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Abstract. The Lancang-Mekong River (LMR) Basin is highly vulnerable to extreme hydrological events, 9 

including Drought-Flood Abrupt Alternation (DFAA). The efficacy of potential mitigation measures, 10 

such as reservoir operations, on DFAA under climate change remains poorly understood. This study 11 

investigates these dynamics using five Global Climate Models (GCMs) from the Coupled Model 12 

Intercomparison Project Phase 6 (CMIP6). It employs the Revised Short-cycle Drought-Flood Abrupt 13 

Alteration Index (R-SDFAI), along with the Tsinghua Representative Elementary Watershed (THREW) 14 

model integrated with the developed reservoir module. The findings reveal that DFAA in the LMR Basin 15 

is primarily dominated by DTF (drought to flood), with probabilities of DTF exceeding those of FTD 16 

(flood to drought) at mild, moderate, and severe intensity levels. The increase in DTF probability for 17 

future periods is also significantly higher than that of FTD. Mild DTF and mild FTD account for 58% to 18 

90% and 75% to 100% of their total probability in the future, making the mild-intensity events the most 19 

frequent DFAA. Reservoirs play a significant role in reducing DTF risks during both dry and wet seasons, 20 

though their effectiveness in controlling FTD risks, particularly during the dry season, is relatively 21 

weaker. Furthermore, there is a positive correlation between the reservoir's capacity to mitigate total 22 

DFAA risk and its total storage. Reservoirs display a stronger ability to regulate high-intensity FTD and 23 

high-frequency DTF events, and significantly reduce the monthly duration of DFAA. These insights 24 

provide valuable guidance for the effective management of water resources cooperatives across the LMR 25 

Basin. 26 
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1. Introduction 29 

Flood and drought are two of the most frequent natural disasters in the world (Adikari and Yoshitani, 30 

2009; ADREM et al., 2024). Drought-Flood Abrupt Alternation (DFAA), which is defined as the rapid 31 

transition between flood and drought conditions within a region (Xiong and Yang, 2025), has received 32 

growing attention in recent years (Chen et al., 2025; Wu et al., 2023; Zhang et al., 2012; Shan et al., 2018; 33 

Song et al., 2023). DFAA specifically consists of two types of rapid transition events: (1) drought to flood 34 

(DTF), where conditions shift quickly from drought to flood, and (2) flood to drought (FTD), where 35 

conditions rapidly change from flood to drought. Hazards arising from DFAA are more significant than 36 

those from floods and droughts. DFAA not only alters soil conditions and increases the potential for 37 

exceeding water quality standards (Bai et al., 2023; Yang et al., 2019) but also challenges food security 38 

and seriously affects agricultural production. Furthermore, DFAA events, particularly DTF events, are 39 

prone to triggering severe secondary natural hazards, primarily including flash floods, landslides, and 40 

mudslides (Wang et al., 2023). 41 

It has been observed that the intensity and frequency of DFAA events demonstrate a global increasing 42 

trend (Yang et al., 2022; Chen et al., 2024). However, notable regional differences exist. Shan et al. (2018) 43 

observed that the scope of DFAA events in the Yangtze River mid-lower reaches has expanded since the 44 

1960s, with both frequency and intensity increasing annually. Zhang et al. (2012) found that although 45 

droughts and floods have increased in the Huai River Basin, DFAA events have become less frequent. 46 

Looking ahead, Zhao et al. (2022) projected that the Han River Basin will experience an upward trend in 47 

both DFAA frequency and intensity, whereas Yang et al. (2019) reported a projected decline in the 48 

frequency of DFAA events in the Hetao region. 49 

The Lancang-Mekong River (LMR), as a significant international river in Southeast Asia, profoundly 50 

affects key sectors such as hydropower, agriculture, fisheries, and transport (Morovati et al., 2024). At 51 

the same time, the LMR Basin is a high-incidence area for floods and droughts (Liu et al., 2020; MRC, 52 

2020). Notably, wet-season droughts account for about 40% of annual droughts (Tian et al., 2020), while 53 

the region is also prone to large floods during the dry season (e.g., May 2006, May 2007, December 2016) 54 

(Tellman et al., 2021). The existence of these wet-season droughts and dry-season floods establishes the 55 

necessary conditions for DFAA in the LMR Basin. 56 

Continued global warming is expected to further intensify both extreme wet and dry climate patterns 57 
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(IPCC, 2023), contributing to increased vulnerability to DFAA in the future (Yang et al., 2022; Wang et 58 

al., 2023; Chen et al., 2025). There is a strong tendency toward more intense floods and droughts in 59 

Southeast Asia (IPCC WG1, 2021) and specifically in the LMR Basin (Wang et al., 2021; Li et al., 2021; 60 

Dong et al., 2022; Hoang et al., 2016). This heightens concerns about DFAA patterns in the LMR Basin, 61 

emphasizing the need for improved water security, sustainable management, and early disaster 62 

forecasting and prevention systems. 63 

The hydrological regime of the LMR Basin is shaped mainly by climate change and human activities 64 

(LMC and MRC, 2023). Despite the severe impacts of climate change, human activities such as reservoir 65 

operation can help adapt the hydrological regime to these changes (Zhang et al., 2023; Khadka et al., 66 

2023; Sridhar et al., 2019; Lu et al., 2014; Gunawardana et al., 2021). Researches highlight that reservoirs 67 

play a crucial role in reducing flood damage during the wet season and in minimizing low-flow 68 

occurrences (Arias et al., 2014; Räsänen et al., 2012; Dang and Pokhrel, 2024). To evaluate reservoir 69 

impacts under the changing climate, integration of a reservoir module within hydrological models is a 70 

widely adopted practice. For example, Wang et al. (2017b) demonstrated that reservoir operation can 71 

reduce flood intensity and frequency, while Yun et al. (2021a; 2021b) showed that careful reservoir 72 

management can relieve both extreme drought and wet events, though with some trade-offs in 73 

hydroelectric benefits. Collectively, these studies indicate that reservoirs offer practical adaptation 74 

solutions to address climate change impacts. 75 

It is essential to consider how human activities, especially reservoir operations, can help manage DFAA 76 

under climate change. This consideration supports effective water resource management and the 77 

sustainable development of the basin system. However, little research to date has focused on this aspect 78 

for the LMR Basin. The statistics, reports, and studies on DFAA in the LMR Basin remain scarce, 79 

particularly concerning the mitigating role of reservoirs under the changing climate. In response, this 80 

study develops a reservoir module for hydrological modeling, examines the trends of DFAA in the LMR 81 

Basin under climate change, and assesses how reservoirs can help basin states adapt to changing 82 

conditions. This work aims to advance knowledge on DFAA and support regional water resources 83 

management and sustainability. 84 

2. Methodology 85 
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2.1 Study area 86 

The LMR originates from the Tibetan Plateau in China and flows through China, Myanmar, Laos, 87 

Thailand, Cambodia, and Vietnam before entering the South China Sea at the Mekong Delta. The LMR 88 

is approximately 4900 km long with a basin area of 812,400 km2 (He, 1995). Its annual runoff is about 89 

446 billion m3 (MRC, 2023). The LMR Basin is characterized by steep slopes and rapid flows in the 90 

upstream. The downstream features shallow slopes and slow, mixed flows. The wet and dry seasons in 91 

the LMR Basin extend from June to November and from December to May, respectively (LMC and MRC, 92 

2023). These are mainly influenced by the southwestern and northeastern monsoons. The distribution of 93 

the hydrology system and mainstream hydrological stations in the LMR Basin is detailed in Fig. 1a. 94 

95 
Figure 1: Hydrology of the LMR Basin. (a) Map of rivers and reservoirs, (b) Information on four main 96 
hydrological stations, and (c) distribution of reservoir storage. Here, JH, NK, PA, and KT denote JingHong, 97 
Nong Khai, Pakse, and Kratie stations, respectively. 98 

The LMR Basin nourishes approximately 65 million people (Sabo et al., 2017; Luo et al., 2023). The 99 

basin states rely on the river system to develop economic industries, including capture fisheries, irrigation 100 

agriculture, and hydropower. The LMR Basin has the largest freshwater capture fishery in the world 101 

(MRC, 2010; MRC, 2019). Its irrigation area is estimated at around 4.3 million hectares (Do et al., 2020), 102 

with the Mekong Delta regarded as Southeast Asia’s food basket. The LMR Basin is one of the most 103 
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active regions for hydropower in the world (MRC, 2019; Williams, 2019). It harbors about 235,000 104 

GWhyr−1 of hydroelectric potential in its mainstream and tributaries (Do et al., 2020; Schmitt et al., 2018). 105 

The LMR Basin is also heavily impacted by floods and droughts. During the past two decades, the LMR 106 

Basin has experienced several severe droughts (2004-2005, 2009-2010, 2015-2016, and 2019-2020) and 107 

floods (Liu et al., 2020; Tian et al., 2020; MRC, 2020). These disasters affect crop cultivation and 108 

fisheries harvesting, leading to the loss of property and lives in riparian countries. In 2013 and 2018, 109 

floods heavily affected the lower basin, specifically Cambodia, Vietnam, Laos, and Thailand. These 110 

floods covered 22.3 and 6.47 thousand km2, respectively (Tellman et al., 2021). 111 

2.2 Data collection 112 

This study utilizes CMIP6 (Sixth Phase of Coupled Model Inter-comparison Project) data as the 113 

meteorological input to analyze DFAA. Three SSP (Shared Socioeconomic Pathways) scenarios, namely 114 

SSP1-2.6, SSP2-4.5, and SSP5-8.5, are considered to characterize the low-, medium-, and high-emission 115 

scenarios, respectively. Five GCMs (Global Climate Models) with wide utilization and proven 116 

performance in the LMR Basin are applied in this study (Li et al., 2021; Yun et al., 2021a; Yun et al., 117 

2021b), i.e., GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL. 118 

The detailed information for these five GCMs is shown in Table 1 (Eyring et al., 2016; Gidden et al., 119 

2019; Cui et al., 2023). CMIP6 data span from 1980 to 2100. This study accordingly considers three 120 

research periods: the history period from 1980 to 2014 (consistent with CMIP6), the near future period 121 

from 2021 to 2060, and the far future period from 2061 to 2100. 122 

In this study, the daily observed runoff data at four major mainstream hydrological stations from 1980 to 123 

2020 are used to calibrate and validate the hydrological model. These data are derived from the China 124 

Meteorological Administration (CMA) and the Mekong River Commission (MRC). The hydrological 125 

stations from upstream to downstream are sequentially JingHong, Nong Khai, Pakse, and Kratie, whose 126 

locations and basic information are shown in Figs. 1a and 1b. This study uses the ERA5_Land data as 127 

the meteorological input for calibrating and validating the hydrological model, and as the correction 128 

dataset for correcting the raw CMIP6 data. ERA5_Land data cover the period from 1980 to 2020, with a 129 

spatial resolution of 0.1°, and contain precipitation, temperature, and potential evapotranspiration. Soil 130 

data are obtained from the Global Soil Database (GSD) provided by the Food and Agriculture 131 

Organization of the United Nations (FAO) with a spatial resolution of 10 km x 10 km. Normalized 132 
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Vegetation Index (NDVI), Leaf Area Index (LAI), and Snow Cover data are obtained from MODIS 133 

(Moderate-resolution Imaging Spectroradiometer) with a spatial resolution of 500 m x 500 m and a 134 

temporal resolution of 16 days. 135 

Reservoir data are sourced from MRC and Mekong Region Futures Institute (MERFI) (MERFI, 2024). 136 

This study utilizes 122 reservoirs, which simultaneously contain information on location, storage, and 137 

operation years, including 24 reservoirs in the Lancang Basin and 98 reservoirs in the Mekong Basin. 138 

The earliest and latest operation years for them are 1965 and 2035. The location and storage distribution 139 

of these reservoirs are shown in Figs. 1a and 1c. 140 

Table 1: Details of 5 GCMs applied in this study. 141 

Model Name Modeling Center Realization 
Resolution 

(Lon×Lat) 

GFDL-ESM4 
National Oceanic and Atmospheric Administration Geophysical Fluid 

Dynamics Laboratory, United States 
r1i1p1f1 1.25°×1° 

IPSL-CM6A-

LR 
Institute Pierre Simon Laplace, France r1i1p1f1 2.5°×1.25874° 

MPI-ESM1-2-

HR 
Max Planck Institute for Meteorology, Germany r1i1p1f1 0.9375°×0.9375° 

MRI-ESM2-0 Meteorological Research Institute, Japan r1i1p1f1 1. 125°×1. 125°

UKESM1-0-

LL 
Met Office Hadley Centre, UK r1i1p1f2 1.875°×1.25° 

2.3 Bias correction method for CMIP6 data 142 

The raw CMIP6 data require correction for more accurate modelling (Hoang et al., 2016; Mishra et al., 143 

2020; Sun et al., 2023). The uncorrected raw CMIP6 data misestimate the temperature and precipitation 144 

in the LMR Basin, especially overestimating the precipitation (Cui et al., 2023; Lange, 2019; Lange, 145 

2021). ERA5_Land data are used as correction data in this study to address bias in raw CMIP6 data. 146 

This study interpolates the data from the five GCMs of CMIP6, which have different spatial resolutions, 147 

to 0.1° (consistent with ERA5_Land) using the bilinear interpolation spatial resolution method. The 148 

interpolated CMIP6 data are bias-corrected for each GCM according to an N-dimensional probability 149 

density function transform of the multivariate bias correction approach (abbreviated as MBCn) (Cannon, 150 

2016; Cannon, 2018). The MBCn method is trained based on the difference between precipitation and 151 

temperature data from ERA5_Land and CMIP6 over the history period (1980-2014), and then applied to 152 

the future period (i.e., 2021-2100) to correct the CMIP6 data for each GCM. 153 
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The MBCn method considers the multivariate dependency structure of meteorological data and enables 154 

the simultaneous correction of temperature and precipitation data. Random orthogonal rotation and 155 

quantile delta mapping are the two most critical formulas of the MBCn method (Cannon, 2018), as 156 

illustrated in Eqs. (1) and (2). 157 

�
𝑿𝑿�𝑇𝑇

[𝑙𝑙] = 𝑿𝑿𝑇𝑇
[𝑙𝑙]𝑹𝑹[𝑙𝑙]

𝑿𝑿�𝑆𝑆
[𝑙𝑙] = 𝑿𝑿𝑆𝑆

[𝑙𝑙]𝑹𝑹[𝑙𝑙]

𝑿𝑿�𝑃𝑃
[𝑙𝑙] = 𝑿𝑿𝑃𝑃

[𝑙𝑙]𝑹𝑹[𝑙𝑙]

 (1) 158 

Eq. (1) displays the process of random orthogonal rotation. It outlines the process of transforming 159 

historical observations 𝑿𝑿𝑇𝑇
[𝑙𝑙], historical climate model simulations 𝑿𝑿𝑆𝑆

[𝑙𝑙], and climate model projections160 

𝑿𝑿𝑃𝑃
[𝑙𝑙]  using a random orthogonal rotation matrix 𝑹𝑹[𝑙𝑙]  during the l-th iteration. The rotated data are 161 

represented as 𝑿𝑿�𝑇𝑇
[𝑙𝑙], 𝑿𝑿�𝑆𝑆

[𝑙𝑙], and 𝑿𝑿�𝑃𝑃
[𝑙𝑙]. This procedure is pivotal for MBCn's multivariate joint distribution162 

correction, as it transforms the original variable space into new random orientations. In contrast to 163 

conventional univariate correction approaches, MBCn employs a random orthogonal matrix to mix 164 

variables, thereby breaking their independence. 165 

�
∆(𝑛𝑛)[𝑙𝑙](𝑖𝑖) = 𝑥𝑥�𝑃𝑃

(𝑛𝑛)[𝑙𝑙](𝑖𝑖) − 𝐹𝐹𝑆𝑆
(𝑛𝑛)[𝑙𝑙]−1(𝐹𝐹𝑃𝑃

(𝑛𝑛)[𝑙𝑙](𝑥𝑥�𝑃𝑃
(𝑛𝑛)[𝑙𝑙](𝑖𝑖)))

𝑥𝑥�𝑃𝑃
(𝑛𝑛)[𝑙𝑙](𝑖𝑖) = 𝐹𝐹𝑇𝑇

(𝑛𝑛)[𝑙𝑙]−1(𝐹𝐹𝑃𝑃
(𝑛𝑛)[𝑙𝑙](𝑥𝑥�𝑃𝑃

(𝑛𝑛)[𝑙𝑙](𝑖𝑖))) + ∆(𝑛𝑛)[𝑙𝑙](𝑖𝑖)
(2) 166 

Eq. (2) exhibits the quantile delta mapping, which defines how quantile delta mapping is applied to the 167 

n-th dimension of the rotated climate model projection data 𝑥𝑥�𝑃𝑃
(𝑛𝑛)[𝑙𝑙](𝑖𝑖) within the rotated space of the 𝑙𝑙-168 

th iteration. Here, ∆(𝑛𝑛)[𝑙𝑙](𝑖𝑖)  represents the quantile difference between the historical climate model 169 

simulations and climate model projections in the l-th iteration and the n-th dimension. 𝐹𝐹𝑃𝑃
(𝑛𝑛)[𝑙𝑙] denotes170 

the empirical cumulative distribution function for the rotated climate model projection data in the n-th 171 

dimension. 𝐹𝐹𝑇𝑇
(𝑛𝑛)[𝑙𝑙]−1  and 𝐹𝐹𝑆𝑆

(𝑛𝑛)[𝑙𝑙]−1  denote inverse Functions of the empirical cumulative distribution172 

functions for the rotated historical observation data and historical climate model simulation data in the 173 

n-th dimension. This step preserves the trend of the climate model projection data throughout the174 

correction process. The number of iterations is typically set to 10-30. 175 

The MBCn algorithm performs multivariate joint distribution bias correction by iteratively applying 176 

random orthogonal rotation and quantile delta mapping, while preserving the projected signals in the 177 

climate model. The rotation operation breaks dependencies between variables, enabling the quantile delta 178 

mapping of a single variable to indirectly adjust multivariate correlations. The quantile delta mapping 179 

ensures the transmission of absolute or relative trends by computing quantile differences between the 180 
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historical and projected periods of the climate model. The MBCn method has been reported to increase 181 

correction precision and accuracy compared to univariate and other multivariate bias correction 182 

algorithms (Cannon, 2018). 183 

In addition, this study utilized the method proposed by Van Pelt et al. (2009) to compute daily potential 184 

evapotranspiration data for five GCMs under three SSP scenarios, based on daily temperature. The 185 

computational approach is outlined in Eq. (3). 186 

𝑃𝑃𝑃𝑃𝑃𝑃 = [1 + 𝛼𝛼0(𝑇𝑇 − 𝑇𝑇0� )]𝑃𝑃𝑃𝑃𝑃𝑃0�������  (3) 187 

Where, 𝑇𝑇0�   and 𝑃𝑃𝑃𝑃𝑃𝑃0�������  correspond to the daily air temperature (°C) and daily potential 188 

evapotranspiration (mm day⁻¹) in the history period sourced from ERA5_Land dataset. 𝑇𝑇 signifies the 189 

corrected daily air temperature (°C) from CMIP6 dataset. The parameter 𝛼𝛼0  is determined by the 190 

relationship between daily potential evapotranspiration and daily temperature in ERA5_Land data during 191 

the history period. 192 

2.4 Hydrological model coupled with reservoir module 193 

The THREW (Tsinghua Representative Elementary Watershed) hydrological model is applied in this 194 

study for runoff simulation. It utilizes the Representative Elementary Watershed (REW) approach for 195 

spatial division, and further subdivides the REW into eight distinct hydrological zones: vegetated zone, 196 

bare soil zone, glacier covered zone, snow covered zone, sub-stream-network zone, main channel reach, 197 

saturated zone, and unsaturated zone (Tian et al., 2006; Mou et al., 2008). 198 

The model is built upon scale-coordinated equilibrium equations, geometrical relationships, and 199 

constitutive relationships, and enables comprehensive simulation of complex hydrological processes 200 

from mountain to ocean. The fundamental balance equations in the THREW model are listed in Eqs. (4) 201 

to (6). 202 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜌𝜌𝛼𝛼
𝚥𝚥���𝜖𝜖𝛼𝛼

𝑗𝑗𝑦𝑦𝑗𝑗𝜔𝜔𝑗𝑗) = ∑ 𝑒𝑒𝛼𝛼
𝑗𝑗𝑗𝑗

𝑃𝑃 + ∑ 𝑒𝑒𝛼𝛼𝛼𝛼
𝑗𝑗

𝛽𝛽≠𝛼𝛼 (4) 203 

Eq. (4) demonstrates the general form of the mass conservation equation at the REW scale. 𝑑𝑑
𝑑𝑑𝑑𝑑

 denotes 204 

the time derivative. 𝜌𝜌𝛼𝛼
𝚥𝚥��� refers to the time-averaged density of phase 𝛼𝛼 in sub-region j, in kg·m-3. 𝜖𝜖𝛼𝛼

𝑗𝑗205 

means the volume fraction of phase α within sub-region j. 𝑦𝑦𝑗𝑗 indicates the time-averaged thickness of 206 

sub-region j, in m. 𝜔𝜔𝑗𝑗 means the time-averaged fraction of REW horizontal area occupied by sub-region 207 

j. 𝑒𝑒𝛼𝛼
𝑗𝑗𝑗𝑗 denotes the net mass exchange flux of phase 𝛼𝛼 in sub-region j through interface P (e.g., with208 
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atmosphere, groundwater, neighboring REWs), in kg·m-2·s-1, where a positive value indicates the inflow 209 

to sub-region j. 𝑒𝑒𝛼𝛼𝛽𝛽
𝑗𝑗  refers to the phase transition rate between phase 𝛼𝛼 and phase 𝛽𝛽 within sub-region 210 

j, in kg·m-2·s-1, where a positive value indicates phase 𝛼𝛼 gains mass from phase 𝛽𝛽. Sub-region here 211 

refers to the eight zones within each REW. 212 

(𝜌𝜌𝛼𝛼
𝚥𝚥���𝜖𝜖𝛼𝛼

𝑗𝑗𝑦𝑦𝑗𝑗𝜔𝜔𝑗𝑗) 𝑑𝑑𝑣𝑣𝛼𝛼
𝚥𝚥����

𝑑𝑑𝑑𝑑
= 𝑔𝑔𝛼𝛼

𝚥𝚥𝜌𝜌𝛼𝛼
𝚥𝚥�������𝜖𝜖𝛼𝛼

𝑗𝑗𝑦𝑦𝑗𝑗𝜔𝜔𝑗𝑗 + ∑ 𝑇𝑇𝛼𝛼
𝑗𝑗𝑗𝑗

𝑃𝑃 + ∑ 𝑇𝑇𝛼𝛼𝛼𝛼
𝑗𝑗

𝛽𝛽≠𝛼𝛼          (5) 213 

Eq. (5) presents the general form of the momentum conservation equation at the REW scale. 𝑣𝑣𝛼𝛼
𝚥𝚥��� 214 

indicates the time-averaged velocity vector of phase α in sub-region j, in m·s-1. 𝑔𝑔𝛼𝛼
𝚥𝚥���� denotes the time-215 

averaged gravity vector of phase 𝛼𝛼 in sub-region j, in m·s-2. 𝑇𝑇𝛼𝛼
𝑗𝑗𝑗𝑗 means the force vector (pressure, 216 

friction, seepage) exerted on phase 𝛼𝛼  in sub-region j by interface P, in N·s-2, representing the 217 

momentum exchange. 𝑇𝑇𝛼𝛼𝛽𝛽
𝑗𝑗  refers to the interfacial force vector between phase 𝛼𝛼 and phase 𝛽𝛽 within 218 

sub-region j, in N·s-2, including drag and capillarity. 219 

(𝜖𝜖𝛼𝛼
𝑗𝑗𝑦𝑦𝑗𝑗𝜔𝜔𝑗𝑗𝑐𝑐𝛼𝛼

𝑗𝑗) 𝑑𝑑𝜃𝜃𝛼𝛼
𝚥𝚥����

𝑑𝑑𝑑𝑑
= ℎ𝛼𝛼

𝚥𝚥 𝜌𝜌𝛼𝛼
𝚥𝚥�������𝜖𝜖𝛼𝛼

𝑗𝑗𝑦𝑦𝑗𝑗𝜔𝜔𝑗𝑗 + ∑ 𝑄𝑄𝛼𝛼
𝑗𝑗𝑗𝑗

𝑃𝑃 + ∑ 𝑄𝑄𝛼𝛼𝛼𝛼
𝑗𝑗

𝛽𝛽≠𝛼𝛼          (6) 220 

Eq. (6) exhibits the general form of the heat conservation equation at the REW scale. 𝑐𝑐𝛼𝛼
𝑗𝑗  means the 221 

specific heat capacity (constant volume) of phase 𝛼𝛼 in sub-region j, in J·kg-1·K-1. 𝜃𝜃𝛼𝛼
𝑗𝑗 refers to the time-222 

averaged temperature of phase 𝛼𝛼 in sub-region j, in K. ℎ𝛼𝛼
𝚥𝚥��� denotes the heat generation rate per unit mass 223 

within phase α in sub-region j, in W·kg-1 (e.g., radioactive decay, negligible usually). 𝑄𝑄𝛼𝛼
𝑗𝑗𝑗𝑗  indicates 224 

the heat exchange rate between phase 𝛼𝛼 in sub-region j and its environment via interface P, in W·m-2, 225 

with the positive value representing the heat gained by phase 𝛼𝛼 in sub-basin j. 𝑄𝑄𝛼𝛼𝛽𝛽
𝑗𝑗  refers to the heat 226 

exchange rate between phase 𝛼𝛼  and phase 𝛽𝛽  within sub-region j, in W·m-2, with a positive value 227 

indicating that heat is gained by phase 𝛼𝛼. 228 

The THREW model employs an automatic calibration procedure to calibrate hydrological parameters 229 

through parallel computation (Nan et al., 2021). The calibration period of the THREW model in the LMR 230 

Basin is from 2000 to 2009, and the validation period is from 2010 to 2020. The calibration process 231 

involves nine hydrological parameters. A compilation of their explanations and permissible value ranges 232 

is given in Table 2. The Nash-Sutcliffe efficiency coefficient (NSE) indicator is adopted to calibrate the 233 

objective function and evaluate simulation effectiveness at the daily scale, which is calculated according 234 

to Eq. (7). The THREW model has been successfully applied to a number of basins with various climate 235 

characteristics worldwide (Tian et al., 2012; Lu et al., 2021; Morovati et al., 2023; Cui et al., 2023; Zhang 236 
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et al., 2023). 237 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − ∑ (𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜
𝑛𝑛𝑛𝑛𝑛𝑛−𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛)2𝑁𝑁
𝑛𝑛𝑛𝑛𝑛𝑛=1
∑ (𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛𝑛𝑛𝑛𝑛−𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜�������)2𝑁𝑁
𝑛𝑛𝑛𝑛𝑛𝑛=1

 (7) 238 

Where, 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛  is the daily observed runoff, 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 is the daily simulated runoff, 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜������ is the average of 239 

observed runoff, and 𝑁𝑁 is the total number of days. 240 

Table 2: Calibrated hydrological parameters and their ranges. 241 

Parameter Explanation Range 

kv Fraction of potential transpiration rate over potential evaporation 0-10

nt Roughness of slope 0-2

KKA Exponential coefficient in subsurface runoff calculations 0-100

nr Roughness of river channel 0-1

KKD Linear coefficient in subsurface runoff calculation 0-1

B Shape coefficient 0-1

WM Average water storage capacity (m) 0-5

K Storage factor in Muskingum Method 0-1

X Flow ratio factor in Muskingum Method 0-0.5

This study extends the THREW model by developing and integrating a reservoir management module. 242 

This integration allows the expanded THREW model to use detailed information on 122 reservoirs in the 243 

LMR Basin, with operational years ranging from 1965 to 2035. By specifying whether the module is 244 

active, the model can simulate either natural runoff (without considering reservoirs) or dammed runoff 245 

(with reservoirs included). This setup ensures a seamless interaction between the core model and the 246 

reservoir operations framework. 247 

Reservoir operation follows consistent rules across time and space, with each reservoir starting operation 248 

according to its operational year. Strategies are adapted in response to inflow fluctuations and 249 

administered on a daily scale. Each reservoir is assigned based on location. Cumulative multi-year sub-250 

basin storage is calculated as input for the reservoir module, which operates in two phases: initial and 251 

normal. The normal phase is divided into general and emergency cases, both using the same operation 252 

rules but differing constraints; the emergency case allows more flexibility. The module's flowchart is 253 

illustrated in Fig. 2. 254 

If a REW's cumulative multi-year storage changes within a year, it signals the start of a new reservoir's 255 

operation, which follows initial phase rules. During the initial phase, the outlet flow matches the inlet if 256 

it is below the minimum discharge constraint; otherwise, it meets the minimum discharge constraint. The 257 
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rules for the initial phase are described as Eqs. (8) to (9). Storage and discharge constraints are defined 258 

in Eqs. (10) to (11) (Tennant, 1976; Yun et al., 2020). The initial phase ends when reservoir storage 259 

exceeds the minimum constraint (Eq. (12)), then transitions to the normal phase. 260 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝑄𝑄𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖𝑖𝑖 < 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑄𝑄𝑖𝑖𝑖𝑖 ≥ 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 261 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 + 𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜  (9) 262 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2 × 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (10) 263 

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = 0.6 × 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎  (11) 264 

𝑆𝑆𝑡𝑡 ≥ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚  (12) 265 

Where 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜  is the outlet flow, 𝑄𝑄𝑖𝑖𝑖𝑖 is the inlet flow, 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚  is the minimum discharge constraint, 𝑆𝑆𝑡𝑡 is 266 

the storage for time t, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚  is the minimum storage constraint, 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the total storage, and 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎  is 267 

the average multi-year runoff during the calibration period (i.e., 2000-2009). 268 

269 
Figure 2: Flowchart of the constructed reservoir module. 270 

The scheduling rule for the normal phase is the improved Standard Operation Policy hedging model 271 

(SOP) (Wang et al., 2017a; Morris and Fan, 1998), as depicted in Eq. (9) and Eqs. (13) to (16). The SOP 272 

operating policy is proven to effectively capture floods and droughts under reservoir regulation (Wang et 273 

al., 2017a; Yun et al., 2020; 2021a; 2021b). Under the premise of water balance (Eq. (9)), constraints for 274 
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annual storage (Eq. (13)), outlet flow (Eq. (14)), wet season storage (Eq. (15)), and dry season storage 275 

(Eq. (16)) are considered separately, where priority is given to the annual storage constraint (Eq. (13)). 276 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑆𝑆𝑡𝑡 ≤ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚                (13) 277 

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 ≤  𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚                (14) 278 

𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆𝑐𝑐 − 𝑆𝑆𝑡𝑡|,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 6,7,8,9,10,11            (15) 279 

𝑚𝑚𝑚𝑚𝑚𝑚|𝑆𝑆𝑛𝑛 − 𝑆𝑆𝑡𝑡|,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 12,1,2,3,4,5            (16) 280 

Where 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum discharge constraint, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum storage constraint, 𝑆𝑆𝑐𝑐 is the 281 

storage corresponding to the flood control level, and 𝑆𝑆𝑛𝑛 is the storage corresponding to the normal water 282 

level. 283 

When in the normal phase, the reservoir first applies general case constraints (Eqs. (17) to (22)). If outlet 284 

flow is not fully satisfied (Eq. (14)), constraints switch to the emergency case, and the reservoir is 285 

rescheduled. Eq. (23) signals an emergency case start, which provides more flexible flow limits to avoid 286 

extremes. Emergency case constraints are in Eqs. (24) to (25). 287 

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎                (17) 288 

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = 0.6 × 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎                 (18) 289 

𝑆𝑆𝑐𝑐 = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 × 1.2                (19) 290 

𝑆𝑆𝑛𝑛 = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 × 0.8                (20) 291 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2 × 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡                 (21) 292 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = �0.8 × 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 6,7,8,9,10,11
1 × 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 12,1,2,3,4,5            (22) 293 

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜′ ≤ 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚                (23) 294 

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = 0.3 × 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎                 (24) 295 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 0.8 × 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡                 (25) 296 

Where 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜′ is the outlet flow after the scheduling in the general case. 297 

2.5 Indicator for DFAA 298 

It is common practice to quantify DFAA incidents via indices. Long-cycle droughts-floods abrupt 299 
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alternation index (LDFAI), proposed by Wu et al. (2006), quantitatively characterizes long-term DFAA 300 

during the wet season and has been widely adopted (Ren et al., 2023; Shi et al., 2021; Yang et al., 2022; 301 

Yang et al., 2019). Building on this, Zhang et al. (2012) introduced the one-month interval SDFAI (short-302 

cycle droughts-floods abrupt alternation index), extending its application from precipitation to runoff and 303 

characterizing short-term DFAA. SDFAI has since been applied in fields such as hydrology, meteorology, 304 

ecology, and agriculture (Zhao et al., 2022; Lei et al., 2022; Yang et al., 2019; Zhang et al., 2019). 305 

Song et al. (2023) proposed the Revised Short-cycle Drought-Flood Abrupt Alteration Index (R-SDFAI), 306 

which extends the LDFAI and SDFAI time frame from only the flood season to the entire year, facilitating 307 

multi-year DFAA analysis. R-SDFAI also addresses issues of over-identification, under-identification, 308 

and misrepresentation of DFAA severity found in SDFAI. Therefore, this study uses R-SDFAI for DFAA 309 

analysis, with the formulas outlined in Eqs. (26) to (31) (Song et al., 2023). 310 

𝐹𝐹1 = 𝑆𝑆𝑖𝑖+1 − 𝑆𝑆𝑖𝑖                 (26) 311 

𝐹𝐹2 = |𝑆𝑆𝑖𝑖+1| + |𝑆𝑆𝑖𝑖|                (27) 312 

𝐹𝐹 = �𝐹𝐹1
𝐹𝐹2
�

|𝑆𝑆𝑖𝑖+1+𝑆𝑆𝑖𝑖|
                (28) 313 

𝐼𝐼 = 𝐹𝐹 × 𝑚𝑚𝑚𝑚𝑚𝑚(|𝑆𝑆𝑖𝑖+1|, |𝑆𝑆𝑖𝑖|)               (29) 314 

𝐼𝐼′ = ( 𝐼𝐼
0.5

)
𝑚𝑚𝑚𝑚𝑚𝑚(�𝑆𝑆𝑖𝑖+1�,�𝑆𝑆𝑖𝑖�)

2

|𝐹𝐹1|+𝐹𝐹2 × 𝐼𝐼
𝑚𝑚𝑚𝑚𝑚𝑚(�𝑆𝑆𝑖𝑖+1�,�𝑆𝑆𝑖𝑖�)

|𝐹𝐹1|+𝐹𝐹2 +𝐼𝐼
𝑚𝑚𝑚𝑚𝑚𝑚(�𝑆𝑆𝑖𝑖+1�,�𝑆𝑆𝑖𝑖�)

|𝐹𝐹1|+𝐹𝐹2

2
          (30) 315 

𝑅𝑅 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹1) × ( 𝐼𝐼′

𝐼𝐼′0.5
× 𝐼𝐼

0.5
)[
𝑚𝑚𝑚𝑚𝑚𝑚(�𝑆𝑆𝑖𝑖+1�,�𝑆𝑆𝑖𝑖�)

|𝐹𝐹1|+𝐹𝐹2
]
[1−

𝑚𝑚𝑚𝑚𝑚𝑚(�𝑆𝑆𝑖𝑖+1�,�𝑆𝑆𝑖𝑖�)
|𝐹𝐹1|+𝐹𝐹2

]

       (31) 316 

Where, 𝑆𝑆𝑖𝑖 refers to the SRI in month 𝑖𝑖, 𝐹𝐹1 denotes the intensity of DFAA, 𝐹𝐹2 denotes the absolute 317 

intensity of drought and flood, and 𝐹𝐹 is a weighting factor between 0 and 1. 𝐼𝐼′0.5 refers to 𝐼𝐼′ when 318 

I=0.5. 319 

The calculation process of the SRI indicator utilized in this work is elucidated in Eqs. (32) to (37). The 320 

runoff simulated by the THREW model for the LMR Basin conforms to a Gamma distribution, as detailed 321 

in Appendix 1 of the Supplementary File. Hence, the Gamma distribution is adopted to derive the SRI 322 

index. Eq. (32) gives the probability density function that satisfies the Gamma distribution for runoff 𝑥𝑥 323 

at a given time period. 324 

𝑔𝑔(𝑥𝑥) = 1
𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)

𝑥𝑥𝛼𝛼−1𝑒𝑒−
𝑥𝑥
𝛽𝛽, 𝑥𝑥 > 0              (32)  325 
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Where, 𝛼𝛼 > 0 and 𝛽𝛽 > 0 are respectively the shape and scale parameters. 𝛼𝛼� and 𝛽̂𝛽 are the optimal 326 

values of 𝛼𝛼 and 𝛽𝛽, obtained according to the maximum likelihood estimation method, as illustrated in 327 

Eqs. (33) to (35). 𝛤𝛤(𝛼𝛼) is the gamma function, as given in Eq. (36). 328 

𝛼𝛼� = 1
4𝐴𝐴

(1 + �1 + 4𝐴𝐴
3

               (33) 329 

𝛽̂𝛽 = 𝑥̅𝑥
𝛼𝛼�

                  (34)  330 

𝐴𝐴 = 𝑙𝑙𝑙𝑙(𝑥̅𝑥) − ∑𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖)
𝑛𝑛𝑛𝑛𝑛𝑛

                (35)  331 

𝛤𝛤(𝛼𝛼) = ∫ 𝑦𝑦𝛼𝛼−1𝑒𝑒𝑦𝑦 𝑑𝑑𝑑𝑑∞
0                (36)  332 

Where, 𝑥𝑥𝑖𝑖 is the sample of runoff sequence, 𝑥̅𝑥 is the average runoff, and 𝑛𝑛𝑛𝑛𝑛𝑛 is the length of the 333 

runoff sequence. 334 

Then the cumulative probability of runoff x is illustrated in Eq. (37). 335 

𝐺𝐺(𝑥𝑥) = ∫ 𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑥𝑥
0 = 1

𝛽𝛽�𝛼𝛼�𝛤𝛤(𝛼𝛼�)∫ 𝑥𝑥𝛼𝛼�−1𝑒𝑒
−𝑥𝑥
𝛽𝛽� 𝑑𝑑𝑑𝑑𝑥𝑥

0 , 𝑥𝑥 > 0          (37)  336 

Table 3: The evaluation criteria and intensity classification for DFAA events. 337 

Event Intensity Classification 

DTF 

Mild 1 ≤ R-SDFAI < 1.44 

Moderate 1.44 ≤ R-SDFAI < 1.88 

Severe R-SDFAI ≥ 1.88 

FTD 

Mild -1.44 < R-SDFAI ≤ −1 

Moderate −1.88 < R-SDFAI ≤ −1.44 

Severe R-SDFAI ≤ −1.88 

The R-SDFAI index identifies DFAA events with a threshold of ±1 (Song et al., 2023), and further 338 

categorizes DFAA events into three intensity levels—mild, moderate, and severe—using thresholds of 339 

±1, ±1.44, and ±1.88, as demonstrated in Table 3. This classification follows the criteria proposed by 340 

Song et al. (2023). The underlying rationale involves using ±0.5, ±1, and ±1.5 as thresholds for the 341 

SRI index to categorize extreme hydrological events into mild, moderate, and severe droughts and floods 342 

(positive values indicate flood, while negative values indicate drought). The R-SDFAI index values of 343 

± 1, ± 1.44, and ± 1.88 are calculated through the transitions between mild drought and mild flood, 344 

moderate drought and moderate flood, and severe drought and severe flood. These thresholds serve as 345 

the classification criteria for mild, moderate, and severe DFAA events. For a more detailed explanation 346 
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of this classification standard, please refer to Song et al. (2023). In this study, the frequency of DFAA 347 

events is represented by their occurrence probabilities during history, near future, and far future periods, 348 

while the intensity of DFAA is assessed through the probability of different intensity events. 349 

2.6 Scenario Setting 350 

This study examines two scenarios: dammed (with reservoir operations) and natural (without reservoir 351 

operations). Meteorological data from five GCMs under three SSPs are downscaled to the REW scale 352 

and used as input for the THREW model. The model, with the reservoir module, simulates runoff at key 353 

hydrological stations for the history period (1980-2014), the near future (2021-2060), and the far future 354 

(2061-2100). Both scenarios—with and without reservoir management—are examined. The R-SDFAI 355 

indicator evaluates DFAA event probabilities for each period and for each scenario, using runoff 356 

simulated by 5 GCMs and 3 SSPs. 357 

This study adopts the difference in DFAA’s probability between the natural scenario (without reservoir 358 

operations) and the dammed scenario (with reservoir operations) to capture the reservoir’s impact, as 359 

shown in Eq. (38). 360 

𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖,𝑒𝑒 = 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖,𝑒𝑒 − 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑖𝑖,𝑒𝑒          (38)  361 

Where 𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖,𝑒𝑒  represents the impact of reservoirs on the probability of event e in period 362 

i. 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑖𝑖,𝑒𝑒 denotes the probability of event e under the natural scenario in period i, while 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖,𝑒𝑒 363 

denotes the probability of event e under the dammed scenario in period i. Period i refers to near future or 364 

far future. Event e indicates DTF, FTD, or DFAA. 365 

Eqs. (39) and (40) give the definitions of 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑖𝑖,𝑒𝑒 and 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖,𝑒𝑒 described above. 366 

𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑖𝑖,𝑒𝑒 = 𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑖𝑖,𝑒𝑒
𝑇𝑇𝑇𝑇𝑖𝑖

               (39)  367 

𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖,𝑒𝑒 = 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖,𝑒𝑒
𝑇𝑇𝑇𝑇𝑖𝑖

               (40)  368 

Where 𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑖𝑖,𝑒𝑒 denotes the number of months in which event e occurs in period i under the natural 369 

scenario. 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖,𝑒𝑒 denotes the number of months occurred event e in period i under the dammed 370 

scenario. 𝑇𝑇𝑇𝑇𝑖𝑖  refers to the total number of months in period i. Period i refers to near future or far future. 371 

Event e indicates the DTF, FTD, or DFAA. 372 
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As each GCM possesses a unique structure and assumptions, projections of climate change by a single 373 

GCM inherently possess uncertainties, which in turn introduce uncertainties in the simulation of 374 

hydrological outcomes (Kingston et al., 2011; Thompson et al., 2014). Thus, averaging across multiple 375 

GCMs is a crucial approach, as it minimizes model biases, eliminates outliers, reduces uncertainties, and 376 

ensures more robust and universally applicable outcomes (Lauri et al., 2012; Hoang et al., 2016; Hecht 377 

et al., 2019; Wang et al., 2024; Yun et al., 2021b). This method has been extensively employed in prior 378 

studies (Dong et al., 2022; Li et al., 2021; Wang et al., 2022; Yun et al., 2021a). Therefore, this research 379 

determines the average DFAA probability from five GCMs to lessen the uncertainty in their predictions 380 

and assesses the fluctuation in these probabilities across the models to demonstrate their variability. 381 

3. Results 382 

3.1 CMIP6 data bias correction performance 383 

From both regional and seasonal perspectives, the uncorrected raw CMIP6 data show significant 384 

discrepancies with ERA5_Land data during the history period (1980-2014). When compared with 385 

ERA5_Land data, the uncorrected raw CMIP6 data reveal an average annual precipitation bias of around 386 

±1800 mm and an average daily temperature bias of approximately ±12 ℃ (Figs. 3b and 3e). These 387 

notable inconsistencies highlight that using uncorrected CMIP6 data for hydrological modeling would 388 

incur considerable inaccuracies. However, CMIP6 data corrected by the MBCn method deviate from 389 

ERA5_Land data by less than ±120 mm of average annual precipitation and ±0.2 ℃ of average daily 390 

temperature (Figs. 3c and 3f). The bias correction greatly improves CMIP6 data accuracy in the LMR 391 

Basin. The corrected CMIP6 data also match the seasonal cycle of ERA5_Land well for both 392 

precipitation and temperature (Fig. 3g). Compared to the raw data, the corrected CMIP6 shows much 393 

improved spatial and temporal accuracy, leading to more accurate and reasonable analyses for DFAA. 394 

3.2 Calibration and validation for the hydrological model 395 

The daily observed runoff and daily simulated runoff from the THREW model for the calibration period 396 

(2000-2009) and validation period (2010-2020) are illustrated in Fig. 4, demonstrating the model’s strong 397 

performance. Importantly, since there was no massive reservoir construction in the LMR Basin before 398 

and during the calibration period (Zhang et al., 2023), the THREW model without the reservoir module 399 

is applied for calibration. Meanwhile, the addition of large-scale reservoirs during the validation period 400 
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allows validation of the THREW model configuration with the reservoir module, Notably, the THREW 401 

model captures runoff fluctuations between wet and dry seasons with high accuracy, achieving an NSE 402 

of at least 0.8 during both periods. This excellent simulation performance extends across both upstream 403 

and downstream regions, emphasizing the robustness of the model under observed conditions. 404 

 405 
Figure 3: Averaged meteorological data of 5 GCMs for the history period (1980-2014). Here, 5 GCMs are 406 
corrected separately. The red and blue star symbols respectively indicate the locations of the maximum and 407 
minimum values in (a) to (f). (a) to (c) present the spatial distribution of precipitation based on respectively 408 
ERA5_Land, raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected 409 
CMIP6 minus ERA5_Land). (d) to (f) illustrate the spatial distribution of temperature based on ERA5_Land, 410 
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raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected CMIP6 minus 411 
ERA5_Land). (g) shows seasonal cycles of temperature and precipitation from ERA5_Land, raw and bias-412 
corrected CMIP6, as well as their corresponding range. 413 

 414 
Figure 4: Performance of the THREW model in calibration (2000-2009) and validation (2010-2020) periods. 415 
Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations, respectively. 416 

3.3 DFAA under the changing climate 417 

Under the natural scenario (without reservoir operations), DFAA in the LMR Basin is dominated by DTF, 418 

that is, the risk of DTF is more critical than that of FTD (Table 4). The probability of FTD ranges from 419 

0.7% to 2.1% in the history period, 0.6% to 2.0% in the near future, and 0.5% to 2.0% in the far future. 420 

Conversely, DTF probabilities are higher, ranging from 1.6% to 2.3%, 1.2% to 3.2%, and 1.2% to 3.0% 421 

respectively in these three periods. 422 

Table 4: The year-round DFAA probability averaged across five GCMs during each period under the natural 423 
scenario. 424 

Natural Station History 
Near Future Far Future 

SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5 

DTF 

JingHong 1.67% 2.04% 1.71% 1.63% 1.67% 1.75% 1.21% 

Nong Khai 1.52% 1.71% 2.08% 1.17% 1.96% 2.25% 1.71% 

Pakse 2.24% 2.38% 3.13% 1.83% 2.67% 2.75% 2.04% 

Kratie 2.33% 3.17% 2.83% 2.08% 3.04% 2.92% 2.54% 

FTD 

JingHong 0.72% 0.83% 1.17% 0.63% 0.79% 1.25% 0.54% 

Nong Khai 1.10% 1.25% 1.42% 0.71% 1.13% 1.12% 0.67% 

Pakse 2.10% 1.33% 2.04% 1.54% 1.58% 1.71% 1.17% 

Kratie 1.86% 1.71% 1.92% 1.33% 2.04% 1.87% 1.75% 
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DFAA risk is substantially elevated during the wet season compared to the dry season (Table S1). For the 425 

average of five GCMs, the probability of FTD in the wet season is 2 to 5.5 times higher than that in the 426 

dry season in the history period. In the near and far future periods, this ratio ranges from 1.1 to 36 times 427 

and 3.3 to 41 times, respectively. As for DTF, the probability in the wet season is correspondingly 1.7 to 428 

5.7 times, 1.3 to 3.9 times, and 0.9 to 6.3 times higher than that in the dry season for history, near future, 429 

and far future. Only JingHong station experiences a slightly higher probability of DTF in the dry season 430 

(1.25%) than in the wet season (1.17%) for the far future. 431 

 432 
Figure 5: DFAA under the natural scenario. (a) The annual change in DFAA probability averaged across five 433 
GCMs and their ranges in the near and far future periods with respect to the history period under three SSPs. 434 
(b) The seasonal change in DFAA probability averaged across five GCMs and their ranges in the near and 435 
far future periods with respect to the history period during wet and dry seasons under three SSPs. Here, JH, 436 
NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF represent 437 
the near future period and the far future period. 1-2.6, 2-4.5 and 5-8.5 respectively denote SSP1-2.6, SSP2-4.5, 438 
and SSP 5-8.5 scenarios. Please note that this figure illustrates variations in DFAA events under climate 439 
change. The annual and seasonal probabilities of DFAA under the natural scenario are presented in Table 4 440 
and Table S1, respectively. 441 

DFAA risks show marked spatial variation, with annual probability consistently higher downstream than 442 

upstream (Table 4). The annual probability of FTD ranges from 0.6% to 1.3% at JingHong station and 443 

0.7% to 1.4% at Nong Khai station. These probabilities rise to 1.2% to 2.1% and 1.4% to 2.1% at Pakse 444 

and Kratie stations, respectively. Similarly, the annual probability of DTF at JingHong and Nong Khai 445 

stations is 1.2% to 2.1% and 1.2% to 2.3%. The probabilities at Pakse and Kratie stations range from 1.4% 446 
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to 3.2% and 3.1% to 3.2%, respectively. The DTF risk in the wet season and the FTD risk in both dry 447 

and wet seasons are also higher downstream than upstream. Since the probability of FTD in the dry 448 

season at Nong Khai, Pakse, and Kratie stations is limited, especially under the SSP5-8.5 scenario 449 

(<0.2%), the risk of FTD in the dry season appears more notable upstream than downstream. 450 

The annual DFAA probability increases under SSP1-2.6 and SSP2-4.5 scenarios (except for FTD at Pakse 451 

station) and decreases under the SSP5-8.5 scenario (Fig. 5a). Such a pattern is attributable to the enhanced 452 

tendency for flood and drought events in the LMR Basin to cluster rather than alternate under the SSP5-453 

8.5 scenario (Dong et al., 2022). Under the SSP5-8.5 scenario, the average probability of FTD across 454 

five GCMs is 0.6% to 1.8%, while the probability of DTF ranges from 1.2% to 2.6%. Conversely, the 455 

average probabilities of FTD and DTF under the SSP2-4.5 scenario range from 0.7% to 2.1% and 1.7% 456 

to 3.2%, respectively. 457 

The future growth in DTF is significantly greater than that in FTD. For the average probabilities across 458 

five GCMs, relative to the history period, the future change in DTF probability at JingHong station is -459 

0.5% to 0.4%, at Nong Khai station is -0.4% to 0.7%, and at Pakse and Kratie stations, respectively, is -460 

0.5% to 0.9% and -0.2% to 0.8%. The future FTD probability change for JingHong is -0.2% to 0.5%, 461 

while for Nong Khai, Pakse, and Kratie, the changes are -0.4% to 0.3%, -1% to -0.1%, and -0.6% to 462 

0.2%, respectively. The maximum values from the five GCMs show a consistent trend, with increases in 463 

DTF probability being significantly greater than those in FTD probability. 464 

Upstream and downstream regions experience contrasting future risk increases, with FTD risks rising 465 

more upstream and DTF risks rising more downstream (Fig. 5a). Under three climate scenarios, JingHong 466 

Station experiences the maximum increase of 0.37% and 0.08% in DTF risks, respectively, in the near 467 

and far future. Meanwhile, FTD risks at this station rise by 0.45% and 0.53%, respectively. Conversely, 468 

Kratie Station exhibits the highest increase of 0.83% and 0.71% in DTF risks, alongside 0.06% and 0.02% 469 

increases in FTD risks. The opposite trends of DFAA risk in upstream and downstream pose enhanced 470 

challenges to the integrated management of the LMR Basin. 471 

Future seasonal DFAA risks follow scenario-dependent trends: wet-season risks for both DTF and FTD 472 

rise under SSP1-2.6 and SSP2-4.5 scenarios, and fall under the SSP5-8.5 scenario (Fig. 5b). This is 473 

similar to the annual DFAA risk. The risk of FTD during the dry season decreases, with an upward trend 474 

emerging only in the near future under the SSP2-4.5 scenario (average across five GCMs <0.4%, 475 

maximum <1.3%). The risk of DTF during the dry season rises in most situations, except at Nong Khai 476 
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station in the near future under the SSP5-8.5 scenario, where it shows an average decrease of 0.46% 477 

across five GCMs. The largest increase of dry-season risk of DTF is found at Pakse station under the 478 

SSP2-4.5 scenario, with an average increase of 1.08% across five GCMs and a maximum increase of 479 

2.08%. 480 

Mild-intensity DFAA events constitute the majority of all DFAA occurrences (Fig. 6). The probability of 481 

mild DTF varies across scenarios, with values ranging from 0.7% to 2.4%, which corresponds to 58% to 482 

90% of the total DTF probability. Likewise, mild FTD probabilities range from 0.6% to 1.8% (Fig. 6), 483 

comprising a larger share of the total FTD probability, specifically 75% to 100%. Mild DTF events 484 

account for 2 to 13 times the possibility of moderate DTF events. This ratio escalates to 3 to 31 times for 485 

FTD events. Notably, severe FTD events are extremely rare, often occurring at 0% probability. However, 486 

severe DTF events are notable, with probabilities ranging from 0% to 0.38%, and in some instances, 487 

accounting for up to 13% of total DTF probability. 488 

 489 

Figure 6: Annual probability of DFAA at different intensities under the natural scenario, averaged across five 490 
GCMs and their ranges in the near future (2021-2060) and far future (2061-2100) periods under three SSPs. 491 
Here, JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF 492 
represent the near future period and the far future period. The specific value shown in this figure can be 493 
found in Table S2. 494 

The total probabilities of DTF events exceed that of FTD events (Fig. 5a), and this holds true for mild, 495 

moderate, and severe intensity events (Fig. 6). The disparity between DTF and FTD events is not as 496 

pronounced in mild intensity events, but it becomes significant in moderate intensity events. The 497 

probabilities of moderate DTF range from 0.08% to 0.75%, whereas the probabilities of moderate FTD 498 
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range from 0.04% to 0.42% (Fig. 6). The marked disparity in severe intensity events is even more 499 

pronounced by the extremely low probability of severe FTD. 500 

Mild DTF probabilities are projected to increase in the far future, while moderate and severe DTF 501 

probabilities are projected to decrease. Specifically, the probability of mild DTF rises to 1.1% to 2.4% in 502 

the far future, compared to 0.7% to 2.3% in the near future. The probabilities of moderate and severe 503 

DTF drop from an average of 0.42% and 0.19% in the near future to 0.38% and 0.12%, respectively, in 504 

the far future. However, the probabilities of FTD events across all three intensity levels remain relatively 505 

consistent between the near and far future. 506 

3.4 Reservoirs’ impacts on DFAA 507 

Reservoirs exhibit extraordinary mitigation effects on DTF risk under the changing climate while 508 

showing weaker effects in FTD risk (Fig. 7a). Nonetheless, the higher probability of DTF compared to 509 

FTD (Fig. 5a) demonstrates that reservoirs contribute significantly to reducing overall DFAA risk. The 510 

distinct controlling role of reservoirs on DTF risk versus FTD risk is associated with the consistency 511 

between these two types of DFAA events and the logic of reservoir operation. Section 4.1 will delve into 512 

the mechanistic details. 513 

Reservoirs adequately reduce or only slightly increase the future DTF probability (-0.13% to 1%, 514 

averaged across five GCMs. Throughout this section, a negative value indicates that reservoirs increase 515 

the probability of DFAA, while positive values indicate a reduction. In most scenarios, the reservoir plays 516 

a positive mitigating role across all GCMs (Fig. 7a). Reservoirs are expected to have better mitigation 517 

effects in the near future at JingHong station. As for Nong Khai and Pakse stations, the reduction effect 518 

of reservoirs on DTF is more pronounced in the far future under SSP1-2.6 and SSP2-4.5 scenarios, while 519 

in the near future under the SSP5-8.5 scenario. The effect conversely, exhibits greater strength under 520 

SSP1-2.6 and SSP5-8.5 scenarios in the near future, while it is stronger under the SSP2-4.5 scenario in 521 

the far future at Kratie station. These findings are consistent across both the average of the GCMs and 522 

their ranges. 523 

Reservoirs are more effective in reducing FTD in the near future than in the far future at JingHong, Pakse, 524 

and Kratie, while the effect at Nong Khai is slightly less in the far future (Fig. 7b). Reservoirs are most 525 

effective under high emissions (SSP5-8.5), reducing FTD probability at all stations (0.13% to 0.42%, 526 

GCM average). Under lower emissions (SSP1-2.6 and SSP2-4.5), mitigation is weaker (-0.33% to 0.38%, 527 
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GCM average) at Nong Khai and Pakse, but notable at JingHong and Kratie, especially in certain future 528 

periods. For example, under intermediate emissions (SSP2-4.5) in the far future at JingHong, reservoirs 529 

lower the average probability by over 0.9% and maximum by nearly 1.8%. 530 

 531 
Figure 7: Reservoir impacts on DFAA during the near future (2021-2060) and the far future (2061-2100) 532 
under three SSPs. (a) The annual reservoir impacts averaged across five GCMs and their ranges. (b) The 533 
seasonal reservoir impacts in wet and dry seasons averaged across five GCMs and their ranges. Here, JH, NK, 534 
PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF represent the 535 
near future period and the far future period. 1-2.6, 2-4.5 and 5-8.5 respectively denote SSP1-2.6, SSP2-4.5, 536 
and SSP 5-8.5 scenarios. Please note that this figure illustrates the impact of reservoir operations on DFAA 537 
events. The annual and seasonal probabilities of DFAA under the dammed scenario are presented in Table 538 
S3. 539 

Reservoirs reduce FTD more in the wet season (-0.17% to 1.5%, GCM average) than in the dry season 540 

(-1% to 0.67%), especially at Nong Khai, Pakse, and Kratie (Fig. 7b). Negative values mean a reservoir 541 

increases FTD probability. In the wet season, reduction is notable (-0.17% to 0.92%), but in the dry 542 

season, FTD probability increases (-1% to 0.33%). Seasonal differences in DTF mitigation are less 543 

pronounced. Reservoirs slightly better reduce DTF in the dry season (-0.17% to 1.25%) than in the wet 544 

season (-0.42% to 0.83%). Reservoirs mitigate DTF more effectively than FTD in both seasons, aligning 545 

with the annual DFAA. 546 

Reservoirs effectively manage DFAA events, which are predominantly characterized by mild intensity. 547 

They decrease the probability of mild DTF by -0.1% to 0.9% (Fig. 8), whereas the probability of such 548 
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events is 0.7% to 2.4% under the natural scenario (Fig. 6), indicating that reservoirs decrease their 549 

likelihood by -0.12 to 0.64 times. Reservoir reduces the probability of mild FTD by -0.4% to 0.8% (Fig. 550 

8). They increase the probability of mild FTD at the Nong Khai station under the SSP1-2.6 scenario. 551 

Since the probability of mild FTD is 0.6% to 1.8% under the natural scenario (Fig. 6), reservoir operation 552 

reduces their probability by -0.38 to 0.69 times. 553 

 554 
Figure 8: Reservoir impacts on DFAA under different intensities, averaged across five GCMs and their ranges 555 
in the near future (2021-2060) and far future (2061-2100) periods under three SSPs. Here, JH, NK, PA, and 556 
KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF represent the near 557 
future period and the far future period. Please note that this figure shows how the reservoir affects DFAA 558 
events at different intensities. The probabilities of DFAA events at each intensity under the dammed scenario 559 
are presented in Table S4. 560 

While the reservoir's mitigation effect on FTD events is less pronounced than on DTF events (Fig. 7), it 561 

demonstrates a commendable mitigation effect on moderate FTD, reducing their probability by -0.08% 562 

to 0.17% (Fig. 8). This reduction represents -0.4 to 1 times the probability under the natural scenario. 563 

This ratio surpasses the reservoir's mitigation effect on moderate DTF, where the probability is reduced 564 

by -0.3% to 0.3% (Fig. 8), accounting for -0.70 to 1 times the natural probability. This highlights that the 565 

reservoir exerts a more significant mitigating force on high-intensity FTD events compared to high-566 

frequency FTD events. 567 

Reservoirs exhibit notable mitigating effects for DTF events across all three intensity levels. However, 568 

their ability to alleviate moderate DTF is relatively weaker than that for mild DTF (Fig. 8), which differs 569 

from the characteristic of FTD events. This implies that reservoirs possess a stronger capability to manage 570 

high-frequency DTF events than higher-intensity events. 571 
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 572 
Figure 9: Monthly DFAA probability averaged over four mainstream hydrological stations (i.e., JingHong, 573 
Nong Khai, Pakse, and Kratie stations) under natural and dammed scenarios for three SSPs during the near 574 
future (2021-2060) and far future (2061-2100) periods. Please note that the probabilities shown in this figure 575 
are averaged over 5 GCMs. 576 

DFAA often shows several monthly peaks under the natural scenario. This means some months have a 577 

higher DFAA probability than their neighbors. The multiple peaks are clearer in DTF than in FTD (Fig. 578 

9). When averaging monthly DFAA over four mainstream hydrological stations, DTF shows three peaks 579 

under near-term SSP2-4.5 and far-term SSP5-8.5 scenarios, while FTD only shows two peaks in both 580 

cases. Reservoirs help to regulate DFAA by lowering and reducing peaks, with a stronger peak reduction 581 

effect anticipated in the near future for DTF (Fig. 9). In the far future, for FTD, especially under SSP1-582 

2.6 and SSP2-4.5, reservoirs still alleviate peaks, though less so in terms of reducing their number. 583 

Reservoirs also lower DFAA probability during early and middle dry seasons (December to April) for 584 

both near and far futures, often 1% or less at most stations. Sometimes, such as the SSP2-4.5 scenario in 585 

the near future, reservoirs actually increase the probability of DFAA in May. This happens because 586 

helping during the dry season before May reduces the capacity of reservoirs for water regulation in May, 587 

making it hard to control DFAA risks that month. Reservoirs also shorten DFAA’s monthly span. Instead 588 

of occurring throughout the year under the natural scenario, DFAA is to concentrated from May to 589 

October under the dammed scenario (Fig. 9). This allows the LMR Basin to focus DFAA policies and 590 
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actions on those months. As a result, riparian states can combine resources and coordinate their efforts 591 

more efficiently to manage and respond to DFAA and related hazards. 592 

4. Discussion 593 

4.1 Different characteristics of DTF and FTD events 594 

The distinct characteristics of DTF and FTD events have been identified by previous research. Shi et al. 595 

(2021) found that FTD events predominate in the Wei River Basin. Wang et al. (2023) projected that in 596 

the Poyang Lake Basin, the temporal spread of DTF events will expand in the future, while that of FTD 597 

events will constrict. Ren et al. (2023) found that under SSP1-2.6 and SSP2-4.5 scenarios, the Huang-598 

Huai-Hai River Basin will experience more DTF events, whereas under SSP3-7.0 and SSP5-8.5 scenarios, 599 

it will experience more FTD events. This study identifies differences between DTF and FTD events as 600 

well, and further highlights the different characteristics of reservoirs' mitigating effects on these events. 601 

The average probability of DTF across all periods is 2.1% under the natural scenario, which is 602 

significantly higher than the 1.4% average for FTD (Fig. 5a). The probability of DTF consistently 603 

exceeds that of FTD under three different intensities (Fig. 6). Additionally, DTF probabilities show a 604 

significant increase in both the near and far future, averaging 0.23%, which exceeds the increase in FTD 605 

probabilities, averaging 0.13% (Fig. 5a). 606 

Compared with FTD events, reservoirs more effectively control DTF probabilities, significantly lowering 607 

DTF risk in both dry and wet seasons (Fig. 7). The reason is that the timing of DTF’s water regulation 608 

matches the way reservoirs operate. At the start of DTF, reservoirs typically hold water at the storage 609 

corresponding to the normal water level, which equates to 0.8 times the maximum storage (Eq. (20)). 610 

Hence, reservoirs possess sufficient storage capacity to mitigate the drought conditions. In parallel, the 611 

water release during the initial phase of the DTF reduced the water level, thereby meeting the storage 612 

needs for sudden floods that occur later in the DTF. As a result, even if DTF events are frequent, 613 

reservoirs can manage them well. Reservoirs especially succeed in reducing mild DTF events (Fig. 8). 614 

However, they control moderate DTF events less effectively. In intense DTF cases, the rules for operating 615 

reservoirs are not enough. For example, if a severe drought at DTF’s beginning exceeds reservoir storage, 616 

they cannot effectively relieve the extreme drought and thus fail to control such DTF events. 617 

Although FTD is less likely than DTF, reservoirs control FTD less effectively, especially in the dry season 618 
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(Fig. 7). The problem is that when the FTD event occurs, reservoirs are generally maintained at their 619 

target storage for the wet season. The storage corresponds to the flood control water level, which is 1.2 620 

times the minimum storage capacity (Eq. (19)). Consequently, reservoirs, while fully meeting flood 621 

control requirements at the start of FTD, struggle to maintain sufficient water storage to satisfy water 622 

supply demands for the subsequent drought stage. If FTD occur frequently, reservoirs’ control decreases 623 

further. While reservoirs do little for mild FTD, they noticeably reduce moderate FTD (Fig. 8). This 624 

means that, for rare but strong FTD events, reservoirs can help by storing water for later droughts. 625 

However, if FTD is frequent, current reservoir operations do not help much. This difficulty in regulation 626 

is what makes FTD a major challenge. It is encouraging, though, that FTD is expected to become less 627 

common in most areas of the LMR Basin in the future (Fig. 5). 628 

4.2 The relationship between reservoirs’ mitigation roles and their storage 629 

The reservoir systems provide enhanced mitigation efficiency against DFAA at JingHong and Kratie 630 

compared to those at Nong Khai and Pakse (Fig. 7). Reservoir storage in the region above JingHong and 631 

the Pakse to Kratie region is significantly larger than storage in the JingHong to Nong Khai and Nong 632 

Khai to Pakse regions (Fig. 1c). Reservoirs' capacity to reduce total DFAA risk closely relates to the total 633 

storage of mainstream and tributary reservoirs, consistently showing a positive correlation for DTF and 634 

FTD events (Fig. 10a). These findings highlight reservoirs’ multifaceted role in managing flood 635 

prevention and drought resistance (Hecht et al., 2019; Hoang et al., 2019; Ly et al., 2023) while also 636 

addressing sudden DFAA challenges. These results align with Feng et al.’ s (2024) discovery that large 637 

reservoirs significantly reduce drought and flood risks and corroborate Ehsani et al.’ s (2017) conclusion 638 

that increased dam dimensions can mitigate water resource vulnerability to climate uncertainties. 639 

The positive correlation between total reservoir storage and the reduction of total DFAA risk indicates 640 

that basins with larger total storage are better equipped to resist DFAA events. However, this study 641 

examines only hydroelectric reservoirs in the LMR Basin and excludes other water storage facilities such 642 

as irrigation reservoirs. In the LMR Basin, total storage of irrigation reservoirs is considerable. According 643 

to the MRC, the Mekong Basin contains 1317 irrigation reservoirs, with total storage of about 17 billion 644 

m3 (MRC, 2018; LMC and MRC, 2023). This storage exceeds the total storage of reservoirs between 645 

JingHong and Nong Khai stations (around 9.7 billion m3). It is slightly lower than the storage between 646 

Nong Khai and Pakse stations (approximately 22.1 billion m3) (Figs. 1c and 10). Since reservoirs mitigate 647 
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extreme hydrological events regardless of their primary function (Brunner, 2021a; Ho and Ehret, 2025), 648 

even irrigation reservoirs can play a beneficial role in addressing DFAA events. Fully utilizing irrigation 649 

reservoirs and implementing coordinated operation of all reservoir types across the LMR Basin could 650 

effectively lower DFAA risks and enhance the basin's resistance to these events. 651 

 652 

Figure 10: The relationship between reservoirs' mitigation effects and their total storage. Symbol points 653 
denote the average values for each station under three SSP scenarios during the near future (2021-2060) and 654 
far future (2061-2100) periods, while error bars indicate the maximum and minimum values. (a) The impact 655 
of reservoirs on the total probability of DFAA. (b) The impact of reservoirs on DFAA of different intensities. 656 
Here, JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. Please note 657 
that, as JingHong and Nong Khai stations are not expected to experience severe FTD events in the future, the 658 
relevant information has not been included in this figure. 659 

Both mild DTF and mild FTD show a positive correlation with total reservoir storage, consistent with 660 

total DFAA events (Fig. 10b). In contrast, moderate and severe DFAA events do not strongly correlate 661 

with reservoir storage (Fig. 10b). This implies that for moderate to severe DFAA events, increasing 662 

reservoir storage capacity does not enhance the reservoirs' control capabilities. Therefore, refining 663 

reservoir operation rules presents a more appropriate strategy to strengthen control of moderate and 664 

severe DFAA events in the LMR Basin. 665 

4.3 Limitations of reservoir regulation rules 666 

The reservoir operation rule SOP adopted in this study is a commonly used method. Previous studies 667 

have widely employed this method (Wang et al., 2017a; Yun et al., 2020). The SOP rule is proven 668 

appropriate for hydrological modeling in large-scale basins such as the LMR Basin. It is also effective 669 
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for extended simulation periods in future hydrological assessments (Wang et al., 2017b; Yun et al., 2021a; 670 

Yun et al., 2021b). 671 

This study further improved the standard SOP operation rules by adding the general case and emergency 672 

case (Fig. 2). This scheduling approach manages reservoir operations using real-time inflow data. It also 673 

considers the operational year of each reservoir. As a result, the reservoir module developed in this study 674 

is robust and adaptable. It reflects reservoir scheduling scenarios with high reliability. 675 

Despite this, the study uses uniform operation rules for reservoirs of different storage scales within the 676 

LMR Basin. It implements daily regulation for all reservoirs. The study does not use differentiated 677 

regulation scales (daily, annual, or multi-annual) based on storage. It also does not consider unique 678 

operation rules in different sub-basins. These simplifications may cause uncertainties in how reservoirs 679 

mitigate effects. This is a limitation of the study. 680 

5. Conclusion 681 

This study adopts CMIP6 meteorological data, applying three SSP scenarios and five GCMs. It corrects 682 

these data using the MBCn method. The study integrates the THREW distributed hydrological model 683 

and the developed reservoir module. It describes DFAA through R-SDFAI, assessing mild, moderate, and 684 

severe intensities. The study explores how reservoirs help reduce DFAA under the changing climate in 685 

the LMR Basin. It examines three periods: history (1980-2014), near future (2021-2060), and far future 686 

(2061-2100). The main findings are summarized below: 687 

1. DFAA in the LMR Basin is dominated by DTF, with a mean probability of 2.1%. This is much higher 688 

than the FTD probability of 1.4%. DTF remains higher than FTD at all intensity levels. The future 689 

increase in DTF probability (average 0.23%) is also greater than the increase for FTD (average 0.13%). 690 

Mild-intensity DFAA events are most common. They account for 58% to 90% of future DTF probability 691 

and 75% to 100% of FTD probability. Both DTF and FTD present higher DFAA risk during the wet 692 

season than the dry season. 693 

2. Reservoirs manage DTF probability well, cutting DTF risks in both dry and wet seasons. However, 694 

they have less influence over FTD risks, especially during dry-season FTD events. Limited capacity to 695 

control FTD risks is a challenge. Reservoirs do better at managing high-frequency DTF and high-696 

intensity FTD events. They also cut down multi-peak DFAA events and reduce their monthly duration. 697 
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3. Reservoirs' ability to lower DFAA total risk is linked to their combined storage. Using large irrigation 698 

reservoirs within the LMR Basin can help withstand mild DFAA risks and overall events. To better handle 699 

moderate and severe DFAA events, reservoir operations need to be optimized. 700 

This study gives new insights into how reservoirs help mitigate DFAA in the LMR Basin. It also aids 701 

water management for riparian countries. DFAA remains a serious challenge. This shows the need for 702 

LMR Basin countries to work together, build capacity against DFAA events, reduce climate change 703 

effects, and support sustainable development. 704 
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