrapped

sample of x,,, with b =1,..., B, Murphy et al. (2025) propose the metric

&b j - j
21— —— —1| - cx?
b ( erl) Q(m+1,iﬂu)

where (62, £2) denote the GPD parameter estimates for 2¥, obtained using MLE, and Q(j/(m+1);2) denotes the j/(m+1)

) 2

empirical quantile of «”. Considering equation (2) over each bootstrapped sample, an overall measure of fit for u is given
by d(u) = Zszl dp(u)/B. Finally, the selected threshold, u*, is the value that minimises d, i.e., u* := argmind(u). Through
an extensive simulation study, alengsideseveral-ease—stadiessMurphy et al. (2025) show that their approach convincingly
outperforms the core existing approaches for threshold selection. They further find that existing techniques do not provide
sufficient flexibility or robustness to select appropriate threshold choices across a wide range of datasets. Therefore, at the

time of writing, the EQD technique is the best-available-appreachfor-autemating-leading approach for automated threshold
selection.

In this article, we argue and demonstrate that while the EQD approach appears to work well in a wide variety of cases, it can
suffer from drawbacks in certain contexts that result in less than ideal threshold choices. Specifically, the chosen thresholds
can result in model fits that do not match up well at the most extreme observations. We briefly explore the reasons for why this
may occur below.

To begin, consider two candidate thresholds u; < ug satisfying Pr(X > u1) = 0.5 (i.e., the median) and Pr(X > ug) =
0.99. Taking each threshold in turn, the EQD computes quantiles from the (bootstrapped) conditional variables (X —wu; | X >
up) and (X —wug | X > ug) that correspond with the probability set P,,. When considered on the scale of the data, however,
this results in very different quantile probabilities. Letting x,,, ; denote the (true) j/(m+ 1) quantile of (X —u; | X > uy) for
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any j =1,...,m, we have

Pr(X <y, j+u) =1-Pr(X —us >zy, ;| X >u)Pr(X >u)

=1-[1—-j/(m+1)]0.5=:qy, ;,

with an analogous formula following for us, i.e., qu, ; :=1—[1 —j/(m +1)]0.99. The resulting probability sets {qu, ;}7~,
and {qu, ; }7-,, with m = 100, are illustrated in Figure 2. This demonstrates clearly that the lower the threshold level u, the
lower the quantile probabilities evaluated by the EQD metric. Thus, quantiles lying far eut-into the tail of the data will carry
significantly less weight for lower thresholds than for higher thresholds.

Quantile probabilities (scale of the data) Quantile probabilities (scale of the data)

0.5 0.6 0.7 0.8 0.9 1.0 0.§80 0.985 0.990 0.995 1.000
Interval 1 Interval 2

Figure 2. The probability sets {qu, ;};~1 and {Gu,,; }j=1 illustrated in red and black vertical lines, respectively. The left and right plots are
given on different intervals to illustrate the fact the quantile probabilities exist in entirely different subregions of [0, 1].

On a similar note, we remark that the metric described in equation (2) is equally weighted across all probability levels.
We argue that this somewhat disagrees with intuition in the sense that many practitioners mainly care about a models’ ability
to estimate very extreme return levels, and one only wants observations in the tail to be driving this estimation. Including
non-extreme observations will bias the estimation procedure and therefore assessing quantile discrepancies mainly for lower
quantile levels, as will occur for lower candidate thresholds, provides little to no intuition as to how the fitted model will
perform at the most extreme levels.

Taking these points into account, we propose an extension of the EQD procedure to improve the model fit to the most extreme
observations. Our proposed extension results in models fits which more accurately capture the upper tail of the data in contexts
where the EQD method struggles. Specifically, in the context of coastal modelling, we demonstrate that the EQD approach
selects thresholds that do not appear appropriate for capturing the most extreme observations across many coastal sites; such
issues do not arise for our extended approach. Consider the example illustrated in Figure 3 for a tide gauge record located in
Penseota-Pensacola Bay, US, which is in the Gulf of Mexico. This record was selected as it is located in a region impacted
by tropical cyclones, where the uncertainty in the model fits using the historical records is typically large. As demonstrated
in the left panel of this figure, the model fit obtained using the EQD approach performs poorly within the upper tail. For this
particular example, this indicates that the overall model fit is being driven mainly by lower observations, biasing the fit in the

upper tail. Such findings were replicated across many coastal sites, indicating that this is not an unusual phenomenon. We also
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illustrate the model fit that arises from our proposed method (see Section 4) in the right panel of Figure 3. One can observe
that even though the updated model fit has a higher disrepency value d(u), the model quantiles appear better able to capture

the upper tail in the data.
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Figure 3. QQ plots for the thresholds selected using the EQD (left) and TAILS (right) approaches; see Section 4 for more details of the
TAILS method. The sub captions in both cases gives the EQD score d(u) at the threshold chosen by both methods.

These findings indicate that whilst the EQD approach outperforms many existing techniques, it can, in some cases, result in
model fits that fail to capture the most extreme observations. This drawback motivates novel developments, and in this work we
propose an adaptation of the EQD technique, which we term the Tail-informed threshold selectionmethodotogy-with-guantite
matching for-extremevatne-modetling- (TAILS) appreachmethod. Unlike the EQD approach, our technique focuses exclusively

on quantiles within a pre-defined upper tail of the data, independent of the choice of threshold. Furthermore, we demonstrate
in Section 5 that TAILS results in improved model fits across a wide range of tide gauge records. Code for implementing the

TAILS approach is freely available online at https://github.com/callumbarltrop/TAILS.

4 The TAILS approach

In this section, we introduce the TAILS approach for GPD threshold selection. To begin, let &2 := {p; : i =1,...,m} denote
a set of increasing quantile levels close to 1: the selection of & is subsequently discussed. Given a candidate threshold w, let

xb,b=1,..., B, be defined as in Section 3 and let 7, = Pr(X < u). We propose the following metric

b —& .
@ [(11_55;) - 1] -Q (1 = wcil)
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with Q(-;-) and (6%,£%) defined as before. For each threshold w, this metric ensures that the same quantile probabilities
are evaluated, when considered on the scale of the data. Furthermore, observe that equation (3) accounts for cases when the
threshold probability, 7., exceeds a subset of &Z; in such instances, the metric is only evaluated on probabilities greater than
the threshold non-exceedance probability, corresponding to the region where the given GPD model is valid. Analogous to the
original approach, an overall measure of fit for a candidate threshold u is given by d(u) = 25:1 dy(u)/B, and the selected
threshold, u*, is the value that minimises d, i.e., u* := argmind(u).

The motivation behind (3) is to only evaluate quantile differences within the tail of the data, independent of the threshold
candidate. This ensures that the threshold choice is driven entirely by the model fit within the most extreme observations.
However, prior to applying the method, one must select a probability set &Z. This choice is non-trivial, and is crucial for
ensuring the proposed method selects a sensible threshold. For instance, selecting probabilities very close to one is meaningless
in a practical setting, since the corresponding quantiles cannot be estimated empirically from data of a finite sample size. On
the other hand, selecting probabilities too low will defeat the objective of our proposed technique.

With this in mind, we term p; the baseline probability, i.e., the smallest probability in 2. This corresponds to the ‘baseline’
observation frequency below which one treats any events to be extreme relative to the sample size. Naturally, this represents
a subjective choice, and the best choice of baseline probability is likely to be context dependent. In practice, we recommend
selecting p; based on expert or domain-specific knowledge; for example, what magnitude of return period normally results
in a relatively low-impact, but significant event within a given context? Take coastal flood risk mitigation and the occurrence
of *‘nuisance’ flooding as an example. Nuisance flooding is defined as ’low levels of inundation that do not pose significant
threats to public safety or cause major property damage, but can disrupt routine day-to-day activities, put added strain on
infrastructure systems such as roadways and sewers, and cause minor property damage’ (Moftakhari et al., 2018). Although
the exact return period of these events varies by location, a study carried out in the US demonstrated that these events generally
occur at sub-annual frequencies, and that the median across their study sites was 0.5 years (Sweet et al., 2018). In this study,
we chose to use a return period of 0.25 years for p;, to include events below the median obtained in the study above. This
choice was further supported by a sensitivity analysis, the results of which are presented in the Appendix. Note that this does
not imply that the optimum threshold choice will lie close to the baseline event, since this choice is driven exclusively by the
asymptotic rate of convergence to the undertying-tait-distributionGPD.

Alongside the baseline probability, we also set p,, (the largest probability in &?) ;-such that we ensure we observe 10
exceedances above the corresponding quantile, on average, over the observation period. Extrapolating beyond this level is
unlikely to be meaningful, since we cannot estimate empirical quantiles outside of the range of data. Furthermore, we impose
that all candidate thresholds (i.e., the values of u for which equation (3) is evaluated) are less than the 1 year return level. This
upper threshold is used in similar automated threshold selection studies, such as Durocher et al. (2018).

Finally, for the remaining probabilities in &, we set p; :=p1 + (j —1)(pm —p1)/(m—1), j =2,...,m — 1, corresponding
to equally spaced values from the p; to p,,. For the number of quantile levels m, we follow Murphy et al. (2025) and set

resents a balance between the
number of probabilities evaluated and the amount of linear interpolation between observed quantile levels. Similar to Murphy

m = 500; such a value ens
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et al. (2025), we found that the choice of m made very little difference to the thresholds selectedby-their-approach—See-; see

the Appendix for more details.

5 Results

We now assess the performance of the TAILS approach using the dataset introduced in Section 2. In Section 5.1, we apply
both the EQD and TAILS approaches over all locations with m = 500 and B = 100 ;te-ebtain-thresholdsabove-which-we-ean
consider-an-exceedaneeto automatically select thresholds. The same values for m and B were used by Murphy et al. (2025). In
Section 5:3-we-assess-3.2, we plot these results spatially to determine if there are any patterns present in the thresholds selected
by TAILS, or in the discrepancies between the selected thresholds from the TAILS and EQD approaches. In Section 5.3, we
assess, with a right-sided Anderson-Darling (ADr) test, the GPD model fits obtained using the selected thresholds from each
approach, as well as the model fits using a-statie-guantile-threshold-of-the-the static Q98 threshold. Lastly, in Section 5.4, we
show the distance metrics from the EQD and TAILS approaches for two tide gauge records, and present the resulting return

levels from the two methods, as well as the results obtained using the Q98 as-the-threshold.

5.1 Selected thresholds

Since the seales-of-relative magnitudes of the data at different locations vary, we present the selected threshold probabilities
rather than the threshold magnitudes; these are illustrated in Figure 224. The TAILS approach clearly selects higher thresholds
compared to the EQD approach, as expected. The lowest threshold selected by the TAILS and EQD methods is 0.903 and
0.501, respectively, and the highest threshold selected by the TAILS and EQD methods is 0.993 and 0.991, respectively. The
lowest threshold selected by the EQD approach is very close to the lower limit, which was the median (i.e., 0.5).

5.2 Right-sided-Anderson-Darling-testSpatial analysis

Considering the quantile probabilities of the selected thresholds of the TAILS approach in space, as shown in Figure Sa,
we do not observe any obvious patterns emerging. With the exception of a few outliers, the variability in space is generally
small. Figure b illustrates differences between the guantile probabilities of the selected thresholds of the TAILS and EQD.
approaches. All thresholds selected using the TAILS method are greater than the thresholds selected by the EQD, and strong.
spatial patterns are present here, particularly at tide gauge locations in north-eastern Europe. The tide gauge records with the
largest increases are located in the Baltics, showing changes of nearly 0.5. Spatial trends are also visible around Australia,
with the TAILS approach selecting higher threshold probabilities around the south of the country compared with the north.
Similar patterns appear evident for northern Japan and the north-west US. Note that it is harder to detect spatial patterns in
other locations around the globe (e.g., Affica, southern Asia, South America) due to the lack of sampling locations.

In the Appendix (Figure A3), we show the spatial variability in the scale and location parameters of the GPD obtained usin

the TAILS approach, and the differences when compared against the EQD method. Overall, we see that the TAILS approach



245

250

255

TAILS and EQD: Quantile probabilities of selected thresholds

mmm EQD

50 1 TAILS

40
192}
el
—_
o
v
L
= 301
o
—
[
Q
£ 2-
=

10 -

0 ; ;
05 0.6 0.7 0.8 0.9 1.0

Quantile probabilities of selected thresholds (-)

Figure 4. The results from applying the EQD and TAILS methods to every GESLA record used in this study, showing the distributions of
quantile probability-probabilities of the selected thresholds.

obtains smaller scale parameters and larger shape parameters. This further illustrates the TAILS approach results in heavier
tails in the subsequent GPD model fits.

5.3 Right-sided Anderson-Darling (ADr) test

The ADr test statistic (Sinclair et al., 1990; Solari et al., 2017) is used to measure the goodness-of-fit of the exceedances over the
thresholds selected using both the EQD and TAILS methods, as well as the model fits computed using the Q98 approach. The
test compares the theoretical quantiles against the empirical distribution, with more weight placed on the tails of the distribution
(hence right-sided). The statistic quantifies the deviation of the data from the specified distribution. A pvalae—value is obtained
by bootstrapping the test statistic, with p indicating the probability of observing such a deviation under the null hypothesis
that the threshold exceeding data eannot-be-modeled-by-follows a GPD. The null hypothesis is typically rejected for pvalaes
exeeeding—values below 0.05, corresponding to a 5% significance level.

A larger test statistic (equivalently, a lower p-value) indicates more deviation from the model distribution being tested,
which in this case, is a GPD. As shown in Figure 6a, the EQD approach yields larger ADr test statistics than the TAILS
method. The range of test statistics computed using the TAILS method are all less than 1, whereas the EQD approach has
many values exceeding 1. This indicates the EQD method could be selecting a threshold over which the exceedances are not
well characterised by a GPD. This is further corroborated by the p-values obtained for each method, plotted in Figure 6b. The
median p-value across all model fits obtained using the TAILS method is 0.615, compared with 0.312 for the EQD approach.

The TAILS method also outperforms the Q98 approach, with a smaller test statistic average and greater average p-value. While

10
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Figure 5. Spatial plots of a) the quantile probabilities of selected thresholds using the TAILS methods, and b) the difference in the quantile
robabilities of the selected thresholds between the TAILS and EQD approaches.

all the methods achieve adequate fits for most of the dataset, in some of the cases where the EQD and Q98 method lead to
poor model fits (p-value less than 0.05), the TAILS method can significantly improve results. Of the 417 tide gauge records
that were assessed, 89 records had an ADr p-value of less than 0.05 when using the EQD method. By comparison, using the

TAILS approach, we obtain only 17 model fits with ADr p-values less than 0.05.
5.4 Distance metrics and return levels

As a further illustration, consider the model fits for two sites; Apalachicola in the US and Fishguard in the UK, both shown
in Figure 7. The two sites have been selected based on the differences in geographic location and the associated extreme
water level drivers, which lead to contrasting return level estimates. Apalachicola, located on the western coast of Florida in
the Gulf of Mexico, is subjected to violent tropical cyclones, which drive huge storm surges due to the large and shallow

continental shelf (Chen et al., 2008; Zachry et al., 2015). The GPD model fit that characterises the return levels of the water
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Figure 6. Box and whisker plots showing the results from applying an ADr test to all the exceedances over the thresholds selected using the
EQD and TAILS approaches, as well as using a static Q98 threshold.

level record therefore has a large positive shape parameter, which displays a steep and exponentially increasing return period
curve. In contrast, Fishguard is located on the southern side of Cardigan Bay, near the inlet of the Irish Sea. The events driving
extreme sea levels in this location are a combination of strong extratropical storms and astronomical tidal variation, which are
characterised by a wholly different return period curve (Amin, 1982; Olbert and Hartnett, 2010). The GPD model fit for this
record has a negative shape parameter, which means that the return levels plateau as the return period increases.

In the top row of Figure 7 (panels a and b), one can observe the EQD and TAILS distances metrics (i.e., equations (2)
and (3)) plotted as a function of the threshold probability for both tide gauge records. Clearly, the global minimums of both
approaches are starkly different, representing the different quantile estimates evaluated by either-each approach. Panels ¢ and
d of Figure 7 show the estimated return levels and 95% confidence intervals from each of the TAILS, EQD and Q98 methods 5
at Apalachicola and Fishguard, respectively.

In the case of Apalachicola, the minimum distance (panel a) obtained using the TAILS method (0.012) is greater-more than
double the minimum distance obtained using the EQD approach (0.005). Compare this with the return level estimates from each
of the 3 methods presented (panel c¢). Despite having a larger minimum distance, the TAILS approach captures the empirical
observations much better than the EQD method. In fact, four of the historical events even lie outside of the 95% confidence
interval for the EQD method, highlighting the need for the TAILS methoedextension.

Contrast this with the results from Fishguard(panel-b), where the minimum distances (panel b) obtained using each approach
are much more comparable; 0.005 for TAILS and 0.004 for the EQD approach. The resulting return level estimates (panel d)
are also similar, with very small differences in the mean return levels between each of the three methods. The key difference
observed in panel d is the uncertainty bounds, with the EQD method having better constrained uncertainty in the higher return

periods than the other two methods.
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Figure 7. Model fits for two locations. Left column: Apalachicola, US (a and c). Right column: Fishguard, UK (b and d). The top row (a
and b) shows the TAILS and EQD distance metrics, plotted as a function of the threshold probability. The vertical dashed lines indicate the
distance minima, and therefore the selected threshold quantile probability. The bottom row (c and d) displays the return level plots for both
methods, alongside the empirical plot and model fit obtained by using the Q98 approach. The shaded areas indicate the 95% confidence
interval, calculated using bootstrapping of the GPD medel-parameters.

6 Discussion

In this work, we have introduced an automated threshold selection technique that addresses certain limitations of the-a leading
existing approach. Using a global tide gauge dataset, both methods are-have been rigorously compared in Section 5 alongside
a commonly used static threshold. We demenstrate-that-in-many-examined spatial patterns in the model fits from the TAILS
approach, along with patterns in the differences between the TAILS and EQD approaches. Furthermore, we have tested the
goodness-of-fit of the resulting GPD model fits using an ADr test. Two tide gauge records were investigated in more detail to
highlight the differences in the EQD and TAILS distance metrics, and to demonstrate how the parameter uncertainty changes
between the different approaches.
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6.1 Comparisons to existing approaches

At all locations, the TAILS method selects higher thresholds than the EQD approach. Particularly large increases are observed

in north east Europe, as well as South Australia, The processes driving these increases are likely multifactorial, In the Baltic
Sea, for example, extreme sea level events are complex phenomena, controlled by tides, antecedent meteorological conditions
(that can cause prefilling of the basin), seiches and storm surges (Groll et al., 2025). The tidal range in the Baltic Sea is very.
small (less than 10 cm in some locations), and so any non-tidal variability in sea level is much larger relative to the daily
oscillation of the sea level due to tide. This could have an impact on the EQD approach, although it is unlikely to explain all the
differences. Other regions in the world also have relatively small tidal ranges, such as the Mediterranean and Gulf of Mexico,
and yet these areas do not show such large increases in the quantile probabilities selected by the TAILS method compared to
the EQD. As shown in Appendix A3, the length of the record and the distribution of rare, extreme observations within the
record can have an impact on the threshold that is ultimately selected, although the effect tends to be muted once the record
length is greater than 40 years. Other factors that could affect the selected thresholds include the meteorological forcing type

i.e. tropical cyclone vs extratropical storm) and the dominant driver of extreme water levels in a particular location (e.

surge, waves or tides), but determining the relative impacts of each component remains beyond the scope of this study.

Regardless of why discrepancies occur, we demonstrate that in most cases, the TAILS approach better captures the most
extreme observations compared to the EQD-techniquesexisting EQD technique and outperforms the static Q98 threshold when

assessed using an ADr test.

The TAILS method guarantees that the resulting model fits will be driven by data observed in the tail, which is desirable for
practical applications where estimation of extreme quantities (e.g. ;return levels) is required. We alse-believe-thatealibrating
threshold selection-to-foeus-on-the-tail-will-encourage more-hope that these reasons, combined with the fact that automated
procedures allow one to apply the POT method across a large number of locations without the need for manual checks on
individual sites, will encourage practitioners to adopt ot i i i i
eaptures-the tail- behaviourand utilise our approach.

6.2 Sensitivity to extreme observations and parameter uncertaint

Focusing the model fit to the upper tail comes at the cost of additional uncertainty ;-sinee-by-definitions—since less data is
available for inference. Sinee-As uncertainty quantification is a key focus of the approach proposed by Murphy et al. (2025),

the EQD technique will generally offer lower model uncertainty compared to TAILS. In some applications, this may be more
desirable than capturing the most extreme observations. Thus, when deciding whether to use EQD or TAILS, one must consider
the following question: is it more important that the model is more certain and robust, or that the model better captures the most
extreme observations? We recommend that practitioners consider this question within the context of their application before

selecting a technique.
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For the application demonstrated in this paper, acknowledging and embracing uncertainty is key for any practitioner. Take
the example of Apalachicola, US given in Section 5.4. This region is impacted by tropical cyclones, making the return level
estimates made from the historical record very uncertain. To illustrate this point, two major Category 4 hurricanes (Helene and
Milton) made landfall on the west coast of Florida in September and October 2024, after the GESLA 3.1 update was collated.
Preliminary data recorded during the event suggest that Hurricane Helene broke the highest recorded water levels at three tide
gauges located in Florida, and Hurricane Milton set the second highest water level ever recorded at the tide gauge located in
Fort Myers, US (Powell, 2024a, b). Fitting distributions to these records pre and post these events woutd-ikety-resuttresults in
different mean return levels being estimated, especially when considering the most extreme return periods (e.g., the 1 in 500
year event). We tested this and found that, when using the TAILS approach, the mean return level for the 1 in 500 year event
increased by 55 cm if the tide gauge record is extended beyond the GESLA 3.1 update, to include these events. By recognising
the uncertainty in the underlying processes and the uncertainty inherent in the estimates made from observations, we can be

more confident that our models will be able to capture extreme events which are yet to occur.

6.3 Incorporating threshold uncertaint

Our results indicate that in certain examples the Q98 approach outperforms the EQD; however, the benefits of a data-driven
approach cannot be understated. When relying on TAILS or the EQD, not only is the threshold justified by a goodness-of-fit
measure but sampling variability has also been taken into account. This leads to a welljustified threshold choice and an
easier characterisation of the uncertainty in the resulting estimates. It also allows for the uncertainty in the threshold choice

to be incorporated when making inference. As shown in Murphy et al. (2025), including this additional uncertainty results

in well-calibrated confidence intervals. It should be noted that when estimating the confidence intervals for the return level
estimates shown in Figure 7, we did not account for the uncertainty in the threshold itself. However, the results of a sensitivity.
test against record length, shown in the Appendix (Figure A4), appear to show the TAILS approach leads to lower threshold
uncertainty. This is encouraging and might help in the trade-off with additional parameter uncertainty that is introduced using.
the TAILS method. Overall, including this uncertainty may improve our method’s ability to capture unobserved extreme events
and could provide a better understanding of the uncertainty in return level estimates beyond the observed data. This remains a

further avenue of research for our framework..

6.4 Incorporating more complex characteristics within the TAILS approach
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360 Throughout this work, we make the implicit assumption that data are identically distributed, even though we acknowledge
that environmental processes such as sea levels are unlikely to be stationary in an ever-changing climate. This choice was
motivated b
are well established. Moreover, when applying simple stationary models to such contexts. the TAILS approach may be favoured
as the generally higher threshold choices should help remove the influence of some covariate effects, leading to more stationary.
365  time series. However, there is no reason why one could not incorporate covariate dependence into the threshold and parameters
of a GPD (e.g., Davison and Smith, 1990; Chavez-Demoulin and Davison, 2005) when applying the TAILS or EQD approach.
using the EQD. Accounting for this aspect in the EQD or TAILS approach could allow for the use of lower thresholds without
the loss of accuracy for more extreme observations, providing a way to balance between the two goals mentioned above, i.e.,
370 uncertainty and accuracy in the upper-tail.
A wide range of modelling approaches have been proposed for incorporating covariate effects into POT modelling (e.g., Eastoe and Tawn

. Relevant covariates are those that impact the number of extreme events that occur within a given year; for example, indices

ractical implications; stationary models are simpler to implement and best practices (i.e., using a POT model

related to the ENSO and NAO phenomena, which affect the likelihood of temperature and precipitation extremes (Dong et al.,

2019), could be incorporated when specifying
375 amodel for sea level data. Only minor modification would be needed to apply the TAILS or EQD approaches here; specifically,

we would assess quantile discrepancies on a transformed scale, rather than the observed scale (see Varty et al. (2021) for related

discussion). However, we note that standard practices for applying non-stationary POT models are not well established, and it

is not clear how one should select which covariates to include, or how flexible a model is required. The development of auto-

mated threshold selection approaches to-suit-a-wide-range-of differentfor non-stationary data structures represents an important
380 line of future research.

We also remark that we assume a constant baseline event for our approach. Future work could incorporate a variable baseline
event linked to the underlying forcing mechanisms in an area. As discussed in Section 5.4, tide gauges around the world are
characterised by different patterns of extreme water levels. It might be possible to link a dominant forcing type to the baseline
event, which could improve further the performance of the TAILS approach.

385

390 Finally, we acknowledge

that our automated selection technique could be useful for improved threshold estimation in the wider context of multivariate
and spatial extremes. With suitable adjustment, the TAILS technique could help when implementing approaches employing the
Tawn, 1990; de Carvalho and Davison, 2014; Padoan et al., 2010

frameworks for variables exhibiting asymptotic independence (e.g., Ledford and Tawn, 1996; Heffernan and Tawn, 2004; Wadsworth and

multivariate regular variation framework (e.g. or alternative
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. The data-driven approach would allow for the threshold estimation uncertainty to be propagated through to joint tail inferences.
The development of automated threshold selection approaches in multivariate and spatial settings has been largely overlooked
in the literature, thus representing an natural avenue for future work.

Finatly: hat il leck; :

6.5 Selecting tuning parameters

TAILS requires a selection of several non-trivial tuning parameters; this includes the probability set Pis as
m, and the limit on candidate thresholds, which we define as the 1 year return level in Section 4. We-therefore-Our choices

were motivated by the specific application at hand, and we consequently recommend that practitioners experiment with beth
ilities-these parameters to assess whether such values have a practical effect on the resulting

model, using diagnostics such as QQ and return level plots to guide this procedure. The code has been written in such a
way as to make it easily parallelised, allowing for fast testing of multiple baseline and maximal probabilities across a variety

of datasets. We encourage and invite fellow researchers to utilise this method on other perils, such as rainfall or river flow

measurements. Exploring data-driven techniques (e.g., cross validation) for selecting tuning parameters of automated threshold
selection approaches remains an open area for novel developments.

7 Conclusions

Accurately estimating the extreme tail behaviour of historical observations is of great importance to researchers and practi-
tioners working in natural hazards. POT methods are regularly used in these fields for this purpose, but selecting the threshold
above which to consider an exceedance requires careful consideration. In this paper, we present TAILS, a new method for
automating the threshold selection process building upon the recently published EQD method (Murphy et al., 2025).

We apply two key innovations to improve upon the EQD method in the context of extreme coastal sea levels. Firstly, we
fix the quantiles that we consider when computing the distance metrics. This avoids oversampling the most extreme quantiles
when assessing higher thresholds. Secondly, we limit the quantiles considered for our distance metric to be only above a
predetermined baseline probability. This means that when optimising the distance metric to select a threshold, we are only
considering quantiles that we deem to be extreme, and hence worth considering when selecting a threshold. In this study, the
baseline probability was decided using the literature and a sensitivity test.

We show that the TAILS approach selects, on average, higher thresholds than the EQD method. When the resulting model
fits are evaluated using an ADr test against the EQD method-and the Q98 methodapproaches, we show that the TAILS method
outperforms both with respect to the ADr test statistic and the p-value. We also illustrate that the TAILS method typically
results in larger uncertalnty bounds, but argue that wtlwwggg%mg\gggy&when considering water level records

highly variable regions experiencing tropical cyclones.
Although a large number of records are assessed, this study is limited in-seope-as it only considers tide gauge reeordsdata.

located in

We hope that the method can be widely used to betterestimate-the—intenstties-improve the estimation of magnitudes and
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frequencies of other natural hazards. The code has been written in such a way as to make it easily accessible and easily

paralelised-interpretable so as to encourage uptake from fellow researchers. We believe we have clearly demonstrated the
otential of the TAILS approach, alongside its advantages compared to existing techniques.

Code and data availability. The code for implementing the TAILS approach is freely available online at https://github.com/callumbarltrop/
TAILS, along with an example data set. The GESLA 3.1 tide gauge database is available from the corresponding author upon reasonable

request.

Appendix A: Sensitivity test-of-baseline-prebability;prtests and supporting figures

A1l Sensitivity test of baseline probability, p;

A range of baseline probabilities were tested across the whole dataset, and the resulting threshold and model fits were used to
calculate a right-sided Anderson-Darling (ADr) test statistic and the p-value (Sinclair et al., 1990; Solari et al., 2017). For more
details on the ADr test, see the main text. The return periods that were tested for the baseline probabilities were 0.083, 0.167,
0.25, 0.33, 0.5, 0.667, and 1.0 years. These equivatate-equate to the 1in 1, 2, 3, 4, 6, 8 and 12 month events.

The results of this sensitivity test are shown in Figure Al. Panel a) presents the ADr test statistic for the 7 return periods
tested. When looking at the median and interquartile ranges of the ADr test statistics, the threshold selection looks relatively
insensitive to the return period chosen, with very little differences between the 0.167, 0.25, 0.333, and 0.5 year return periods.
When considering the ADr test p-value {in panel b), there is also only small differences between the 0.167, 0.25, 0.33 and 0.5
year return periods. We take this, along with the value ebtain-obtained from the literature (presented in main textarticle), as

evidence that any one of these values would suffice as the baseline probability, p; .

a) Right-sided Anderson-Darling test statistic b) Right-sided Anderson-Darling p-value
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Figure A1. The results from the sensitivity test of different baseline probabilities.
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445 Appendix B: Sensitivity-testof number-of-quantilelevels;m

A1l Sensitivity test of number of quantile levels, m

Following Murphy et al. (2025), a sensitivity test to the number of quantile levels, m was carried out. The values of m
tested were 10, 50, 100, 200, 500, 1000 and ’n_exceedances’, which is equal to the number of exceedances over the baseline
probability for each tide gauge record. The range of m values that are used by the 'n_exceedances’ are shown below in Figure

450 Al. The full range spreads between 161 to 811, and the median is centred on 231.

Range of m values for n_exceedances

800 - 0

(o)

700 ~
600 -
g 5001
400 -
300 -

200 -

Figure A1l. The range of m values used by 'n_exceedances’, which is equal to the number of exceedances over the baseline probability for
each tide gauge record.

The results of this sensitivity analysis are presented in Figure A2, showing that the method is quite insensitive to the m
value used. This is similar to the findings of Murphy et al. (2025). We recommend using any value over 10, and choose to use

m = 500 in this study for consistency with Murphy et al. (2025).
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Figure A2. The results of the sensitivity test using different m values. 'n_exceedances’ refers to the number of exceedances over the baseline
probability, at each tide gauge record.

A2 Spatial patterns in the scale and shape parameters of the GPD

455 In addition to the spatial plot of the quantile probabilities of selected thresholds, shown in Figure 5, we present here the spatial
patterns of the scale and shape parameters of the GPD. The scale parameter obtained using the TAILS method is shown in
Figure A3a and the shape parameter is shown in Figure A3c. The differences between the scale and shape parameters obtained
using the TAILS method vs the EQD approach are shown in Figures A3b and d, respectively.
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Figure A3. Spatial plots of the scale parameter (a) and the shape parameter (c) of the GPD when using the TAILS method. The difference in

scale parameter obtained using the TAILS approach vs the EQD approach is shown in panel b and the difference in the shape parameter is

shown in panel d.
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The scale parameters are generally quite small, with the exception of German/Danish coastlines, which have values around
0.3-0.4. Overall, we see a reduction in the scale parameter obtained using the TAILS approach when compared with the EQD.
Some locations show increases, such as along the German/Danish coast, Japan and North East US. The shape parameters have
more variability globally, with strong positive values present along the US east coast and Caribbean. Europe generally exhibits
negative shape parameters, which are more common for areas impacted by extratropical storms, although some outliers persist.
When comparing the differences between the TAILS and EQD approaches, we see increases in the shape parameter in the

vast majority of locations. This supports the observation that using the TAILS approach results in heavier tail estimates for the
GPD..

A3 Sensitivity test to the length of record and number of extreme observations

A test was carried out to determine the sensitivity of the TAILS method to the length of the record and the number of extremes
present in the record, Whole years from the tide gauge records investigated in Section 5.4 (Apalachicola and Fishguard) are
randomly sampled using 200 bootstraps with replacement to create synthetic records of length 10, 20, 30, 40, 50, 60. 70 and
80 years. The records are then declustered using a 4-day storm window, and the TAILS threshold is obtained. Comparisons
are made against the EQD method for reference. The number of extreme events in each bootstrapped sample is obtained. An
extreme event is defined as a water level in the bootstrapped sampled record that is greater than the 0.99 quantile of the original
declustered record. The distributions of the quantile probabilities of the TAILS and EQD selected threshold are plotted as box.
plots below, in Figures Ada, b, ¢ and d. Figures Ade and f show the number of extreme events plotted against record length,
with the colour map of the markers illustrating the quantile probability of the TAILS threshold.
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Figure Ad. Sensitivity test of record length and the number of extreme events present in the record against the quantile probabilities of the
selected thresholds. The left column shows the results for Apalachicola, US, and the right column is Fishguard, UK. Panels a and b compare
record length against the EQD method. Panels ¢ and d compare record length against the TAILS method. Panels e and f show the results
thresholds using the TAILS approach.
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The results of the test show that the TAILS method is generally insensitive to the record length, once records are greater than
30-40 years. Short records of less than 20 years tend to have a lower selected threshold compared with longer records. Shorter

but this reduces as the record length increases. This is in contrast to the EQD approach

records also have greater variabilit

which generally has greater variability, regardless of record length. At Fishguard, the record length makes very little difference
to the selected threshold when using the EQD approach. In panels e and f, record length, number of extreme events and the
quantile probabilities of the selected thresholds using the TAILS method are assessed. These results show that there is no clear
trend between the number of extreme events present in a record and the threshold selected.
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